1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
27
28 static struct kmem_cache *btrfs_ordered_extent_cache;
29
entry_end(struct btrfs_ordered_extent * entry)30 static u64 entry_end(struct btrfs_ordered_extent *entry)
31 {
32 if (entry->file_offset + entry->len < entry->file_offset)
33 return (u64)-1;
34 return entry->file_offset + entry->len;
35 }
36
37 /* returns NULL if the insertion worked, or it returns the node it did find
38 * in the tree
39 */
tree_insert(struct rb_root * root,u64 file_offset,struct rb_node * node)40 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
41 struct rb_node *node)
42 {
43 struct rb_node **p = &root->rb_node;
44 struct rb_node *parent = NULL;
45 struct btrfs_ordered_extent *entry;
46
47 while (*p) {
48 parent = *p;
49 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
50
51 if (file_offset < entry->file_offset)
52 p = &(*p)->rb_left;
53 else if (file_offset >= entry_end(entry))
54 p = &(*p)->rb_right;
55 else
56 return parent;
57 }
58
59 rb_link_node(node, parent, p);
60 rb_insert_color(node, root);
61 return NULL;
62 }
63
ordered_data_tree_panic(struct inode * inode,int errno,u64 offset)64 static void ordered_data_tree_panic(struct inode *inode, int errno,
65 u64 offset)
66 {
67 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
68 btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
69 "%llu\n", (unsigned long long)offset);
70 }
71
72 /*
73 * look for a given offset in the tree, and if it can't be found return the
74 * first lesser offset
75 */
__tree_search(struct rb_root * root,u64 file_offset,struct rb_node ** prev_ret)76 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
77 struct rb_node **prev_ret)
78 {
79 struct rb_node *n = root->rb_node;
80 struct rb_node *prev = NULL;
81 struct rb_node *test;
82 struct btrfs_ordered_extent *entry;
83 struct btrfs_ordered_extent *prev_entry = NULL;
84
85 while (n) {
86 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
87 prev = n;
88 prev_entry = entry;
89
90 if (file_offset < entry->file_offset)
91 n = n->rb_left;
92 else if (file_offset >= entry_end(entry))
93 n = n->rb_right;
94 else
95 return n;
96 }
97 if (!prev_ret)
98 return NULL;
99
100 while (prev && file_offset >= entry_end(prev_entry)) {
101 test = rb_next(prev);
102 if (!test)
103 break;
104 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
105 rb_node);
106 if (file_offset < entry_end(prev_entry))
107 break;
108
109 prev = test;
110 }
111 if (prev)
112 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
113 rb_node);
114 while (prev && file_offset < entry_end(prev_entry)) {
115 test = rb_prev(prev);
116 if (!test)
117 break;
118 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
119 rb_node);
120 prev = test;
121 }
122 *prev_ret = prev;
123 return NULL;
124 }
125
126 /*
127 * helper to check if a given offset is inside a given entry
128 */
offset_in_entry(struct btrfs_ordered_extent * entry,u64 file_offset)129 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
130 {
131 if (file_offset < entry->file_offset ||
132 entry->file_offset + entry->len <= file_offset)
133 return 0;
134 return 1;
135 }
136
range_overlaps(struct btrfs_ordered_extent * entry,u64 file_offset,u64 len)137 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
138 u64 len)
139 {
140 if (file_offset + len <= entry->file_offset ||
141 entry->file_offset + entry->len <= file_offset)
142 return 0;
143 return 1;
144 }
145
146 /*
147 * look find the first ordered struct that has this offset, otherwise
148 * the first one less than this offset
149 */
tree_search(struct btrfs_ordered_inode_tree * tree,u64 file_offset)150 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
151 u64 file_offset)
152 {
153 struct rb_root *root = &tree->tree;
154 struct rb_node *prev = NULL;
155 struct rb_node *ret;
156 struct btrfs_ordered_extent *entry;
157
158 if (tree->last) {
159 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
160 rb_node);
161 if (offset_in_entry(entry, file_offset))
162 return tree->last;
163 }
164 ret = __tree_search(root, file_offset, &prev);
165 if (!ret)
166 ret = prev;
167 if (ret)
168 tree->last = ret;
169 return ret;
170 }
171
172 /* allocate and add a new ordered_extent into the per-inode tree.
173 * file_offset is the logical offset in the file
174 *
175 * start is the disk block number of an extent already reserved in the
176 * extent allocation tree
177 *
178 * len is the length of the extent
179 *
180 * The tree is given a single reference on the ordered extent that was
181 * inserted.
182 */
__btrfs_add_ordered_extent(struct inode * inode,u64 file_offset,u64 start,u64 len,u64 disk_len,int type,int dio,int compress_type)183 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
184 u64 start, u64 len, u64 disk_len,
185 int type, int dio, int compress_type)
186 {
187 struct btrfs_ordered_inode_tree *tree;
188 struct rb_node *node;
189 struct btrfs_ordered_extent *entry;
190
191 tree = &BTRFS_I(inode)->ordered_tree;
192 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
193 if (!entry)
194 return -ENOMEM;
195
196 entry->file_offset = file_offset;
197 entry->start = start;
198 entry->len = len;
199 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) &&
200 !(type == BTRFS_ORDERED_NOCOW))
201 entry->csum_bytes_left = disk_len;
202 entry->disk_len = disk_len;
203 entry->bytes_left = len;
204 entry->inode = igrab(inode);
205 entry->compress_type = compress_type;
206 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
207 set_bit(type, &entry->flags);
208
209 if (dio)
210 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
211
212 /* one ref for the tree */
213 atomic_set(&entry->refs, 1);
214 init_waitqueue_head(&entry->wait);
215 INIT_LIST_HEAD(&entry->list);
216 INIT_LIST_HEAD(&entry->root_extent_list);
217 INIT_LIST_HEAD(&entry->work_list);
218 init_completion(&entry->completion);
219 INIT_LIST_HEAD(&entry->log_list);
220
221 trace_btrfs_ordered_extent_add(inode, entry);
222
223 spin_lock_irq(&tree->lock);
224 node = tree_insert(&tree->tree, file_offset,
225 &entry->rb_node);
226 if (node)
227 ordered_data_tree_panic(inode, -EEXIST, file_offset);
228 spin_unlock_irq(&tree->lock);
229
230 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
231 list_add_tail(&entry->root_extent_list,
232 &BTRFS_I(inode)->root->fs_info->ordered_extents);
233 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
234
235 return 0;
236 }
237
btrfs_add_ordered_extent(struct inode * inode,u64 file_offset,u64 start,u64 len,u64 disk_len,int type)238 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
239 u64 start, u64 len, u64 disk_len, int type)
240 {
241 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
242 disk_len, type, 0,
243 BTRFS_COMPRESS_NONE);
244 }
245
btrfs_add_ordered_extent_dio(struct inode * inode,u64 file_offset,u64 start,u64 len,u64 disk_len,int type)246 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
247 u64 start, u64 len, u64 disk_len, int type)
248 {
249 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
250 disk_len, type, 1,
251 BTRFS_COMPRESS_NONE);
252 }
253
btrfs_add_ordered_extent_compress(struct inode * inode,u64 file_offset,u64 start,u64 len,u64 disk_len,int type,int compress_type)254 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
255 u64 start, u64 len, u64 disk_len,
256 int type, int compress_type)
257 {
258 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
259 disk_len, type, 0,
260 compress_type);
261 }
262
263 /*
264 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
265 * when an ordered extent is finished. If the list covers more than one
266 * ordered extent, it is split across multiples.
267 */
btrfs_add_ordered_sum(struct inode * inode,struct btrfs_ordered_extent * entry,struct btrfs_ordered_sum * sum)268 void btrfs_add_ordered_sum(struct inode *inode,
269 struct btrfs_ordered_extent *entry,
270 struct btrfs_ordered_sum *sum)
271 {
272 struct btrfs_ordered_inode_tree *tree;
273
274 tree = &BTRFS_I(inode)->ordered_tree;
275 spin_lock_irq(&tree->lock);
276 list_add_tail(&sum->list, &entry->list);
277 WARN_ON(entry->csum_bytes_left < sum->len);
278 entry->csum_bytes_left -= sum->len;
279 if (entry->csum_bytes_left == 0)
280 wake_up(&entry->wait);
281 spin_unlock_irq(&tree->lock);
282 }
283
284 /*
285 * this is used to account for finished IO across a given range
286 * of the file. The IO may span ordered extents. If
287 * a given ordered_extent is completely done, 1 is returned, otherwise
288 * 0.
289 *
290 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
291 * to make sure this function only returns 1 once for a given ordered extent.
292 *
293 * file_offset is updated to one byte past the range that is recorded as
294 * complete. This allows you to walk forward in the file.
295 */
btrfs_dec_test_first_ordered_pending(struct inode * inode,struct btrfs_ordered_extent ** cached,u64 * file_offset,u64 io_size,int uptodate)296 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
297 struct btrfs_ordered_extent **cached,
298 u64 *file_offset, u64 io_size, int uptodate)
299 {
300 struct btrfs_ordered_inode_tree *tree;
301 struct rb_node *node;
302 struct btrfs_ordered_extent *entry = NULL;
303 int ret;
304 unsigned long flags;
305 u64 dec_end;
306 u64 dec_start;
307 u64 to_dec;
308
309 tree = &BTRFS_I(inode)->ordered_tree;
310 spin_lock_irqsave(&tree->lock, flags);
311 node = tree_search(tree, *file_offset);
312 if (!node) {
313 ret = 1;
314 goto out;
315 }
316
317 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
318 if (!offset_in_entry(entry, *file_offset)) {
319 ret = 1;
320 goto out;
321 }
322
323 dec_start = max(*file_offset, entry->file_offset);
324 dec_end = min(*file_offset + io_size, entry->file_offset +
325 entry->len);
326 *file_offset = dec_end;
327 if (dec_start > dec_end) {
328 printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
329 (unsigned long long)dec_start,
330 (unsigned long long)dec_end);
331 }
332 to_dec = dec_end - dec_start;
333 if (to_dec > entry->bytes_left) {
334 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
335 (unsigned long long)entry->bytes_left,
336 (unsigned long long)to_dec);
337 }
338 entry->bytes_left -= to_dec;
339 if (!uptodate)
340 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
341
342 if (entry->bytes_left == 0)
343 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
344 else
345 ret = 1;
346 out:
347 if (!ret && cached && entry) {
348 *cached = entry;
349 atomic_inc(&entry->refs);
350 }
351 spin_unlock_irqrestore(&tree->lock, flags);
352 return ret == 0;
353 }
354
355 /*
356 * this is used to account for finished IO across a given range
357 * of the file. The IO should not span ordered extents. If
358 * a given ordered_extent is completely done, 1 is returned, otherwise
359 * 0.
360 *
361 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
362 * to make sure this function only returns 1 once for a given ordered extent.
363 */
btrfs_dec_test_ordered_pending(struct inode * inode,struct btrfs_ordered_extent ** cached,u64 file_offset,u64 io_size,int uptodate)364 int btrfs_dec_test_ordered_pending(struct inode *inode,
365 struct btrfs_ordered_extent **cached,
366 u64 file_offset, u64 io_size, int uptodate)
367 {
368 struct btrfs_ordered_inode_tree *tree;
369 struct rb_node *node;
370 struct btrfs_ordered_extent *entry = NULL;
371 unsigned long flags;
372 int ret;
373
374 tree = &BTRFS_I(inode)->ordered_tree;
375 spin_lock_irqsave(&tree->lock, flags);
376 if (cached && *cached) {
377 entry = *cached;
378 goto have_entry;
379 }
380
381 node = tree_search(tree, file_offset);
382 if (!node) {
383 ret = 1;
384 goto out;
385 }
386
387 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
388 have_entry:
389 if (!offset_in_entry(entry, file_offset)) {
390 ret = 1;
391 goto out;
392 }
393
394 if (io_size > entry->bytes_left) {
395 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
396 (unsigned long long)entry->bytes_left,
397 (unsigned long long)io_size);
398 }
399 entry->bytes_left -= io_size;
400 if (!uptodate)
401 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
402
403 if (entry->bytes_left == 0)
404 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
405 else
406 ret = 1;
407 out:
408 if (!ret && cached && entry) {
409 *cached = entry;
410 atomic_inc(&entry->refs);
411 }
412 spin_unlock_irqrestore(&tree->lock, flags);
413 return ret == 0;
414 }
415
416 /* Needs to either be called under a log transaction or the log_mutex */
btrfs_get_logged_extents(struct btrfs_root * log,struct inode * inode)417 void btrfs_get_logged_extents(struct btrfs_root *log, struct inode *inode)
418 {
419 struct btrfs_ordered_inode_tree *tree;
420 struct btrfs_ordered_extent *ordered;
421 struct rb_node *n;
422 int index = log->log_transid % 2;
423
424 tree = &BTRFS_I(inode)->ordered_tree;
425 spin_lock_irq(&tree->lock);
426 for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
427 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
428 spin_lock(&log->log_extents_lock[index]);
429 if (list_empty(&ordered->log_list)) {
430 list_add_tail(&ordered->log_list, &log->logged_list[index]);
431 atomic_inc(&ordered->refs);
432 }
433 spin_unlock(&log->log_extents_lock[index]);
434 }
435 spin_unlock_irq(&tree->lock);
436 }
437
btrfs_wait_logged_extents(struct btrfs_root * log,u64 transid)438 void btrfs_wait_logged_extents(struct btrfs_root *log, u64 transid)
439 {
440 struct btrfs_ordered_extent *ordered;
441 int index = transid % 2;
442
443 spin_lock_irq(&log->log_extents_lock[index]);
444 while (!list_empty(&log->logged_list[index])) {
445 ordered = list_first_entry(&log->logged_list[index],
446 struct btrfs_ordered_extent,
447 log_list);
448 list_del_init(&ordered->log_list);
449 spin_unlock_irq(&log->log_extents_lock[index]);
450 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
451 &ordered->flags));
452 btrfs_put_ordered_extent(ordered);
453 spin_lock_irq(&log->log_extents_lock[index]);
454 }
455 spin_unlock_irq(&log->log_extents_lock[index]);
456 }
457
btrfs_free_logged_extents(struct btrfs_root * log,u64 transid)458 void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
459 {
460 struct btrfs_ordered_extent *ordered;
461 int index = transid % 2;
462
463 spin_lock_irq(&log->log_extents_lock[index]);
464 while (!list_empty(&log->logged_list[index])) {
465 ordered = list_first_entry(&log->logged_list[index],
466 struct btrfs_ordered_extent,
467 log_list);
468 list_del_init(&ordered->log_list);
469 spin_unlock_irq(&log->log_extents_lock[index]);
470 btrfs_put_ordered_extent(ordered);
471 spin_lock_irq(&log->log_extents_lock[index]);
472 }
473 spin_unlock_irq(&log->log_extents_lock[index]);
474 }
475
476 /*
477 * used to drop a reference on an ordered extent. This will free
478 * the extent if the last reference is dropped
479 */
btrfs_put_ordered_extent(struct btrfs_ordered_extent * entry)480 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
481 {
482 struct list_head *cur;
483 struct btrfs_ordered_sum *sum;
484
485 trace_btrfs_ordered_extent_put(entry->inode, entry);
486
487 if (atomic_dec_and_test(&entry->refs)) {
488 if (entry->inode)
489 btrfs_add_delayed_iput(entry->inode);
490 while (!list_empty(&entry->list)) {
491 cur = entry->list.next;
492 sum = list_entry(cur, struct btrfs_ordered_sum, list);
493 list_del(&sum->list);
494 kfree(sum);
495 }
496 kmem_cache_free(btrfs_ordered_extent_cache, entry);
497 }
498 }
499
500 /*
501 * remove an ordered extent from the tree. No references are dropped
502 * and waiters are woken up.
503 */
btrfs_remove_ordered_extent(struct inode * inode,struct btrfs_ordered_extent * entry)504 void btrfs_remove_ordered_extent(struct inode *inode,
505 struct btrfs_ordered_extent *entry)
506 {
507 struct btrfs_ordered_inode_tree *tree;
508 struct btrfs_root *root = BTRFS_I(inode)->root;
509 struct rb_node *node;
510
511 tree = &BTRFS_I(inode)->ordered_tree;
512 spin_lock_irq(&tree->lock);
513 node = &entry->rb_node;
514 rb_erase(node, &tree->tree);
515 tree->last = NULL;
516 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
517 spin_unlock_irq(&tree->lock);
518
519 spin_lock(&root->fs_info->ordered_extent_lock);
520 list_del_init(&entry->root_extent_list);
521
522 trace_btrfs_ordered_extent_remove(inode, entry);
523
524 /*
525 * we have no more ordered extents for this inode and
526 * no dirty pages. We can safely remove it from the
527 * list of ordered extents
528 */
529 if (RB_EMPTY_ROOT(&tree->tree) &&
530 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
531 list_del_init(&BTRFS_I(inode)->ordered_operations);
532 }
533 spin_unlock(&root->fs_info->ordered_extent_lock);
534 wake_up(&entry->wait);
535 }
536
btrfs_run_ordered_extent_work(struct btrfs_work * work)537 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
538 {
539 struct btrfs_ordered_extent *ordered;
540
541 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
542 btrfs_start_ordered_extent(ordered->inode, ordered, 1);
543 complete(&ordered->completion);
544 }
545
546 /*
547 * wait for all the ordered extents in a root. This is done when balancing
548 * space between drives.
549 */
btrfs_wait_ordered_extents(struct btrfs_root * root,int delay_iput)550 void btrfs_wait_ordered_extents(struct btrfs_root *root, int delay_iput)
551 {
552 struct list_head splice, works;
553 struct list_head *cur;
554 struct btrfs_ordered_extent *ordered, *next;
555 struct inode *inode;
556
557 INIT_LIST_HEAD(&splice);
558 INIT_LIST_HEAD(&works);
559
560 mutex_lock(&root->fs_info->ordered_operations_mutex);
561 spin_lock(&root->fs_info->ordered_extent_lock);
562 list_splice_init(&root->fs_info->ordered_extents, &splice);
563 while (!list_empty(&splice)) {
564 cur = splice.next;
565 ordered = list_entry(cur, struct btrfs_ordered_extent,
566 root_extent_list);
567 list_del_init(&ordered->root_extent_list);
568 atomic_inc(&ordered->refs);
569
570 /*
571 * the inode may be getting freed (in sys_unlink path).
572 */
573 inode = igrab(ordered->inode);
574
575 spin_unlock(&root->fs_info->ordered_extent_lock);
576
577 if (inode) {
578 ordered->flush_work.func = btrfs_run_ordered_extent_work;
579 list_add_tail(&ordered->work_list, &works);
580 btrfs_queue_worker(&root->fs_info->flush_workers,
581 &ordered->flush_work);
582 } else {
583 btrfs_put_ordered_extent(ordered);
584 }
585
586 cond_resched();
587 spin_lock(&root->fs_info->ordered_extent_lock);
588 }
589 spin_unlock(&root->fs_info->ordered_extent_lock);
590
591 list_for_each_entry_safe(ordered, next, &works, work_list) {
592 list_del_init(&ordered->work_list);
593 wait_for_completion(&ordered->completion);
594
595 inode = ordered->inode;
596 btrfs_put_ordered_extent(ordered);
597 if (delay_iput)
598 btrfs_add_delayed_iput(inode);
599 else
600 iput(inode);
601
602 cond_resched();
603 }
604 mutex_unlock(&root->fs_info->ordered_operations_mutex);
605 }
606
607 /*
608 * this is used during transaction commit to write all the inodes
609 * added to the ordered operation list. These files must be fully on
610 * disk before the transaction commits.
611 *
612 * we have two modes here, one is to just start the IO via filemap_flush
613 * and the other is to wait for all the io. When we wait, we have an
614 * extra check to make sure the ordered operation list really is empty
615 * before we return
616 */
btrfs_run_ordered_operations(struct btrfs_trans_handle * trans,struct btrfs_root * root,int wait)617 int btrfs_run_ordered_operations(struct btrfs_trans_handle *trans,
618 struct btrfs_root *root, int wait)
619 {
620 struct btrfs_inode *btrfs_inode;
621 struct inode *inode;
622 struct btrfs_transaction *cur_trans = trans->transaction;
623 struct list_head splice;
624 struct list_head works;
625 struct btrfs_delalloc_work *work, *next;
626 int ret = 0;
627
628 INIT_LIST_HEAD(&splice);
629 INIT_LIST_HEAD(&works);
630
631 mutex_lock(&root->fs_info->ordered_operations_mutex);
632 spin_lock(&root->fs_info->ordered_extent_lock);
633 list_splice_init(&cur_trans->ordered_operations, &splice);
634 while (!list_empty(&splice)) {
635 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
636 ordered_operations);
637 inode = &btrfs_inode->vfs_inode;
638
639 list_del_init(&btrfs_inode->ordered_operations);
640
641 /*
642 * the inode may be getting freed (in sys_unlink path).
643 */
644 inode = igrab(inode);
645 if (!inode)
646 continue;
647
648 if (!wait)
649 list_add_tail(&BTRFS_I(inode)->ordered_operations,
650 &cur_trans->ordered_operations);
651 spin_unlock(&root->fs_info->ordered_extent_lock);
652
653 work = btrfs_alloc_delalloc_work(inode, wait, 1);
654 if (!work) {
655 spin_lock(&root->fs_info->ordered_extent_lock);
656 if (list_empty(&BTRFS_I(inode)->ordered_operations))
657 list_add_tail(&btrfs_inode->ordered_operations,
658 &splice);
659 list_splice_tail(&splice,
660 &cur_trans->ordered_operations);
661 spin_unlock(&root->fs_info->ordered_extent_lock);
662 ret = -ENOMEM;
663 goto out;
664 }
665 list_add_tail(&work->list, &works);
666 btrfs_queue_worker(&root->fs_info->flush_workers,
667 &work->work);
668
669 cond_resched();
670 spin_lock(&root->fs_info->ordered_extent_lock);
671 }
672 spin_unlock(&root->fs_info->ordered_extent_lock);
673 out:
674 list_for_each_entry_safe(work, next, &works, list) {
675 list_del_init(&work->list);
676 btrfs_wait_and_free_delalloc_work(work);
677 }
678 mutex_unlock(&root->fs_info->ordered_operations_mutex);
679 return ret;
680 }
681
682 /*
683 * Used to start IO or wait for a given ordered extent to finish.
684 *
685 * If wait is one, this effectively waits on page writeback for all the pages
686 * in the extent, and it waits on the io completion code to insert
687 * metadata into the btree corresponding to the extent
688 */
btrfs_start_ordered_extent(struct inode * inode,struct btrfs_ordered_extent * entry,int wait)689 void btrfs_start_ordered_extent(struct inode *inode,
690 struct btrfs_ordered_extent *entry,
691 int wait)
692 {
693 u64 start = entry->file_offset;
694 u64 end = start + entry->len - 1;
695
696 trace_btrfs_ordered_extent_start(inode, entry);
697
698 /*
699 * pages in the range can be dirty, clean or writeback. We
700 * start IO on any dirty ones so the wait doesn't stall waiting
701 * for the flusher thread to find them
702 */
703 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
704 filemap_fdatawrite_range(inode->i_mapping, start, end);
705 if (wait) {
706 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
707 &entry->flags));
708 }
709 }
710
711 /*
712 * Used to wait on ordered extents across a large range of bytes.
713 */
btrfs_wait_ordered_range(struct inode * inode,u64 start,u64 len)714 void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
715 {
716 u64 end;
717 u64 orig_end;
718 struct btrfs_ordered_extent *ordered;
719
720 if (start + len < start) {
721 orig_end = INT_LIMIT(loff_t);
722 } else {
723 orig_end = start + len - 1;
724 if (orig_end > INT_LIMIT(loff_t))
725 orig_end = INT_LIMIT(loff_t);
726 }
727
728 /* start IO across the range first to instantiate any delalloc
729 * extents
730 */
731 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
732
733 /*
734 * So with compression we will find and lock a dirty page and clear the
735 * first one as dirty, setup an async extent, and immediately return
736 * with the entire range locked but with nobody actually marked with
737 * writeback. So we can't just filemap_write_and_wait_range() and
738 * expect it to work since it will just kick off a thread to do the
739 * actual work. So we need to call filemap_fdatawrite_range _again_
740 * since it will wait on the page lock, which won't be unlocked until
741 * after the pages have been marked as writeback and so we're good to go
742 * from there. We have to do this otherwise we'll miss the ordered
743 * extents and that results in badness. Please Josef, do not think you
744 * know better and pull this out at some point in the future, it is
745 * right and you are wrong.
746 */
747 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
748 &BTRFS_I(inode)->runtime_flags))
749 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
750
751 filemap_fdatawait_range(inode->i_mapping, start, orig_end);
752
753 end = orig_end;
754 while (1) {
755 ordered = btrfs_lookup_first_ordered_extent(inode, end);
756 if (!ordered)
757 break;
758 if (ordered->file_offset > orig_end) {
759 btrfs_put_ordered_extent(ordered);
760 break;
761 }
762 if (ordered->file_offset + ordered->len < start) {
763 btrfs_put_ordered_extent(ordered);
764 break;
765 }
766 btrfs_start_ordered_extent(inode, ordered, 1);
767 end = ordered->file_offset;
768 btrfs_put_ordered_extent(ordered);
769 if (end == 0 || end == start)
770 break;
771 end--;
772 }
773 }
774
775 /*
776 * find an ordered extent corresponding to file_offset. return NULL if
777 * nothing is found, otherwise take a reference on the extent and return it
778 */
btrfs_lookup_ordered_extent(struct inode * inode,u64 file_offset)779 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
780 u64 file_offset)
781 {
782 struct btrfs_ordered_inode_tree *tree;
783 struct rb_node *node;
784 struct btrfs_ordered_extent *entry = NULL;
785
786 tree = &BTRFS_I(inode)->ordered_tree;
787 spin_lock_irq(&tree->lock);
788 node = tree_search(tree, file_offset);
789 if (!node)
790 goto out;
791
792 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
793 if (!offset_in_entry(entry, file_offset))
794 entry = NULL;
795 if (entry)
796 atomic_inc(&entry->refs);
797 out:
798 spin_unlock_irq(&tree->lock);
799 return entry;
800 }
801
802 /* Since the DIO code tries to lock a wide area we need to look for any ordered
803 * extents that exist in the range, rather than just the start of the range.
804 */
btrfs_lookup_ordered_range(struct inode * inode,u64 file_offset,u64 len)805 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
806 u64 file_offset,
807 u64 len)
808 {
809 struct btrfs_ordered_inode_tree *tree;
810 struct rb_node *node;
811 struct btrfs_ordered_extent *entry = NULL;
812
813 tree = &BTRFS_I(inode)->ordered_tree;
814 spin_lock_irq(&tree->lock);
815 node = tree_search(tree, file_offset);
816 if (!node) {
817 node = tree_search(tree, file_offset + len);
818 if (!node)
819 goto out;
820 }
821
822 while (1) {
823 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
824 if (range_overlaps(entry, file_offset, len))
825 break;
826
827 if (entry->file_offset >= file_offset + len) {
828 entry = NULL;
829 break;
830 }
831 entry = NULL;
832 node = rb_next(node);
833 if (!node)
834 break;
835 }
836 out:
837 if (entry)
838 atomic_inc(&entry->refs);
839 spin_unlock_irq(&tree->lock);
840 return entry;
841 }
842
843 /*
844 * lookup and return any extent before 'file_offset'. NULL is returned
845 * if none is found
846 */
847 struct btrfs_ordered_extent *
btrfs_lookup_first_ordered_extent(struct inode * inode,u64 file_offset)848 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
849 {
850 struct btrfs_ordered_inode_tree *tree;
851 struct rb_node *node;
852 struct btrfs_ordered_extent *entry = NULL;
853
854 tree = &BTRFS_I(inode)->ordered_tree;
855 spin_lock_irq(&tree->lock);
856 node = tree_search(tree, file_offset);
857 if (!node)
858 goto out;
859
860 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
861 atomic_inc(&entry->refs);
862 out:
863 spin_unlock_irq(&tree->lock);
864 return entry;
865 }
866
867 /*
868 * After an extent is done, call this to conditionally update the on disk
869 * i_size. i_size is updated to cover any fully written part of the file.
870 */
btrfs_ordered_update_i_size(struct inode * inode,u64 offset,struct btrfs_ordered_extent * ordered)871 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
872 struct btrfs_ordered_extent *ordered)
873 {
874 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
875 u64 disk_i_size;
876 u64 new_i_size;
877 u64 i_size = i_size_read(inode);
878 struct rb_node *node;
879 struct rb_node *prev = NULL;
880 struct btrfs_ordered_extent *test;
881 int ret = 1;
882
883 if (ordered)
884 offset = entry_end(ordered);
885 else
886 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
887
888 spin_lock_irq(&tree->lock);
889 disk_i_size = BTRFS_I(inode)->disk_i_size;
890
891 /* truncate file */
892 if (disk_i_size > i_size) {
893 BTRFS_I(inode)->disk_i_size = i_size;
894 ret = 0;
895 goto out;
896 }
897
898 /*
899 * if the disk i_size is already at the inode->i_size, or
900 * this ordered extent is inside the disk i_size, we're done
901 */
902 if (disk_i_size == i_size)
903 goto out;
904
905 /*
906 * We still need to update disk_i_size if outstanding_isize is greater
907 * than disk_i_size.
908 */
909 if (offset <= disk_i_size &&
910 (!ordered || ordered->outstanding_isize <= disk_i_size))
911 goto out;
912
913 /*
914 * walk backward from this ordered extent to disk_i_size.
915 * if we find an ordered extent then we can't update disk i_size
916 * yet
917 */
918 if (ordered) {
919 node = rb_prev(&ordered->rb_node);
920 } else {
921 prev = tree_search(tree, offset);
922 /*
923 * we insert file extents without involving ordered struct,
924 * so there should be no ordered struct cover this offset
925 */
926 if (prev) {
927 test = rb_entry(prev, struct btrfs_ordered_extent,
928 rb_node);
929 BUG_ON(offset_in_entry(test, offset));
930 }
931 node = prev;
932 }
933 for (; node; node = rb_prev(node)) {
934 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
935
936 /* We treat this entry as if it doesnt exist */
937 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
938 continue;
939 if (test->file_offset + test->len <= disk_i_size)
940 break;
941 if (test->file_offset >= i_size)
942 break;
943 if (entry_end(test) > disk_i_size) {
944 /*
945 * we don't update disk_i_size now, so record this
946 * undealt i_size. Or we will not know the real
947 * i_size.
948 */
949 if (test->outstanding_isize < offset)
950 test->outstanding_isize = offset;
951 if (ordered &&
952 ordered->outstanding_isize >
953 test->outstanding_isize)
954 test->outstanding_isize =
955 ordered->outstanding_isize;
956 goto out;
957 }
958 }
959 new_i_size = min_t(u64, offset, i_size);
960
961 /*
962 * Some ordered extents may completed before the current one, and
963 * we hold the real i_size in ->outstanding_isize.
964 */
965 if (ordered && ordered->outstanding_isize > new_i_size)
966 new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
967 BTRFS_I(inode)->disk_i_size = new_i_size;
968 ret = 0;
969 out:
970 /*
971 * We need to do this because we can't remove ordered extents until
972 * after the i_disk_size has been updated and then the inode has been
973 * updated to reflect the change, so we need to tell anybody who finds
974 * this ordered extent that we've already done all the real work, we
975 * just haven't completed all the other work.
976 */
977 if (ordered)
978 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
979 spin_unlock_irq(&tree->lock);
980 return ret;
981 }
982
983 /*
984 * search the ordered extents for one corresponding to 'offset' and
985 * try to find a checksum. This is used because we allow pages to
986 * be reclaimed before their checksum is actually put into the btree
987 */
btrfs_find_ordered_sum(struct inode * inode,u64 offset,u64 disk_bytenr,u32 * sum,int len)988 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
989 u32 *sum, int len)
990 {
991 struct btrfs_ordered_sum *ordered_sum;
992 struct btrfs_sector_sum *sector_sums;
993 struct btrfs_ordered_extent *ordered;
994 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
995 unsigned long num_sectors;
996 unsigned long i;
997 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
998 int index = 0;
999
1000 ordered = btrfs_lookup_ordered_extent(inode, offset);
1001 if (!ordered)
1002 return 0;
1003
1004 spin_lock_irq(&tree->lock);
1005 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1006 if (disk_bytenr >= ordered_sum->bytenr &&
1007 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1008 i = (disk_bytenr - ordered_sum->bytenr) >>
1009 inode->i_sb->s_blocksize_bits;
1010 sector_sums = ordered_sum->sums + i;
1011 num_sectors = ordered_sum->len >>
1012 inode->i_sb->s_blocksize_bits;
1013 for (; i < num_sectors; i++) {
1014 if (sector_sums[i].bytenr == disk_bytenr) {
1015 sum[index] = sector_sums[i].sum;
1016 index++;
1017 if (index == len)
1018 goto out;
1019 disk_bytenr += sectorsize;
1020 }
1021 }
1022 }
1023 }
1024 out:
1025 spin_unlock_irq(&tree->lock);
1026 btrfs_put_ordered_extent(ordered);
1027 return index;
1028 }
1029
1030
1031 /*
1032 * add a given inode to the list of inodes that must be fully on
1033 * disk before a transaction commit finishes.
1034 *
1035 * This basically gives us the ext3 style data=ordered mode, and it is mostly
1036 * used to make sure renamed files are fully on disk.
1037 *
1038 * It is a noop if the inode is already fully on disk.
1039 *
1040 * If trans is not null, we'll do a friendly check for a transaction that
1041 * is already flushing things and force the IO down ourselves.
1042 */
btrfs_add_ordered_operation(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)1043 void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
1044 struct btrfs_root *root, struct inode *inode)
1045 {
1046 struct btrfs_transaction *cur_trans = trans->transaction;
1047 u64 last_mod;
1048
1049 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
1050
1051 /*
1052 * if this file hasn't been changed since the last transaction
1053 * commit, we can safely return without doing anything
1054 */
1055 if (last_mod < root->fs_info->last_trans_committed)
1056 return;
1057
1058 spin_lock(&root->fs_info->ordered_extent_lock);
1059 if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
1060 list_add_tail(&BTRFS_I(inode)->ordered_operations,
1061 &cur_trans->ordered_operations);
1062 }
1063 spin_unlock(&root->fs_info->ordered_extent_lock);
1064 }
1065
ordered_data_init(void)1066 int __init ordered_data_init(void)
1067 {
1068 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1069 sizeof(struct btrfs_ordered_extent), 0,
1070 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
1071 NULL);
1072 if (!btrfs_ordered_extent_cache)
1073 return -ENOMEM;
1074
1075 return 0;
1076 }
1077
ordered_data_exit(void)1078 void ordered_data_exit(void)
1079 {
1080 if (btrfs_ordered_extent_cache)
1081 kmem_cache_destroy(btrfs_ordered_extent_cache);
1082 }
1083