1 /*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31 *root, struct btrfs_key *ins_key,
32 struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34 struct btrfs_root *root, struct extent_buffer *dst,
35 struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41 int level, int slot);
42 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43 struct extent_buffer *eb);
44 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
45
btrfs_alloc_path(void)46 struct btrfs_path *btrfs_alloc_path(void)
47 {
48 struct btrfs_path *path;
49 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
50 return path;
51 }
52
53 /*
54 * set all locked nodes in the path to blocking locks. This should
55 * be done before scheduling
56 */
btrfs_set_path_blocking(struct btrfs_path * p)57 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
58 {
59 int i;
60 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
61 if (!p->nodes[i] || !p->locks[i])
62 continue;
63 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
64 if (p->locks[i] == BTRFS_READ_LOCK)
65 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
66 else if (p->locks[i] == BTRFS_WRITE_LOCK)
67 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
68 }
69 }
70
71 /*
72 * reset all the locked nodes in the patch to spinning locks.
73 *
74 * held is used to keep lockdep happy, when lockdep is enabled
75 * we set held to a blocking lock before we go around and
76 * retake all the spinlocks in the path. You can safely use NULL
77 * for held
78 */
btrfs_clear_path_blocking(struct btrfs_path * p,struct extent_buffer * held,int held_rw)79 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
80 struct extent_buffer *held, int held_rw)
81 {
82 int i;
83
84 #ifdef CONFIG_DEBUG_LOCK_ALLOC
85 /* lockdep really cares that we take all of these spinlocks
86 * in the right order. If any of the locks in the path are not
87 * currently blocking, it is going to complain. So, make really
88 * really sure by forcing the path to blocking before we clear
89 * the path blocking.
90 */
91 if (held) {
92 btrfs_set_lock_blocking_rw(held, held_rw);
93 if (held_rw == BTRFS_WRITE_LOCK)
94 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
95 else if (held_rw == BTRFS_READ_LOCK)
96 held_rw = BTRFS_READ_LOCK_BLOCKING;
97 }
98 btrfs_set_path_blocking(p);
99 #endif
100
101 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
102 if (p->nodes[i] && p->locks[i]) {
103 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
104 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
105 p->locks[i] = BTRFS_WRITE_LOCK;
106 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
107 p->locks[i] = BTRFS_READ_LOCK;
108 }
109 }
110
111 #ifdef CONFIG_DEBUG_LOCK_ALLOC
112 if (held)
113 btrfs_clear_lock_blocking_rw(held, held_rw);
114 #endif
115 }
116
117 /* this also releases the path */
btrfs_free_path(struct btrfs_path * p)118 void btrfs_free_path(struct btrfs_path *p)
119 {
120 if (!p)
121 return;
122 btrfs_release_path(p);
123 kmem_cache_free(btrfs_path_cachep, p);
124 }
125
126 /*
127 * path release drops references on the extent buffers in the path
128 * and it drops any locks held by this path
129 *
130 * It is safe to call this on paths that no locks or extent buffers held.
131 */
btrfs_release_path(struct btrfs_path * p)132 noinline void btrfs_release_path(struct btrfs_path *p)
133 {
134 int i;
135
136 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
137 p->slots[i] = 0;
138 if (!p->nodes[i])
139 continue;
140 if (p->locks[i]) {
141 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
142 p->locks[i] = 0;
143 }
144 free_extent_buffer(p->nodes[i]);
145 p->nodes[i] = NULL;
146 }
147 }
148
149 /*
150 * safely gets a reference on the root node of a tree. A lock
151 * is not taken, so a concurrent writer may put a different node
152 * at the root of the tree. See btrfs_lock_root_node for the
153 * looping required.
154 *
155 * The extent buffer returned by this has a reference taken, so
156 * it won't disappear. It may stop being the root of the tree
157 * at any time because there are no locks held.
158 */
btrfs_root_node(struct btrfs_root * root)159 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
160 {
161 struct extent_buffer *eb;
162
163 while (1) {
164 rcu_read_lock();
165 eb = rcu_dereference(root->node);
166
167 /*
168 * RCU really hurts here, we could free up the root node because
169 * it was cow'ed but we may not get the new root node yet so do
170 * the inc_not_zero dance and if it doesn't work then
171 * synchronize_rcu and try again.
172 */
173 if (atomic_inc_not_zero(&eb->refs)) {
174 rcu_read_unlock();
175 break;
176 }
177 rcu_read_unlock();
178 synchronize_rcu();
179 }
180 return eb;
181 }
182
183 /* loop around taking references on and locking the root node of the
184 * tree until you end up with a lock on the root. A locked buffer
185 * is returned, with a reference held.
186 */
btrfs_lock_root_node(struct btrfs_root * root)187 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
188 {
189 struct extent_buffer *eb;
190
191 while (1) {
192 eb = btrfs_root_node(root);
193 btrfs_tree_lock(eb);
194 if (eb == root->node)
195 break;
196 btrfs_tree_unlock(eb);
197 free_extent_buffer(eb);
198 }
199 return eb;
200 }
201
202 /* loop around taking references on and locking the root node of the
203 * tree until you end up with a lock on the root. A locked buffer
204 * is returned, with a reference held.
205 */
btrfs_read_lock_root_node(struct btrfs_root * root)206 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
207 {
208 struct extent_buffer *eb;
209
210 while (1) {
211 eb = btrfs_root_node(root);
212 btrfs_tree_read_lock(eb);
213 if (eb == root->node)
214 break;
215 btrfs_tree_read_unlock(eb);
216 free_extent_buffer(eb);
217 }
218 return eb;
219 }
220
221 /* cowonly root (everything not a reference counted cow subvolume), just get
222 * put onto a simple dirty list. transaction.c walks this to make sure they
223 * get properly updated on disk.
224 */
add_root_to_dirty_list(struct btrfs_root * root)225 static void add_root_to_dirty_list(struct btrfs_root *root)
226 {
227 spin_lock(&root->fs_info->trans_lock);
228 if (root->track_dirty && list_empty(&root->dirty_list)) {
229 list_add(&root->dirty_list,
230 &root->fs_info->dirty_cowonly_roots);
231 }
232 spin_unlock(&root->fs_info->trans_lock);
233 }
234
235 /*
236 * used by snapshot creation to make a copy of a root for a tree with
237 * a given objectid. The buffer with the new root node is returned in
238 * cow_ret, and this func returns zero on success or a negative error code.
239 */
btrfs_copy_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer ** cow_ret,u64 new_root_objectid)240 int btrfs_copy_root(struct btrfs_trans_handle *trans,
241 struct btrfs_root *root,
242 struct extent_buffer *buf,
243 struct extent_buffer **cow_ret, u64 new_root_objectid)
244 {
245 struct extent_buffer *cow;
246 int ret = 0;
247 int level;
248 struct btrfs_disk_key disk_key;
249
250 WARN_ON(root->ref_cows && trans->transid !=
251 root->fs_info->running_transaction->transid);
252 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
253
254 level = btrfs_header_level(buf);
255 if (level == 0)
256 btrfs_item_key(buf, &disk_key, 0);
257 else
258 btrfs_node_key(buf, &disk_key, 0);
259
260 cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
261 new_root_objectid, &disk_key, level,
262 buf->start, 0);
263 if (IS_ERR(cow))
264 return PTR_ERR(cow);
265
266 copy_extent_buffer(cow, buf, 0, 0, cow->len);
267 btrfs_set_header_bytenr(cow, cow->start);
268 btrfs_set_header_generation(cow, trans->transid);
269 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
270 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
271 BTRFS_HEADER_FLAG_RELOC);
272 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
273 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
274 else
275 btrfs_set_header_owner(cow, new_root_objectid);
276
277 write_extent_buffer(cow, root->fs_info->fsid,
278 (unsigned long)btrfs_header_fsid(cow),
279 BTRFS_FSID_SIZE);
280
281 WARN_ON(btrfs_header_generation(buf) > trans->transid);
282 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
283 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
284 else
285 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
286
287 if (ret)
288 return ret;
289
290 btrfs_mark_buffer_dirty(cow);
291 *cow_ret = cow;
292 return 0;
293 }
294
295 enum mod_log_op {
296 MOD_LOG_KEY_REPLACE,
297 MOD_LOG_KEY_ADD,
298 MOD_LOG_KEY_REMOVE,
299 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
300 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
301 MOD_LOG_MOVE_KEYS,
302 MOD_LOG_ROOT_REPLACE,
303 };
304
305 struct tree_mod_move {
306 int dst_slot;
307 int nr_items;
308 };
309
310 struct tree_mod_root {
311 u64 logical;
312 u8 level;
313 };
314
315 struct tree_mod_elem {
316 struct rb_node node;
317 u64 index; /* shifted logical */
318 u64 seq;
319 enum mod_log_op op;
320
321 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
322 int slot;
323
324 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
325 u64 generation;
326
327 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
328 struct btrfs_disk_key key;
329 u64 blockptr;
330
331 /* this is used for op == MOD_LOG_MOVE_KEYS */
332 struct tree_mod_move move;
333
334 /* this is used for op == MOD_LOG_ROOT_REPLACE */
335 struct tree_mod_root old_root;
336 };
337
tree_mod_log_read_lock(struct btrfs_fs_info * fs_info)338 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
339 {
340 read_lock(&fs_info->tree_mod_log_lock);
341 }
342
tree_mod_log_read_unlock(struct btrfs_fs_info * fs_info)343 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
344 {
345 read_unlock(&fs_info->tree_mod_log_lock);
346 }
347
tree_mod_log_write_lock(struct btrfs_fs_info * fs_info)348 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
349 {
350 write_lock(&fs_info->tree_mod_log_lock);
351 }
352
tree_mod_log_write_unlock(struct btrfs_fs_info * fs_info)353 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
354 {
355 write_unlock(&fs_info->tree_mod_log_lock);
356 }
357
358 /*
359 * Increment the upper half of tree_mod_seq, set lower half zero.
360 *
361 * Must be called with fs_info->tree_mod_seq_lock held.
362 */
btrfs_inc_tree_mod_seq_major(struct btrfs_fs_info * fs_info)363 static inline u64 btrfs_inc_tree_mod_seq_major(struct btrfs_fs_info *fs_info)
364 {
365 u64 seq = atomic64_read(&fs_info->tree_mod_seq);
366 seq &= 0xffffffff00000000ull;
367 seq += 1ull << 32;
368 atomic64_set(&fs_info->tree_mod_seq, seq);
369 return seq;
370 }
371
372 /*
373 * Increment the lower half of tree_mod_seq.
374 *
375 * Must be called with fs_info->tree_mod_seq_lock held. The way major numbers
376 * are generated should not technically require a spin lock here. (Rationale:
377 * incrementing the minor while incrementing the major seq number is between its
378 * atomic64_read and atomic64_set calls doesn't duplicate sequence numbers, it
379 * just returns a unique sequence number as usual.) We have decided to leave
380 * that requirement in here and rethink it once we notice it really imposes a
381 * problem on some workload.
382 */
btrfs_inc_tree_mod_seq_minor(struct btrfs_fs_info * fs_info)383 static inline u64 btrfs_inc_tree_mod_seq_minor(struct btrfs_fs_info *fs_info)
384 {
385 return atomic64_inc_return(&fs_info->tree_mod_seq);
386 }
387
388 /*
389 * return the last minor in the previous major tree_mod_seq number
390 */
btrfs_tree_mod_seq_prev(u64 seq)391 u64 btrfs_tree_mod_seq_prev(u64 seq)
392 {
393 return (seq & 0xffffffff00000000ull) - 1ull;
394 }
395
396 /*
397 * This adds a new blocker to the tree mod log's blocker list if the @elem
398 * passed does not already have a sequence number set. So when a caller expects
399 * to record tree modifications, it should ensure to set elem->seq to zero
400 * before calling btrfs_get_tree_mod_seq.
401 * Returns a fresh, unused tree log modification sequence number, even if no new
402 * blocker was added.
403 */
btrfs_get_tree_mod_seq(struct btrfs_fs_info * fs_info,struct seq_list * elem)404 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
405 struct seq_list *elem)
406 {
407 u64 seq;
408
409 tree_mod_log_write_lock(fs_info);
410 spin_lock(&fs_info->tree_mod_seq_lock);
411 if (!elem->seq) {
412 elem->seq = btrfs_inc_tree_mod_seq_major(fs_info);
413 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
414 }
415 seq = btrfs_inc_tree_mod_seq_minor(fs_info);
416 spin_unlock(&fs_info->tree_mod_seq_lock);
417 tree_mod_log_write_unlock(fs_info);
418
419 return seq;
420 }
421
btrfs_put_tree_mod_seq(struct btrfs_fs_info * fs_info,struct seq_list * elem)422 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
423 struct seq_list *elem)
424 {
425 struct rb_root *tm_root;
426 struct rb_node *node;
427 struct rb_node *next;
428 struct seq_list *cur_elem;
429 struct tree_mod_elem *tm;
430 u64 min_seq = (u64)-1;
431 u64 seq_putting = elem->seq;
432
433 if (!seq_putting)
434 return;
435
436 spin_lock(&fs_info->tree_mod_seq_lock);
437 list_del(&elem->list);
438 elem->seq = 0;
439
440 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
441 if (cur_elem->seq < min_seq) {
442 if (seq_putting > cur_elem->seq) {
443 /*
444 * blocker with lower sequence number exists, we
445 * cannot remove anything from the log
446 */
447 spin_unlock(&fs_info->tree_mod_seq_lock);
448 return;
449 }
450 min_seq = cur_elem->seq;
451 }
452 }
453 spin_unlock(&fs_info->tree_mod_seq_lock);
454
455 /*
456 * anything that's lower than the lowest existing (read: blocked)
457 * sequence number can be removed from the tree.
458 */
459 tree_mod_log_write_lock(fs_info);
460 tm_root = &fs_info->tree_mod_log;
461 for (node = rb_first(tm_root); node; node = next) {
462 next = rb_next(node);
463 tm = container_of(node, struct tree_mod_elem, node);
464 if (tm->seq > min_seq)
465 continue;
466 rb_erase(node, tm_root);
467 kfree(tm);
468 }
469 tree_mod_log_write_unlock(fs_info);
470 }
471
472 /*
473 * key order of the log:
474 * index -> sequence
475 *
476 * the index is the shifted logical of the *new* root node for root replace
477 * operations, or the shifted logical of the affected block for all other
478 * operations.
479 */
480 static noinline int
__tree_mod_log_insert(struct btrfs_fs_info * fs_info,struct tree_mod_elem * tm)481 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
482 {
483 struct rb_root *tm_root;
484 struct rb_node **new;
485 struct rb_node *parent = NULL;
486 struct tree_mod_elem *cur;
487
488 BUG_ON(!tm || !tm->seq);
489
490 tm_root = &fs_info->tree_mod_log;
491 new = &tm_root->rb_node;
492 while (*new) {
493 cur = container_of(*new, struct tree_mod_elem, node);
494 parent = *new;
495 if (cur->index < tm->index)
496 new = &((*new)->rb_left);
497 else if (cur->index > tm->index)
498 new = &((*new)->rb_right);
499 else if (cur->seq < tm->seq)
500 new = &((*new)->rb_left);
501 else if (cur->seq > tm->seq)
502 new = &((*new)->rb_right);
503 else {
504 kfree(tm);
505 return -EEXIST;
506 }
507 }
508
509 rb_link_node(&tm->node, parent, new);
510 rb_insert_color(&tm->node, tm_root);
511 return 0;
512 }
513
514 /*
515 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
516 * returns zero with the tree_mod_log_lock acquired. The caller must hold
517 * this until all tree mod log insertions are recorded in the rb tree and then
518 * call tree_mod_log_write_unlock() to release.
519 */
tree_mod_dont_log(struct btrfs_fs_info * fs_info,struct extent_buffer * eb)520 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
521 struct extent_buffer *eb) {
522 smp_mb();
523 if (list_empty(&(fs_info)->tree_mod_seq_list))
524 return 1;
525 if (eb && btrfs_header_level(eb) == 0)
526 return 1;
527
528 tree_mod_log_write_lock(fs_info);
529 if (list_empty(&fs_info->tree_mod_seq_list)) {
530 /*
531 * someone emptied the list while we were waiting for the lock.
532 * we must not add to the list when no blocker exists.
533 */
534 tree_mod_log_write_unlock(fs_info);
535 return 1;
536 }
537
538 return 0;
539 }
540
541 /*
542 * This allocates memory and gets a tree modification sequence number.
543 *
544 * Returns <0 on error.
545 * Returns >0 (the added sequence number) on success.
546 */
tree_mod_alloc(struct btrfs_fs_info * fs_info,gfp_t flags,struct tree_mod_elem ** tm_ret)547 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
548 struct tree_mod_elem **tm_ret)
549 {
550 struct tree_mod_elem *tm;
551
552 /*
553 * once we switch from spin locks to something different, we should
554 * honor the flags parameter here.
555 */
556 tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
557 if (!tm)
558 return -ENOMEM;
559
560 spin_lock(&fs_info->tree_mod_seq_lock);
561 tm->seq = btrfs_inc_tree_mod_seq_minor(fs_info);
562 spin_unlock(&fs_info->tree_mod_seq_lock);
563
564 return tm->seq;
565 }
566
567 static inline int
__tree_mod_log_insert_key(struct btrfs_fs_info * fs_info,struct extent_buffer * eb,int slot,enum mod_log_op op,gfp_t flags)568 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
569 struct extent_buffer *eb, int slot,
570 enum mod_log_op op, gfp_t flags)
571 {
572 int ret;
573 struct tree_mod_elem *tm;
574
575 ret = tree_mod_alloc(fs_info, flags, &tm);
576 if (ret < 0)
577 return ret;
578
579 tm->index = eb->start >> PAGE_CACHE_SHIFT;
580 if (op != MOD_LOG_KEY_ADD) {
581 btrfs_node_key(eb, &tm->key, slot);
582 tm->blockptr = btrfs_node_blockptr(eb, slot);
583 }
584 tm->op = op;
585 tm->slot = slot;
586 tm->generation = btrfs_node_ptr_generation(eb, slot);
587
588 return __tree_mod_log_insert(fs_info, tm);
589 }
590
591 static noinline int
tree_mod_log_insert_key_mask(struct btrfs_fs_info * fs_info,struct extent_buffer * eb,int slot,enum mod_log_op op,gfp_t flags)592 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
593 struct extent_buffer *eb, int slot,
594 enum mod_log_op op, gfp_t flags)
595 {
596 int ret;
597
598 if (tree_mod_dont_log(fs_info, eb))
599 return 0;
600
601 ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
602
603 tree_mod_log_write_unlock(fs_info);
604 return ret;
605 }
606
607 static noinline int
tree_mod_log_insert_key(struct btrfs_fs_info * fs_info,struct extent_buffer * eb,int slot,enum mod_log_op op)608 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
609 int slot, enum mod_log_op op)
610 {
611 return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
612 }
613
614 static noinline int
tree_mod_log_insert_key_locked(struct btrfs_fs_info * fs_info,struct extent_buffer * eb,int slot,enum mod_log_op op)615 tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
616 struct extent_buffer *eb, int slot,
617 enum mod_log_op op)
618 {
619 return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
620 }
621
622 static noinline int
tree_mod_log_insert_move(struct btrfs_fs_info * fs_info,struct extent_buffer * eb,int dst_slot,int src_slot,int nr_items,gfp_t flags)623 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
624 struct extent_buffer *eb, int dst_slot, int src_slot,
625 int nr_items, gfp_t flags)
626 {
627 struct tree_mod_elem *tm;
628 int ret;
629 int i;
630
631 if (tree_mod_dont_log(fs_info, eb))
632 return 0;
633
634 /*
635 * When we override something during the move, we log these removals.
636 * This can only happen when we move towards the beginning of the
637 * buffer, i.e. dst_slot < src_slot.
638 */
639 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
640 ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
641 MOD_LOG_KEY_REMOVE_WHILE_MOVING);
642 BUG_ON(ret < 0);
643 }
644
645 ret = tree_mod_alloc(fs_info, flags, &tm);
646 if (ret < 0)
647 goto out;
648
649 tm->index = eb->start >> PAGE_CACHE_SHIFT;
650 tm->slot = src_slot;
651 tm->move.dst_slot = dst_slot;
652 tm->move.nr_items = nr_items;
653 tm->op = MOD_LOG_MOVE_KEYS;
654
655 ret = __tree_mod_log_insert(fs_info, tm);
656 out:
657 tree_mod_log_write_unlock(fs_info);
658 return ret;
659 }
660
661 static inline void
__tree_mod_log_free_eb(struct btrfs_fs_info * fs_info,struct extent_buffer * eb)662 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
663 {
664 int i;
665 u32 nritems;
666 int ret;
667
668 if (btrfs_header_level(eb) == 0)
669 return;
670
671 nritems = btrfs_header_nritems(eb);
672 for (i = nritems - 1; i >= 0; i--) {
673 ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
674 MOD_LOG_KEY_REMOVE_WHILE_FREEING);
675 BUG_ON(ret < 0);
676 }
677 }
678
679 static noinline int
tree_mod_log_insert_root(struct btrfs_fs_info * fs_info,struct extent_buffer * old_root,struct extent_buffer * new_root,gfp_t flags,int log_removal)680 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
681 struct extent_buffer *old_root,
682 struct extent_buffer *new_root, gfp_t flags,
683 int log_removal)
684 {
685 struct tree_mod_elem *tm;
686 int ret;
687
688 if (tree_mod_dont_log(fs_info, NULL))
689 return 0;
690
691 if (log_removal)
692 __tree_mod_log_free_eb(fs_info, old_root);
693
694 ret = tree_mod_alloc(fs_info, flags, &tm);
695 if (ret < 0)
696 goto out;
697
698 tm->index = new_root->start >> PAGE_CACHE_SHIFT;
699 tm->old_root.logical = old_root->start;
700 tm->old_root.level = btrfs_header_level(old_root);
701 tm->generation = btrfs_header_generation(old_root);
702 tm->op = MOD_LOG_ROOT_REPLACE;
703
704 ret = __tree_mod_log_insert(fs_info, tm);
705 out:
706 tree_mod_log_write_unlock(fs_info);
707 return ret;
708 }
709
710 static struct tree_mod_elem *
__tree_mod_log_search(struct btrfs_fs_info * fs_info,u64 start,u64 min_seq,int smallest)711 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
712 int smallest)
713 {
714 struct rb_root *tm_root;
715 struct rb_node *node;
716 struct tree_mod_elem *cur = NULL;
717 struct tree_mod_elem *found = NULL;
718 u64 index = start >> PAGE_CACHE_SHIFT;
719
720 tree_mod_log_read_lock(fs_info);
721 tm_root = &fs_info->tree_mod_log;
722 node = tm_root->rb_node;
723 while (node) {
724 cur = container_of(node, struct tree_mod_elem, node);
725 if (cur->index < index) {
726 node = node->rb_left;
727 } else if (cur->index > index) {
728 node = node->rb_right;
729 } else if (cur->seq < min_seq) {
730 node = node->rb_left;
731 } else if (!smallest) {
732 /* we want the node with the highest seq */
733 if (found)
734 BUG_ON(found->seq > cur->seq);
735 found = cur;
736 node = node->rb_left;
737 } else if (cur->seq > min_seq) {
738 /* we want the node with the smallest seq */
739 if (found)
740 BUG_ON(found->seq < cur->seq);
741 found = cur;
742 node = node->rb_right;
743 } else {
744 found = cur;
745 break;
746 }
747 }
748 tree_mod_log_read_unlock(fs_info);
749
750 return found;
751 }
752
753 /*
754 * this returns the element from the log with the smallest time sequence
755 * value that's in the log (the oldest log item). any element with a time
756 * sequence lower than min_seq will be ignored.
757 */
758 static struct tree_mod_elem *
tree_mod_log_search_oldest(struct btrfs_fs_info * fs_info,u64 start,u64 min_seq)759 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
760 u64 min_seq)
761 {
762 return __tree_mod_log_search(fs_info, start, min_seq, 1);
763 }
764
765 /*
766 * this returns the element from the log with the largest time sequence
767 * value that's in the log (the most recent log item). any element with
768 * a time sequence lower than min_seq will be ignored.
769 */
770 static struct tree_mod_elem *
tree_mod_log_search(struct btrfs_fs_info * fs_info,u64 start,u64 min_seq)771 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
772 {
773 return __tree_mod_log_search(fs_info, start, min_seq, 0);
774 }
775
776 static noinline void
tree_mod_log_eb_copy(struct btrfs_fs_info * fs_info,struct extent_buffer * dst,struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,int nr_items)777 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
778 struct extent_buffer *src, unsigned long dst_offset,
779 unsigned long src_offset, int nr_items)
780 {
781 int ret;
782 int i;
783
784 if (tree_mod_dont_log(fs_info, NULL))
785 return;
786
787 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
788 tree_mod_log_write_unlock(fs_info);
789 return;
790 }
791
792 for (i = 0; i < nr_items; i++) {
793 ret = tree_mod_log_insert_key_locked(fs_info, src,
794 i + src_offset,
795 MOD_LOG_KEY_REMOVE);
796 BUG_ON(ret < 0);
797 ret = tree_mod_log_insert_key_locked(fs_info, dst,
798 i + dst_offset,
799 MOD_LOG_KEY_ADD);
800 BUG_ON(ret < 0);
801 }
802
803 tree_mod_log_write_unlock(fs_info);
804 }
805
806 static inline void
tree_mod_log_eb_move(struct btrfs_fs_info * fs_info,struct extent_buffer * dst,int dst_offset,int src_offset,int nr_items)807 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
808 int dst_offset, int src_offset, int nr_items)
809 {
810 int ret;
811 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
812 nr_items, GFP_NOFS);
813 BUG_ON(ret < 0);
814 }
815
816 static noinline void
tree_mod_log_set_node_key(struct btrfs_fs_info * fs_info,struct extent_buffer * eb,int slot,int atomic)817 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
818 struct extent_buffer *eb, int slot, int atomic)
819 {
820 int ret;
821
822 ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
823 MOD_LOG_KEY_REPLACE,
824 atomic ? GFP_ATOMIC : GFP_NOFS);
825 BUG_ON(ret < 0);
826 }
827
828 static noinline void
tree_mod_log_free_eb(struct btrfs_fs_info * fs_info,struct extent_buffer * eb)829 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
830 {
831 if (tree_mod_dont_log(fs_info, eb))
832 return;
833
834 __tree_mod_log_free_eb(fs_info, eb);
835
836 tree_mod_log_write_unlock(fs_info);
837 }
838
839 static noinline void
tree_mod_log_set_root_pointer(struct btrfs_root * root,struct extent_buffer * new_root_node,int log_removal)840 tree_mod_log_set_root_pointer(struct btrfs_root *root,
841 struct extent_buffer *new_root_node,
842 int log_removal)
843 {
844 int ret;
845 ret = tree_mod_log_insert_root(root->fs_info, root->node,
846 new_root_node, GFP_NOFS, log_removal);
847 BUG_ON(ret < 0);
848 }
849
850 /*
851 * check if the tree block can be shared by multiple trees
852 */
btrfs_block_can_be_shared(struct btrfs_root * root,struct extent_buffer * buf)853 int btrfs_block_can_be_shared(struct btrfs_root *root,
854 struct extent_buffer *buf)
855 {
856 /*
857 * Tree blocks not in refernece counted trees and tree roots
858 * are never shared. If a block was allocated after the last
859 * snapshot and the block was not allocated by tree relocation,
860 * we know the block is not shared.
861 */
862 if (root->ref_cows &&
863 buf != root->node && buf != root->commit_root &&
864 (btrfs_header_generation(buf) <=
865 btrfs_root_last_snapshot(&root->root_item) ||
866 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
867 return 1;
868 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
869 if (root->ref_cows &&
870 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
871 return 1;
872 #endif
873 return 0;
874 }
875
update_ref_for_cow(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * cow,int * last_ref)876 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
877 struct btrfs_root *root,
878 struct extent_buffer *buf,
879 struct extent_buffer *cow,
880 int *last_ref)
881 {
882 u64 refs;
883 u64 owner;
884 u64 flags;
885 u64 new_flags = 0;
886 int ret;
887
888 /*
889 * Backrefs update rules:
890 *
891 * Always use full backrefs for extent pointers in tree block
892 * allocated by tree relocation.
893 *
894 * If a shared tree block is no longer referenced by its owner
895 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
896 * use full backrefs for extent pointers in tree block.
897 *
898 * If a tree block is been relocating
899 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
900 * use full backrefs for extent pointers in tree block.
901 * The reason for this is some operations (such as drop tree)
902 * are only allowed for blocks use full backrefs.
903 */
904
905 if (btrfs_block_can_be_shared(root, buf)) {
906 ret = btrfs_lookup_extent_info(trans, root, buf->start,
907 btrfs_header_level(buf), 1,
908 &refs, &flags);
909 if (ret)
910 return ret;
911 if (refs == 0) {
912 ret = -EROFS;
913 btrfs_std_error(root->fs_info, ret);
914 return ret;
915 }
916 } else {
917 refs = 1;
918 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
919 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
920 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
921 else
922 flags = 0;
923 }
924
925 owner = btrfs_header_owner(buf);
926 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
927 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
928
929 if (refs > 1) {
930 if ((owner == root->root_key.objectid ||
931 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
932 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
933 ret = btrfs_inc_ref(trans, root, buf, 1, 1);
934 BUG_ON(ret); /* -ENOMEM */
935
936 if (root->root_key.objectid ==
937 BTRFS_TREE_RELOC_OBJECTID) {
938 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
939 BUG_ON(ret); /* -ENOMEM */
940 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
941 BUG_ON(ret); /* -ENOMEM */
942 }
943 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
944 } else {
945
946 if (root->root_key.objectid ==
947 BTRFS_TREE_RELOC_OBJECTID)
948 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
949 else
950 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
951 BUG_ON(ret); /* -ENOMEM */
952 }
953 if (new_flags != 0) {
954 int level = btrfs_header_level(buf);
955
956 ret = btrfs_set_disk_extent_flags(trans, root,
957 buf->start,
958 buf->len,
959 new_flags, level, 0);
960 if (ret)
961 return ret;
962 }
963 } else {
964 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
965 if (root->root_key.objectid ==
966 BTRFS_TREE_RELOC_OBJECTID)
967 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
968 else
969 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
970 BUG_ON(ret); /* -ENOMEM */
971 ret = btrfs_dec_ref(trans, root, buf, 1, 1);
972 BUG_ON(ret); /* -ENOMEM */
973 }
974 clean_tree_block(trans, root, buf);
975 *last_ref = 1;
976 }
977 return 0;
978 }
979
980 /*
981 * does the dirty work in cow of a single block. The parent block (if
982 * supplied) is updated to point to the new cow copy. The new buffer is marked
983 * dirty and returned locked. If you modify the block it needs to be marked
984 * dirty again.
985 *
986 * search_start -- an allocation hint for the new block
987 *
988 * empty_size -- a hint that you plan on doing more cow. This is the size in
989 * bytes the allocator should try to find free next to the block it returns.
990 * This is just a hint and may be ignored by the allocator.
991 */
__btrfs_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret,u64 search_start,u64 empty_size)992 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
993 struct btrfs_root *root,
994 struct extent_buffer *buf,
995 struct extent_buffer *parent, int parent_slot,
996 struct extent_buffer **cow_ret,
997 u64 search_start, u64 empty_size)
998 {
999 struct btrfs_disk_key disk_key;
1000 struct extent_buffer *cow;
1001 int level, ret;
1002 int last_ref = 0;
1003 int unlock_orig = 0;
1004 u64 parent_start;
1005
1006 if (*cow_ret == buf)
1007 unlock_orig = 1;
1008
1009 btrfs_assert_tree_locked(buf);
1010
1011 WARN_ON(root->ref_cows && trans->transid !=
1012 root->fs_info->running_transaction->transid);
1013 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
1014
1015 level = btrfs_header_level(buf);
1016
1017 if (level == 0)
1018 btrfs_item_key(buf, &disk_key, 0);
1019 else
1020 btrfs_node_key(buf, &disk_key, 0);
1021
1022 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1023 if (parent)
1024 parent_start = parent->start;
1025 else
1026 parent_start = 0;
1027 } else
1028 parent_start = 0;
1029
1030 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
1031 root->root_key.objectid, &disk_key,
1032 level, search_start, empty_size);
1033 if (IS_ERR(cow))
1034 return PTR_ERR(cow);
1035
1036 /* cow is set to blocking by btrfs_init_new_buffer */
1037
1038 copy_extent_buffer(cow, buf, 0, 0, cow->len);
1039 btrfs_set_header_bytenr(cow, cow->start);
1040 btrfs_set_header_generation(cow, trans->transid);
1041 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1042 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1043 BTRFS_HEADER_FLAG_RELOC);
1044 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1045 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1046 else
1047 btrfs_set_header_owner(cow, root->root_key.objectid);
1048
1049 write_extent_buffer(cow, root->fs_info->fsid,
1050 (unsigned long)btrfs_header_fsid(cow),
1051 BTRFS_FSID_SIZE);
1052
1053 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1054 if (ret) {
1055 btrfs_abort_transaction(trans, root, ret);
1056 return ret;
1057 }
1058
1059 if (root->ref_cows)
1060 btrfs_reloc_cow_block(trans, root, buf, cow);
1061
1062 if (buf == root->node) {
1063 WARN_ON(parent && parent != buf);
1064 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1065 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1066 parent_start = buf->start;
1067 else
1068 parent_start = 0;
1069
1070 extent_buffer_get(cow);
1071 tree_mod_log_set_root_pointer(root, cow, 1);
1072 rcu_assign_pointer(root->node, cow);
1073
1074 btrfs_free_tree_block(trans, root, buf, parent_start,
1075 last_ref);
1076 free_extent_buffer(buf);
1077 add_root_to_dirty_list(root);
1078 } else {
1079 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1080 parent_start = parent->start;
1081 else
1082 parent_start = 0;
1083
1084 WARN_ON(trans->transid != btrfs_header_generation(parent));
1085 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1086 MOD_LOG_KEY_REPLACE);
1087 btrfs_set_node_blockptr(parent, parent_slot,
1088 cow->start);
1089 btrfs_set_node_ptr_generation(parent, parent_slot,
1090 trans->transid);
1091 btrfs_mark_buffer_dirty(parent);
1092 tree_mod_log_free_eb(root->fs_info, buf);
1093 btrfs_free_tree_block(trans, root, buf, parent_start,
1094 last_ref);
1095 }
1096 if (unlock_orig)
1097 btrfs_tree_unlock(buf);
1098 free_extent_buffer_stale(buf);
1099 btrfs_mark_buffer_dirty(cow);
1100 *cow_ret = cow;
1101 return 0;
1102 }
1103
1104 /*
1105 * returns the logical address of the oldest predecessor of the given root.
1106 * entries older than time_seq are ignored.
1107 */
1108 static struct tree_mod_elem *
__tree_mod_log_oldest_root(struct btrfs_fs_info * fs_info,struct extent_buffer * eb_root,u64 time_seq)1109 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1110 struct extent_buffer *eb_root, u64 time_seq)
1111 {
1112 struct tree_mod_elem *tm;
1113 struct tree_mod_elem *found = NULL;
1114 u64 root_logical = eb_root->start;
1115 int looped = 0;
1116
1117 if (!time_seq)
1118 return 0;
1119
1120 /*
1121 * the very last operation that's logged for a root is the replacement
1122 * operation (if it is replaced at all). this has the index of the *new*
1123 * root, making it the very first operation that's logged for this root.
1124 */
1125 while (1) {
1126 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1127 time_seq);
1128 if (!looped && !tm)
1129 return 0;
1130 /*
1131 * if there are no tree operation for the oldest root, we simply
1132 * return it. this should only happen if that (old) root is at
1133 * level 0.
1134 */
1135 if (!tm)
1136 break;
1137
1138 /*
1139 * if there's an operation that's not a root replacement, we
1140 * found the oldest version of our root. normally, we'll find a
1141 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1142 */
1143 if (tm->op != MOD_LOG_ROOT_REPLACE)
1144 break;
1145
1146 found = tm;
1147 root_logical = tm->old_root.logical;
1148 looped = 1;
1149 }
1150
1151 /* if there's no old root to return, return what we found instead */
1152 if (!found)
1153 found = tm;
1154
1155 return found;
1156 }
1157
1158 /*
1159 * tm is a pointer to the first operation to rewind within eb. then, all
1160 * previous operations will be rewinded (until we reach something older than
1161 * time_seq).
1162 */
1163 static void
__tree_mod_log_rewind(struct extent_buffer * eb,u64 time_seq,struct tree_mod_elem * first_tm)1164 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1165 struct tree_mod_elem *first_tm)
1166 {
1167 u32 n;
1168 struct rb_node *next;
1169 struct tree_mod_elem *tm = first_tm;
1170 unsigned long o_dst;
1171 unsigned long o_src;
1172 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1173
1174 n = btrfs_header_nritems(eb);
1175 while (tm && tm->seq >= time_seq) {
1176 /*
1177 * all the operations are recorded with the operator used for
1178 * the modification. as we're going backwards, we do the
1179 * opposite of each operation here.
1180 */
1181 switch (tm->op) {
1182 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1183 BUG_ON(tm->slot < n);
1184 /* Fallthrough */
1185 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1186 case MOD_LOG_KEY_REMOVE:
1187 btrfs_set_node_key(eb, &tm->key, tm->slot);
1188 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1189 btrfs_set_node_ptr_generation(eb, tm->slot,
1190 tm->generation);
1191 n++;
1192 break;
1193 case MOD_LOG_KEY_REPLACE:
1194 BUG_ON(tm->slot >= n);
1195 btrfs_set_node_key(eb, &tm->key, tm->slot);
1196 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1197 btrfs_set_node_ptr_generation(eb, tm->slot,
1198 tm->generation);
1199 break;
1200 case MOD_LOG_KEY_ADD:
1201 /* if a move operation is needed it's in the log */
1202 n--;
1203 break;
1204 case MOD_LOG_MOVE_KEYS:
1205 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1206 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1207 memmove_extent_buffer(eb, o_dst, o_src,
1208 tm->move.nr_items * p_size);
1209 break;
1210 case MOD_LOG_ROOT_REPLACE:
1211 /*
1212 * this operation is special. for roots, this must be
1213 * handled explicitly before rewinding.
1214 * for non-roots, this operation may exist if the node
1215 * was a root: root A -> child B; then A gets empty and
1216 * B is promoted to the new root. in the mod log, we'll
1217 * have a root-replace operation for B, a tree block
1218 * that is no root. we simply ignore that operation.
1219 */
1220 break;
1221 }
1222 next = rb_next(&tm->node);
1223 if (!next)
1224 break;
1225 tm = container_of(next, struct tree_mod_elem, node);
1226 if (tm->index != first_tm->index)
1227 break;
1228 }
1229 btrfs_set_header_nritems(eb, n);
1230 }
1231
1232 /*
1233 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1234 * is returned. If rewind operations happen, a fresh buffer is returned. The
1235 * returned buffer is always read-locked. If the returned buffer is not the
1236 * input buffer, the lock on the input buffer is released and the input buffer
1237 * is freed (its refcount is decremented).
1238 */
1239 static struct extent_buffer *
tree_mod_log_rewind(struct btrfs_fs_info * fs_info,struct extent_buffer * eb,u64 time_seq)1240 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1241 u64 time_seq)
1242 {
1243 struct extent_buffer *eb_rewin;
1244 struct tree_mod_elem *tm;
1245
1246 if (!time_seq)
1247 return eb;
1248
1249 if (btrfs_header_level(eb) == 0)
1250 return eb;
1251
1252 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1253 if (!tm)
1254 return eb;
1255
1256 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1257 BUG_ON(tm->slot != 0);
1258 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1259 fs_info->tree_root->nodesize);
1260 BUG_ON(!eb_rewin);
1261 btrfs_set_header_bytenr(eb_rewin, eb->start);
1262 btrfs_set_header_backref_rev(eb_rewin,
1263 btrfs_header_backref_rev(eb));
1264 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1265 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1266 } else {
1267 eb_rewin = btrfs_clone_extent_buffer(eb);
1268 BUG_ON(!eb_rewin);
1269 }
1270
1271 extent_buffer_get(eb_rewin);
1272 btrfs_tree_read_unlock(eb);
1273 free_extent_buffer(eb);
1274
1275 extent_buffer_get(eb_rewin);
1276 btrfs_tree_read_lock(eb_rewin);
1277 __tree_mod_log_rewind(eb_rewin, time_seq, tm);
1278 WARN_ON(btrfs_header_nritems(eb_rewin) >
1279 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1280
1281 return eb_rewin;
1282 }
1283
1284 /*
1285 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1286 * value. If there are no changes, the current root->root_node is returned. If
1287 * anything changed in between, there's a fresh buffer allocated on which the
1288 * rewind operations are done. In any case, the returned buffer is read locked.
1289 * Returns NULL on error (with no locks held).
1290 */
1291 static inline struct extent_buffer *
get_old_root(struct btrfs_root * root,u64 time_seq)1292 get_old_root(struct btrfs_root *root, u64 time_seq)
1293 {
1294 struct tree_mod_elem *tm;
1295 struct extent_buffer *eb = NULL;
1296 struct extent_buffer *eb_root;
1297 struct extent_buffer *old;
1298 struct tree_mod_root *old_root = NULL;
1299 u64 old_generation = 0;
1300 u64 logical;
1301 u32 blocksize;
1302
1303 eb_root = btrfs_read_lock_root_node(root);
1304 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1305 if (!tm)
1306 return eb_root;
1307
1308 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1309 old_root = &tm->old_root;
1310 old_generation = tm->generation;
1311 logical = old_root->logical;
1312 } else {
1313 logical = eb_root->start;
1314 }
1315
1316 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1317 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1318 btrfs_tree_read_unlock(eb_root);
1319 free_extent_buffer(eb_root);
1320 blocksize = btrfs_level_size(root, old_root->level);
1321 old = read_tree_block(root, logical, blocksize, 0);
1322 if (!old || !extent_buffer_uptodate(old)) {
1323 free_extent_buffer(old);
1324 pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1325 logical);
1326 WARN_ON(1);
1327 } else {
1328 eb = btrfs_clone_extent_buffer(old);
1329 free_extent_buffer(old);
1330 }
1331 } else if (old_root) {
1332 btrfs_tree_read_unlock(eb_root);
1333 free_extent_buffer(eb_root);
1334 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1335 } else {
1336 eb = btrfs_clone_extent_buffer(eb_root);
1337 btrfs_tree_read_unlock(eb_root);
1338 free_extent_buffer(eb_root);
1339 }
1340
1341 if (!eb)
1342 return NULL;
1343 extent_buffer_get(eb);
1344 btrfs_tree_read_lock(eb);
1345 if (old_root) {
1346 btrfs_set_header_bytenr(eb, eb->start);
1347 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1348 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1349 btrfs_set_header_level(eb, old_root->level);
1350 btrfs_set_header_generation(eb, old_generation);
1351 }
1352 if (tm)
1353 __tree_mod_log_rewind(eb, time_seq, tm);
1354 else
1355 WARN_ON(btrfs_header_level(eb) != 0);
1356 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1357
1358 return eb;
1359 }
1360
btrfs_old_root_level(struct btrfs_root * root,u64 time_seq)1361 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1362 {
1363 struct tree_mod_elem *tm;
1364 int level;
1365 struct extent_buffer *eb_root = btrfs_root_node(root);
1366
1367 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1368 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1369 level = tm->old_root.level;
1370 } else {
1371 level = btrfs_header_level(eb_root);
1372 }
1373 free_extent_buffer(eb_root);
1374
1375 return level;
1376 }
1377
should_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf)1378 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1379 struct btrfs_root *root,
1380 struct extent_buffer *buf)
1381 {
1382 /* ensure we can see the force_cow */
1383 smp_rmb();
1384
1385 /*
1386 * We do not need to cow a block if
1387 * 1) this block is not created or changed in this transaction;
1388 * 2) this block does not belong to TREE_RELOC tree;
1389 * 3) the root is not forced COW.
1390 *
1391 * What is forced COW:
1392 * when we create snapshot during commiting the transaction,
1393 * after we've finished coping src root, we must COW the shared
1394 * block to ensure the metadata consistency.
1395 */
1396 if (btrfs_header_generation(buf) == trans->transid &&
1397 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1398 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1399 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1400 !root->force_cow)
1401 return 0;
1402 return 1;
1403 }
1404
1405 /*
1406 * cows a single block, see __btrfs_cow_block for the real work.
1407 * This version of it has extra checks so that a block isn't cow'd more than
1408 * once per transaction, as long as it hasn't been written yet
1409 */
btrfs_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret)1410 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1411 struct btrfs_root *root, struct extent_buffer *buf,
1412 struct extent_buffer *parent, int parent_slot,
1413 struct extent_buffer **cow_ret)
1414 {
1415 u64 search_start;
1416 int ret;
1417
1418 if (trans->transaction != root->fs_info->running_transaction)
1419 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1420 (unsigned long long)trans->transid,
1421 (unsigned long long)
1422 root->fs_info->running_transaction->transid);
1423
1424 if (trans->transid != root->fs_info->generation)
1425 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1426 (unsigned long long)trans->transid,
1427 (unsigned long long)root->fs_info->generation);
1428
1429 if (!should_cow_block(trans, root, buf)) {
1430 *cow_ret = buf;
1431 return 0;
1432 }
1433
1434 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1435
1436 if (parent)
1437 btrfs_set_lock_blocking(parent);
1438 btrfs_set_lock_blocking(buf);
1439
1440 ret = __btrfs_cow_block(trans, root, buf, parent,
1441 parent_slot, cow_ret, search_start, 0);
1442
1443 trace_btrfs_cow_block(root, buf, *cow_ret);
1444
1445 return ret;
1446 }
1447
1448 /*
1449 * helper function for defrag to decide if two blocks pointed to by a
1450 * node are actually close by
1451 */
close_blocks(u64 blocknr,u64 other,u32 blocksize)1452 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1453 {
1454 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1455 return 1;
1456 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1457 return 1;
1458 return 0;
1459 }
1460
1461 /*
1462 * compare two keys in a memcmp fashion
1463 */
comp_keys(struct btrfs_disk_key * disk,struct btrfs_key * k2)1464 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1465 {
1466 struct btrfs_key k1;
1467
1468 btrfs_disk_key_to_cpu(&k1, disk);
1469
1470 return btrfs_comp_cpu_keys(&k1, k2);
1471 }
1472
1473 /*
1474 * same as comp_keys only with two btrfs_key's
1475 */
btrfs_comp_cpu_keys(struct btrfs_key * k1,struct btrfs_key * k2)1476 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1477 {
1478 if (k1->objectid > k2->objectid)
1479 return 1;
1480 if (k1->objectid < k2->objectid)
1481 return -1;
1482 if (k1->type > k2->type)
1483 return 1;
1484 if (k1->type < k2->type)
1485 return -1;
1486 if (k1->offset > k2->offset)
1487 return 1;
1488 if (k1->offset < k2->offset)
1489 return -1;
1490 return 0;
1491 }
1492
1493 /*
1494 * this is used by the defrag code to go through all the
1495 * leaves pointed to by a node and reallocate them so that
1496 * disk order is close to key order
1497 */
btrfs_realloc_node(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * parent,int start_slot,u64 * last_ret,struct btrfs_key * progress)1498 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1499 struct btrfs_root *root, struct extent_buffer *parent,
1500 int start_slot, u64 *last_ret,
1501 struct btrfs_key *progress)
1502 {
1503 struct extent_buffer *cur;
1504 u64 blocknr;
1505 u64 gen;
1506 u64 search_start = *last_ret;
1507 u64 last_block = 0;
1508 u64 other;
1509 u32 parent_nritems;
1510 int end_slot;
1511 int i;
1512 int err = 0;
1513 int parent_level;
1514 int uptodate;
1515 u32 blocksize;
1516 int progress_passed = 0;
1517 struct btrfs_disk_key disk_key;
1518
1519 parent_level = btrfs_header_level(parent);
1520
1521 WARN_ON(trans->transaction != root->fs_info->running_transaction);
1522 WARN_ON(trans->transid != root->fs_info->generation);
1523
1524 parent_nritems = btrfs_header_nritems(parent);
1525 blocksize = btrfs_level_size(root, parent_level - 1);
1526 end_slot = parent_nritems;
1527
1528 if (parent_nritems == 1)
1529 return 0;
1530
1531 btrfs_set_lock_blocking(parent);
1532
1533 for (i = start_slot; i < end_slot; i++) {
1534 int close = 1;
1535
1536 btrfs_node_key(parent, &disk_key, i);
1537 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1538 continue;
1539
1540 progress_passed = 1;
1541 blocknr = btrfs_node_blockptr(parent, i);
1542 gen = btrfs_node_ptr_generation(parent, i);
1543 if (last_block == 0)
1544 last_block = blocknr;
1545
1546 if (i > 0) {
1547 other = btrfs_node_blockptr(parent, i - 1);
1548 close = close_blocks(blocknr, other, blocksize);
1549 }
1550 if (!close && i < end_slot - 2) {
1551 other = btrfs_node_blockptr(parent, i + 1);
1552 close = close_blocks(blocknr, other, blocksize);
1553 }
1554 if (close) {
1555 last_block = blocknr;
1556 continue;
1557 }
1558
1559 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1560 if (cur)
1561 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1562 else
1563 uptodate = 0;
1564 if (!cur || !uptodate) {
1565 if (!cur) {
1566 cur = read_tree_block(root, blocknr,
1567 blocksize, gen);
1568 if (!cur || !extent_buffer_uptodate(cur)) {
1569 free_extent_buffer(cur);
1570 return -EIO;
1571 }
1572 } else if (!uptodate) {
1573 err = btrfs_read_buffer(cur, gen);
1574 if (err) {
1575 free_extent_buffer(cur);
1576 return err;
1577 }
1578 }
1579 }
1580 if (search_start == 0)
1581 search_start = last_block;
1582
1583 btrfs_tree_lock(cur);
1584 btrfs_set_lock_blocking(cur);
1585 err = __btrfs_cow_block(trans, root, cur, parent, i,
1586 &cur, search_start,
1587 min(16 * blocksize,
1588 (end_slot - i) * blocksize));
1589 if (err) {
1590 btrfs_tree_unlock(cur);
1591 free_extent_buffer(cur);
1592 break;
1593 }
1594 search_start = cur->start;
1595 last_block = cur->start;
1596 *last_ret = search_start;
1597 btrfs_tree_unlock(cur);
1598 free_extent_buffer(cur);
1599 }
1600 return err;
1601 }
1602
1603 /*
1604 * The leaf data grows from end-to-front in the node.
1605 * this returns the address of the start of the last item,
1606 * which is the stop of the leaf data stack
1607 */
leaf_data_end(struct btrfs_root * root,struct extent_buffer * leaf)1608 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1609 struct extent_buffer *leaf)
1610 {
1611 u32 nr = btrfs_header_nritems(leaf);
1612 if (nr == 0)
1613 return BTRFS_LEAF_DATA_SIZE(root);
1614 return btrfs_item_offset_nr(leaf, nr - 1);
1615 }
1616
1617
1618 /*
1619 * search for key in the extent_buffer. The items start at offset p,
1620 * and they are item_size apart. There are 'max' items in p.
1621 *
1622 * the slot in the array is returned via slot, and it points to
1623 * the place where you would insert key if it is not found in
1624 * the array.
1625 *
1626 * slot may point to max if the key is bigger than all of the keys
1627 */
generic_bin_search(struct extent_buffer * eb,unsigned long p,int item_size,struct btrfs_key * key,int max,int * slot)1628 static noinline int generic_bin_search(struct extent_buffer *eb,
1629 unsigned long p,
1630 int item_size, struct btrfs_key *key,
1631 int max, int *slot)
1632 {
1633 int low = 0;
1634 int high = max;
1635 int mid;
1636 int ret;
1637 struct btrfs_disk_key *tmp = NULL;
1638 struct btrfs_disk_key unaligned;
1639 unsigned long offset;
1640 char *kaddr = NULL;
1641 unsigned long map_start = 0;
1642 unsigned long map_len = 0;
1643 int err;
1644
1645 while (low < high) {
1646 mid = (low + high) / 2;
1647 offset = p + mid * item_size;
1648
1649 if (!kaddr || offset < map_start ||
1650 (offset + sizeof(struct btrfs_disk_key)) >
1651 map_start + map_len) {
1652
1653 err = map_private_extent_buffer(eb, offset,
1654 sizeof(struct btrfs_disk_key),
1655 &kaddr, &map_start, &map_len);
1656
1657 if (!err) {
1658 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1659 map_start);
1660 } else {
1661 read_extent_buffer(eb, &unaligned,
1662 offset, sizeof(unaligned));
1663 tmp = &unaligned;
1664 }
1665
1666 } else {
1667 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1668 map_start);
1669 }
1670 ret = comp_keys(tmp, key);
1671
1672 if (ret < 0)
1673 low = mid + 1;
1674 else if (ret > 0)
1675 high = mid;
1676 else {
1677 *slot = mid;
1678 return 0;
1679 }
1680 }
1681 *slot = low;
1682 return 1;
1683 }
1684
1685 /*
1686 * simple bin_search frontend that does the right thing for
1687 * leaves vs nodes
1688 */
bin_search(struct extent_buffer * eb,struct btrfs_key * key,int level,int * slot)1689 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1690 int level, int *slot)
1691 {
1692 if (level == 0)
1693 return generic_bin_search(eb,
1694 offsetof(struct btrfs_leaf, items),
1695 sizeof(struct btrfs_item),
1696 key, btrfs_header_nritems(eb),
1697 slot);
1698 else
1699 return generic_bin_search(eb,
1700 offsetof(struct btrfs_node, ptrs),
1701 sizeof(struct btrfs_key_ptr),
1702 key, btrfs_header_nritems(eb),
1703 slot);
1704 }
1705
btrfs_bin_search(struct extent_buffer * eb,struct btrfs_key * key,int level,int * slot)1706 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1707 int level, int *slot)
1708 {
1709 return bin_search(eb, key, level, slot);
1710 }
1711
root_add_used(struct btrfs_root * root,u32 size)1712 static void root_add_used(struct btrfs_root *root, u32 size)
1713 {
1714 spin_lock(&root->accounting_lock);
1715 btrfs_set_root_used(&root->root_item,
1716 btrfs_root_used(&root->root_item) + size);
1717 spin_unlock(&root->accounting_lock);
1718 }
1719
root_sub_used(struct btrfs_root * root,u32 size)1720 static void root_sub_used(struct btrfs_root *root, u32 size)
1721 {
1722 spin_lock(&root->accounting_lock);
1723 btrfs_set_root_used(&root->root_item,
1724 btrfs_root_used(&root->root_item) - size);
1725 spin_unlock(&root->accounting_lock);
1726 }
1727
1728 /* given a node and slot number, this reads the blocks it points to. The
1729 * extent buffer is returned with a reference taken (but unlocked).
1730 * NULL is returned on error.
1731 */
read_node_slot(struct btrfs_root * root,struct extent_buffer * parent,int slot)1732 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1733 struct extent_buffer *parent, int slot)
1734 {
1735 int level = btrfs_header_level(parent);
1736 struct extent_buffer *eb;
1737
1738 if (slot < 0)
1739 return NULL;
1740 if (slot >= btrfs_header_nritems(parent))
1741 return NULL;
1742
1743 BUG_ON(level == 0);
1744
1745 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1746 btrfs_level_size(root, level - 1),
1747 btrfs_node_ptr_generation(parent, slot));
1748 if (eb && !extent_buffer_uptodate(eb)) {
1749 free_extent_buffer(eb);
1750 eb = NULL;
1751 }
1752
1753 return eb;
1754 }
1755
1756 /*
1757 * node level balancing, used to make sure nodes are in proper order for
1758 * item deletion. We balance from the top down, so we have to make sure
1759 * that a deletion won't leave an node completely empty later on.
1760 */
balance_level(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)1761 static noinline int balance_level(struct btrfs_trans_handle *trans,
1762 struct btrfs_root *root,
1763 struct btrfs_path *path, int level)
1764 {
1765 struct extent_buffer *right = NULL;
1766 struct extent_buffer *mid;
1767 struct extent_buffer *left = NULL;
1768 struct extent_buffer *parent = NULL;
1769 int ret = 0;
1770 int wret;
1771 int pslot;
1772 int orig_slot = path->slots[level];
1773 u64 orig_ptr;
1774
1775 if (level == 0)
1776 return 0;
1777
1778 mid = path->nodes[level];
1779
1780 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1781 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1782 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1783
1784 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1785
1786 if (level < BTRFS_MAX_LEVEL - 1) {
1787 parent = path->nodes[level + 1];
1788 pslot = path->slots[level + 1];
1789 }
1790
1791 /*
1792 * deal with the case where there is only one pointer in the root
1793 * by promoting the node below to a root
1794 */
1795 if (!parent) {
1796 struct extent_buffer *child;
1797
1798 if (btrfs_header_nritems(mid) != 1)
1799 return 0;
1800
1801 /* promote the child to a root */
1802 child = read_node_slot(root, mid, 0);
1803 if (!child) {
1804 ret = -EROFS;
1805 btrfs_std_error(root->fs_info, ret);
1806 goto enospc;
1807 }
1808
1809 btrfs_tree_lock(child);
1810 btrfs_set_lock_blocking(child);
1811 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1812 if (ret) {
1813 btrfs_tree_unlock(child);
1814 free_extent_buffer(child);
1815 goto enospc;
1816 }
1817
1818 tree_mod_log_set_root_pointer(root, child, 1);
1819 rcu_assign_pointer(root->node, child);
1820
1821 add_root_to_dirty_list(root);
1822 btrfs_tree_unlock(child);
1823
1824 path->locks[level] = 0;
1825 path->nodes[level] = NULL;
1826 clean_tree_block(trans, root, mid);
1827 btrfs_tree_unlock(mid);
1828 /* once for the path */
1829 free_extent_buffer(mid);
1830
1831 root_sub_used(root, mid->len);
1832 btrfs_free_tree_block(trans, root, mid, 0, 1);
1833 /* once for the root ptr */
1834 free_extent_buffer_stale(mid);
1835 return 0;
1836 }
1837 if (btrfs_header_nritems(mid) >
1838 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1839 return 0;
1840
1841 left = read_node_slot(root, parent, pslot - 1);
1842 if (left) {
1843 btrfs_tree_lock(left);
1844 btrfs_set_lock_blocking(left);
1845 wret = btrfs_cow_block(trans, root, left,
1846 parent, pslot - 1, &left);
1847 if (wret) {
1848 ret = wret;
1849 goto enospc;
1850 }
1851 }
1852 right = read_node_slot(root, parent, pslot + 1);
1853 if (right) {
1854 btrfs_tree_lock(right);
1855 btrfs_set_lock_blocking(right);
1856 wret = btrfs_cow_block(trans, root, right,
1857 parent, pslot + 1, &right);
1858 if (wret) {
1859 ret = wret;
1860 goto enospc;
1861 }
1862 }
1863
1864 /* first, try to make some room in the middle buffer */
1865 if (left) {
1866 orig_slot += btrfs_header_nritems(left);
1867 wret = push_node_left(trans, root, left, mid, 1);
1868 if (wret < 0)
1869 ret = wret;
1870 }
1871
1872 /*
1873 * then try to empty the right most buffer into the middle
1874 */
1875 if (right) {
1876 wret = push_node_left(trans, root, mid, right, 1);
1877 if (wret < 0 && wret != -ENOSPC)
1878 ret = wret;
1879 if (btrfs_header_nritems(right) == 0) {
1880 clean_tree_block(trans, root, right);
1881 btrfs_tree_unlock(right);
1882 del_ptr(root, path, level + 1, pslot + 1);
1883 root_sub_used(root, right->len);
1884 btrfs_free_tree_block(trans, root, right, 0, 1);
1885 free_extent_buffer_stale(right);
1886 right = NULL;
1887 } else {
1888 struct btrfs_disk_key right_key;
1889 btrfs_node_key(right, &right_key, 0);
1890 tree_mod_log_set_node_key(root->fs_info, parent,
1891 pslot + 1, 0);
1892 btrfs_set_node_key(parent, &right_key, pslot + 1);
1893 btrfs_mark_buffer_dirty(parent);
1894 }
1895 }
1896 if (btrfs_header_nritems(mid) == 1) {
1897 /*
1898 * we're not allowed to leave a node with one item in the
1899 * tree during a delete. A deletion from lower in the tree
1900 * could try to delete the only pointer in this node.
1901 * So, pull some keys from the left.
1902 * There has to be a left pointer at this point because
1903 * otherwise we would have pulled some pointers from the
1904 * right
1905 */
1906 if (!left) {
1907 ret = -EROFS;
1908 btrfs_std_error(root->fs_info, ret);
1909 goto enospc;
1910 }
1911 wret = balance_node_right(trans, root, mid, left);
1912 if (wret < 0) {
1913 ret = wret;
1914 goto enospc;
1915 }
1916 if (wret == 1) {
1917 wret = push_node_left(trans, root, left, mid, 1);
1918 if (wret < 0)
1919 ret = wret;
1920 }
1921 BUG_ON(wret == 1);
1922 }
1923 if (btrfs_header_nritems(mid) == 0) {
1924 clean_tree_block(trans, root, mid);
1925 btrfs_tree_unlock(mid);
1926 del_ptr(root, path, level + 1, pslot);
1927 root_sub_used(root, mid->len);
1928 btrfs_free_tree_block(trans, root, mid, 0, 1);
1929 free_extent_buffer_stale(mid);
1930 mid = NULL;
1931 } else {
1932 /* update the parent key to reflect our changes */
1933 struct btrfs_disk_key mid_key;
1934 btrfs_node_key(mid, &mid_key, 0);
1935 tree_mod_log_set_node_key(root->fs_info, parent,
1936 pslot, 0);
1937 btrfs_set_node_key(parent, &mid_key, pslot);
1938 btrfs_mark_buffer_dirty(parent);
1939 }
1940
1941 /* update the path */
1942 if (left) {
1943 if (btrfs_header_nritems(left) > orig_slot) {
1944 extent_buffer_get(left);
1945 /* left was locked after cow */
1946 path->nodes[level] = left;
1947 path->slots[level + 1] -= 1;
1948 path->slots[level] = orig_slot;
1949 if (mid) {
1950 btrfs_tree_unlock(mid);
1951 free_extent_buffer(mid);
1952 }
1953 } else {
1954 orig_slot -= btrfs_header_nritems(left);
1955 path->slots[level] = orig_slot;
1956 }
1957 }
1958 /* double check we haven't messed things up */
1959 if (orig_ptr !=
1960 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1961 BUG();
1962 enospc:
1963 if (right) {
1964 btrfs_tree_unlock(right);
1965 free_extent_buffer(right);
1966 }
1967 if (left) {
1968 if (path->nodes[level] != left)
1969 btrfs_tree_unlock(left);
1970 free_extent_buffer(left);
1971 }
1972 return ret;
1973 }
1974
1975 /* Node balancing for insertion. Here we only split or push nodes around
1976 * when they are completely full. This is also done top down, so we
1977 * have to be pessimistic.
1978 */
push_nodes_for_insert(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)1979 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1980 struct btrfs_root *root,
1981 struct btrfs_path *path, int level)
1982 {
1983 struct extent_buffer *right = NULL;
1984 struct extent_buffer *mid;
1985 struct extent_buffer *left = NULL;
1986 struct extent_buffer *parent = NULL;
1987 int ret = 0;
1988 int wret;
1989 int pslot;
1990 int orig_slot = path->slots[level];
1991
1992 if (level == 0)
1993 return 1;
1994
1995 mid = path->nodes[level];
1996 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1997
1998 if (level < BTRFS_MAX_LEVEL - 1) {
1999 parent = path->nodes[level + 1];
2000 pslot = path->slots[level + 1];
2001 }
2002
2003 if (!parent)
2004 return 1;
2005
2006 left = read_node_slot(root, parent, pslot - 1);
2007
2008 /* first, try to make some room in the middle buffer */
2009 if (left) {
2010 u32 left_nr;
2011
2012 btrfs_tree_lock(left);
2013 btrfs_set_lock_blocking(left);
2014
2015 left_nr = btrfs_header_nritems(left);
2016 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2017 wret = 1;
2018 } else {
2019 ret = btrfs_cow_block(trans, root, left, parent,
2020 pslot - 1, &left);
2021 if (ret)
2022 wret = 1;
2023 else {
2024 wret = push_node_left(trans, root,
2025 left, mid, 0);
2026 }
2027 }
2028 if (wret < 0)
2029 ret = wret;
2030 if (wret == 0) {
2031 struct btrfs_disk_key disk_key;
2032 orig_slot += left_nr;
2033 btrfs_node_key(mid, &disk_key, 0);
2034 tree_mod_log_set_node_key(root->fs_info, parent,
2035 pslot, 0);
2036 btrfs_set_node_key(parent, &disk_key, pslot);
2037 btrfs_mark_buffer_dirty(parent);
2038 if (btrfs_header_nritems(left) > orig_slot) {
2039 path->nodes[level] = left;
2040 path->slots[level + 1] -= 1;
2041 path->slots[level] = orig_slot;
2042 btrfs_tree_unlock(mid);
2043 free_extent_buffer(mid);
2044 } else {
2045 orig_slot -=
2046 btrfs_header_nritems(left);
2047 path->slots[level] = orig_slot;
2048 btrfs_tree_unlock(left);
2049 free_extent_buffer(left);
2050 }
2051 return 0;
2052 }
2053 btrfs_tree_unlock(left);
2054 free_extent_buffer(left);
2055 }
2056 right = read_node_slot(root, parent, pslot + 1);
2057
2058 /*
2059 * then try to empty the right most buffer into the middle
2060 */
2061 if (right) {
2062 u32 right_nr;
2063
2064 btrfs_tree_lock(right);
2065 btrfs_set_lock_blocking(right);
2066
2067 right_nr = btrfs_header_nritems(right);
2068 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2069 wret = 1;
2070 } else {
2071 ret = btrfs_cow_block(trans, root, right,
2072 parent, pslot + 1,
2073 &right);
2074 if (ret)
2075 wret = 1;
2076 else {
2077 wret = balance_node_right(trans, root,
2078 right, mid);
2079 }
2080 }
2081 if (wret < 0)
2082 ret = wret;
2083 if (wret == 0) {
2084 struct btrfs_disk_key disk_key;
2085
2086 btrfs_node_key(right, &disk_key, 0);
2087 tree_mod_log_set_node_key(root->fs_info, parent,
2088 pslot + 1, 0);
2089 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2090 btrfs_mark_buffer_dirty(parent);
2091
2092 if (btrfs_header_nritems(mid) <= orig_slot) {
2093 path->nodes[level] = right;
2094 path->slots[level + 1] += 1;
2095 path->slots[level] = orig_slot -
2096 btrfs_header_nritems(mid);
2097 btrfs_tree_unlock(mid);
2098 free_extent_buffer(mid);
2099 } else {
2100 btrfs_tree_unlock(right);
2101 free_extent_buffer(right);
2102 }
2103 return 0;
2104 }
2105 btrfs_tree_unlock(right);
2106 free_extent_buffer(right);
2107 }
2108 return 1;
2109 }
2110
2111 /*
2112 * readahead one full node of leaves, finding things that are close
2113 * to the block in 'slot', and triggering ra on them.
2114 */
reada_for_search(struct btrfs_root * root,struct btrfs_path * path,int level,int slot,u64 objectid)2115 static void reada_for_search(struct btrfs_root *root,
2116 struct btrfs_path *path,
2117 int level, int slot, u64 objectid)
2118 {
2119 struct extent_buffer *node;
2120 struct btrfs_disk_key disk_key;
2121 u32 nritems;
2122 u64 search;
2123 u64 target;
2124 u64 nread = 0;
2125 u64 gen;
2126 int direction = path->reada;
2127 struct extent_buffer *eb;
2128 u32 nr;
2129 u32 blocksize;
2130 u32 nscan = 0;
2131
2132 if (level != 1)
2133 return;
2134
2135 if (!path->nodes[level])
2136 return;
2137
2138 node = path->nodes[level];
2139
2140 search = btrfs_node_blockptr(node, slot);
2141 blocksize = btrfs_level_size(root, level - 1);
2142 eb = btrfs_find_tree_block(root, search, blocksize);
2143 if (eb) {
2144 free_extent_buffer(eb);
2145 return;
2146 }
2147
2148 target = search;
2149
2150 nritems = btrfs_header_nritems(node);
2151 nr = slot;
2152
2153 while (1) {
2154 if (direction < 0) {
2155 if (nr == 0)
2156 break;
2157 nr--;
2158 } else if (direction > 0) {
2159 nr++;
2160 if (nr >= nritems)
2161 break;
2162 }
2163 if (path->reada < 0 && objectid) {
2164 btrfs_node_key(node, &disk_key, nr);
2165 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2166 break;
2167 }
2168 search = btrfs_node_blockptr(node, nr);
2169 if ((search <= target && target - search <= 65536) ||
2170 (search > target && search - target <= 65536)) {
2171 gen = btrfs_node_ptr_generation(node, nr);
2172 readahead_tree_block(root, search, blocksize, gen);
2173 nread += blocksize;
2174 }
2175 nscan++;
2176 if ((nread > 65536 || nscan > 32))
2177 break;
2178 }
2179 }
2180
2181 /*
2182 * returns -EAGAIN if it had to drop the path, or zero if everything was in
2183 * cache
2184 */
reada_for_balance(struct btrfs_root * root,struct btrfs_path * path,int level)2185 static noinline int reada_for_balance(struct btrfs_root *root,
2186 struct btrfs_path *path, int level)
2187 {
2188 int slot;
2189 int nritems;
2190 struct extent_buffer *parent;
2191 struct extent_buffer *eb;
2192 u64 gen;
2193 u64 block1 = 0;
2194 u64 block2 = 0;
2195 int ret = 0;
2196 int blocksize;
2197
2198 parent = path->nodes[level + 1];
2199 if (!parent)
2200 return 0;
2201
2202 nritems = btrfs_header_nritems(parent);
2203 slot = path->slots[level + 1];
2204 blocksize = btrfs_level_size(root, level);
2205
2206 if (slot > 0) {
2207 block1 = btrfs_node_blockptr(parent, slot - 1);
2208 gen = btrfs_node_ptr_generation(parent, slot - 1);
2209 eb = btrfs_find_tree_block(root, block1, blocksize);
2210 /*
2211 * if we get -eagain from btrfs_buffer_uptodate, we
2212 * don't want to return eagain here. That will loop
2213 * forever
2214 */
2215 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2216 block1 = 0;
2217 free_extent_buffer(eb);
2218 }
2219 if (slot + 1 < nritems) {
2220 block2 = btrfs_node_blockptr(parent, slot + 1);
2221 gen = btrfs_node_ptr_generation(parent, slot + 1);
2222 eb = btrfs_find_tree_block(root, block2, blocksize);
2223 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2224 block2 = 0;
2225 free_extent_buffer(eb);
2226 }
2227 if (block1 || block2) {
2228 ret = -EAGAIN;
2229
2230 /* release the whole path */
2231 btrfs_release_path(path);
2232
2233 /* read the blocks */
2234 if (block1)
2235 readahead_tree_block(root, block1, blocksize, 0);
2236 if (block2)
2237 readahead_tree_block(root, block2, blocksize, 0);
2238
2239 if (block1) {
2240 eb = read_tree_block(root, block1, blocksize, 0);
2241 free_extent_buffer(eb);
2242 }
2243 if (block2) {
2244 eb = read_tree_block(root, block2, blocksize, 0);
2245 free_extent_buffer(eb);
2246 }
2247 }
2248 return ret;
2249 }
2250
2251
2252 /*
2253 * when we walk down the tree, it is usually safe to unlock the higher layers
2254 * in the tree. The exceptions are when our path goes through slot 0, because
2255 * operations on the tree might require changing key pointers higher up in the
2256 * tree.
2257 *
2258 * callers might also have set path->keep_locks, which tells this code to keep
2259 * the lock if the path points to the last slot in the block. This is part of
2260 * walking through the tree, and selecting the next slot in the higher block.
2261 *
2262 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2263 * if lowest_unlock is 1, level 0 won't be unlocked
2264 */
unlock_up(struct btrfs_path * path,int level,int lowest_unlock,int min_write_lock_level,int * write_lock_level)2265 static noinline void unlock_up(struct btrfs_path *path, int level,
2266 int lowest_unlock, int min_write_lock_level,
2267 int *write_lock_level)
2268 {
2269 int i;
2270 int skip_level = level;
2271 int no_skips = 0;
2272 struct extent_buffer *t;
2273
2274 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2275 if (!path->nodes[i])
2276 break;
2277 if (!path->locks[i])
2278 break;
2279 if (!no_skips && path->slots[i] == 0) {
2280 skip_level = i + 1;
2281 continue;
2282 }
2283 if (!no_skips && path->keep_locks) {
2284 u32 nritems;
2285 t = path->nodes[i];
2286 nritems = btrfs_header_nritems(t);
2287 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2288 skip_level = i + 1;
2289 continue;
2290 }
2291 }
2292 if (skip_level < i && i >= lowest_unlock)
2293 no_skips = 1;
2294
2295 t = path->nodes[i];
2296 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2297 btrfs_tree_unlock_rw(t, path->locks[i]);
2298 path->locks[i] = 0;
2299 if (write_lock_level &&
2300 i > min_write_lock_level &&
2301 i <= *write_lock_level) {
2302 *write_lock_level = i - 1;
2303 }
2304 }
2305 }
2306 }
2307
2308 /*
2309 * This releases any locks held in the path starting at level and
2310 * going all the way up to the root.
2311 *
2312 * btrfs_search_slot will keep the lock held on higher nodes in a few
2313 * corner cases, such as COW of the block at slot zero in the node. This
2314 * ignores those rules, and it should only be called when there are no
2315 * more updates to be done higher up in the tree.
2316 */
btrfs_unlock_up_safe(struct btrfs_path * path,int level)2317 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2318 {
2319 int i;
2320
2321 if (path->keep_locks)
2322 return;
2323
2324 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2325 if (!path->nodes[i])
2326 continue;
2327 if (!path->locks[i])
2328 continue;
2329 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2330 path->locks[i] = 0;
2331 }
2332 }
2333
2334 /*
2335 * helper function for btrfs_search_slot. The goal is to find a block
2336 * in cache without setting the path to blocking. If we find the block
2337 * we return zero and the path is unchanged.
2338 *
2339 * If we can't find the block, we set the path blocking and do some
2340 * reada. -EAGAIN is returned and the search must be repeated.
2341 */
2342 static int
read_block_for_search(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer ** eb_ret,int level,int slot,struct btrfs_key * key,u64 time_seq)2343 read_block_for_search(struct btrfs_trans_handle *trans,
2344 struct btrfs_root *root, struct btrfs_path *p,
2345 struct extent_buffer **eb_ret, int level, int slot,
2346 struct btrfs_key *key, u64 time_seq)
2347 {
2348 u64 blocknr;
2349 u64 gen;
2350 u32 blocksize;
2351 struct extent_buffer *b = *eb_ret;
2352 struct extent_buffer *tmp;
2353 int ret;
2354
2355 blocknr = btrfs_node_blockptr(b, slot);
2356 gen = btrfs_node_ptr_generation(b, slot);
2357 blocksize = btrfs_level_size(root, level - 1);
2358
2359 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2360 if (tmp) {
2361 /* first we do an atomic uptodate check */
2362 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2363 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2364 /*
2365 * we found an up to date block without
2366 * sleeping, return
2367 * right away
2368 */
2369 *eb_ret = tmp;
2370 return 0;
2371 }
2372 /* the pages were up to date, but we failed
2373 * the generation number check. Do a full
2374 * read for the generation number that is correct.
2375 * We must do this without dropping locks so
2376 * we can trust our generation number
2377 */
2378 free_extent_buffer(tmp);
2379 btrfs_set_path_blocking(p);
2380
2381 /* now we're allowed to do a blocking uptodate check */
2382 tmp = read_tree_block(root, blocknr, blocksize, gen);
2383 if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
2384 *eb_ret = tmp;
2385 return 0;
2386 }
2387 free_extent_buffer(tmp);
2388 btrfs_release_path(p);
2389 return -EIO;
2390 }
2391 }
2392
2393 /*
2394 * reduce lock contention at high levels
2395 * of the btree by dropping locks before
2396 * we read. Don't release the lock on the current
2397 * level because we need to walk this node to figure
2398 * out which blocks to read.
2399 */
2400 btrfs_unlock_up_safe(p, level + 1);
2401 btrfs_set_path_blocking(p);
2402
2403 free_extent_buffer(tmp);
2404 if (p->reada)
2405 reada_for_search(root, p, level, slot, key->objectid);
2406
2407 btrfs_release_path(p);
2408
2409 ret = -EAGAIN;
2410 tmp = read_tree_block(root, blocknr, blocksize, 0);
2411 if (tmp) {
2412 /*
2413 * If the read above didn't mark this buffer up to date,
2414 * it will never end up being up to date. Set ret to EIO now
2415 * and give up so that our caller doesn't loop forever
2416 * on our EAGAINs.
2417 */
2418 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2419 ret = -EIO;
2420 free_extent_buffer(tmp);
2421 }
2422 return ret;
2423 }
2424
2425 /*
2426 * helper function for btrfs_search_slot. This does all of the checks
2427 * for node-level blocks and does any balancing required based on
2428 * the ins_len.
2429 *
2430 * If no extra work was required, zero is returned. If we had to
2431 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2432 * start over
2433 */
2434 static int
setup_nodes_for_search(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer * b,int level,int ins_len,int * write_lock_level)2435 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2436 struct btrfs_root *root, struct btrfs_path *p,
2437 struct extent_buffer *b, int level, int ins_len,
2438 int *write_lock_level)
2439 {
2440 int ret;
2441 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2442 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2443 int sret;
2444
2445 if (*write_lock_level < level + 1) {
2446 *write_lock_level = level + 1;
2447 btrfs_release_path(p);
2448 goto again;
2449 }
2450
2451 sret = reada_for_balance(root, p, level);
2452 if (sret)
2453 goto again;
2454
2455 btrfs_set_path_blocking(p);
2456 sret = split_node(trans, root, p, level);
2457 btrfs_clear_path_blocking(p, NULL, 0);
2458
2459 BUG_ON(sret > 0);
2460 if (sret) {
2461 ret = sret;
2462 goto done;
2463 }
2464 b = p->nodes[level];
2465 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2466 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2467 int sret;
2468
2469 if (*write_lock_level < level + 1) {
2470 *write_lock_level = level + 1;
2471 btrfs_release_path(p);
2472 goto again;
2473 }
2474
2475 sret = reada_for_balance(root, p, level);
2476 if (sret)
2477 goto again;
2478
2479 btrfs_set_path_blocking(p);
2480 sret = balance_level(trans, root, p, level);
2481 btrfs_clear_path_blocking(p, NULL, 0);
2482
2483 if (sret) {
2484 ret = sret;
2485 goto done;
2486 }
2487 b = p->nodes[level];
2488 if (!b) {
2489 btrfs_release_path(p);
2490 goto again;
2491 }
2492 BUG_ON(btrfs_header_nritems(b) == 1);
2493 }
2494 return 0;
2495
2496 again:
2497 ret = -EAGAIN;
2498 done:
2499 return ret;
2500 }
2501
2502 /*
2503 * look for key in the tree. path is filled in with nodes along the way
2504 * if key is found, we return zero and you can find the item in the leaf
2505 * level of the path (level 0)
2506 *
2507 * If the key isn't found, the path points to the slot where it should
2508 * be inserted, and 1 is returned. If there are other errors during the
2509 * search a negative error number is returned.
2510 *
2511 * if ins_len > 0, nodes and leaves will be split as we walk down the
2512 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2513 * possible)
2514 */
btrfs_search_slot(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_key * key,struct btrfs_path * p,int ins_len,int cow)2515 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2516 *root, struct btrfs_key *key, struct btrfs_path *p, int
2517 ins_len, int cow)
2518 {
2519 struct extent_buffer *b;
2520 int slot;
2521 int ret;
2522 int err;
2523 int level;
2524 int lowest_unlock = 1;
2525 int root_lock;
2526 /* everything at write_lock_level or lower must be write locked */
2527 int write_lock_level = 0;
2528 u8 lowest_level = 0;
2529 int min_write_lock_level;
2530
2531 lowest_level = p->lowest_level;
2532 WARN_ON(lowest_level && ins_len > 0);
2533 WARN_ON(p->nodes[0] != NULL);
2534
2535 if (ins_len < 0) {
2536 lowest_unlock = 2;
2537
2538 /* when we are removing items, we might have to go up to level
2539 * two as we update tree pointers Make sure we keep write
2540 * for those levels as well
2541 */
2542 write_lock_level = 2;
2543 } else if (ins_len > 0) {
2544 /*
2545 * for inserting items, make sure we have a write lock on
2546 * level 1 so we can update keys
2547 */
2548 write_lock_level = 1;
2549 }
2550
2551 if (!cow)
2552 write_lock_level = -1;
2553
2554 if (cow && (p->keep_locks || p->lowest_level))
2555 write_lock_level = BTRFS_MAX_LEVEL;
2556
2557 min_write_lock_level = write_lock_level;
2558
2559 again:
2560 /*
2561 * we try very hard to do read locks on the root
2562 */
2563 root_lock = BTRFS_READ_LOCK;
2564 level = 0;
2565 if (p->search_commit_root) {
2566 /*
2567 * the commit roots are read only
2568 * so we always do read locks
2569 */
2570 b = root->commit_root;
2571 extent_buffer_get(b);
2572 level = btrfs_header_level(b);
2573 if (!p->skip_locking)
2574 btrfs_tree_read_lock(b);
2575 } else {
2576 if (p->skip_locking) {
2577 b = btrfs_root_node(root);
2578 level = btrfs_header_level(b);
2579 } else {
2580 /* we don't know the level of the root node
2581 * until we actually have it read locked
2582 */
2583 b = btrfs_read_lock_root_node(root);
2584 level = btrfs_header_level(b);
2585 if (level <= write_lock_level) {
2586 /* whoops, must trade for write lock */
2587 btrfs_tree_read_unlock(b);
2588 free_extent_buffer(b);
2589 b = btrfs_lock_root_node(root);
2590 root_lock = BTRFS_WRITE_LOCK;
2591
2592 /* the level might have changed, check again */
2593 level = btrfs_header_level(b);
2594 }
2595 }
2596 }
2597 p->nodes[level] = b;
2598 if (!p->skip_locking)
2599 p->locks[level] = root_lock;
2600
2601 while (b) {
2602 level = btrfs_header_level(b);
2603
2604 /*
2605 * setup the path here so we can release it under lock
2606 * contention with the cow code
2607 */
2608 if (cow) {
2609 /*
2610 * if we don't really need to cow this block
2611 * then we don't want to set the path blocking,
2612 * so we test it here
2613 */
2614 if (!should_cow_block(trans, root, b))
2615 goto cow_done;
2616
2617 btrfs_set_path_blocking(p);
2618
2619 /*
2620 * must have write locks on this node and the
2621 * parent
2622 */
2623 if (level > write_lock_level ||
2624 (level + 1 > write_lock_level &&
2625 level + 1 < BTRFS_MAX_LEVEL &&
2626 p->nodes[level + 1])) {
2627 write_lock_level = level + 1;
2628 btrfs_release_path(p);
2629 goto again;
2630 }
2631
2632 err = btrfs_cow_block(trans, root, b,
2633 p->nodes[level + 1],
2634 p->slots[level + 1], &b);
2635 if (err) {
2636 ret = err;
2637 goto done;
2638 }
2639 }
2640 cow_done:
2641 BUG_ON(!cow && ins_len);
2642
2643 p->nodes[level] = b;
2644 btrfs_clear_path_blocking(p, NULL, 0);
2645
2646 /*
2647 * we have a lock on b and as long as we aren't changing
2648 * the tree, there is no way to for the items in b to change.
2649 * It is safe to drop the lock on our parent before we
2650 * go through the expensive btree search on b.
2651 *
2652 * If cow is true, then we might be changing slot zero,
2653 * which may require changing the parent. So, we can't
2654 * drop the lock until after we know which slot we're
2655 * operating on.
2656 */
2657 if (!cow)
2658 btrfs_unlock_up_safe(p, level + 1);
2659
2660 ret = bin_search(b, key, level, &slot);
2661
2662 if (level != 0) {
2663 int dec = 0;
2664 if (ret && slot > 0) {
2665 dec = 1;
2666 slot -= 1;
2667 }
2668 p->slots[level] = slot;
2669 err = setup_nodes_for_search(trans, root, p, b, level,
2670 ins_len, &write_lock_level);
2671 if (err == -EAGAIN)
2672 goto again;
2673 if (err) {
2674 ret = err;
2675 goto done;
2676 }
2677 b = p->nodes[level];
2678 slot = p->slots[level];
2679
2680 /*
2681 * slot 0 is special, if we change the key
2682 * we have to update the parent pointer
2683 * which means we must have a write lock
2684 * on the parent
2685 */
2686 if (slot == 0 && cow &&
2687 write_lock_level < level + 1) {
2688 write_lock_level = level + 1;
2689 btrfs_release_path(p);
2690 goto again;
2691 }
2692
2693 unlock_up(p, level, lowest_unlock,
2694 min_write_lock_level, &write_lock_level);
2695
2696 if (level == lowest_level) {
2697 if (dec)
2698 p->slots[level]++;
2699 goto done;
2700 }
2701
2702 err = read_block_for_search(trans, root, p,
2703 &b, level, slot, key, 0);
2704 if (err == -EAGAIN)
2705 goto again;
2706 if (err) {
2707 ret = err;
2708 goto done;
2709 }
2710
2711 if (!p->skip_locking) {
2712 level = btrfs_header_level(b);
2713 if (level <= write_lock_level) {
2714 err = btrfs_try_tree_write_lock(b);
2715 if (!err) {
2716 btrfs_set_path_blocking(p);
2717 btrfs_tree_lock(b);
2718 btrfs_clear_path_blocking(p, b,
2719 BTRFS_WRITE_LOCK);
2720 }
2721 p->locks[level] = BTRFS_WRITE_LOCK;
2722 } else {
2723 err = btrfs_try_tree_read_lock(b);
2724 if (!err) {
2725 btrfs_set_path_blocking(p);
2726 btrfs_tree_read_lock(b);
2727 btrfs_clear_path_blocking(p, b,
2728 BTRFS_READ_LOCK);
2729 }
2730 p->locks[level] = BTRFS_READ_LOCK;
2731 }
2732 p->nodes[level] = b;
2733 }
2734 } else {
2735 p->slots[level] = slot;
2736 if (ins_len > 0 &&
2737 btrfs_leaf_free_space(root, b) < ins_len) {
2738 if (write_lock_level < 1) {
2739 write_lock_level = 1;
2740 btrfs_release_path(p);
2741 goto again;
2742 }
2743
2744 btrfs_set_path_blocking(p);
2745 err = split_leaf(trans, root, key,
2746 p, ins_len, ret == 0);
2747 btrfs_clear_path_blocking(p, NULL, 0);
2748
2749 BUG_ON(err > 0);
2750 if (err) {
2751 ret = err;
2752 goto done;
2753 }
2754 }
2755 if (!p->search_for_split)
2756 unlock_up(p, level, lowest_unlock,
2757 min_write_lock_level, &write_lock_level);
2758 goto done;
2759 }
2760 }
2761 ret = 1;
2762 done:
2763 /*
2764 * we don't really know what they plan on doing with the path
2765 * from here on, so for now just mark it as blocking
2766 */
2767 if (!p->leave_spinning)
2768 btrfs_set_path_blocking(p);
2769 if (ret < 0)
2770 btrfs_release_path(p);
2771 return ret;
2772 }
2773
2774 /*
2775 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2776 * current state of the tree together with the operations recorded in the tree
2777 * modification log to search for the key in a previous version of this tree, as
2778 * denoted by the time_seq parameter.
2779 *
2780 * Naturally, there is no support for insert, delete or cow operations.
2781 *
2782 * The resulting path and return value will be set up as if we called
2783 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2784 */
btrfs_search_old_slot(struct btrfs_root * root,struct btrfs_key * key,struct btrfs_path * p,u64 time_seq)2785 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2786 struct btrfs_path *p, u64 time_seq)
2787 {
2788 struct extent_buffer *b;
2789 int slot;
2790 int ret;
2791 int err;
2792 int level;
2793 int lowest_unlock = 1;
2794 u8 lowest_level = 0;
2795
2796 lowest_level = p->lowest_level;
2797 WARN_ON(p->nodes[0] != NULL);
2798
2799 if (p->search_commit_root) {
2800 BUG_ON(time_seq);
2801 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2802 }
2803
2804 again:
2805 b = get_old_root(root, time_seq);
2806 level = btrfs_header_level(b);
2807 p->locks[level] = BTRFS_READ_LOCK;
2808
2809 while (b) {
2810 level = btrfs_header_level(b);
2811 p->nodes[level] = b;
2812 btrfs_clear_path_blocking(p, NULL, 0);
2813
2814 /*
2815 * we have a lock on b and as long as we aren't changing
2816 * the tree, there is no way to for the items in b to change.
2817 * It is safe to drop the lock on our parent before we
2818 * go through the expensive btree search on b.
2819 */
2820 btrfs_unlock_up_safe(p, level + 1);
2821
2822 ret = bin_search(b, key, level, &slot);
2823
2824 if (level != 0) {
2825 int dec = 0;
2826 if (ret && slot > 0) {
2827 dec = 1;
2828 slot -= 1;
2829 }
2830 p->slots[level] = slot;
2831 unlock_up(p, level, lowest_unlock, 0, NULL);
2832
2833 if (level == lowest_level) {
2834 if (dec)
2835 p->slots[level]++;
2836 goto done;
2837 }
2838
2839 err = read_block_for_search(NULL, root, p, &b, level,
2840 slot, key, time_seq);
2841 if (err == -EAGAIN)
2842 goto again;
2843 if (err) {
2844 ret = err;
2845 goto done;
2846 }
2847
2848 level = btrfs_header_level(b);
2849 err = btrfs_try_tree_read_lock(b);
2850 if (!err) {
2851 btrfs_set_path_blocking(p);
2852 btrfs_tree_read_lock(b);
2853 btrfs_clear_path_blocking(p, b,
2854 BTRFS_READ_LOCK);
2855 }
2856 b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2857 p->locks[level] = BTRFS_READ_LOCK;
2858 p->nodes[level] = b;
2859 } else {
2860 p->slots[level] = slot;
2861 unlock_up(p, level, lowest_unlock, 0, NULL);
2862 goto done;
2863 }
2864 }
2865 ret = 1;
2866 done:
2867 if (!p->leave_spinning)
2868 btrfs_set_path_blocking(p);
2869 if (ret < 0)
2870 btrfs_release_path(p);
2871
2872 return ret;
2873 }
2874
2875 /*
2876 * helper to use instead of search slot if no exact match is needed but
2877 * instead the next or previous item should be returned.
2878 * When find_higher is true, the next higher item is returned, the next lower
2879 * otherwise.
2880 * When return_any and find_higher are both true, and no higher item is found,
2881 * return the next lower instead.
2882 * When return_any is true and find_higher is false, and no lower item is found,
2883 * return the next higher instead.
2884 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2885 * < 0 on error
2886 */
btrfs_search_slot_for_read(struct btrfs_root * root,struct btrfs_key * key,struct btrfs_path * p,int find_higher,int return_any)2887 int btrfs_search_slot_for_read(struct btrfs_root *root,
2888 struct btrfs_key *key, struct btrfs_path *p,
2889 int find_higher, int return_any)
2890 {
2891 int ret;
2892 struct extent_buffer *leaf;
2893
2894 again:
2895 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2896 if (ret <= 0)
2897 return ret;
2898 /*
2899 * a return value of 1 means the path is at the position where the
2900 * item should be inserted. Normally this is the next bigger item,
2901 * but in case the previous item is the last in a leaf, path points
2902 * to the first free slot in the previous leaf, i.e. at an invalid
2903 * item.
2904 */
2905 leaf = p->nodes[0];
2906
2907 if (find_higher) {
2908 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2909 ret = btrfs_next_leaf(root, p);
2910 if (ret <= 0)
2911 return ret;
2912 if (!return_any)
2913 return 1;
2914 /*
2915 * no higher item found, return the next
2916 * lower instead
2917 */
2918 return_any = 0;
2919 find_higher = 0;
2920 btrfs_release_path(p);
2921 goto again;
2922 }
2923 } else {
2924 if (p->slots[0] == 0) {
2925 ret = btrfs_prev_leaf(root, p);
2926 if (ret < 0)
2927 return ret;
2928 if (!ret) {
2929 p->slots[0] = btrfs_header_nritems(leaf) - 1;
2930 return 0;
2931 }
2932 if (!return_any)
2933 return 1;
2934 /*
2935 * no lower item found, return the next
2936 * higher instead
2937 */
2938 return_any = 0;
2939 find_higher = 1;
2940 btrfs_release_path(p);
2941 goto again;
2942 } else {
2943 --p->slots[0];
2944 }
2945 }
2946 return 0;
2947 }
2948
2949 /*
2950 * adjust the pointers going up the tree, starting at level
2951 * making sure the right key of each node is points to 'key'.
2952 * This is used after shifting pointers to the left, so it stops
2953 * fixing up pointers when a given leaf/node is not in slot 0 of the
2954 * higher levels
2955 *
2956 */
fixup_low_keys(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_disk_key * key,int level)2957 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
2958 struct btrfs_disk_key *key, int level)
2959 {
2960 int i;
2961 struct extent_buffer *t;
2962
2963 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2964 int tslot = path->slots[i];
2965 if (!path->nodes[i])
2966 break;
2967 t = path->nodes[i];
2968 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
2969 btrfs_set_node_key(t, key, tslot);
2970 btrfs_mark_buffer_dirty(path->nodes[i]);
2971 if (tslot != 0)
2972 break;
2973 }
2974 }
2975
2976 /*
2977 * update item key.
2978 *
2979 * This function isn't completely safe. It's the caller's responsibility
2980 * that the new key won't break the order
2981 */
btrfs_set_item_key_safe(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * new_key)2982 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
2983 struct btrfs_key *new_key)
2984 {
2985 struct btrfs_disk_key disk_key;
2986 struct extent_buffer *eb;
2987 int slot;
2988
2989 eb = path->nodes[0];
2990 slot = path->slots[0];
2991 if (slot > 0) {
2992 btrfs_item_key(eb, &disk_key, slot - 1);
2993 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2994 }
2995 if (slot < btrfs_header_nritems(eb) - 1) {
2996 btrfs_item_key(eb, &disk_key, slot + 1);
2997 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2998 }
2999
3000 btrfs_cpu_key_to_disk(&disk_key, new_key);
3001 btrfs_set_item_key(eb, &disk_key, slot);
3002 btrfs_mark_buffer_dirty(eb);
3003 if (slot == 0)
3004 fixup_low_keys(root, path, &disk_key, 1);
3005 }
3006
3007 /*
3008 * try to push data from one node into the next node left in the
3009 * tree.
3010 *
3011 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3012 * error, and > 0 if there was no room in the left hand block.
3013 */
push_node_left(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * dst,struct extent_buffer * src,int empty)3014 static int push_node_left(struct btrfs_trans_handle *trans,
3015 struct btrfs_root *root, struct extent_buffer *dst,
3016 struct extent_buffer *src, int empty)
3017 {
3018 int push_items = 0;
3019 int src_nritems;
3020 int dst_nritems;
3021 int ret = 0;
3022
3023 src_nritems = btrfs_header_nritems(src);
3024 dst_nritems = btrfs_header_nritems(dst);
3025 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3026 WARN_ON(btrfs_header_generation(src) != trans->transid);
3027 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3028
3029 if (!empty && src_nritems <= 8)
3030 return 1;
3031
3032 if (push_items <= 0)
3033 return 1;
3034
3035 if (empty) {
3036 push_items = min(src_nritems, push_items);
3037 if (push_items < src_nritems) {
3038 /* leave at least 8 pointers in the node if
3039 * we aren't going to empty it
3040 */
3041 if (src_nritems - push_items < 8) {
3042 if (push_items <= 8)
3043 return 1;
3044 push_items -= 8;
3045 }
3046 }
3047 } else
3048 push_items = min(src_nritems - 8, push_items);
3049
3050 tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3051 push_items);
3052 copy_extent_buffer(dst, src,
3053 btrfs_node_key_ptr_offset(dst_nritems),
3054 btrfs_node_key_ptr_offset(0),
3055 push_items * sizeof(struct btrfs_key_ptr));
3056
3057 if (push_items < src_nritems) {
3058 /*
3059 * don't call tree_mod_log_eb_move here, key removal was already
3060 * fully logged by tree_mod_log_eb_copy above.
3061 */
3062 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3063 btrfs_node_key_ptr_offset(push_items),
3064 (src_nritems - push_items) *
3065 sizeof(struct btrfs_key_ptr));
3066 }
3067 btrfs_set_header_nritems(src, src_nritems - push_items);
3068 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3069 btrfs_mark_buffer_dirty(src);
3070 btrfs_mark_buffer_dirty(dst);
3071
3072 return ret;
3073 }
3074
3075 /*
3076 * try to push data from one node into the next node right in the
3077 * tree.
3078 *
3079 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3080 * error, and > 0 if there was no room in the right hand block.
3081 *
3082 * this will only push up to 1/2 the contents of the left node over
3083 */
balance_node_right(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * dst,struct extent_buffer * src)3084 static int balance_node_right(struct btrfs_trans_handle *trans,
3085 struct btrfs_root *root,
3086 struct extent_buffer *dst,
3087 struct extent_buffer *src)
3088 {
3089 int push_items = 0;
3090 int max_push;
3091 int src_nritems;
3092 int dst_nritems;
3093 int ret = 0;
3094
3095 WARN_ON(btrfs_header_generation(src) != trans->transid);
3096 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3097
3098 src_nritems = btrfs_header_nritems(src);
3099 dst_nritems = btrfs_header_nritems(dst);
3100 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3101 if (push_items <= 0)
3102 return 1;
3103
3104 if (src_nritems < 4)
3105 return 1;
3106
3107 max_push = src_nritems / 2 + 1;
3108 /* don't try to empty the node */
3109 if (max_push >= src_nritems)
3110 return 1;
3111
3112 if (max_push < push_items)
3113 push_items = max_push;
3114
3115 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3116 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3117 btrfs_node_key_ptr_offset(0),
3118 (dst_nritems) *
3119 sizeof(struct btrfs_key_ptr));
3120
3121 tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3122 src_nritems - push_items, push_items);
3123 copy_extent_buffer(dst, src,
3124 btrfs_node_key_ptr_offset(0),
3125 btrfs_node_key_ptr_offset(src_nritems - push_items),
3126 push_items * sizeof(struct btrfs_key_ptr));
3127
3128 btrfs_set_header_nritems(src, src_nritems - push_items);
3129 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3130
3131 btrfs_mark_buffer_dirty(src);
3132 btrfs_mark_buffer_dirty(dst);
3133
3134 return ret;
3135 }
3136
3137 /*
3138 * helper function to insert a new root level in the tree.
3139 * A new node is allocated, and a single item is inserted to
3140 * point to the existing root
3141 *
3142 * returns zero on success or < 0 on failure.
3143 */
insert_new_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level,int log_removal)3144 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3145 struct btrfs_root *root,
3146 struct btrfs_path *path, int level, int log_removal)
3147 {
3148 u64 lower_gen;
3149 struct extent_buffer *lower;
3150 struct extent_buffer *c;
3151 struct extent_buffer *old;
3152 struct btrfs_disk_key lower_key;
3153
3154 BUG_ON(path->nodes[level]);
3155 BUG_ON(path->nodes[level-1] != root->node);
3156
3157 lower = path->nodes[level-1];
3158 if (level == 1)
3159 btrfs_item_key(lower, &lower_key, 0);
3160 else
3161 btrfs_node_key(lower, &lower_key, 0);
3162
3163 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3164 root->root_key.objectid, &lower_key,
3165 level, root->node->start, 0);
3166 if (IS_ERR(c))
3167 return PTR_ERR(c);
3168
3169 root_add_used(root, root->nodesize);
3170
3171 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3172 btrfs_set_header_nritems(c, 1);
3173 btrfs_set_header_level(c, level);
3174 btrfs_set_header_bytenr(c, c->start);
3175 btrfs_set_header_generation(c, trans->transid);
3176 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3177 btrfs_set_header_owner(c, root->root_key.objectid);
3178
3179 write_extent_buffer(c, root->fs_info->fsid,
3180 (unsigned long)btrfs_header_fsid(c),
3181 BTRFS_FSID_SIZE);
3182
3183 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3184 (unsigned long)btrfs_header_chunk_tree_uuid(c),
3185 BTRFS_UUID_SIZE);
3186
3187 btrfs_set_node_key(c, &lower_key, 0);
3188 btrfs_set_node_blockptr(c, 0, lower->start);
3189 lower_gen = btrfs_header_generation(lower);
3190 WARN_ON(lower_gen != trans->transid);
3191
3192 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3193
3194 btrfs_mark_buffer_dirty(c);
3195
3196 old = root->node;
3197 tree_mod_log_set_root_pointer(root, c, log_removal);
3198 rcu_assign_pointer(root->node, c);
3199
3200 /* the super has an extra ref to root->node */
3201 free_extent_buffer(old);
3202
3203 add_root_to_dirty_list(root);
3204 extent_buffer_get(c);
3205 path->nodes[level] = c;
3206 path->locks[level] = BTRFS_WRITE_LOCK;
3207 path->slots[level] = 0;
3208 return 0;
3209 }
3210
3211 /*
3212 * worker function to insert a single pointer in a node.
3213 * the node should have enough room for the pointer already
3214 *
3215 * slot and level indicate where you want the key to go, and
3216 * blocknr is the block the key points to.
3217 */
insert_ptr(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_disk_key * key,u64 bytenr,int slot,int level)3218 static void insert_ptr(struct btrfs_trans_handle *trans,
3219 struct btrfs_root *root, struct btrfs_path *path,
3220 struct btrfs_disk_key *key, u64 bytenr,
3221 int slot, int level)
3222 {
3223 struct extent_buffer *lower;
3224 int nritems;
3225 int ret;
3226
3227 BUG_ON(!path->nodes[level]);
3228 btrfs_assert_tree_locked(path->nodes[level]);
3229 lower = path->nodes[level];
3230 nritems = btrfs_header_nritems(lower);
3231 BUG_ON(slot > nritems);
3232 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3233 if (slot != nritems) {
3234 if (level)
3235 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3236 slot, nritems - slot);
3237 memmove_extent_buffer(lower,
3238 btrfs_node_key_ptr_offset(slot + 1),
3239 btrfs_node_key_ptr_offset(slot),
3240 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3241 }
3242 if (level) {
3243 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3244 MOD_LOG_KEY_ADD);
3245 BUG_ON(ret < 0);
3246 }
3247 btrfs_set_node_key(lower, key, slot);
3248 btrfs_set_node_blockptr(lower, slot, bytenr);
3249 WARN_ON(trans->transid == 0);
3250 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3251 btrfs_set_header_nritems(lower, nritems + 1);
3252 btrfs_mark_buffer_dirty(lower);
3253 }
3254
3255 /*
3256 * split the node at the specified level in path in two.
3257 * The path is corrected to point to the appropriate node after the split
3258 *
3259 * Before splitting this tries to make some room in the node by pushing
3260 * left and right, if either one works, it returns right away.
3261 *
3262 * returns 0 on success and < 0 on failure
3263 */
split_node(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)3264 static noinline int split_node(struct btrfs_trans_handle *trans,
3265 struct btrfs_root *root,
3266 struct btrfs_path *path, int level)
3267 {
3268 struct extent_buffer *c;
3269 struct extent_buffer *split;
3270 struct btrfs_disk_key disk_key;
3271 int mid;
3272 int ret;
3273 u32 c_nritems;
3274
3275 c = path->nodes[level];
3276 WARN_ON(btrfs_header_generation(c) != trans->transid);
3277 if (c == root->node) {
3278 /*
3279 * trying to split the root, lets make a new one
3280 *
3281 * tree mod log: We pass 0 as log_removal parameter to
3282 * insert_new_root, because that root buffer will be kept as a
3283 * normal node. We are going to log removal of half of the
3284 * elements below with tree_mod_log_eb_copy. We're holding a
3285 * tree lock on the buffer, which is why we cannot race with
3286 * other tree_mod_log users.
3287 */
3288 ret = insert_new_root(trans, root, path, level + 1, 0);
3289 if (ret)
3290 return ret;
3291 } else {
3292 ret = push_nodes_for_insert(trans, root, path, level);
3293 c = path->nodes[level];
3294 if (!ret && btrfs_header_nritems(c) <
3295 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3296 return 0;
3297 if (ret < 0)
3298 return ret;
3299 }
3300
3301 c_nritems = btrfs_header_nritems(c);
3302 mid = (c_nritems + 1) / 2;
3303 btrfs_node_key(c, &disk_key, mid);
3304
3305 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3306 root->root_key.objectid,
3307 &disk_key, level, c->start, 0);
3308 if (IS_ERR(split))
3309 return PTR_ERR(split);
3310
3311 root_add_used(root, root->nodesize);
3312
3313 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3314 btrfs_set_header_level(split, btrfs_header_level(c));
3315 btrfs_set_header_bytenr(split, split->start);
3316 btrfs_set_header_generation(split, trans->transid);
3317 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3318 btrfs_set_header_owner(split, root->root_key.objectid);
3319 write_extent_buffer(split, root->fs_info->fsid,
3320 (unsigned long)btrfs_header_fsid(split),
3321 BTRFS_FSID_SIZE);
3322 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3323 (unsigned long)btrfs_header_chunk_tree_uuid(split),
3324 BTRFS_UUID_SIZE);
3325
3326 tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3327 copy_extent_buffer(split, c,
3328 btrfs_node_key_ptr_offset(0),
3329 btrfs_node_key_ptr_offset(mid),
3330 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3331 btrfs_set_header_nritems(split, c_nritems - mid);
3332 btrfs_set_header_nritems(c, mid);
3333 ret = 0;
3334
3335 btrfs_mark_buffer_dirty(c);
3336 btrfs_mark_buffer_dirty(split);
3337
3338 insert_ptr(trans, root, path, &disk_key, split->start,
3339 path->slots[level + 1] + 1, level + 1);
3340
3341 if (path->slots[level] >= mid) {
3342 path->slots[level] -= mid;
3343 btrfs_tree_unlock(c);
3344 free_extent_buffer(c);
3345 path->nodes[level] = split;
3346 path->slots[level + 1] += 1;
3347 } else {
3348 btrfs_tree_unlock(split);
3349 free_extent_buffer(split);
3350 }
3351 return ret;
3352 }
3353
3354 /*
3355 * how many bytes are required to store the items in a leaf. start
3356 * and nr indicate which items in the leaf to check. This totals up the
3357 * space used both by the item structs and the item data
3358 */
leaf_space_used(struct extent_buffer * l,int start,int nr)3359 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3360 {
3361 struct btrfs_item *start_item;
3362 struct btrfs_item *end_item;
3363 struct btrfs_map_token token;
3364 int data_len;
3365 int nritems = btrfs_header_nritems(l);
3366 int end = min(nritems, start + nr) - 1;
3367
3368 if (!nr)
3369 return 0;
3370 btrfs_init_map_token(&token);
3371 start_item = btrfs_item_nr(l, start);
3372 end_item = btrfs_item_nr(l, end);
3373 data_len = btrfs_token_item_offset(l, start_item, &token) +
3374 btrfs_token_item_size(l, start_item, &token);
3375 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3376 data_len += sizeof(struct btrfs_item) * nr;
3377 WARN_ON(data_len < 0);
3378 return data_len;
3379 }
3380
3381 /*
3382 * The space between the end of the leaf items and
3383 * the start of the leaf data. IOW, how much room
3384 * the leaf has left for both items and data
3385 */
btrfs_leaf_free_space(struct btrfs_root * root,struct extent_buffer * leaf)3386 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3387 struct extent_buffer *leaf)
3388 {
3389 int nritems = btrfs_header_nritems(leaf);
3390 int ret;
3391 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3392 if (ret < 0) {
3393 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3394 "used %d nritems %d\n",
3395 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3396 leaf_space_used(leaf, 0, nritems), nritems);
3397 }
3398 return ret;
3399 }
3400
3401 /*
3402 * min slot controls the lowest index we're willing to push to the
3403 * right. We'll push up to and including min_slot, but no lower
3404 */
__push_leaf_right(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int data_size,int empty,struct extent_buffer * right,int free_space,u32 left_nritems,u32 min_slot)3405 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3406 struct btrfs_root *root,
3407 struct btrfs_path *path,
3408 int data_size, int empty,
3409 struct extent_buffer *right,
3410 int free_space, u32 left_nritems,
3411 u32 min_slot)
3412 {
3413 struct extent_buffer *left = path->nodes[0];
3414 struct extent_buffer *upper = path->nodes[1];
3415 struct btrfs_map_token token;
3416 struct btrfs_disk_key disk_key;
3417 int slot;
3418 u32 i;
3419 int push_space = 0;
3420 int push_items = 0;
3421 struct btrfs_item *item;
3422 u32 nr;
3423 u32 right_nritems;
3424 u32 data_end;
3425 u32 this_item_size;
3426
3427 btrfs_init_map_token(&token);
3428
3429 if (empty)
3430 nr = 0;
3431 else
3432 nr = max_t(u32, 1, min_slot);
3433
3434 if (path->slots[0] >= left_nritems)
3435 push_space += data_size;
3436
3437 slot = path->slots[1];
3438 i = left_nritems - 1;
3439 while (i >= nr) {
3440 item = btrfs_item_nr(left, i);
3441
3442 if (!empty && push_items > 0) {
3443 if (path->slots[0] > i)
3444 break;
3445 if (path->slots[0] == i) {
3446 int space = btrfs_leaf_free_space(root, left);
3447 if (space + push_space * 2 > free_space)
3448 break;
3449 }
3450 }
3451
3452 if (path->slots[0] == i)
3453 push_space += data_size;
3454
3455 this_item_size = btrfs_item_size(left, item);
3456 if (this_item_size + sizeof(*item) + push_space > free_space)
3457 break;
3458
3459 push_items++;
3460 push_space += this_item_size + sizeof(*item);
3461 if (i == 0)
3462 break;
3463 i--;
3464 }
3465
3466 if (push_items == 0)
3467 goto out_unlock;
3468
3469 WARN_ON(!empty && push_items == left_nritems);
3470
3471 /* push left to right */
3472 right_nritems = btrfs_header_nritems(right);
3473
3474 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3475 push_space -= leaf_data_end(root, left);
3476
3477 /* make room in the right data area */
3478 data_end = leaf_data_end(root, right);
3479 memmove_extent_buffer(right,
3480 btrfs_leaf_data(right) + data_end - push_space,
3481 btrfs_leaf_data(right) + data_end,
3482 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3483
3484 /* copy from the left data area */
3485 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3486 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3487 btrfs_leaf_data(left) + leaf_data_end(root, left),
3488 push_space);
3489
3490 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3491 btrfs_item_nr_offset(0),
3492 right_nritems * sizeof(struct btrfs_item));
3493
3494 /* copy the items from left to right */
3495 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3496 btrfs_item_nr_offset(left_nritems - push_items),
3497 push_items * sizeof(struct btrfs_item));
3498
3499 /* update the item pointers */
3500 right_nritems += push_items;
3501 btrfs_set_header_nritems(right, right_nritems);
3502 push_space = BTRFS_LEAF_DATA_SIZE(root);
3503 for (i = 0; i < right_nritems; i++) {
3504 item = btrfs_item_nr(right, i);
3505 push_space -= btrfs_token_item_size(right, item, &token);
3506 btrfs_set_token_item_offset(right, item, push_space, &token);
3507 }
3508
3509 left_nritems -= push_items;
3510 btrfs_set_header_nritems(left, left_nritems);
3511
3512 if (left_nritems)
3513 btrfs_mark_buffer_dirty(left);
3514 else
3515 clean_tree_block(trans, root, left);
3516
3517 btrfs_mark_buffer_dirty(right);
3518
3519 btrfs_item_key(right, &disk_key, 0);
3520 btrfs_set_node_key(upper, &disk_key, slot + 1);
3521 btrfs_mark_buffer_dirty(upper);
3522
3523 /* then fixup the leaf pointer in the path */
3524 if (path->slots[0] >= left_nritems) {
3525 path->slots[0] -= left_nritems;
3526 if (btrfs_header_nritems(path->nodes[0]) == 0)
3527 clean_tree_block(trans, root, path->nodes[0]);
3528 btrfs_tree_unlock(path->nodes[0]);
3529 free_extent_buffer(path->nodes[0]);
3530 path->nodes[0] = right;
3531 path->slots[1] += 1;
3532 } else {
3533 btrfs_tree_unlock(right);
3534 free_extent_buffer(right);
3535 }
3536 return 0;
3537
3538 out_unlock:
3539 btrfs_tree_unlock(right);
3540 free_extent_buffer(right);
3541 return 1;
3542 }
3543
3544 /*
3545 * push some data in the path leaf to the right, trying to free up at
3546 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3547 *
3548 * returns 1 if the push failed because the other node didn't have enough
3549 * room, 0 if everything worked out and < 0 if there were major errors.
3550 *
3551 * this will push starting from min_slot to the end of the leaf. It won't
3552 * push any slot lower than min_slot
3553 */
push_leaf_right(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 min_slot)3554 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3555 *root, struct btrfs_path *path,
3556 int min_data_size, int data_size,
3557 int empty, u32 min_slot)
3558 {
3559 struct extent_buffer *left = path->nodes[0];
3560 struct extent_buffer *right;
3561 struct extent_buffer *upper;
3562 int slot;
3563 int free_space;
3564 u32 left_nritems;
3565 int ret;
3566
3567 if (!path->nodes[1])
3568 return 1;
3569
3570 slot = path->slots[1];
3571 upper = path->nodes[1];
3572 if (slot >= btrfs_header_nritems(upper) - 1)
3573 return 1;
3574
3575 btrfs_assert_tree_locked(path->nodes[1]);
3576
3577 right = read_node_slot(root, upper, slot + 1);
3578 if (right == NULL)
3579 return 1;
3580
3581 btrfs_tree_lock(right);
3582 btrfs_set_lock_blocking(right);
3583
3584 free_space = btrfs_leaf_free_space(root, right);
3585 if (free_space < data_size)
3586 goto out_unlock;
3587
3588 /* cow and double check */
3589 ret = btrfs_cow_block(trans, root, right, upper,
3590 slot + 1, &right);
3591 if (ret)
3592 goto out_unlock;
3593
3594 free_space = btrfs_leaf_free_space(root, right);
3595 if (free_space < data_size)
3596 goto out_unlock;
3597
3598 left_nritems = btrfs_header_nritems(left);
3599 if (left_nritems == 0)
3600 goto out_unlock;
3601
3602 return __push_leaf_right(trans, root, path, min_data_size, empty,
3603 right, free_space, left_nritems, min_slot);
3604 out_unlock:
3605 btrfs_tree_unlock(right);
3606 free_extent_buffer(right);
3607 return 1;
3608 }
3609
3610 /*
3611 * push some data in the path leaf to the left, trying to free up at
3612 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3613 *
3614 * max_slot can put a limit on how far into the leaf we'll push items. The
3615 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3616 * items
3617 */
__push_leaf_left(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int data_size,int empty,struct extent_buffer * left,int free_space,u32 right_nritems,u32 max_slot)3618 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3619 struct btrfs_root *root,
3620 struct btrfs_path *path, int data_size,
3621 int empty, struct extent_buffer *left,
3622 int free_space, u32 right_nritems,
3623 u32 max_slot)
3624 {
3625 struct btrfs_disk_key disk_key;
3626 struct extent_buffer *right = path->nodes[0];
3627 int i;
3628 int push_space = 0;
3629 int push_items = 0;
3630 struct btrfs_item *item;
3631 u32 old_left_nritems;
3632 u32 nr;
3633 int ret = 0;
3634 u32 this_item_size;
3635 u32 old_left_item_size;
3636 struct btrfs_map_token token;
3637
3638 btrfs_init_map_token(&token);
3639
3640 if (empty)
3641 nr = min(right_nritems, max_slot);
3642 else
3643 nr = min(right_nritems - 1, max_slot);
3644
3645 for (i = 0; i < nr; i++) {
3646 item = btrfs_item_nr(right, i);
3647
3648 if (!empty && push_items > 0) {
3649 if (path->slots[0] < i)
3650 break;
3651 if (path->slots[0] == i) {
3652 int space = btrfs_leaf_free_space(root, right);
3653 if (space + push_space * 2 > free_space)
3654 break;
3655 }
3656 }
3657
3658 if (path->slots[0] == i)
3659 push_space += data_size;
3660
3661 this_item_size = btrfs_item_size(right, item);
3662 if (this_item_size + sizeof(*item) + push_space > free_space)
3663 break;
3664
3665 push_items++;
3666 push_space += this_item_size + sizeof(*item);
3667 }
3668
3669 if (push_items == 0) {
3670 ret = 1;
3671 goto out;
3672 }
3673 if (!empty && push_items == btrfs_header_nritems(right))
3674 WARN_ON(1);
3675
3676 /* push data from right to left */
3677 copy_extent_buffer(left, right,
3678 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3679 btrfs_item_nr_offset(0),
3680 push_items * sizeof(struct btrfs_item));
3681
3682 push_space = BTRFS_LEAF_DATA_SIZE(root) -
3683 btrfs_item_offset_nr(right, push_items - 1);
3684
3685 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3686 leaf_data_end(root, left) - push_space,
3687 btrfs_leaf_data(right) +
3688 btrfs_item_offset_nr(right, push_items - 1),
3689 push_space);
3690 old_left_nritems = btrfs_header_nritems(left);
3691 BUG_ON(old_left_nritems <= 0);
3692
3693 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3694 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3695 u32 ioff;
3696
3697 item = btrfs_item_nr(left, i);
3698
3699 ioff = btrfs_token_item_offset(left, item, &token);
3700 btrfs_set_token_item_offset(left, item,
3701 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3702 &token);
3703 }
3704 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3705
3706 /* fixup right node */
3707 if (push_items > right_nritems)
3708 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3709 right_nritems);
3710
3711 if (push_items < right_nritems) {
3712 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3713 leaf_data_end(root, right);
3714 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3715 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3716 btrfs_leaf_data(right) +
3717 leaf_data_end(root, right), push_space);
3718
3719 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3720 btrfs_item_nr_offset(push_items),
3721 (btrfs_header_nritems(right) - push_items) *
3722 sizeof(struct btrfs_item));
3723 }
3724 right_nritems -= push_items;
3725 btrfs_set_header_nritems(right, right_nritems);
3726 push_space = BTRFS_LEAF_DATA_SIZE(root);
3727 for (i = 0; i < right_nritems; i++) {
3728 item = btrfs_item_nr(right, i);
3729
3730 push_space = push_space - btrfs_token_item_size(right,
3731 item, &token);
3732 btrfs_set_token_item_offset(right, item, push_space, &token);
3733 }
3734
3735 btrfs_mark_buffer_dirty(left);
3736 if (right_nritems)
3737 btrfs_mark_buffer_dirty(right);
3738 else
3739 clean_tree_block(trans, root, right);
3740
3741 btrfs_item_key(right, &disk_key, 0);
3742 fixup_low_keys(root, path, &disk_key, 1);
3743
3744 /* then fixup the leaf pointer in the path */
3745 if (path->slots[0] < push_items) {
3746 path->slots[0] += old_left_nritems;
3747 btrfs_tree_unlock(path->nodes[0]);
3748 free_extent_buffer(path->nodes[0]);
3749 path->nodes[0] = left;
3750 path->slots[1] -= 1;
3751 } else {
3752 btrfs_tree_unlock(left);
3753 free_extent_buffer(left);
3754 path->slots[0] -= push_items;
3755 }
3756 BUG_ON(path->slots[0] < 0);
3757 return ret;
3758 out:
3759 btrfs_tree_unlock(left);
3760 free_extent_buffer(left);
3761 return ret;
3762 }
3763
3764 /*
3765 * push some data in the path leaf to the left, trying to free up at
3766 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3767 *
3768 * max_slot can put a limit on how far into the leaf we'll push items. The
3769 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3770 * items
3771 */
push_leaf_left(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 max_slot)3772 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3773 *root, struct btrfs_path *path, int min_data_size,
3774 int data_size, int empty, u32 max_slot)
3775 {
3776 struct extent_buffer *right = path->nodes[0];
3777 struct extent_buffer *left;
3778 int slot;
3779 int free_space;
3780 u32 right_nritems;
3781 int ret = 0;
3782
3783 slot = path->slots[1];
3784 if (slot == 0)
3785 return 1;
3786 if (!path->nodes[1])
3787 return 1;
3788
3789 right_nritems = btrfs_header_nritems(right);
3790 if (right_nritems == 0)
3791 return 1;
3792
3793 btrfs_assert_tree_locked(path->nodes[1]);
3794
3795 left = read_node_slot(root, path->nodes[1], slot - 1);
3796 if (left == NULL)
3797 return 1;
3798
3799 btrfs_tree_lock(left);
3800 btrfs_set_lock_blocking(left);
3801
3802 free_space = btrfs_leaf_free_space(root, left);
3803 if (free_space < data_size) {
3804 ret = 1;
3805 goto out;
3806 }
3807
3808 /* cow and double check */
3809 ret = btrfs_cow_block(trans, root, left,
3810 path->nodes[1], slot - 1, &left);
3811 if (ret) {
3812 /* we hit -ENOSPC, but it isn't fatal here */
3813 if (ret == -ENOSPC)
3814 ret = 1;
3815 goto out;
3816 }
3817
3818 free_space = btrfs_leaf_free_space(root, left);
3819 if (free_space < data_size) {
3820 ret = 1;
3821 goto out;
3822 }
3823
3824 return __push_leaf_left(trans, root, path, min_data_size,
3825 empty, left, free_space, right_nritems,
3826 max_slot);
3827 out:
3828 btrfs_tree_unlock(left);
3829 free_extent_buffer(left);
3830 return ret;
3831 }
3832
3833 /*
3834 * split the path's leaf in two, making sure there is at least data_size
3835 * available for the resulting leaf level of the path.
3836 */
copy_for_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * l,struct extent_buffer * right,int slot,int mid,int nritems)3837 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3838 struct btrfs_root *root,
3839 struct btrfs_path *path,
3840 struct extent_buffer *l,
3841 struct extent_buffer *right,
3842 int slot, int mid, int nritems)
3843 {
3844 int data_copy_size;
3845 int rt_data_off;
3846 int i;
3847 struct btrfs_disk_key disk_key;
3848 struct btrfs_map_token token;
3849
3850 btrfs_init_map_token(&token);
3851
3852 nritems = nritems - mid;
3853 btrfs_set_header_nritems(right, nritems);
3854 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3855
3856 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3857 btrfs_item_nr_offset(mid),
3858 nritems * sizeof(struct btrfs_item));
3859
3860 copy_extent_buffer(right, l,
3861 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3862 data_copy_size, btrfs_leaf_data(l) +
3863 leaf_data_end(root, l), data_copy_size);
3864
3865 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3866 btrfs_item_end_nr(l, mid);
3867
3868 for (i = 0; i < nritems; i++) {
3869 struct btrfs_item *item = btrfs_item_nr(right, i);
3870 u32 ioff;
3871
3872 ioff = btrfs_token_item_offset(right, item, &token);
3873 btrfs_set_token_item_offset(right, item,
3874 ioff + rt_data_off, &token);
3875 }
3876
3877 btrfs_set_header_nritems(l, mid);
3878 btrfs_item_key(right, &disk_key, 0);
3879 insert_ptr(trans, root, path, &disk_key, right->start,
3880 path->slots[1] + 1, 1);
3881
3882 btrfs_mark_buffer_dirty(right);
3883 btrfs_mark_buffer_dirty(l);
3884 BUG_ON(path->slots[0] != slot);
3885
3886 if (mid <= slot) {
3887 btrfs_tree_unlock(path->nodes[0]);
3888 free_extent_buffer(path->nodes[0]);
3889 path->nodes[0] = right;
3890 path->slots[0] -= mid;
3891 path->slots[1] += 1;
3892 } else {
3893 btrfs_tree_unlock(right);
3894 free_extent_buffer(right);
3895 }
3896
3897 BUG_ON(path->slots[0] < 0);
3898 }
3899
3900 /*
3901 * double splits happen when we need to insert a big item in the middle
3902 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3903 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3904 * A B C
3905 *
3906 * We avoid this by trying to push the items on either side of our target
3907 * into the adjacent leaves. If all goes well we can avoid the double split
3908 * completely.
3909 */
push_for_double_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int data_size)3910 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3911 struct btrfs_root *root,
3912 struct btrfs_path *path,
3913 int data_size)
3914 {
3915 int ret;
3916 int progress = 0;
3917 int slot;
3918 u32 nritems;
3919
3920 slot = path->slots[0];
3921
3922 /*
3923 * try to push all the items after our slot into the
3924 * right leaf
3925 */
3926 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3927 if (ret < 0)
3928 return ret;
3929
3930 if (ret == 0)
3931 progress++;
3932
3933 nritems = btrfs_header_nritems(path->nodes[0]);
3934 /*
3935 * our goal is to get our slot at the start or end of a leaf. If
3936 * we've done so we're done
3937 */
3938 if (path->slots[0] == 0 || path->slots[0] == nritems)
3939 return 0;
3940
3941 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3942 return 0;
3943
3944 /* try to push all the items before our slot into the next leaf */
3945 slot = path->slots[0];
3946 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3947 if (ret < 0)
3948 return ret;
3949
3950 if (ret == 0)
3951 progress++;
3952
3953 if (progress)
3954 return 0;
3955 return 1;
3956 }
3957
3958 /*
3959 * split the path's leaf in two, making sure there is at least data_size
3960 * available for the resulting leaf level of the path.
3961 *
3962 * returns 0 if all went well and < 0 on failure.
3963 */
split_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_key * ins_key,struct btrfs_path * path,int data_size,int extend)3964 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3965 struct btrfs_root *root,
3966 struct btrfs_key *ins_key,
3967 struct btrfs_path *path, int data_size,
3968 int extend)
3969 {
3970 struct btrfs_disk_key disk_key;
3971 struct extent_buffer *l;
3972 u32 nritems;
3973 int mid;
3974 int slot;
3975 struct extent_buffer *right;
3976 int ret = 0;
3977 int wret;
3978 int split;
3979 int num_doubles = 0;
3980 int tried_avoid_double = 0;
3981
3982 l = path->nodes[0];
3983 slot = path->slots[0];
3984 if (extend && data_size + btrfs_item_size_nr(l, slot) +
3985 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3986 return -EOVERFLOW;
3987
3988 /* first try to make some room by pushing left and right */
3989 if (data_size) {
3990 wret = push_leaf_right(trans, root, path, data_size,
3991 data_size, 0, 0);
3992 if (wret < 0)
3993 return wret;
3994 if (wret) {
3995 wret = push_leaf_left(trans, root, path, data_size,
3996 data_size, 0, (u32)-1);
3997 if (wret < 0)
3998 return wret;
3999 }
4000 l = path->nodes[0];
4001
4002 /* did the pushes work? */
4003 if (btrfs_leaf_free_space(root, l) >= data_size)
4004 return 0;
4005 }
4006
4007 if (!path->nodes[1]) {
4008 ret = insert_new_root(trans, root, path, 1, 1);
4009 if (ret)
4010 return ret;
4011 }
4012 again:
4013 split = 1;
4014 l = path->nodes[0];
4015 slot = path->slots[0];
4016 nritems = btrfs_header_nritems(l);
4017 mid = (nritems + 1) / 2;
4018
4019 if (mid <= slot) {
4020 if (nritems == 1 ||
4021 leaf_space_used(l, mid, nritems - mid) + data_size >
4022 BTRFS_LEAF_DATA_SIZE(root)) {
4023 if (slot >= nritems) {
4024 split = 0;
4025 } else {
4026 mid = slot;
4027 if (mid != nritems &&
4028 leaf_space_used(l, mid, nritems - mid) +
4029 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4030 if (data_size && !tried_avoid_double)
4031 goto push_for_double;
4032 split = 2;
4033 }
4034 }
4035 }
4036 } else {
4037 if (leaf_space_used(l, 0, mid) + data_size >
4038 BTRFS_LEAF_DATA_SIZE(root)) {
4039 if (!extend && data_size && slot == 0) {
4040 split = 0;
4041 } else if ((extend || !data_size) && slot == 0) {
4042 mid = 1;
4043 } else {
4044 mid = slot;
4045 if (mid != nritems &&
4046 leaf_space_used(l, mid, nritems - mid) +
4047 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4048 if (data_size && !tried_avoid_double)
4049 goto push_for_double;
4050 split = 2 ;
4051 }
4052 }
4053 }
4054 }
4055
4056 if (split == 0)
4057 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4058 else
4059 btrfs_item_key(l, &disk_key, mid);
4060
4061 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4062 root->root_key.objectid,
4063 &disk_key, 0, l->start, 0);
4064 if (IS_ERR(right))
4065 return PTR_ERR(right);
4066
4067 root_add_used(root, root->leafsize);
4068
4069 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4070 btrfs_set_header_bytenr(right, right->start);
4071 btrfs_set_header_generation(right, trans->transid);
4072 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4073 btrfs_set_header_owner(right, root->root_key.objectid);
4074 btrfs_set_header_level(right, 0);
4075 write_extent_buffer(right, root->fs_info->fsid,
4076 (unsigned long)btrfs_header_fsid(right),
4077 BTRFS_FSID_SIZE);
4078
4079 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4080 (unsigned long)btrfs_header_chunk_tree_uuid(right),
4081 BTRFS_UUID_SIZE);
4082
4083 if (split == 0) {
4084 if (mid <= slot) {
4085 btrfs_set_header_nritems(right, 0);
4086 insert_ptr(trans, root, path, &disk_key, right->start,
4087 path->slots[1] + 1, 1);
4088 btrfs_tree_unlock(path->nodes[0]);
4089 free_extent_buffer(path->nodes[0]);
4090 path->nodes[0] = right;
4091 path->slots[0] = 0;
4092 path->slots[1] += 1;
4093 } else {
4094 btrfs_set_header_nritems(right, 0);
4095 insert_ptr(trans, root, path, &disk_key, right->start,
4096 path->slots[1], 1);
4097 btrfs_tree_unlock(path->nodes[0]);
4098 free_extent_buffer(path->nodes[0]);
4099 path->nodes[0] = right;
4100 path->slots[0] = 0;
4101 if (path->slots[1] == 0)
4102 fixup_low_keys(root, path, &disk_key, 1);
4103 }
4104 btrfs_mark_buffer_dirty(right);
4105 return ret;
4106 }
4107
4108 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4109
4110 if (split == 2) {
4111 BUG_ON(num_doubles != 0);
4112 num_doubles++;
4113 goto again;
4114 }
4115
4116 return 0;
4117
4118 push_for_double:
4119 push_for_double_split(trans, root, path, data_size);
4120 tried_avoid_double = 1;
4121 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4122 return 0;
4123 goto again;
4124 }
4125
setup_leaf_for_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int ins_len)4126 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4127 struct btrfs_root *root,
4128 struct btrfs_path *path, int ins_len)
4129 {
4130 struct btrfs_key key;
4131 struct extent_buffer *leaf;
4132 struct btrfs_file_extent_item *fi;
4133 u64 extent_len = 0;
4134 u32 item_size;
4135 int ret;
4136
4137 leaf = path->nodes[0];
4138 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4139
4140 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4141 key.type != BTRFS_EXTENT_CSUM_KEY);
4142
4143 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4144 return 0;
4145
4146 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4147 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4148 fi = btrfs_item_ptr(leaf, path->slots[0],
4149 struct btrfs_file_extent_item);
4150 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4151 }
4152 btrfs_release_path(path);
4153
4154 path->keep_locks = 1;
4155 path->search_for_split = 1;
4156 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4157 path->search_for_split = 0;
4158 if (ret < 0)
4159 goto err;
4160
4161 ret = -EAGAIN;
4162 leaf = path->nodes[0];
4163 /* if our item isn't there or got smaller, return now */
4164 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4165 goto err;
4166
4167 /* the leaf has changed, it now has room. return now */
4168 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4169 goto err;
4170
4171 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4172 fi = btrfs_item_ptr(leaf, path->slots[0],
4173 struct btrfs_file_extent_item);
4174 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4175 goto err;
4176 }
4177
4178 btrfs_set_path_blocking(path);
4179 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4180 if (ret)
4181 goto err;
4182
4183 path->keep_locks = 0;
4184 btrfs_unlock_up_safe(path, 1);
4185 return 0;
4186 err:
4187 path->keep_locks = 0;
4188 return ret;
4189 }
4190
split_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * new_key,unsigned long split_offset)4191 static noinline int split_item(struct btrfs_trans_handle *trans,
4192 struct btrfs_root *root,
4193 struct btrfs_path *path,
4194 struct btrfs_key *new_key,
4195 unsigned long split_offset)
4196 {
4197 struct extent_buffer *leaf;
4198 struct btrfs_item *item;
4199 struct btrfs_item *new_item;
4200 int slot;
4201 char *buf;
4202 u32 nritems;
4203 u32 item_size;
4204 u32 orig_offset;
4205 struct btrfs_disk_key disk_key;
4206
4207 leaf = path->nodes[0];
4208 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4209
4210 btrfs_set_path_blocking(path);
4211
4212 item = btrfs_item_nr(leaf, path->slots[0]);
4213 orig_offset = btrfs_item_offset(leaf, item);
4214 item_size = btrfs_item_size(leaf, item);
4215
4216 buf = kmalloc(item_size, GFP_NOFS);
4217 if (!buf)
4218 return -ENOMEM;
4219
4220 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4221 path->slots[0]), item_size);
4222
4223 slot = path->slots[0] + 1;
4224 nritems = btrfs_header_nritems(leaf);
4225 if (slot != nritems) {
4226 /* shift the items */
4227 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4228 btrfs_item_nr_offset(slot),
4229 (nritems - slot) * sizeof(struct btrfs_item));
4230 }
4231
4232 btrfs_cpu_key_to_disk(&disk_key, new_key);
4233 btrfs_set_item_key(leaf, &disk_key, slot);
4234
4235 new_item = btrfs_item_nr(leaf, slot);
4236
4237 btrfs_set_item_offset(leaf, new_item, orig_offset);
4238 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4239
4240 btrfs_set_item_offset(leaf, item,
4241 orig_offset + item_size - split_offset);
4242 btrfs_set_item_size(leaf, item, split_offset);
4243
4244 btrfs_set_header_nritems(leaf, nritems + 1);
4245
4246 /* write the data for the start of the original item */
4247 write_extent_buffer(leaf, buf,
4248 btrfs_item_ptr_offset(leaf, path->slots[0]),
4249 split_offset);
4250
4251 /* write the data for the new item */
4252 write_extent_buffer(leaf, buf + split_offset,
4253 btrfs_item_ptr_offset(leaf, slot),
4254 item_size - split_offset);
4255 btrfs_mark_buffer_dirty(leaf);
4256
4257 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4258 kfree(buf);
4259 return 0;
4260 }
4261
4262 /*
4263 * This function splits a single item into two items,
4264 * giving 'new_key' to the new item and splitting the
4265 * old one at split_offset (from the start of the item).
4266 *
4267 * The path may be released by this operation. After
4268 * the split, the path is pointing to the old item. The
4269 * new item is going to be in the same node as the old one.
4270 *
4271 * Note, the item being split must be smaller enough to live alone on
4272 * a tree block with room for one extra struct btrfs_item
4273 *
4274 * This allows us to split the item in place, keeping a lock on the
4275 * leaf the entire time.
4276 */
btrfs_split_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * new_key,unsigned long split_offset)4277 int btrfs_split_item(struct btrfs_trans_handle *trans,
4278 struct btrfs_root *root,
4279 struct btrfs_path *path,
4280 struct btrfs_key *new_key,
4281 unsigned long split_offset)
4282 {
4283 int ret;
4284 ret = setup_leaf_for_split(trans, root, path,
4285 sizeof(struct btrfs_item));
4286 if (ret)
4287 return ret;
4288
4289 ret = split_item(trans, root, path, new_key, split_offset);
4290 return ret;
4291 }
4292
4293 /*
4294 * This function duplicate a item, giving 'new_key' to the new item.
4295 * It guarantees both items live in the same tree leaf and the new item
4296 * is contiguous with the original item.
4297 *
4298 * This allows us to split file extent in place, keeping a lock on the
4299 * leaf the entire time.
4300 */
btrfs_duplicate_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * new_key)4301 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4302 struct btrfs_root *root,
4303 struct btrfs_path *path,
4304 struct btrfs_key *new_key)
4305 {
4306 struct extent_buffer *leaf;
4307 int ret;
4308 u32 item_size;
4309
4310 leaf = path->nodes[0];
4311 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4312 ret = setup_leaf_for_split(trans, root, path,
4313 item_size + sizeof(struct btrfs_item));
4314 if (ret)
4315 return ret;
4316
4317 path->slots[0]++;
4318 setup_items_for_insert(root, path, new_key, &item_size,
4319 item_size, item_size +
4320 sizeof(struct btrfs_item), 1);
4321 leaf = path->nodes[0];
4322 memcpy_extent_buffer(leaf,
4323 btrfs_item_ptr_offset(leaf, path->slots[0]),
4324 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4325 item_size);
4326 return 0;
4327 }
4328
4329 /*
4330 * make the item pointed to by the path smaller. new_size indicates
4331 * how small to make it, and from_end tells us if we just chop bytes
4332 * off the end of the item or if we shift the item to chop bytes off
4333 * the front.
4334 */
btrfs_truncate_item(struct btrfs_root * root,struct btrfs_path * path,u32 new_size,int from_end)4335 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4336 u32 new_size, int from_end)
4337 {
4338 int slot;
4339 struct extent_buffer *leaf;
4340 struct btrfs_item *item;
4341 u32 nritems;
4342 unsigned int data_end;
4343 unsigned int old_data_start;
4344 unsigned int old_size;
4345 unsigned int size_diff;
4346 int i;
4347 struct btrfs_map_token token;
4348
4349 btrfs_init_map_token(&token);
4350
4351 leaf = path->nodes[0];
4352 slot = path->slots[0];
4353
4354 old_size = btrfs_item_size_nr(leaf, slot);
4355 if (old_size == new_size)
4356 return;
4357
4358 nritems = btrfs_header_nritems(leaf);
4359 data_end = leaf_data_end(root, leaf);
4360
4361 old_data_start = btrfs_item_offset_nr(leaf, slot);
4362
4363 size_diff = old_size - new_size;
4364
4365 BUG_ON(slot < 0);
4366 BUG_ON(slot >= nritems);
4367
4368 /*
4369 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4370 */
4371 /* first correct the data pointers */
4372 for (i = slot; i < nritems; i++) {
4373 u32 ioff;
4374 item = btrfs_item_nr(leaf, i);
4375
4376 ioff = btrfs_token_item_offset(leaf, item, &token);
4377 btrfs_set_token_item_offset(leaf, item,
4378 ioff + size_diff, &token);
4379 }
4380
4381 /* shift the data */
4382 if (from_end) {
4383 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4384 data_end + size_diff, btrfs_leaf_data(leaf) +
4385 data_end, old_data_start + new_size - data_end);
4386 } else {
4387 struct btrfs_disk_key disk_key;
4388 u64 offset;
4389
4390 btrfs_item_key(leaf, &disk_key, slot);
4391
4392 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4393 unsigned long ptr;
4394 struct btrfs_file_extent_item *fi;
4395
4396 fi = btrfs_item_ptr(leaf, slot,
4397 struct btrfs_file_extent_item);
4398 fi = (struct btrfs_file_extent_item *)(
4399 (unsigned long)fi - size_diff);
4400
4401 if (btrfs_file_extent_type(leaf, fi) ==
4402 BTRFS_FILE_EXTENT_INLINE) {
4403 ptr = btrfs_item_ptr_offset(leaf, slot);
4404 memmove_extent_buffer(leaf, ptr,
4405 (unsigned long)fi,
4406 offsetof(struct btrfs_file_extent_item,
4407 disk_bytenr));
4408 }
4409 }
4410
4411 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4412 data_end + size_diff, btrfs_leaf_data(leaf) +
4413 data_end, old_data_start - data_end);
4414
4415 offset = btrfs_disk_key_offset(&disk_key);
4416 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4417 btrfs_set_item_key(leaf, &disk_key, slot);
4418 if (slot == 0)
4419 fixup_low_keys(root, path, &disk_key, 1);
4420 }
4421
4422 item = btrfs_item_nr(leaf, slot);
4423 btrfs_set_item_size(leaf, item, new_size);
4424 btrfs_mark_buffer_dirty(leaf);
4425
4426 if (btrfs_leaf_free_space(root, leaf) < 0) {
4427 btrfs_print_leaf(root, leaf);
4428 BUG();
4429 }
4430 }
4431
4432 /*
4433 * make the item pointed to by the path bigger, data_size is the new size.
4434 */
btrfs_extend_item(struct btrfs_root * root,struct btrfs_path * path,u32 data_size)4435 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4436 u32 data_size)
4437 {
4438 int slot;
4439 struct extent_buffer *leaf;
4440 struct btrfs_item *item;
4441 u32 nritems;
4442 unsigned int data_end;
4443 unsigned int old_data;
4444 unsigned int old_size;
4445 int i;
4446 struct btrfs_map_token token;
4447
4448 btrfs_init_map_token(&token);
4449
4450 leaf = path->nodes[0];
4451
4452 nritems = btrfs_header_nritems(leaf);
4453 data_end = leaf_data_end(root, leaf);
4454
4455 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4456 btrfs_print_leaf(root, leaf);
4457 BUG();
4458 }
4459 slot = path->slots[0];
4460 old_data = btrfs_item_end_nr(leaf, slot);
4461
4462 BUG_ON(slot < 0);
4463 if (slot >= nritems) {
4464 btrfs_print_leaf(root, leaf);
4465 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4466 slot, nritems);
4467 BUG_ON(1);
4468 }
4469
4470 /*
4471 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4472 */
4473 /* first correct the data pointers */
4474 for (i = slot; i < nritems; i++) {
4475 u32 ioff;
4476 item = btrfs_item_nr(leaf, i);
4477
4478 ioff = btrfs_token_item_offset(leaf, item, &token);
4479 btrfs_set_token_item_offset(leaf, item,
4480 ioff - data_size, &token);
4481 }
4482
4483 /* shift the data */
4484 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4485 data_end - data_size, btrfs_leaf_data(leaf) +
4486 data_end, old_data - data_end);
4487
4488 data_end = old_data;
4489 old_size = btrfs_item_size_nr(leaf, slot);
4490 item = btrfs_item_nr(leaf, slot);
4491 btrfs_set_item_size(leaf, item, old_size + data_size);
4492 btrfs_mark_buffer_dirty(leaf);
4493
4494 if (btrfs_leaf_free_space(root, leaf) < 0) {
4495 btrfs_print_leaf(root, leaf);
4496 BUG();
4497 }
4498 }
4499
4500 /*
4501 * this is a helper for btrfs_insert_empty_items, the main goal here is
4502 * to save stack depth by doing the bulk of the work in a function
4503 * that doesn't call btrfs_search_slot
4504 */
setup_items_for_insert(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * cpu_key,u32 * data_size,u32 total_data,u32 total_size,int nr)4505 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4506 struct btrfs_key *cpu_key, u32 *data_size,
4507 u32 total_data, u32 total_size, int nr)
4508 {
4509 struct btrfs_item *item;
4510 int i;
4511 u32 nritems;
4512 unsigned int data_end;
4513 struct btrfs_disk_key disk_key;
4514 struct extent_buffer *leaf;
4515 int slot;
4516 struct btrfs_map_token token;
4517
4518 btrfs_init_map_token(&token);
4519
4520 leaf = path->nodes[0];
4521 slot = path->slots[0];
4522
4523 nritems = btrfs_header_nritems(leaf);
4524 data_end = leaf_data_end(root, leaf);
4525
4526 if (btrfs_leaf_free_space(root, leaf) < total_size) {
4527 btrfs_print_leaf(root, leaf);
4528 printk(KERN_CRIT "not enough freespace need %u have %d\n",
4529 total_size, btrfs_leaf_free_space(root, leaf));
4530 BUG();
4531 }
4532
4533 if (slot != nritems) {
4534 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4535
4536 if (old_data < data_end) {
4537 btrfs_print_leaf(root, leaf);
4538 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4539 slot, old_data, data_end);
4540 BUG_ON(1);
4541 }
4542 /*
4543 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4544 */
4545 /* first correct the data pointers */
4546 for (i = slot; i < nritems; i++) {
4547 u32 ioff;
4548
4549 item = btrfs_item_nr(leaf, i);
4550 ioff = btrfs_token_item_offset(leaf, item, &token);
4551 btrfs_set_token_item_offset(leaf, item,
4552 ioff - total_data, &token);
4553 }
4554 /* shift the items */
4555 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4556 btrfs_item_nr_offset(slot),
4557 (nritems - slot) * sizeof(struct btrfs_item));
4558
4559 /* shift the data */
4560 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4561 data_end - total_data, btrfs_leaf_data(leaf) +
4562 data_end, old_data - data_end);
4563 data_end = old_data;
4564 }
4565
4566 /* setup the item for the new data */
4567 for (i = 0; i < nr; i++) {
4568 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4569 btrfs_set_item_key(leaf, &disk_key, slot + i);
4570 item = btrfs_item_nr(leaf, slot + i);
4571 btrfs_set_token_item_offset(leaf, item,
4572 data_end - data_size[i], &token);
4573 data_end -= data_size[i];
4574 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4575 }
4576
4577 btrfs_set_header_nritems(leaf, nritems + nr);
4578
4579 if (slot == 0) {
4580 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4581 fixup_low_keys(root, path, &disk_key, 1);
4582 }
4583 btrfs_unlock_up_safe(path, 1);
4584 btrfs_mark_buffer_dirty(leaf);
4585
4586 if (btrfs_leaf_free_space(root, leaf) < 0) {
4587 btrfs_print_leaf(root, leaf);
4588 BUG();
4589 }
4590 }
4591
4592 /*
4593 * Given a key and some data, insert items into the tree.
4594 * This does all the path init required, making room in the tree if needed.
4595 */
btrfs_insert_empty_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * cpu_key,u32 * data_size,int nr)4596 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4597 struct btrfs_root *root,
4598 struct btrfs_path *path,
4599 struct btrfs_key *cpu_key, u32 *data_size,
4600 int nr)
4601 {
4602 int ret = 0;
4603 int slot;
4604 int i;
4605 u32 total_size = 0;
4606 u32 total_data = 0;
4607
4608 for (i = 0; i < nr; i++)
4609 total_data += data_size[i];
4610
4611 total_size = total_data + (nr * sizeof(struct btrfs_item));
4612 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4613 if (ret == 0)
4614 return -EEXIST;
4615 if (ret < 0)
4616 return ret;
4617
4618 slot = path->slots[0];
4619 BUG_ON(slot < 0);
4620
4621 setup_items_for_insert(root, path, cpu_key, data_size,
4622 total_data, total_size, nr);
4623 return 0;
4624 }
4625
4626 /*
4627 * Given a key and some data, insert an item into the tree.
4628 * This does all the path init required, making room in the tree if needed.
4629 */
btrfs_insert_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_key * cpu_key,void * data,u32 data_size)4630 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4631 *root, struct btrfs_key *cpu_key, void *data, u32
4632 data_size)
4633 {
4634 int ret = 0;
4635 struct btrfs_path *path;
4636 struct extent_buffer *leaf;
4637 unsigned long ptr;
4638
4639 path = btrfs_alloc_path();
4640 if (!path)
4641 return -ENOMEM;
4642 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4643 if (!ret) {
4644 leaf = path->nodes[0];
4645 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4646 write_extent_buffer(leaf, data, ptr, data_size);
4647 btrfs_mark_buffer_dirty(leaf);
4648 }
4649 btrfs_free_path(path);
4650 return ret;
4651 }
4652
4653 /*
4654 * delete the pointer from a given node.
4655 *
4656 * the tree should have been previously balanced so the deletion does not
4657 * empty a node.
4658 */
del_ptr(struct btrfs_root * root,struct btrfs_path * path,int level,int slot)4659 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4660 int level, int slot)
4661 {
4662 struct extent_buffer *parent = path->nodes[level];
4663 u32 nritems;
4664 int ret;
4665
4666 nritems = btrfs_header_nritems(parent);
4667 if (slot != nritems - 1) {
4668 if (level)
4669 tree_mod_log_eb_move(root->fs_info, parent, slot,
4670 slot + 1, nritems - slot - 1);
4671 memmove_extent_buffer(parent,
4672 btrfs_node_key_ptr_offset(slot),
4673 btrfs_node_key_ptr_offset(slot + 1),
4674 sizeof(struct btrfs_key_ptr) *
4675 (nritems - slot - 1));
4676 } else if (level) {
4677 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4678 MOD_LOG_KEY_REMOVE);
4679 BUG_ON(ret < 0);
4680 }
4681
4682 nritems--;
4683 btrfs_set_header_nritems(parent, nritems);
4684 if (nritems == 0 && parent == root->node) {
4685 BUG_ON(btrfs_header_level(root->node) != 1);
4686 /* just turn the root into a leaf and break */
4687 btrfs_set_header_level(root->node, 0);
4688 } else if (slot == 0) {
4689 struct btrfs_disk_key disk_key;
4690
4691 btrfs_node_key(parent, &disk_key, 0);
4692 fixup_low_keys(root, path, &disk_key, level + 1);
4693 }
4694 btrfs_mark_buffer_dirty(parent);
4695 }
4696
4697 /*
4698 * a helper function to delete the leaf pointed to by path->slots[1] and
4699 * path->nodes[1].
4700 *
4701 * This deletes the pointer in path->nodes[1] and frees the leaf
4702 * block extent. zero is returned if it all worked out, < 0 otherwise.
4703 *
4704 * The path must have already been setup for deleting the leaf, including
4705 * all the proper balancing. path->nodes[1] must be locked.
4706 */
btrfs_del_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * leaf)4707 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4708 struct btrfs_root *root,
4709 struct btrfs_path *path,
4710 struct extent_buffer *leaf)
4711 {
4712 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4713 del_ptr(root, path, 1, path->slots[1]);
4714
4715 /*
4716 * btrfs_free_extent is expensive, we want to make sure we
4717 * aren't holding any locks when we call it
4718 */
4719 btrfs_unlock_up_safe(path, 0);
4720
4721 root_sub_used(root, leaf->len);
4722
4723 extent_buffer_get(leaf);
4724 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4725 free_extent_buffer_stale(leaf);
4726 }
4727 /*
4728 * delete the item at the leaf level in path. If that empties
4729 * the leaf, remove it from the tree
4730 */
btrfs_del_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int slot,int nr)4731 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4732 struct btrfs_path *path, int slot, int nr)
4733 {
4734 struct extent_buffer *leaf;
4735 struct btrfs_item *item;
4736 int last_off;
4737 int dsize = 0;
4738 int ret = 0;
4739 int wret;
4740 int i;
4741 u32 nritems;
4742 struct btrfs_map_token token;
4743
4744 btrfs_init_map_token(&token);
4745
4746 leaf = path->nodes[0];
4747 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4748
4749 for (i = 0; i < nr; i++)
4750 dsize += btrfs_item_size_nr(leaf, slot + i);
4751
4752 nritems = btrfs_header_nritems(leaf);
4753
4754 if (slot + nr != nritems) {
4755 int data_end = leaf_data_end(root, leaf);
4756
4757 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4758 data_end + dsize,
4759 btrfs_leaf_data(leaf) + data_end,
4760 last_off - data_end);
4761
4762 for (i = slot + nr; i < nritems; i++) {
4763 u32 ioff;
4764
4765 item = btrfs_item_nr(leaf, i);
4766 ioff = btrfs_token_item_offset(leaf, item, &token);
4767 btrfs_set_token_item_offset(leaf, item,
4768 ioff + dsize, &token);
4769 }
4770
4771 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4772 btrfs_item_nr_offset(slot + nr),
4773 sizeof(struct btrfs_item) *
4774 (nritems - slot - nr));
4775 }
4776 btrfs_set_header_nritems(leaf, nritems - nr);
4777 nritems -= nr;
4778
4779 /* delete the leaf if we've emptied it */
4780 if (nritems == 0) {
4781 if (leaf == root->node) {
4782 btrfs_set_header_level(leaf, 0);
4783 } else {
4784 btrfs_set_path_blocking(path);
4785 clean_tree_block(trans, root, leaf);
4786 btrfs_del_leaf(trans, root, path, leaf);
4787 }
4788 } else {
4789 int used = leaf_space_used(leaf, 0, nritems);
4790 if (slot == 0) {
4791 struct btrfs_disk_key disk_key;
4792
4793 btrfs_item_key(leaf, &disk_key, 0);
4794 fixup_low_keys(root, path, &disk_key, 1);
4795 }
4796
4797 /* delete the leaf if it is mostly empty */
4798 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4799 /* push_leaf_left fixes the path.
4800 * make sure the path still points to our leaf
4801 * for possible call to del_ptr below
4802 */
4803 slot = path->slots[1];
4804 extent_buffer_get(leaf);
4805
4806 btrfs_set_path_blocking(path);
4807 wret = push_leaf_left(trans, root, path, 1, 1,
4808 1, (u32)-1);
4809 if (wret < 0 && wret != -ENOSPC)
4810 ret = wret;
4811
4812 if (path->nodes[0] == leaf &&
4813 btrfs_header_nritems(leaf)) {
4814 wret = push_leaf_right(trans, root, path, 1,
4815 1, 1, 0);
4816 if (wret < 0 && wret != -ENOSPC)
4817 ret = wret;
4818 }
4819
4820 if (btrfs_header_nritems(leaf) == 0) {
4821 path->slots[1] = slot;
4822 btrfs_del_leaf(trans, root, path, leaf);
4823 free_extent_buffer(leaf);
4824 ret = 0;
4825 } else {
4826 /* if we're still in the path, make sure
4827 * we're dirty. Otherwise, one of the
4828 * push_leaf functions must have already
4829 * dirtied this buffer
4830 */
4831 if (path->nodes[0] == leaf)
4832 btrfs_mark_buffer_dirty(leaf);
4833 free_extent_buffer(leaf);
4834 }
4835 } else {
4836 btrfs_mark_buffer_dirty(leaf);
4837 }
4838 }
4839 return ret;
4840 }
4841
4842 /*
4843 * search the tree again to find a leaf with lesser keys
4844 * returns 0 if it found something or 1 if there are no lesser leaves.
4845 * returns < 0 on io errors.
4846 *
4847 * This may release the path, and so you may lose any locks held at the
4848 * time you call it.
4849 */
btrfs_prev_leaf(struct btrfs_root * root,struct btrfs_path * path)4850 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4851 {
4852 struct btrfs_key key;
4853 struct btrfs_disk_key found_key;
4854 int ret;
4855
4856 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4857
4858 if (key.offset > 0)
4859 key.offset--;
4860 else if (key.type > 0)
4861 key.type--;
4862 else if (key.objectid > 0)
4863 key.objectid--;
4864 else
4865 return 1;
4866
4867 btrfs_release_path(path);
4868 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4869 if (ret < 0)
4870 return ret;
4871 btrfs_item_key(path->nodes[0], &found_key, 0);
4872 ret = comp_keys(&found_key, &key);
4873 if (ret < 0)
4874 return 0;
4875 return 1;
4876 }
4877
4878 /*
4879 * A helper function to walk down the tree starting at min_key, and looking
4880 * for nodes or leaves that are have a minimum transaction id.
4881 * This is used by the btree defrag code, and tree logging
4882 *
4883 * This does not cow, but it does stuff the starting key it finds back
4884 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4885 * key and get a writable path.
4886 *
4887 * This does lock as it descends, and path->keep_locks should be set
4888 * to 1 by the caller.
4889 *
4890 * This honors path->lowest_level to prevent descent past a given level
4891 * of the tree.
4892 *
4893 * min_trans indicates the oldest transaction that you are interested
4894 * in walking through. Any nodes or leaves older than min_trans are
4895 * skipped over (without reading them).
4896 *
4897 * returns zero if something useful was found, < 0 on error and 1 if there
4898 * was nothing in the tree that matched the search criteria.
4899 */
btrfs_search_forward(struct btrfs_root * root,struct btrfs_key * min_key,struct btrfs_key * max_key,struct btrfs_path * path,u64 min_trans)4900 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4901 struct btrfs_key *max_key,
4902 struct btrfs_path *path,
4903 u64 min_trans)
4904 {
4905 struct extent_buffer *cur;
4906 struct btrfs_key found_key;
4907 int slot;
4908 int sret;
4909 u32 nritems;
4910 int level;
4911 int ret = 1;
4912
4913 WARN_ON(!path->keep_locks);
4914 again:
4915 cur = btrfs_read_lock_root_node(root);
4916 level = btrfs_header_level(cur);
4917 WARN_ON(path->nodes[level]);
4918 path->nodes[level] = cur;
4919 path->locks[level] = BTRFS_READ_LOCK;
4920
4921 if (btrfs_header_generation(cur) < min_trans) {
4922 ret = 1;
4923 goto out;
4924 }
4925 while (1) {
4926 nritems = btrfs_header_nritems(cur);
4927 level = btrfs_header_level(cur);
4928 sret = bin_search(cur, min_key, level, &slot);
4929
4930 /* at the lowest level, we're done, setup the path and exit */
4931 if (level == path->lowest_level) {
4932 if (slot >= nritems)
4933 goto find_next_key;
4934 ret = 0;
4935 path->slots[level] = slot;
4936 btrfs_item_key_to_cpu(cur, &found_key, slot);
4937 goto out;
4938 }
4939 if (sret && slot > 0)
4940 slot--;
4941 /*
4942 * check this node pointer against the min_trans parameters.
4943 * If it is too old, old, skip to the next one.
4944 */
4945 while (slot < nritems) {
4946 u64 blockptr;
4947 u64 gen;
4948
4949 blockptr = btrfs_node_blockptr(cur, slot);
4950 gen = btrfs_node_ptr_generation(cur, slot);
4951 if (gen < min_trans) {
4952 slot++;
4953 continue;
4954 }
4955 break;
4956 }
4957 find_next_key:
4958 /*
4959 * we didn't find a candidate key in this node, walk forward
4960 * and find another one
4961 */
4962 if (slot >= nritems) {
4963 path->slots[level] = slot;
4964 btrfs_set_path_blocking(path);
4965 sret = btrfs_find_next_key(root, path, min_key, level,
4966 min_trans);
4967 if (sret == 0) {
4968 btrfs_release_path(path);
4969 goto again;
4970 } else {
4971 goto out;
4972 }
4973 }
4974 /* save our key for returning back */
4975 btrfs_node_key_to_cpu(cur, &found_key, slot);
4976 path->slots[level] = slot;
4977 if (level == path->lowest_level) {
4978 ret = 0;
4979 unlock_up(path, level, 1, 0, NULL);
4980 goto out;
4981 }
4982 btrfs_set_path_blocking(path);
4983 cur = read_node_slot(root, cur, slot);
4984 BUG_ON(!cur); /* -ENOMEM */
4985
4986 btrfs_tree_read_lock(cur);
4987
4988 path->locks[level - 1] = BTRFS_READ_LOCK;
4989 path->nodes[level - 1] = cur;
4990 unlock_up(path, level, 1, 0, NULL);
4991 btrfs_clear_path_blocking(path, NULL, 0);
4992 }
4993 out:
4994 if (ret == 0)
4995 memcpy(min_key, &found_key, sizeof(found_key));
4996 btrfs_set_path_blocking(path);
4997 return ret;
4998 }
4999
tree_move_down(struct btrfs_root * root,struct btrfs_path * path,int * level,int root_level)5000 static void tree_move_down(struct btrfs_root *root,
5001 struct btrfs_path *path,
5002 int *level, int root_level)
5003 {
5004 BUG_ON(*level == 0);
5005 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5006 path->slots[*level]);
5007 path->slots[*level - 1] = 0;
5008 (*level)--;
5009 }
5010
tree_move_next_or_upnext(struct btrfs_root * root,struct btrfs_path * path,int * level,int root_level)5011 static int tree_move_next_or_upnext(struct btrfs_root *root,
5012 struct btrfs_path *path,
5013 int *level, int root_level)
5014 {
5015 int ret = 0;
5016 int nritems;
5017 nritems = btrfs_header_nritems(path->nodes[*level]);
5018
5019 path->slots[*level]++;
5020
5021 while (path->slots[*level] >= nritems) {
5022 if (*level == root_level)
5023 return -1;
5024
5025 /* move upnext */
5026 path->slots[*level] = 0;
5027 free_extent_buffer(path->nodes[*level]);
5028 path->nodes[*level] = NULL;
5029 (*level)++;
5030 path->slots[*level]++;
5031
5032 nritems = btrfs_header_nritems(path->nodes[*level]);
5033 ret = 1;
5034 }
5035 return ret;
5036 }
5037
5038 /*
5039 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5040 * or down.
5041 */
tree_advance(struct btrfs_root * root,struct btrfs_path * path,int * level,int root_level,int allow_down,struct btrfs_key * key)5042 static int tree_advance(struct btrfs_root *root,
5043 struct btrfs_path *path,
5044 int *level, int root_level,
5045 int allow_down,
5046 struct btrfs_key *key)
5047 {
5048 int ret;
5049
5050 if (*level == 0 || !allow_down) {
5051 ret = tree_move_next_or_upnext(root, path, level, root_level);
5052 } else {
5053 tree_move_down(root, path, level, root_level);
5054 ret = 0;
5055 }
5056 if (ret >= 0) {
5057 if (*level == 0)
5058 btrfs_item_key_to_cpu(path->nodes[*level], key,
5059 path->slots[*level]);
5060 else
5061 btrfs_node_key_to_cpu(path->nodes[*level], key,
5062 path->slots[*level]);
5063 }
5064 return ret;
5065 }
5066
tree_compare_item(struct btrfs_root * left_root,struct btrfs_path * left_path,struct btrfs_path * right_path,char * tmp_buf)5067 static int tree_compare_item(struct btrfs_root *left_root,
5068 struct btrfs_path *left_path,
5069 struct btrfs_path *right_path,
5070 char *tmp_buf)
5071 {
5072 int cmp;
5073 int len1, len2;
5074 unsigned long off1, off2;
5075
5076 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5077 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5078 if (len1 != len2)
5079 return 1;
5080
5081 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5082 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5083 right_path->slots[0]);
5084
5085 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5086
5087 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5088 if (cmp)
5089 return 1;
5090 return 0;
5091 }
5092
5093 #define ADVANCE 1
5094 #define ADVANCE_ONLY_NEXT -1
5095
5096 /*
5097 * This function compares two trees and calls the provided callback for
5098 * every changed/new/deleted item it finds.
5099 * If shared tree blocks are encountered, whole subtrees are skipped, making
5100 * the compare pretty fast on snapshotted subvolumes.
5101 *
5102 * This currently works on commit roots only. As commit roots are read only,
5103 * we don't do any locking. The commit roots are protected with transactions.
5104 * Transactions are ended and rejoined when a commit is tried in between.
5105 *
5106 * This function checks for modifications done to the trees while comparing.
5107 * If it detects a change, it aborts immediately.
5108 */
btrfs_compare_trees(struct btrfs_root * left_root,struct btrfs_root * right_root,btrfs_changed_cb_t changed_cb,void * ctx)5109 int btrfs_compare_trees(struct btrfs_root *left_root,
5110 struct btrfs_root *right_root,
5111 btrfs_changed_cb_t changed_cb, void *ctx)
5112 {
5113 int ret;
5114 int cmp;
5115 struct btrfs_trans_handle *trans = NULL;
5116 struct btrfs_path *left_path = NULL;
5117 struct btrfs_path *right_path = NULL;
5118 struct btrfs_key left_key;
5119 struct btrfs_key right_key;
5120 char *tmp_buf = NULL;
5121 int left_root_level;
5122 int right_root_level;
5123 int left_level;
5124 int right_level;
5125 int left_end_reached;
5126 int right_end_reached;
5127 int advance_left;
5128 int advance_right;
5129 u64 left_blockptr;
5130 u64 right_blockptr;
5131 u64 left_start_ctransid;
5132 u64 right_start_ctransid;
5133 u64 ctransid;
5134
5135 left_path = btrfs_alloc_path();
5136 if (!left_path) {
5137 ret = -ENOMEM;
5138 goto out;
5139 }
5140 right_path = btrfs_alloc_path();
5141 if (!right_path) {
5142 ret = -ENOMEM;
5143 goto out;
5144 }
5145
5146 tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5147 if (!tmp_buf) {
5148 ret = -ENOMEM;
5149 goto out;
5150 }
5151
5152 left_path->search_commit_root = 1;
5153 left_path->skip_locking = 1;
5154 right_path->search_commit_root = 1;
5155 right_path->skip_locking = 1;
5156
5157 spin_lock(&left_root->root_item_lock);
5158 left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5159 spin_unlock(&left_root->root_item_lock);
5160
5161 spin_lock(&right_root->root_item_lock);
5162 right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5163 spin_unlock(&right_root->root_item_lock);
5164
5165 trans = btrfs_join_transaction(left_root);
5166 if (IS_ERR(trans)) {
5167 ret = PTR_ERR(trans);
5168 trans = NULL;
5169 goto out;
5170 }
5171
5172 /*
5173 * Strategy: Go to the first items of both trees. Then do
5174 *
5175 * If both trees are at level 0
5176 * Compare keys of current items
5177 * If left < right treat left item as new, advance left tree
5178 * and repeat
5179 * If left > right treat right item as deleted, advance right tree
5180 * and repeat
5181 * If left == right do deep compare of items, treat as changed if
5182 * needed, advance both trees and repeat
5183 * If both trees are at the same level but not at level 0
5184 * Compare keys of current nodes/leafs
5185 * If left < right advance left tree and repeat
5186 * If left > right advance right tree and repeat
5187 * If left == right compare blockptrs of the next nodes/leafs
5188 * If they match advance both trees but stay at the same level
5189 * and repeat
5190 * If they don't match advance both trees while allowing to go
5191 * deeper and repeat
5192 * If tree levels are different
5193 * Advance the tree that needs it and repeat
5194 *
5195 * Advancing a tree means:
5196 * If we are at level 0, try to go to the next slot. If that's not
5197 * possible, go one level up and repeat. Stop when we found a level
5198 * where we could go to the next slot. We may at this point be on a
5199 * node or a leaf.
5200 *
5201 * If we are not at level 0 and not on shared tree blocks, go one
5202 * level deeper.
5203 *
5204 * If we are not at level 0 and on shared tree blocks, go one slot to
5205 * the right if possible or go up and right.
5206 */
5207
5208 left_level = btrfs_header_level(left_root->commit_root);
5209 left_root_level = left_level;
5210 left_path->nodes[left_level] = left_root->commit_root;
5211 extent_buffer_get(left_path->nodes[left_level]);
5212
5213 right_level = btrfs_header_level(right_root->commit_root);
5214 right_root_level = right_level;
5215 right_path->nodes[right_level] = right_root->commit_root;
5216 extent_buffer_get(right_path->nodes[right_level]);
5217
5218 if (left_level == 0)
5219 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5220 &left_key, left_path->slots[left_level]);
5221 else
5222 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5223 &left_key, left_path->slots[left_level]);
5224 if (right_level == 0)
5225 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5226 &right_key, right_path->slots[right_level]);
5227 else
5228 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5229 &right_key, right_path->slots[right_level]);
5230
5231 left_end_reached = right_end_reached = 0;
5232 advance_left = advance_right = 0;
5233
5234 while (1) {
5235 /*
5236 * We need to make sure the transaction does not get committed
5237 * while we do anything on commit roots. This means, we need to
5238 * join and leave transactions for every item that we process.
5239 */
5240 if (trans && btrfs_should_end_transaction(trans, left_root)) {
5241 btrfs_release_path(left_path);
5242 btrfs_release_path(right_path);
5243
5244 ret = btrfs_end_transaction(trans, left_root);
5245 trans = NULL;
5246 if (ret < 0)
5247 goto out;
5248 }
5249 /* now rejoin the transaction */
5250 if (!trans) {
5251 trans = btrfs_join_transaction(left_root);
5252 if (IS_ERR(trans)) {
5253 ret = PTR_ERR(trans);
5254 trans = NULL;
5255 goto out;
5256 }
5257
5258 spin_lock(&left_root->root_item_lock);
5259 ctransid = btrfs_root_ctransid(&left_root->root_item);
5260 spin_unlock(&left_root->root_item_lock);
5261 if (ctransid != left_start_ctransid)
5262 left_start_ctransid = 0;
5263
5264 spin_lock(&right_root->root_item_lock);
5265 ctransid = btrfs_root_ctransid(&right_root->root_item);
5266 spin_unlock(&right_root->root_item_lock);
5267 if (ctransid != right_start_ctransid)
5268 right_start_ctransid = 0;
5269
5270 if (!left_start_ctransid || !right_start_ctransid) {
5271 WARN(1, KERN_WARNING
5272 "btrfs: btrfs_compare_tree detected "
5273 "a change in one of the trees while "
5274 "iterating. This is probably a "
5275 "bug.\n");
5276 ret = -EIO;
5277 goto out;
5278 }
5279
5280 /*
5281 * the commit root may have changed, so start again
5282 * where we stopped
5283 */
5284 left_path->lowest_level = left_level;
5285 right_path->lowest_level = right_level;
5286 ret = btrfs_search_slot(NULL, left_root,
5287 &left_key, left_path, 0, 0);
5288 if (ret < 0)
5289 goto out;
5290 ret = btrfs_search_slot(NULL, right_root,
5291 &right_key, right_path, 0, 0);
5292 if (ret < 0)
5293 goto out;
5294 }
5295
5296 if (advance_left && !left_end_reached) {
5297 ret = tree_advance(left_root, left_path, &left_level,
5298 left_root_level,
5299 advance_left != ADVANCE_ONLY_NEXT,
5300 &left_key);
5301 if (ret < 0)
5302 left_end_reached = ADVANCE;
5303 advance_left = 0;
5304 }
5305 if (advance_right && !right_end_reached) {
5306 ret = tree_advance(right_root, right_path, &right_level,
5307 right_root_level,
5308 advance_right != ADVANCE_ONLY_NEXT,
5309 &right_key);
5310 if (ret < 0)
5311 right_end_reached = ADVANCE;
5312 advance_right = 0;
5313 }
5314
5315 if (left_end_reached && right_end_reached) {
5316 ret = 0;
5317 goto out;
5318 } else if (left_end_reached) {
5319 if (right_level == 0) {
5320 ret = changed_cb(left_root, right_root,
5321 left_path, right_path,
5322 &right_key,
5323 BTRFS_COMPARE_TREE_DELETED,
5324 ctx);
5325 if (ret < 0)
5326 goto out;
5327 }
5328 advance_right = ADVANCE;
5329 continue;
5330 } else if (right_end_reached) {
5331 if (left_level == 0) {
5332 ret = changed_cb(left_root, right_root,
5333 left_path, right_path,
5334 &left_key,
5335 BTRFS_COMPARE_TREE_NEW,
5336 ctx);
5337 if (ret < 0)
5338 goto out;
5339 }
5340 advance_left = ADVANCE;
5341 continue;
5342 }
5343
5344 if (left_level == 0 && right_level == 0) {
5345 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5346 if (cmp < 0) {
5347 ret = changed_cb(left_root, right_root,
5348 left_path, right_path,
5349 &left_key,
5350 BTRFS_COMPARE_TREE_NEW,
5351 ctx);
5352 if (ret < 0)
5353 goto out;
5354 advance_left = ADVANCE;
5355 } else if (cmp > 0) {
5356 ret = changed_cb(left_root, right_root,
5357 left_path, right_path,
5358 &right_key,
5359 BTRFS_COMPARE_TREE_DELETED,
5360 ctx);
5361 if (ret < 0)
5362 goto out;
5363 advance_right = ADVANCE;
5364 } else {
5365 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5366 ret = tree_compare_item(left_root, left_path,
5367 right_path, tmp_buf);
5368 if (ret) {
5369 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5370 ret = changed_cb(left_root, right_root,
5371 left_path, right_path,
5372 &left_key,
5373 BTRFS_COMPARE_TREE_CHANGED,
5374 ctx);
5375 if (ret < 0)
5376 goto out;
5377 }
5378 advance_left = ADVANCE;
5379 advance_right = ADVANCE;
5380 }
5381 } else if (left_level == right_level) {
5382 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5383 if (cmp < 0) {
5384 advance_left = ADVANCE;
5385 } else if (cmp > 0) {
5386 advance_right = ADVANCE;
5387 } else {
5388 left_blockptr = btrfs_node_blockptr(
5389 left_path->nodes[left_level],
5390 left_path->slots[left_level]);
5391 right_blockptr = btrfs_node_blockptr(
5392 right_path->nodes[right_level],
5393 right_path->slots[right_level]);
5394 if (left_blockptr == right_blockptr) {
5395 /*
5396 * As we're on a shared block, don't
5397 * allow to go deeper.
5398 */
5399 advance_left = ADVANCE_ONLY_NEXT;
5400 advance_right = ADVANCE_ONLY_NEXT;
5401 } else {
5402 advance_left = ADVANCE;
5403 advance_right = ADVANCE;
5404 }
5405 }
5406 } else if (left_level < right_level) {
5407 advance_right = ADVANCE;
5408 } else {
5409 advance_left = ADVANCE;
5410 }
5411 }
5412
5413 out:
5414 btrfs_free_path(left_path);
5415 btrfs_free_path(right_path);
5416 kfree(tmp_buf);
5417
5418 if (trans) {
5419 if (!ret)
5420 ret = btrfs_end_transaction(trans, left_root);
5421 else
5422 btrfs_end_transaction(trans, left_root);
5423 }
5424
5425 return ret;
5426 }
5427
5428 /*
5429 * this is similar to btrfs_next_leaf, but does not try to preserve
5430 * and fixup the path. It looks for and returns the next key in the
5431 * tree based on the current path and the min_trans parameters.
5432 *
5433 * 0 is returned if another key is found, < 0 if there are any errors
5434 * and 1 is returned if there are no higher keys in the tree
5435 *
5436 * path->keep_locks should be set to 1 on the search made before
5437 * calling this function.
5438 */
btrfs_find_next_key(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,int level,u64 min_trans)5439 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5440 struct btrfs_key *key, int level, u64 min_trans)
5441 {
5442 int slot;
5443 struct extent_buffer *c;
5444
5445 WARN_ON(!path->keep_locks);
5446 while (level < BTRFS_MAX_LEVEL) {
5447 if (!path->nodes[level])
5448 return 1;
5449
5450 slot = path->slots[level] + 1;
5451 c = path->nodes[level];
5452 next:
5453 if (slot >= btrfs_header_nritems(c)) {
5454 int ret;
5455 int orig_lowest;
5456 struct btrfs_key cur_key;
5457 if (level + 1 >= BTRFS_MAX_LEVEL ||
5458 !path->nodes[level + 1])
5459 return 1;
5460
5461 if (path->locks[level + 1]) {
5462 level++;
5463 continue;
5464 }
5465
5466 slot = btrfs_header_nritems(c) - 1;
5467 if (level == 0)
5468 btrfs_item_key_to_cpu(c, &cur_key, slot);
5469 else
5470 btrfs_node_key_to_cpu(c, &cur_key, slot);
5471
5472 orig_lowest = path->lowest_level;
5473 btrfs_release_path(path);
5474 path->lowest_level = level;
5475 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5476 0, 0);
5477 path->lowest_level = orig_lowest;
5478 if (ret < 0)
5479 return ret;
5480
5481 c = path->nodes[level];
5482 slot = path->slots[level];
5483 if (ret == 0)
5484 slot++;
5485 goto next;
5486 }
5487
5488 if (level == 0)
5489 btrfs_item_key_to_cpu(c, key, slot);
5490 else {
5491 u64 gen = btrfs_node_ptr_generation(c, slot);
5492
5493 if (gen < min_trans) {
5494 slot++;
5495 goto next;
5496 }
5497 btrfs_node_key_to_cpu(c, key, slot);
5498 }
5499 return 0;
5500 }
5501 return 1;
5502 }
5503
5504 /*
5505 * search the tree again to find a leaf with greater keys
5506 * returns 0 if it found something or 1 if there are no greater leaves.
5507 * returns < 0 on io errors.
5508 */
btrfs_next_leaf(struct btrfs_root * root,struct btrfs_path * path)5509 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5510 {
5511 return btrfs_next_old_leaf(root, path, 0);
5512 }
5513
btrfs_next_old_leaf(struct btrfs_root * root,struct btrfs_path * path,u64 time_seq)5514 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5515 u64 time_seq)
5516 {
5517 int slot;
5518 int level;
5519 struct extent_buffer *c;
5520 struct extent_buffer *next;
5521 struct btrfs_key key;
5522 u32 nritems;
5523 int ret;
5524 int old_spinning = path->leave_spinning;
5525 int next_rw_lock = 0;
5526
5527 nritems = btrfs_header_nritems(path->nodes[0]);
5528 if (nritems == 0)
5529 return 1;
5530
5531 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5532 again:
5533 level = 1;
5534 next = NULL;
5535 next_rw_lock = 0;
5536 btrfs_release_path(path);
5537
5538 path->keep_locks = 1;
5539 path->leave_spinning = 1;
5540
5541 if (time_seq)
5542 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5543 else
5544 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5545 path->keep_locks = 0;
5546
5547 if (ret < 0)
5548 return ret;
5549
5550 nritems = btrfs_header_nritems(path->nodes[0]);
5551 /*
5552 * by releasing the path above we dropped all our locks. A balance
5553 * could have added more items next to the key that used to be
5554 * at the very end of the block. So, check again here and
5555 * advance the path if there are now more items available.
5556 */
5557 if (nritems > 0 && path->slots[0] < nritems - 1) {
5558 if (ret == 0)
5559 path->slots[0]++;
5560 ret = 0;
5561 goto done;
5562 }
5563
5564 while (level < BTRFS_MAX_LEVEL) {
5565 if (!path->nodes[level]) {
5566 ret = 1;
5567 goto done;
5568 }
5569
5570 slot = path->slots[level] + 1;
5571 c = path->nodes[level];
5572 if (slot >= btrfs_header_nritems(c)) {
5573 level++;
5574 if (level == BTRFS_MAX_LEVEL) {
5575 ret = 1;
5576 goto done;
5577 }
5578 continue;
5579 }
5580
5581 if (next) {
5582 btrfs_tree_unlock_rw(next, next_rw_lock);
5583 free_extent_buffer(next);
5584 }
5585
5586 next = c;
5587 next_rw_lock = path->locks[level];
5588 ret = read_block_for_search(NULL, root, path, &next, level,
5589 slot, &key, 0);
5590 if (ret == -EAGAIN)
5591 goto again;
5592
5593 if (ret < 0) {
5594 btrfs_release_path(path);
5595 goto done;
5596 }
5597
5598 if (!path->skip_locking) {
5599 ret = btrfs_try_tree_read_lock(next);
5600 if (!ret && time_seq) {
5601 /*
5602 * If we don't get the lock, we may be racing
5603 * with push_leaf_left, holding that lock while
5604 * itself waiting for the leaf we've currently
5605 * locked. To solve this situation, we give up
5606 * on our lock and cycle.
5607 */
5608 free_extent_buffer(next);
5609 btrfs_release_path(path);
5610 cond_resched();
5611 goto again;
5612 }
5613 if (!ret) {
5614 btrfs_set_path_blocking(path);
5615 btrfs_tree_read_lock(next);
5616 btrfs_clear_path_blocking(path, next,
5617 BTRFS_READ_LOCK);
5618 }
5619 next_rw_lock = BTRFS_READ_LOCK;
5620 }
5621 break;
5622 }
5623 path->slots[level] = slot;
5624 while (1) {
5625 level--;
5626 c = path->nodes[level];
5627 if (path->locks[level])
5628 btrfs_tree_unlock_rw(c, path->locks[level]);
5629
5630 free_extent_buffer(c);
5631 path->nodes[level] = next;
5632 path->slots[level] = 0;
5633 if (!path->skip_locking)
5634 path->locks[level] = next_rw_lock;
5635 if (!level)
5636 break;
5637
5638 ret = read_block_for_search(NULL, root, path, &next, level,
5639 0, &key, 0);
5640 if (ret == -EAGAIN)
5641 goto again;
5642
5643 if (ret < 0) {
5644 btrfs_release_path(path);
5645 goto done;
5646 }
5647
5648 if (!path->skip_locking) {
5649 ret = btrfs_try_tree_read_lock(next);
5650 if (!ret) {
5651 btrfs_set_path_blocking(path);
5652 btrfs_tree_read_lock(next);
5653 btrfs_clear_path_blocking(path, next,
5654 BTRFS_READ_LOCK);
5655 }
5656 next_rw_lock = BTRFS_READ_LOCK;
5657 }
5658 }
5659 ret = 0;
5660 done:
5661 unlock_up(path, 0, 1, 0, NULL);
5662 path->leave_spinning = old_spinning;
5663 if (!old_spinning)
5664 btrfs_set_path_blocking(path);
5665
5666 return ret;
5667 }
5668
5669 /*
5670 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5671 * searching until it gets past min_objectid or finds an item of 'type'
5672 *
5673 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5674 */
btrfs_previous_item(struct btrfs_root * root,struct btrfs_path * path,u64 min_objectid,int type)5675 int btrfs_previous_item(struct btrfs_root *root,
5676 struct btrfs_path *path, u64 min_objectid,
5677 int type)
5678 {
5679 struct btrfs_key found_key;
5680 struct extent_buffer *leaf;
5681 u32 nritems;
5682 int ret;
5683
5684 while (1) {
5685 if (path->slots[0] == 0) {
5686 btrfs_set_path_blocking(path);
5687 ret = btrfs_prev_leaf(root, path);
5688 if (ret != 0)
5689 return ret;
5690 } else {
5691 path->slots[0]--;
5692 }
5693 leaf = path->nodes[0];
5694 nritems = btrfs_header_nritems(leaf);
5695 if (nritems == 0)
5696 return 1;
5697 if (path->slots[0] == nritems)
5698 path->slots[0]--;
5699
5700 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5701 if (found_key.objectid < min_objectid)
5702 break;
5703 if (found_key.type == type)
5704 return 0;
5705 if (found_key.objectid == min_objectid &&
5706 found_key.type < type)
5707 break;
5708 }
5709 return 1;
5710 }
5711