• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
27 
28 static struct kmem_cache *btrfs_ordered_extent_cache;
29 
entry_end(struct btrfs_ordered_extent * entry)30 static u64 entry_end(struct btrfs_ordered_extent *entry)
31 {
32 	if (entry->file_offset + entry->len < entry->file_offset)
33 		return (u64)-1;
34 	return entry->file_offset + entry->len;
35 }
36 
37 /* returns NULL if the insertion worked, or it returns the node it did find
38  * in the tree
39  */
tree_insert(struct rb_root * root,u64 file_offset,struct rb_node * node)40 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
41 				   struct rb_node *node)
42 {
43 	struct rb_node **p = &root->rb_node;
44 	struct rb_node *parent = NULL;
45 	struct btrfs_ordered_extent *entry;
46 
47 	while (*p) {
48 		parent = *p;
49 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
50 
51 		if (file_offset < entry->file_offset)
52 			p = &(*p)->rb_left;
53 		else if (file_offset >= entry_end(entry))
54 			p = &(*p)->rb_right;
55 		else
56 			return parent;
57 	}
58 
59 	rb_link_node(node, parent, p);
60 	rb_insert_color(node, root);
61 	return NULL;
62 }
63 
ordered_data_tree_panic(struct inode * inode,int errno,u64 offset)64 static void ordered_data_tree_panic(struct inode *inode, int errno,
65 					       u64 offset)
66 {
67 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
68 	btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
69 		    "%llu\n", (unsigned long long)offset);
70 }
71 
72 /*
73  * look for a given offset in the tree, and if it can't be found return the
74  * first lesser offset
75  */
__tree_search(struct rb_root * root,u64 file_offset,struct rb_node ** prev_ret)76 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
77 				     struct rb_node **prev_ret)
78 {
79 	struct rb_node *n = root->rb_node;
80 	struct rb_node *prev = NULL;
81 	struct rb_node *test;
82 	struct btrfs_ordered_extent *entry;
83 	struct btrfs_ordered_extent *prev_entry = NULL;
84 
85 	while (n) {
86 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
87 		prev = n;
88 		prev_entry = entry;
89 
90 		if (file_offset < entry->file_offset)
91 			n = n->rb_left;
92 		else if (file_offset >= entry_end(entry))
93 			n = n->rb_right;
94 		else
95 			return n;
96 	}
97 	if (!prev_ret)
98 		return NULL;
99 
100 	while (prev && file_offset >= entry_end(prev_entry)) {
101 		test = rb_next(prev);
102 		if (!test)
103 			break;
104 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
105 				      rb_node);
106 		if (file_offset < entry_end(prev_entry))
107 			break;
108 
109 		prev = test;
110 	}
111 	if (prev)
112 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
113 				      rb_node);
114 	while (prev && file_offset < entry_end(prev_entry)) {
115 		test = rb_prev(prev);
116 		if (!test)
117 			break;
118 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
119 				      rb_node);
120 		prev = test;
121 	}
122 	*prev_ret = prev;
123 	return NULL;
124 }
125 
126 /*
127  * helper to check if a given offset is inside a given entry
128  */
offset_in_entry(struct btrfs_ordered_extent * entry,u64 file_offset)129 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
130 {
131 	if (file_offset < entry->file_offset ||
132 	    entry->file_offset + entry->len <= file_offset)
133 		return 0;
134 	return 1;
135 }
136 
range_overlaps(struct btrfs_ordered_extent * entry,u64 file_offset,u64 len)137 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
138 			  u64 len)
139 {
140 	if (file_offset + len <= entry->file_offset ||
141 	    entry->file_offset + entry->len <= file_offset)
142 		return 0;
143 	return 1;
144 }
145 
146 /*
147  * look find the first ordered struct that has this offset, otherwise
148  * the first one less than this offset
149  */
tree_search(struct btrfs_ordered_inode_tree * tree,u64 file_offset)150 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
151 					  u64 file_offset)
152 {
153 	struct rb_root *root = &tree->tree;
154 	struct rb_node *prev = NULL;
155 	struct rb_node *ret;
156 	struct btrfs_ordered_extent *entry;
157 
158 	if (tree->last) {
159 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
160 				 rb_node);
161 		if (offset_in_entry(entry, file_offset))
162 			return tree->last;
163 	}
164 	ret = __tree_search(root, file_offset, &prev);
165 	if (!ret)
166 		ret = prev;
167 	if (ret)
168 		tree->last = ret;
169 	return ret;
170 }
171 
172 /* allocate and add a new ordered_extent into the per-inode tree.
173  * file_offset is the logical offset in the file
174  *
175  * start is the disk block number of an extent already reserved in the
176  * extent allocation tree
177  *
178  * len is the length of the extent
179  *
180  * The tree is given a single reference on the ordered extent that was
181  * inserted.
182  */
__btrfs_add_ordered_extent(struct inode * inode,u64 file_offset,u64 start,u64 len,u64 disk_len,int type,int dio,int compress_type)183 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
184 				      u64 start, u64 len, u64 disk_len,
185 				      int type, int dio, int compress_type)
186 {
187 	struct btrfs_ordered_inode_tree *tree;
188 	struct rb_node *node;
189 	struct btrfs_ordered_extent *entry;
190 
191 	tree = &BTRFS_I(inode)->ordered_tree;
192 	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
193 	if (!entry)
194 		return -ENOMEM;
195 
196 	entry->file_offset = file_offset;
197 	entry->start = start;
198 	entry->len = len;
199 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) &&
200 	    !(type == BTRFS_ORDERED_NOCOW))
201 		entry->csum_bytes_left = disk_len;
202 	entry->disk_len = disk_len;
203 	entry->bytes_left = len;
204 	entry->inode = igrab(inode);
205 	entry->compress_type = compress_type;
206 	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
207 		set_bit(type, &entry->flags);
208 
209 	if (dio)
210 		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
211 
212 	/* one ref for the tree */
213 	atomic_set(&entry->refs, 1);
214 	init_waitqueue_head(&entry->wait);
215 	INIT_LIST_HEAD(&entry->list);
216 	INIT_LIST_HEAD(&entry->root_extent_list);
217 	INIT_LIST_HEAD(&entry->work_list);
218 	init_completion(&entry->completion);
219 	INIT_LIST_HEAD(&entry->log_list);
220 
221 	trace_btrfs_ordered_extent_add(inode, entry);
222 
223 	spin_lock_irq(&tree->lock);
224 	node = tree_insert(&tree->tree, file_offset,
225 			   &entry->rb_node);
226 	if (node)
227 		ordered_data_tree_panic(inode, -EEXIST, file_offset);
228 	spin_unlock_irq(&tree->lock);
229 
230 	spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
231 	list_add_tail(&entry->root_extent_list,
232 		      &BTRFS_I(inode)->root->fs_info->ordered_extents);
233 	spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
234 
235 	return 0;
236 }
237 
btrfs_add_ordered_extent(struct inode * inode,u64 file_offset,u64 start,u64 len,u64 disk_len,int type)238 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
239 			     u64 start, u64 len, u64 disk_len, int type)
240 {
241 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
242 					  disk_len, type, 0,
243 					  BTRFS_COMPRESS_NONE);
244 }
245 
btrfs_add_ordered_extent_dio(struct inode * inode,u64 file_offset,u64 start,u64 len,u64 disk_len,int type)246 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
247 				 u64 start, u64 len, u64 disk_len, int type)
248 {
249 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
250 					  disk_len, type, 1,
251 					  BTRFS_COMPRESS_NONE);
252 }
253 
btrfs_add_ordered_extent_compress(struct inode * inode,u64 file_offset,u64 start,u64 len,u64 disk_len,int type,int compress_type)254 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
255 				      u64 start, u64 len, u64 disk_len,
256 				      int type, int compress_type)
257 {
258 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
259 					  disk_len, type, 0,
260 					  compress_type);
261 }
262 
263 /*
264  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
265  * when an ordered extent is finished.  If the list covers more than one
266  * ordered extent, it is split across multiples.
267  */
btrfs_add_ordered_sum(struct inode * inode,struct btrfs_ordered_extent * entry,struct btrfs_ordered_sum * sum)268 void btrfs_add_ordered_sum(struct inode *inode,
269 			   struct btrfs_ordered_extent *entry,
270 			   struct btrfs_ordered_sum *sum)
271 {
272 	struct btrfs_ordered_inode_tree *tree;
273 
274 	tree = &BTRFS_I(inode)->ordered_tree;
275 	spin_lock_irq(&tree->lock);
276 	list_add_tail(&sum->list, &entry->list);
277 	WARN_ON(entry->csum_bytes_left < sum->len);
278 	entry->csum_bytes_left -= sum->len;
279 	if (entry->csum_bytes_left == 0)
280 		wake_up(&entry->wait);
281 	spin_unlock_irq(&tree->lock);
282 }
283 
284 /*
285  * this is used to account for finished IO across a given range
286  * of the file.  The IO may span ordered extents.  If
287  * a given ordered_extent is completely done, 1 is returned, otherwise
288  * 0.
289  *
290  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
291  * to make sure this function only returns 1 once for a given ordered extent.
292  *
293  * file_offset is updated to one byte past the range that is recorded as
294  * complete.  This allows you to walk forward in the file.
295  */
btrfs_dec_test_first_ordered_pending(struct inode * inode,struct btrfs_ordered_extent ** cached,u64 * file_offset,u64 io_size,int uptodate)296 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
297 				   struct btrfs_ordered_extent **cached,
298 				   u64 *file_offset, u64 io_size, int uptodate)
299 {
300 	struct btrfs_ordered_inode_tree *tree;
301 	struct rb_node *node;
302 	struct btrfs_ordered_extent *entry = NULL;
303 	int ret;
304 	unsigned long flags;
305 	u64 dec_end;
306 	u64 dec_start;
307 	u64 to_dec;
308 
309 	tree = &BTRFS_I(inode)->ordered_tree;
310 	spin_lock_irqsave(&tree->lock, flags);
311 	node = tree_search(tree, *file_offset);
312 	if (!node) {
313 		ret = 1;
314 		goto out;
315 	}
316 
317 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
318 	if (!offset_in_entry(entry, *file_offset)) {
319 		ret = 1;
320 		goto out;
321 	}
322 
323 	dec_start = max(*file_offset, entry->file_offset);
324 	dec_end = min(*file_offset + io_size, entry->file_offset +
325 		      entry->len);
326 	*file_offset = dec_end;
327 	if (dec_start > dec_end) {
328 		printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
329 		       (unsigned long long)dec_start,
330 		       (unsigned long long)dec_end);
331 	}
332 	to_dec = dec_end - dec_start;
333 	if (to_dec > entry->bytes_left) {
334 		printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
335 		       (unsigned long long)entry->bytes_left,
336 		       (unsigned long long)to_dec);
337 	}
338 	entry->bytes_left -= to_dec;
339 	if (!uptodate)
340 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
341 
342 	if (entry->bytes_left == 0)
343 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
344 	else
345 		ret = 1;
346 out:
347 	if (!ret && cached && entry) {
348 		*cached = entry;
349 		atomic_inc(&entry->refs);
350 	}
351 	spin_unlock_irqrestore(&tree->lock, flags);
352 	return ret == 0;
353 }
354 
355 /*
356  * this is used to account for finished IO across a given range
357  * of the file.  The IO should not span ordered extents.  If
358  * a given ordered_extent is completely done, 1 is returned, otherwise
359  * 0.
360  *
361  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
362  * to make sure this function only returns 1 once for a given ordered extent.
363  */
btrfs_dec_test_ordered_pending(struct inode * inode,struct btrfs_ordered_extent ** cached,u64 file_offset,u64 io_size,int uptodate)364 int btrfs_dec_test_ordered_pending(struct inode *inode,
365 				   struct btrfs_ordered_extent **cached,
366 				   u64 file_offset, u64 io_size, int uptodate)
367 {
368 	struct btrfs_ordered_inode_tree *tree;
369 	struct rb_node *node;
370 	struct btrfs_ordered_extent *entry = NULL;
371 	unsigned long flags;
372 	int ret;
373 
374 	tree = &BTRFS_I(inode)->ordered_tree;
375 	spin_lock_irqsave(&tree->lock, flags);
376 	if (cached && *cached) {
377 		entry = *cached;
378 		goto have_entry;
379 	}
380 
381 	node = tree_search(tree, file_offset);
382 	if (!node) {
383 		ret = 1;
384 		goto out;
385 	}
386 
387 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
388 have_entry:
389 	if (!offset_in_entry(entry, file_offset)) {
390 		ret = 1;
391 		goto out;
392 	}
393 
394 	if (io_size > entry->bytes_left) {
395 		printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
396 		       (unsigned long long)entry->bytes_left,
397 		       (unsigned long long)io_size);
398 	}
399 	entry->bytes_left -= io_size;
400 	if (!uptodate)
401 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
402 
403 	if (entry->bytes_left == 0)
404 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
405 	else
406 		ret = 1;
407 out:
408 	if (!ret && cached && entry) {
409 		*cached = entry;
410 		atomic_inc(&entry->refs);
411 	}
412 	spin_unlock_irqrestore(&tree->lock, flags);
413 	return ret == 0;
414 }
415 
416 /* Needs to either be called under a log transaction or the log_mutex */
btrfs_get_logged_extents(struct btrfs_root * log,struct inode * inode)417 void btrfs_get_logged_extents(struct btrfs_root *log, struct inode *inode)
418 {
419 	struct btrfs_ordered_inode_tree *tree;
420 	struct btrfs_ordered_extent *ordered;
421 	struct rb_node *n;
422 	int index = log->log_transid % 2;
423 
424 	tree = &BTRFS_I(inode)->ordered_tree;
425 	spin_lock_irq(&tree->lock);
426 	for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
427 		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
428 		spin_lock(&log->log_extents_lock[index]);
429 		if (list_empty(&ordered->log_list)) {
430 			list_add_tail(&ordered->log_list, &log->logged_list[index]);
431 			atomic_inc(&ordered->refs);
432 		}
433 		spin_unlock(&log->log_extents_lock[index]);
434 	}
435 	spin_unlock_irq(&tree->lock);
436 }
437 
btrfs_wait_logged_extents(struct btrfs_root * log,u64 transid)438 void btrfs_wait_logged_extents(struct btrfs_root *log, u64 transid)
439 {
440 	struct btrfs_ordered_extent *ordered;
441 	int index = transid % 2;
442 
443 	spin_lock_irq(&log->log_extents_lock[index]);
444 	while (!list_empty(&log->logged_list[index])) {
445 		ordered = list_first_entry(&log->logged_list[index],
446 					   struct btrfs_ordered_extent,
447 					   log_list);
448 		list_del_init(&ordered->log_list);
449 		spin_unlock_irq(&log->log_extents_lock[index]);
450 		wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
451 						   &ordered->flags));
452 		btrfs_put_ordered_extent(ordered);
453 		spin_lock_irq(&log->log_extents_lock[index]);
454 	}
455 	spin_unlock_irq(&log->log_extents_lock[index]);
456 }
457 
btrfs_free_logged_extents(struct btrfs_root * log,u64 transid)458 void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
459 {
460 	struct btrfs_ordered_extent *ordered;
461 	int index = transid % 2;
462 
463 	spin_lock_irq(&log->log_extents_lock[index]);
464 	while (!list_empty(&log->logged_list[index])) {
465 		ordered = list_first_entry(&log->logged_list[index],
466 					   struct btrfs_ordered_extent,
467 					   log_list);
468 		list_del_init(&ordered->log_list);
469 		spin_unlock_irq(&log->log_extents_lock[index]);
470 		btrfs_put_ordered_extent(ordered);
471 		spin_lock_irq(&log->log_extents_lock[index]);
472 	}
473 	spin_unlock_irq(&log->log_extents_lock[index]);
474 }
475 
476 /*
477  * used to drop a reference on an ordered extent.  This will free
478  * the extent if the last reference is dropped
479  */
btrfs_put_ordered_extent(struct btrfs_ordered_extent * entry)480 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
481 {
482 	struct list_head *cur;
483 	struct btrfs_ordered_sum *sum;
484 
485 	trace_btrfs_ordered_extent_put(entry->inode, entry);
486 
487 	if (atomic_dec_and_test(&entry->refs)) {
488 		if (entry->inode)
489 			btrfs_add_delayed_iput(entry->inode);
490 		while (!list_empty(&entry->list)) {
491 			cur = entry->list.next;
492 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
493 			list_del(&sum->list);
494 			kfree(sum);
495 		}
496 		kmem_cache_free(btrfs_ordered_extent_cache, entry);
497 	}
498 }
499 
500 /*
501  * remove an ordered extent from the tree.  No references are dropped
502  * and waiters are woken up.
503  */
btrfs_remove_ordered_extent(struct inode * inode,struct btrfs_ordered_extent * entry)504 void btrfs_remove_ordered_extent(struct inode *inode,
505 				 struct btrfs_ordered_extent *entry)
506 {
507 	struct btrfs_ordered_inode_tree *tree;
508 	struct btrfs_root *root = BTRFS_I(inode)->root;
509 	struct rb_node *node;
510 
511 	tree = &BTRFS_I(inode)->ordered_tree;
512 	spin_lock_irq(&tree->lock);
513 	node = &entry->rb_node;
514 	rb_erase(node, &tree->tree);
515 	tree->last = NULL;
516 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
517 	spin_unlock_irq(&tree->lock);
518 
519 	spin_lock(&root->fs_info->ordered_extent_lock);
520 	list_del_init(&entry->root_extent_list);
521 
522 	trace_btrfs_ordered_extent_remove(inode, entry);
523 
524 	/*
525 	 * we have no more ordered extents for this inode and
526 	 * no dirty pages.  We can safely remove it from the
527 	 * list of ordered extents
528 	 */
529 	if (RB_EMPTY_ROOT(&tree->tree) &&
530 	    !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
531 		list_del_init(&BTRFS_I(inode)->ordered_operations);
532 	}
533 	spin_unlock(&root->fs_info->ordered_extent_lock);
534 	wake_up(&entry->wait);
535 }
536 
btrfs_run_ordered_extent_work(struct btrfs_work * work)537 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
538 {
539 	struct btrfs_ordered_extent *ordered;
540 
541 	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
542 	btrfs_start_ordered_extent(ordered->inode, ordered, 1);
543 	complete(&ordered->completion);
544 }
545 
546 /*
547  * wait for all the ordered extents in a root.  This is done when balancing
548  * space between drives.
549  */
btrfs_wait_ordered_extents(struct btrfs_root * root,int delay_iput)550 void btrfs_wait_ordered_extents(struct btrfs_root *root, int delay_iput)
551 {
552 	struct list_head splice, works;
553 	struct list_head *cur;
554 	struct btrfs_ordered_extent *ordered, *next;
555 	struct inode *inode;
556 
557 	INIT_LIST_HEAD(&splice);
558 	INIT_LIST_HEAD(&works);
559 
560 	mutex_lock(&root->fs_info->ordered_operations_mutex);
561 	spin_lock(&root->fs_info->ordered_extent_lock);
562 	list_splice_init(&root->fs_info->ordered_extents, &splice);
563 	while (!list_empty(&splice)) {
564 		cur = splice.next;
565 		ordered = list_entry(cur, struct btrfs_ordered_extent,
566 				     root_extent_list);
567 		list_del_init(&ordered->root_extent_list);
568 		atomic_inc(&ordered->refs);
569 
570 		/*
571 		 * the inode may be getting freed (in sys_unlink path).
572 		 */
573 		inode = igrab(ordered->inode);
574 
575 		spin_unlock(&root->fs_info->ordered_extent_lock);
576 
577 		if (inode) {
578 			ordered->flush_work.func = btrfs_run_ordered_extent_work;
579 			list_add_tail(&ordered->work_list, &works);
580 			btrfs_queue_worker(&root->fs_info->flush_workers,
581 					   &ordered->flush_work);
582 		} else {
583 			btrfs_put_ordered_extent(ordered);
584 		}
585 
586 		cond_resched();
587 		spin_lock(&root->fs_info->ordered_extent_lock);
588 	}
589 	spin_unlock(&root->fs_info->ordered_extent_lock);
590 
591 	list_for_each_entry_safe(ordered, next, &works, work_list) {
592 		list_del_init(&ordered->work_list);
593 		wait_for_completion(&ordered->completion);
594 
595 		inode = ordered->inode;
596 		btrfs_put_ordered_extent(ordered);
597 		if (delay_iput)
598 			btrfs_add_delayed_iput(inode);
599 		else
600 			iput(inode);
601 
602 		cond_resched();
603 	}
604 	mutex_unlock(&root->fs_info->ordered_operations_mutex);
605 }
606 
607 /*
608  * this is used during transaction commit to write all the inodes
609  * added to the ordered operation list.  These files must be fully on
610  * disk before the transaction commits.
611  *
612  * we have two modes here, one is to just start the IO via filemap_flush
613  * and the other is to wait for all the io.  When we wait, we have an
614  * extra check to make sure the ordered operation list really is empty
615  * before we return
616  */
btrfs_run_ordered_operations(struct btrfs_trans_handle * trans,struct btrfs_root * root,int wait)617 int btrfs_run_ordered_operations(struct btrfs_trans_handle *trans,
618 				 struct btrfs_root *root, int wait)
619 {
620 	struct btrfs_inode *btrfs_inode;
621 	struct inode *inode;
622 	struct btrfs_transaction *cur_trans = trans->transaction;
623 	struct list_head splice;
624 	struct list_head works;
625 	struct btrfs_delalloc_work *work, *next;
626 	int ret = 0;
627 
628 	INIT_LIST_HEAD(&splice);
629 	INIT_LIST_HEAD(&works);
630 
631 	mutex_lock(&root->fs_info->ordered_operations_mutex);
632 	spin_lock(&root->fs_info->ordered_extent_lock);
633 	list_splice_init(&cur_trans->ordered_operations, &splice);
634 	while (!list_empty(&splice)) {
635 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
636 				   ordered_operations);
637 		inode = &btrfs_inode->vfs_inode;
638 
639 		list_del_init(&btrfs_inode->ordered_operations);
640 
641 		/*
642 		 * the inode may be getting freed (in sys_unlink path).
643 		 */
644 		inode = igrab(inode);
645 		if (!inode)
646 			continue;
647 
648 		if (!wait)
649 			list_add_tail(&BTRFS_I(inode)->ordered_operations,
650 				      &cur_trans->ordered_operations);
651 		spin_unlock(&root->fs_info->ordered_extent_lock);
652 
653 		work = btrfs_alloc_delalloc_work(inode, wait, 1);
654 		if (!work) {
655 			spin_lock(&root->fs_info->ordered_extent_lock);
656 			if (list_empty(&BTRFS_I(inode)->ordered_operations))
657 				list_add_tail(&btrfs_inode->ordered_operations,
658 					      &splice);
659 			list_splice_tail(&splice,
660 					 &cur_trans->ordered_operations);
661 			spin_unlock(&root->fs_info->ordered_extent_lock);
662 			ret = -ENOMEM;
663 			goto out;
664 		}
665 		list_add_tail(&work->list, &works);
666 		btrfs_queue_worker(&root->fs_info->flush_workers,
667 				   &work->work);
668 
669 		cond_resched();
670 		spin_lock(&root->fs_info->ordered_extent_lock);
671 	}
672 	spin_unlock(&root->fs_info->ordered_extent_lock);
673 out:
674 	list_for_each_entry_safe(work, next, &works, list) {
675 		list_del_init(&work->list);
676 		btrfs_wait_and_free_delalloc_work(work);
677 	}
678 	mutex_unlock(&root->fs_info->ordered_operations_mutex);
679 	return ret;
680 }
681 
682 /*
683  * Used to start IO or wait for a given ordered extent to finish.
684  *
685  * If wait is one, this effectively waits on page writeback for all the pages
686  * in the extent, and it waits on the io completion code to insert
687  * metadata into the btree corresponding to the extent
688  */
btrfs_start_ordered_extent(struct inode * inode,struct btrfs_ordered_extent * entry,int wait)689 void btrfs_start_ordered_extent(struct inode *inode,
690 				       struct btrfs_ordered_extent *entry,
691 				       int wait)
692 {
693 	u64 start = entry->file_offset;
694 	u64 end = start + entry->len - 1;
695 
696 	trace_btrfs_ordered_extent_start(inode, entry);
697 
698 	/*
699 	 * pages in the range can be dirty, clean or writeback.  We
700 	 * start IO on any dirty ones so the wait doesn't stall waiting
701 	 * for the flusher thread to find them
702 	 */
703 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
704 		filemap_fdatawrite_range(inode->i_mapping, start, end);
705 	if (wait) {
706 		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
707 						 &entry->flags));
708 	}
709 }
710 
711 /*
712  * Used to wait on ordered extents across a large range of bytes.
713  */
btrfs_wait_ordered_range(struct inode * inode,u64 start,u64 len)714 void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
715 {
716 	u64 end;
717 	u64 orig_end;
718 	struct btrfs_ordered_extent *ordered;
719 
720 	if (start + len < start) {
721 		orig_end = INT_LIMIT(loff_t);
722 	} else {
723 		orig_end = start + len - 1;
724 		if (orig_end > INT_LIMIT(loff_t))
725 			orig_end = INT_LIMIT(loff_t);
726 	}
727 
728 	/* start IO across the range first to instantiate any delalloc
729 	 * extents
730 	 */
731 	filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
732 
733 	/*
734 	 * So with compression we will find and lock a dirty page and clear the
735 	 * first one as dirty, setup an async extent, and immediately return
736 	 * with the entire range locked but with nobody actually marked with
737 	 * writeback.  So we can't just filemap_write_and_wait_range() and
738 	 * expect it to work since it will just kick off a thread to do the
739 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
740 	 * since it will wait on the page lock, which won't be unlocked until
741 	 * after the pages have been marked as writeback and so we're good to go
742 	 * from there.  We have to do this otherwise we'll miss the ordered
743 	 * extents and that results in badness.  Please Josef, do not think you
744 	 * know better and pull this out at some point in the future, it is
745 	 * right and you are wrong.
746 	 */
747 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
748 		     &BTRFS_I(inode)->runtime_flags))
749 		filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
750 
751 	filemap_fdatawait_range(inode->i_mapping, start, orig_end);
752 
753 	end = orig_end;
754 	while (1) {
755 		ordered = btrfs_lookup_first_ordered_extent(inode, end);
756 		if (!ordered)
757 			break;
758 		if (ordered->file_offset > orig_end) {
759 			btrfs_put_ordered_extent(ordered);
760 			break;
761 		}
762 		if (ordered->file_offset + ordered->len < start) {
763 			btrfs_put_ordered_extent(ordered);
764 			break;
765 		}
766 		btrfs_start_ordered_extent(inode, ordered, 1);
767 		end = ordered->file_offset;
768 		btrfs_put_ordered_extent(ordered);
769 		if (end == 0 || end == start)
770 			break;
771 		end--;
772 	}
773 }
774 
775 /*
776  * find an ordered extent corresponding to file_offset.  return NULL if
777  * nothing is found, otherwise take a reference on the extent and return it
778  */
btrfs_lookup_ordered_extent(struct inode * inode,u64 file_offset)779 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
780 							 u64 file_offset)
781 {
782 	struct btrfs_ordered_inode_tree *tree;
783 	struct rb_node *node;
784 	struct btrfs_ordered_extent *entry = NULL;
785 
786 	tree = &BTRFS_I(inode)->ordered_tree;
787 	spin_lock_irq(&tree->lock);
788 	node = tree_search(tree, file_offset);
789 	if (!node)
790 		goto out;
791 
792 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
793 	if (!offset_in_entry(entry, file_offset))
794 		entry = NULL;
795 	if (entry)
796 		atomic_inc(&entry->refs);
797 out:
798 	spin_unlock_irq(&tree->lock);
799 	return entry;
800 }
801 
802 /* Since the DIO code tries to lock a wide area we need to look for any ordered
803  * extents that exist in the range, rather than just the start of the range.
804  */
btrfs_lookup_ordered_range(struct inode * inode,u64 file_offset,u64 len)805 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
806 							u64 file_offset,
807 							u64 len)
808 {
809 	struct btrfs_ordered_inode_tree *tree;
810 	struct rb_node *node;
811 	struct btrfs_ordered_extent *entry = NULL;
812 
813 	tree = &BTRFS_I(inode)->ordered_tree;
814 	spin_lock_irq(&tree->lock);
815 	node = tree_search(tree, file_offset);
816 	if (!node) {
817 		node = tree_search(tree, file_offset + len);
818 		if (!node)
819 			goto out;
820 	}
821 
822 	while (1) {
823 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
824 		if (range_overlaps(entry, file_offset, len))
825 			break;
826 
827 		if (entry->file_offset >= file_offset + len) {
828 			entry = NULL;
829 			break;
830 		}
831 		entry = NULL;
832 		node = rb_next(node);
833 		if (!node)
834 			break;
835 	}
836 out:
837 	if (entry)
838 		atomic_inc(&entry->refs);
839 	spin_unlock_irq(&tree->lock);
840 	return entry;
841 }
842 
843 /*
844  * lookup and return any extent before 'file_offset'.  NULL is returned
845  * if none is found
846  */
847 struct btrfs_ordered_extent *
btrfs_lookup_first_ordered_extent(struct inode * inode,u64 file_offset)848 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
849 {
850 	struct btrfs_ordered_inode_tree *tree;
851 	struct rb_node *node;
852 	struct btrfs_ordered_extent *entry = NULL;
853 
854 	tree = &BTRFS_I(inode)->ordered_tree;
855 	spin_lock_irq(&tree->lock);
856 	node = tree_search(tree, file_offset);
857 	if (!node)
858 		goto out;
859 
860 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
861 	atomic_inc(&entry->refs);
862 out:
863 	spin_unlock_irq(&tree->lock);
864 	return entry;
865 }
866 
867 /*
868  * After an extent is done, call this to conditionally update the on disk
869  * i_size.  i_size is updated to cover any fully written part of the file.
870  */
btrfs_ordered_update_i_size(struct inode * inode,u64 offset,struct btrfs_ordered_extent * ordered)871 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
872 				struct btrfs_ordered_extent *ordered)
873 {
874 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
875 	u64 disk_i_size;
876 	u64 new_i_size;
877 	u64 i_size = i_size_read(inode);
878 	struct rb_node *node;
879 	struct rb_node *prev = NULL;
880 	struct btrfs_ordered_extent *test;
881 	int ret = 1;
882 
883 	if (ordered)
884 		offset = entry_end(ordered);
885 	else
886 		offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
887 
888 	spin_lock_irq(&tree->lock);
889 	disk_i_size = BTRFS_I(inode)->disk_i_size;
890 
891 	/* truncate file */
892 	if (disk_i_size > i_size) {
893 		BTRFS_I(inode)->disk_i_size = i_size;
894 		ret = 0;
895 		goto out;
896 	}
897 
898 	/*
899 	 * if the disk i_size is already at the inode->i_size, or
900 	 * this ordered extent is inside the disk i_size, we're done
901 	 */
902 	if (disk_i_size == i_size)
903 		goto out;
904 
905 	/*
906 	 * We still need to update disk_i_size if outstanding_isize is greater
907 	 * than disk_i_size.
908 	 */
909 	if (offset <= disk_i_size &&
910 	    (!ordered || ordered->outstanding_isize <= disk_i_size))
911 		goto out;
912 
913 	/*
914 	 * walk backward from this ordered extent to disk_i_size.
915 	 * if we find an ordered extent then we can't update disk i_size
916 	 * yet
917 	 */
918 	if (ordered) {
919 		node = rb_prev(&ordered->rb_node);
920 	} else {
921 		prev = tree_search(tree, offset);
922 		/*
923 		 * we insert file extents without involving ordered struct,
924 		 * so there should be no ordered struct cover this offset
925 		 */
926 		if (prev) {
927 			test = rb_entry(prev, struct btrfs_ordered_extent,
928 					rb_node);
929 			BUG_ON(offset_in_entry(test, offset));
930 		}
931 		node = prev;
932 	}
933 	for (; node; node = rb_prev(node)) {
934 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
935 
936 		/* We treat this entry as if it doesnt exist */
937 		if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
938 			continue;
939 		if (test->file_offset + test->len <= disk_i_size)
940 			break;
941 		if (test->file_offset >= i_size)
942 			break;
943 		if (entry_end(test) > disk_i_size) {
944 			/*
945 			 * we don't update disk_i_size now, so record this
946 			 * undealt i_size. Or we will not know the real
947 			 * i_size.
948 			 */
949 			if (test->outstanding_isize < offset)
950 				test->outstanding_isize = offset;
951 			if (ordered &&
952 			    ordered->outstanding_isize >
953 			    test->outstanding_isize)
954 				test->outstanding_isize =
955 						ordered->outstanding_isize;
956 			goto out;
957 		}
958 	}
959 	new_i_size = min_t(u64, offset, i_size);
960 
961 	/*
962 	 * Some ordered extents may completed before the current one, and
963 	 * we hold the real i_size in ->outstanding_isize.
964 	 */
965 	if (ordered && ordered->outstanding_isize > new_i_size)
966 		new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
967 	BTRFS_I(inode)->disk_i_size = new_i_size;
968 	ret = 0;
969 out:
970 	/*
971 	 * We need to do this because we can't remove ordered extents until
972 	 * after the i_disk_size has been updated and then the inode has been
973 	 * updated to reflect the change, so we need to tell anybody who finds
974 	 * this ordered extent that we've already done all the real work, we
975 	 * just haven't completed all the other work.
976 	 */
977 	if (ordered)
978 		set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
979 	spin_unlock_irq(&tree->lock);
980 	return ret;
981 }
982 
983 /*
984  * search the ordered extents for one corresponding to 'offset' and
985  * try to find a checksum.  This is used because we allow pages to
986  * be reclaimed before their checksum is actually put into the btree
987  */
btrfs_find_ordered_sum(struct inode * inode,u64 offset,u64 disk_bytenr,u32 * sum,int len)988 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
989 			   u32 *sum, int len)
990 {
991 	struct btrfs_ordered_sum *ordered_sum;
992 	struct btrfs_sector_sum *sector_sums;
993 	struct btrfs_ordered_extent *ordered;
994 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
995 	unsigned long num_sectors;
996 	unsigned long i;
997 	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
998 	int index = 0;
999 
1000 	ordered = btrfs_lookup_ordered_extent(inode, offset);
1001 	if (!ordered)
1002 		return 0;
1003 
1004 	spin_lock_irq(&tree->lock);
1005 	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1006 		if (disk_bytenr >= ordered_sum->bytenr &&
1007 		    disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1008 			i = (disk_bytenr - ordered_sum->bytenr) >>
1009 			    inode->i_sb->s_blocksize_bits;
1010 			sector_sums = ordered_sum->sums + i;
1011 			num_sectors = ordered_sum->len >>
1012 				      inode->i_sb->s_blocksize_bits;
1013 			for (; i < num_sectors; i++) {
1014 				if (sector_sums[i].bytenr == disk_bytenr) {
1015 					sum[index] = sector_sums[i].sum;
1016 					index++;
1017 					if (index == len)
1018 						goto out;
1019 					disk_bytenr += sectorsize;
1020 				}
1021 			}
1022 		}
1023 	}
1024 out:
1025 	spin_unlock_irq(&tree->lock);
1026 	btrfs_put_ordered_extent(ordered);
1027 	return index;
1028 }
1029 
1030 
1031 /*
1032  * add a given inode to the list of inodes that must be fully on
1033  * disk before a transaction commit finishes.
1034  *
1035  * This basically gives us the ext3 style data=ordered mode, and it is mostly
1036  * used to make sure renamed files are fully on disk.
1037  *
1038  * It is a noop if the inode is already fully on disk.
1039  *
1040  * If trans is not null, we'll do a friendly check for a transaction that
1041  * is already flushing things and force the IO down ourselves.
1042  */
btrfs_add_ordered_operation(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)1043 void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
1044 				 struct btrfs_root *root, struct inode *inode)
1045 {
1046 	struct btrfs_transaction *cur_trans = trans->transaction;
1047 	u64 last_mod;
1048 
1049 	last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
1050 
1051 	/*
1052 	 * if this file hasn't been changed since the last transaction
1053 	 * commit, we can safely return without doing anything
1054 	 */
1055 	if (last_mod < root->fs_info->last_trans_committed)
1056 		return;
1057 
1058 	spin_lock(&root->fs_info->ordered_extent_lock);
1059 	if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
1060 		list_add_tail(&BTRFS_I(inode)->ordered_operations,
1061 			      &cur_trans->ordered_operations);
1062 	}
1063 	spin_unlock(&root->fs_info->ordered_extent_lock);
1064 }
1065 
ordered_data_init(void)1066 int __init ordered_data_init(void)
1067 {
1068 	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1069 				     sizeof(struct btrfs_ordered_extent), 0,
1070 				     SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
1071 				     NULL);
1072 	if (!btrfs_ordered_extent_cache)
1073 		return -ENOMEM;
1074 
1075 	return 0;
1076 }
1077 
ordered_data_exit(void)1078 void ordered_data_exit(void)
1079 {
1080 	if (btrfs_ordered_extent_cache)
1081 		kmem_cache_destroy(btrfs_ordered_extent_cache);
1082 }
1083