• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/kmod.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/cache.h>
27 #include <linux/mutex.h>
28 #include <linux/of_device.h>
29 #include <linux/of_irq.h>
30 #include <linux/slab.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/spi/spi.h>
33 #include <linux/of_gpio.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/export.h>
36 #include <linux/sched/rt.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/ioport.h>
40 #include <linux/acpi.h>
41 
spidev_release(struct device * dev)42 static void spidev_release(struct device *dev)
43 {
44 	struct spi_device	*spi = to_spi_device(dev);
45 
46 	/* spi masters may cleanup for released devices */
47 	if (spi->master->cleanup)
48 		spi->master->cleanup(spi);
49 
50 	spi_master_put(spi->master);
51 	kfree(spi);
52 }
53 
54 static ssize_t
modalias_show(struct device * dev,struct device_attribute * a,char * buf)55 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
56 {
57 	const struct spi_device	*spi = to_spi_device(dev);
58 
59 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
60 }
61 
62 static struct device_attribute spi_dev_attrs[] = {
63 	__ATTR_RO(modalias),
64 	__ATTR_NULL,
65 };
66 
67 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
68  * and the sysfs version makes coldplug work too.
69  */
70 
spi_match_id(const struct spi_device_id * id,const struct spi_device * sdev)71 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
72 						const struct spi_device *sdev)
73 {
74 	while (id->name[0]) {
75 		if (!strcmp(sdev->modalias, id->name))
76 			return id;
77 		id++;
78 	}
79 	return NULL;
80 }
81 
spi_get_device_id(const struct spi_device * sdev)82 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
83 {
84 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
85 
86 	return spi_match_id(sdrv->id_table, sdev);
87 }
88 EXPORT_SYMBOL_GPL(spi_get_device_id);
89 
spi_match_device(struct device * dev,struct device_driver * drv)90 static int spi_match_device(struct device *dev, struct device_driver *drv)
91 {
92 	const struct spi_device	*spi = to_spi_device(dev);
93 	const struct spi_driver	*sdrv = to_spi_driver(drv);
94 
95 	/* Attempt an OF style match */
96 	if (of_driver_match_device(dev, drv))
97 		return 1;
98 
99 	/* Then try ACPI */
100 	if (acpi_driver_match_device(dev, drv))
101 		return 1;
102 
103 	if (sdrv->id_table)
104 		return !!spi_match_id(sdrv->id_table, spi);
105 
106 	return strcmp(spi->modalias, drv->name) == 0;
107 }
108 
spi_uevent(struct device * dev,struct kobj_uevent_env * env)109 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
110 {
111 	const struct spi_device		*spi = to_spi_device(dev);
112 
113 	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
114 	return 0;
115 }
116 
117 #ifdef CONFIG_PM_SLEEP
spi_legacy_suspend(struct device * dev,pm_message_t message)118 static int spi_legacy_suspend(struct device *dev, pm_message_t message)
119 {
120 	int			value = 0;
121 	struct spi_driver	*drv = to_spi_driver(dev->driver);
122 
123 	/* suspend will stop irqs and dma; no more i/o */
124 	if (drv) {
125 		if (drv->suspend)
126 			value = drv->suspend(to_spi_device(dev), message);
127 		else
128 			dev_dbg(dev, "... can't suspend\n");
129 	}
130 	return value;
131 }
132 
spi_legacy_resume(struct device * dev)133 static int spi_legacy_resume(struct device *dev)
134 {
135 	int			value = 0;
136 	struct spi_driver	*drv = to_spi_driver(dev->driver);
137 
138 	/* resume may restart the i/o queue */
139 	if (drv) {
140 		if (drv->resume)
141 			value = drv->resume(to_spi_device(dev));
142 		else
143 			dev_dbg(dev, "... can't resume\n");
144 	}
145 	return value;
146 }
147 
spi_pm_suspend(struct device * dev)148 static int spi_pm_suspend(struct device *dev)
149 {
150 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
151 
152 	if (pm)
153 		return pm_generic_suspend(dev);
154 	else
155 		return spi_legacy_suspend(dev, PMSG_SUSPEND);
156 }
157 
spi_pm_resume(struct device * dev)158 static int spi_pm_resume(struct device *dev)
159 {
160 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
161 
162 	if (pm)
163 		return pm_generic_resume(dev);
164 	else
165 		return spi_legacy_resume(dev);
166 }
167 
spi_pm_freeze(struct device * dev)168 static int spi_pm_freeze(struct device *dev)
169 {
170 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
171 
172 	if (pm)
173 		return pm_generic_freeze(dev);
174 	else
175 		return spi_legacy_suspend(dev, PMSG_FREEZE);
176 }
177 
spi_pm_thaw(struct device * dev)178 static int spi_pm_thaw(struct device *dev)
179 {
180 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
181 
182 	if (pm)
183 		return pm_generic_thaw(dev);
184 	else
185 		return spi_legacy_resume(dev);
186 }
187 
spi_pm_poweroff(struct device * dev)188 static int spi_pm_poweroff(struct device *dev)
189 {
190 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
191 
192 	if (pm)
193 		return pm_generic_poweroff(dev);
194 	else
195 		return spi_legacy_suspend(dev, PMSG_HIBERNATE);
196 }
197 
spi_pm_restore(struct device * dev)198 static int spi_pm_restore(struct device *dev)
199 {
200 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
201 
202 	if (pm)
203 		return pm_generic_restore(dev);
204 	else
205 		return spi_legacy_resume(dev);
206 }
207 #else
208 #define spi_pm_suspend	NULL
209 #define spi_pm_resume	NULL
210 #define spi_pm_freeze	NULL
211 #define spi_pm_thaw	NULL
212 #define spi_pm_poweroff	NULL
213 #define spi_pm_restore	NULL
214 #endif
215 
216 static const struct dev_pm_ops spi_pm = {
217 	.suspend = spi_pm_suspend,
218 	.resume = spi_pm_resume,
219 	.freeze = spi_pm_freeze,
220 	.thaw = spi_pm_thaw,
221 	.poweroff = spi_pm_poweroff,
222 	.restore = spi_pm_restore,
223 	SET_RUNTIME_PM_OPS(
224 		pm_generic_runtime_suspend,
225 		pm_generic_runtime_resume,
226 		pm_generic_runtime_idle
227 	)
228 };
229 
230 struct bus_type spi_bus_type = {
231 	.name		= "spi",
232 	.dev_attrs	= spi_dev_attrs,
233 	.match		= spi_match_device,
234 	.uevent		= spi_uevent,
235 	.pm		= &spi_pm,
236 };
237 EXPORT_SYMBOL_GPL(spi_bus_type);
238 
239 
spi_drv_probe(struct device * dev)240 static int spi_drv_probe(struct device *dev)
241 {
242 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
243 
244 	return sdrv->probe(to_spi_device(dev));
245 }
246 
spi_drv_remove(struct device * dev)247 static int spi_drv_remove(struct device *dev)
248 {
249 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
250 
251 	return sdrv->remove(to_spi_device(dev));
252 }
253 
spi_drv_shutdown(struct device * dev)254 static void spi_drv_shutdown(struct device *dev)
255 {
256 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
257 
258 	sdrv->shutdown(to_spi_device(dev));
259 }
260 
261 /**
262  * spi_register_driver - register a SPI driver
263  * @sdrv: the driver to register
264  * Context: can sleep
265  */
spi_register_driver(struct spi_driver * sdrv)266 int spi_register_driver(struct spi_driver *sdrv)
267 {
268 	sdrv->driver.bus = &spi_bus_type;
269 	if (sdrv->probe)
270 		sdrv->driver.probe = spi_drv_probe;
271 	if (sdrv->remove)
272 		sdrv->driver.remove = spi_drv_remove;
273 	if (sdrv->shutdown)
274 		sdrv->driver.shutdown = spi_drv_shutdown;
275 	return driver_register(&sdrv->driver);
276 }
277 EXPORT_SYMBOL_GPL(spi_register_driver);
278 
279 /*-------------------------------------------------------------------------*/
280 
281 /* SPI devices should normally not be created by SPI device drivers; that
282  * would make them board-specific.  Similarly with SPI master drivers.
283  * Device registration normally goes into like arch/.../mach.../board-YYY.c
284  * with other readonly (flashable) information about mainboard devices.
285  */
286 
287 struct boardinfo {
288 	struct list_head	list;
289 	struct spi_board_info	board_info;
290 };
291 
292 static LIST_HEAD(board_list);
293 static LIST_HEAD(spi_master_list);
294 
295 /*
296  * Used to protect add/del opertion for board_info list and
297  * spi_master list, and their matching process
298  */
299 static DEFINE_MUTEX(board_lock);
300 
301 /**
302  * spi_alloc_device - Allocate a new SPI device
303  * @master: Controller to which device is connected
304  * Context: can sleep
305  *
306  * Allows a driver to allocate and initialize a spi_device without
307  * registering it immediately.  This allows a driver to directly
308  * fill the spi_device with device parameters before calling
309  * spi_add_device() on it.
310  *
311  * Caller is responsible to call spi_add_device() on the returned
312  * spi_device structure to add it to the SPI master.  If the caller
313  * needs to discard the spi_device without adding it, then it should
314  * call spi_dev_put() on it.
315  *
316  * Returns a pointer to the new device, or NULL.
317  */
spi_alloc_device(struct spi_master * master)318 struct spi_device *spi_alloc_device(struct spi_master *master)
319 {
320 	struct spi_device	*spi;
321 	struct device		*dev = master->dev.parent;
322 
323 	if (!spi_master_get(master))
324 		return NULL;
325 
326 	spi = kzalloc(sizeof *spi, GFP_KERNEL);
327 	if (!spi) {
328 		dev_err(dev, "cannot alloc spi_device\n");
329 		spi_master_put(master);
330 		return NULL;
331 	}
332 
333 	spi->master = master;
334 	spi->dev.parent = &master->dev;
335 	spi->dev.bus = &spi_bus_type;
336 	spi->dev.release = spidev_release;
337 	spi->cs_gpio = -ENOENT;
338 	device_initialize(&spi->dev);
339 	return spi;
340 }
341 EXPORT_SYMBOL_GPL(spi_alloc_device);
342 
343 /**
344  * spi_add_device - Add spi_device allocated with spi_alloc_device
345  * @spi: spi_device to register
346  *
347  * Companion function to spi_alloc_device.  Devices allocated with
348  * spi_alloc_device can be added onto the spi bus with this function.
349  *
350  * Returns 0 on success; negative errno on failure
351  */
spi_add_device(struct spi_device * spi)352 int spi_add_device(struct spi_device *spi)
353 {
354 	static DEFINE_MUTEX(spi_add_lock);
355 	struct spi_master *master = spi->master;
356 	struct device *dev = master->dev.parent;
357 	struct device *d;
358 	int status;
359 
360 	/* Chipselects are numbered 0..max; validate. */
361 	if (spi->chip_select >= master->num_chipselect) {
362 		dev_err(dev, "cs%d >= max %d\n",
363 			spi->chip_select,
364 			master->num_chipselect);
365 		return -EINVAL;
366 	}
367 
368 	/* Set the bus ID string */
369 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
370 			spi->chip_select);
371 
372 
373 	/* We need to make sure there's no other device with this
374 	 * chipselect **BEFORE** we call setup(), else we'll trash
375 	 * its configuration.  Lock against concurrent add() calls.
376 	 */
377 	mutex_lock(&spi_add_lock);
378 
379 	d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
380 	if (d != NULL) {
381 		dev_err(dev, "chipselect %d already in use\n",
382 				spi->chip_select);
383 		put_device(d);
384 		status = -EBUSY;
385 		goto done;
386 	}
387 
388 	if (master->cs_gpios)
389 		spi->cs_gpio = master->cs_gpios[spi->chip_select];
390 
391 	/* Drivers may modify this initial i/o setup, but will
392 	 * normally rely on the device being setup.  Devices
393 	 * using SPI_CS_HIGH can't coexist well otherwise...
394 	 */
395 	status = spi_setup(spi);
396 	if (status < 0) {
397 		dev_err(dev, "can't setup %s, status %d\n",
398 				dev_name(&spi->dev), status);
399 		goto done;
400 	}
401 
402 	/* Device may be bound to an active driver when this returns */
403 	status = device_add(&spi->dev);
404 	if (status < 0)
405 		dev_err(dev, "can't add %s, status %d\n",
406 				dev_name(&spi->dev), status);
407 	else
408 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
409 
410 done:
411 	mutex_unlock(&spi_add_lock);
412 	return status;
413 }
414 EXPORT_SYMBOL_GPL(spi_add_device);
415 
416 /**
417  * spi_new_device - instantiate one new SPI device
418  * @master: Controller to which device is connected
419  * @chip: Describes the SPI device
420  * Context: can sleep
421  *
422  * On typical mainboards, this is purely internal; and it's not needed
423  * after board init creates the hard-wired devices.  Some development
424  * platforms may not be able to use spi_register_board_info though, and
425  * this is exported so that for example a USB or parport based adapter
426  * driver could add devices (which it would learn about out-of-band).
427  *
428  * Returns the new device, or NULL.
429  */
spi_new_device(struct spi_master * master,struct spi_board_info * chip)430 struct spi_device *spi_new_device(struct spi_master *master,
431 				  struct spi_board_info *chip)
432 {
433 	struct spi_device	*proxy;
434 	int			status;
435 
436 	/* NOTE:  caller did any chip->bus_num checks necessary.
437 	 *
438 	 * Also, unless we change the return value convention to use
439 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
440 	 * suggests syslogged diagnostics are best here (ugh).
441 	 */
442 
443 	proxy = spi_alloc_device(master);
444 	if (!proxy)
445 		return NULL;
446 
447 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
448 
449 	proxy->chip_select = chip->chip_select;
450 	proxy->max_speed_hz = chip->max_speed_hz;
451 	proxy->mode = chip->mode;
452 	proxy->irq = chip->irq;
453 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
454 	proxy->dev.platform_data = (void *) chip->platform_data;
455 	proxy->controller_data = chip->controller_data;
456 	proxy->controller_state = NULL;
457 
458 	status = spi_add_device(proxy);
459 	if (status < 0) {
460 		spi_dev_put(proxy);
461 		return NULL;
462 	}
463 
464 	return proxy;
465 }
466 EXPORT_SYMBOL_GPL(spi_new_device);
467 
spi_match_master_to_boardinfo(struct spi_master * master,struct spi_board_info * bi)468 static void spi_match_master_to_boardinfo(struct spi_master *master,
469 				struct spi_board_info *bi)
470 {
471 	struct spi_device *dev;
472 
473 	if (master->bus_num != bi->bus_num)
474 		return;
475 
476 	dev = spi_new_device(master, bi);
477 	if (!dev)
478 		dev_err(master->dev.parent, "can't create new device for %s\n",
479 			bi->modalias);
480 }
481 
482 /**
483  * spi_register_board_info - register SPI devices for a given board
484  * @info: array of chip descriptors
485  * @n: how many descriptors are provided
486  * Context: can sleep
487  *
488  * Board-specific early init code calls this (probably during arch_initcall)
489  * with segments of the SPI device table.  Any device nodes are created later,
490  * after the relevant parent SPI controller (bus_num) is defined.  We keep
491  * this table of devices forever, so that reloading a controller driver will
492  * not make Linux forget about these hard-wired devices.
493  *
494  * Other code can also call this, e.g. a particular add-on board might provide
495  * SPI devices through its expansion connector, so code initializing that board
496  * would naturally declare its SPI devices.
497  *
498  * The board info passed can safely be __initdata ... but be careful of
499  * any embedded pointers (platform_data, etc), they're copied as-is.
500  */
spi_register_board_info(struct spi_board_info const * info,unsigned n)501 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
502 {
503 	struct boardinfo *bi;
504 	int i;
505 
506 	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
507 	if (!bi)
508 		return -ENOMEM;
509 
510 	for (i = 0; i < n; i++, bi++, info++) {
511 		struct spi_master *master;
512 
513 		memcpy(&bi->board_info, info, sizeof(*info));
514 		mutex_lock(&board_lock);
515 		list_add_tail(&bi->list, &board_list);
516 		list_for_each_entry(master, &spi_master_list, list)
517 			spi_match_master_to_boardinfo(master, &bi->board_info);
518 		mutex_unlock(&board_lock);
519 	}
520 
521 	return 0;
522 }
523 
524 /*-------------------------------------------------------------------------*/
525 
526 /**
527  * spi_pump_messages - kthread work function which processes spi message queue
528  * @work: pointer to kthread work struct contained in the master struct
529  *
530  * This function checks if there is any spi message in the queue that
531  * needs processing and if so call out to the driver to initialize hardware
532  * and transfer each message.
533  *
534  */
spi_pump_messages(struct kthread_work * work)535 static void spi_pump_messages(struct kthread_work *work)
536 {
537 	struct spi_master *master =
538 		container_of(work, struct spi_master, pump_messages);
539 	unsigned long flags;
540 	bool was_busy = false;
541 	int ret;
542 
543 	/* Lock queue and check for queue work */
544 	spin_lock_irqsave(&master->queue_lock, flags);
545 	if (list_empty(&master->queue) || !master->running) {
546 		if (!master->busy) {
547 			spin_unlock_irqrestore(&master->queue_lock, flags);
548 			return;
549 		}
550 		master->busy = false;
551 		spin_unlock_irqrestore(&master->queue_lock, flags);
552 		if (master->unprepare_transfer_hardware &&
553 		    master->unprepare_transfer_hardware(master))
554 			dev_err(&master->dev,
555 				"failed to unprepare transfer hardware\n");
556 		return;
557 	}
558 
559 	/* Make sure we are not already running a message */
560 	if (master->cur_msg) {
561 		spin_unlock_irqrestore(&master->queue_lock, flags);
562 		return;
563 	}
564 	/* Extract head of queue */
565 	master->cur_msg =
566 	    list_entry(master->queue.next, struct spi_message, queue);
567 
568 	list_del_init(&master->cur_msg->queue);
569 	if (master->busy)
570 		was_busy = true;
571 	else
572 		master->busy = true;
573 	spin_unlock_irqrestore(&master->queue_lock, flags);
574 
575 	if (!was_busy && master->prepare_transfer_hardware) {
576 		ret = master->prepare_transfer_hardware(master);
577 		if (ret) {
578 			dev_err(&master->dev,
579 				"failed to prepare transfer hardware\n");
580 			return;
581 		}
582 	}
583 
584 	ret = master->transfer_one_message(master, master->cur_msg);
585 	if (ret) {
586 		dev_err(&master->dev,
587 			"failed to transfer one message from queue\n");
588 		return;
589 	}
590 }
591 
spi_init_queue(struct spi_master * master)592 static int spi_init_queue(struct spi_master *master)
593 {
594 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
595 
596 	INIT_LIST_HEAD(&master->queue);
597 	spin_lock_init(&master->queue_lock);
598 
599 	master->running = false;
600 	master->busy = false;
601 
602 	init_kthread_worker(&master->kworker);
603 	master->kworker_task = kthread_run(kthread_worker_fn,
604 					   &master->kworker,
605 					   dev_name(&master->dev));
606 	if (IS_ERR(master->kworker_task)) {
607 		dev_err(&master->dev, "failed to create message pump task\n");
608 		return -ENOMEM;
609 	}
610 	init_kthread_work(&master->pump_messages, spi_pump_messages);
611 
612 	/*
613 	 * Master config will indicate if this controller should run the
614 	 * message pump with high (realtime) priority to reduce the transfer
615 	 * latency on the bus by minimising the delay between a transfer
616 	 * request and the scheduling of the message pump thread. Without this
617 	 * setting the message pump thread will remain at default priority.
618 	 */
619 	if (master->rt) {
620 		dev_info(&master->dev,
621 			"will run message pump with realtime priority\n");
622 		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
623 	}
624 
625 	return 0;
626 }
627 
628 /**
629  * spi_get_next_queued_message() - called by driver to check for queued
630  * messages
631  * @master: the master to check for queued messages
632  *
633  * If there are more messages in the queue, the next message is returned from
634  * this call.
635  */
spi_get_next_queued_message(struct spi_master * master)636 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
637 {
638 	struct spi_message *next;
639 	unsigned long flags;
640 
641 	/* get a pointer to the next message, if any */
642 	spin_lock_irqsave(&master->queue_lock, flags);
643 	if (list_empty(&master->queue))
644 		next = NULL;
645 	else
646 		next = list_entry(master->queue.next,
647 				  struct spi_message, queue);
648 	spin_unlock_irqrestore(&master->queue_lock, flags);
649 
650 	return next;
651 }
652 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
653 
654 /**
655  * spi_finalize_current_message() - the current message is complete
656  * @master: the master to return the message to
657  *
658  * Called by the driver to notify the core that the message in the front of the
659  * queue is complete and can be removed from the queue.
660  */
spi_finalize_current_message(struct spi_master * master)661 void spi_finalize_current_message(struct spi_master *master)
662 {
663 	struct spi_message *mesg;
664 	unsigned long flags;
665 
666 	spin_lock_irqsave(&master->queue_lock, flags);
667 	mesg = master->cur_msg;
668 	master->cur_msg = NULL;
669 
670 	queue_kthread_work(&master->kworker, &master->pump_messages);
671 	spin_unlock_irqrestore(&master->queue_lock, flags);
672 
673 	mesg->state = NULL;
674 	if (mesg->complete)
675 		mesg->complete(mesg->context);
676 }
677 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
678 
spi_start_queue(struct spi_master * master)679 static int spi_start_queue(struct spi_master *master)
680 {
681 	unsigned long flags;
682 
683 	spin_lock_irqsave(&master->queue_lock, flags);
684 
685 	if (master->running || master->busy) {
686 		spin_unlock_irqrestore(&master->queue_lock, flags);
687 		return -EBUSY;
688 	}
689 
690 	master->running = true;
691 	master->cur_msg = NULL;
692 	spin_unlock_irqrestore(&master->queue_lock, flags);
693 
694 	queue_kthread_work(&master->kworker, &master->pump_messages);
695 
696 	return 0;
697 }
698 
spi_stop_queue(struct spi_master * master)699 static int spi_stop_queue(struct spi_master *master)
700 {
701 	unsigned long flags;
702 	unsigned limit = 500;
703 	int ret = 0;
704 
705 	spin_lock_irqsave(&master->queue_lock, flags);
706 
707 	/*
708 	 * This is a bit lame, but is optimized for the common execution path.
709 	 * A wait_queue on the master->busy could be used, but then the common
710 	 * execution path (pump_messages) would be required to call wake_up or
711 	 * friends on every SPI message. Do this instead.
712 	 */
713 	while ((!list_empty(&master->queue) || master->busy) && limit--) {
714 		spin_unlock_irqrestore(&master->queue_lock, flags);
715 		msleep(10);
716 		spin_lock_irqsave(&master->queue_lock, flags);
717 	}
718 
719 	if (!list_empty(&master->queue) || master->busy)
720 		ret = -EBUSY;
721 	else
722 		master->running = false;
723 
724 	spin_unlock_irqrestore(&master->queue_lock, flags);
725 
726 	if (ret) {
727 		dev_warn(&master->dev,
728 			 "could not stop message queue\n");
729 		return ret;
730 	}
731 	return ret;
732 }
733 
spi_destroy_queue(struct spi_master * master)734 static int spi_destroy_queue(struct spi_master *master)
735 {
736 	int ret;
737 
738 	ret = spi_stop_queue(master);
739 
740 	/*
741 	 * flush_kthread_worker will block until all work is done.
742 	 * If the reason that stop_queue timed out is that the work will never
743 	 * finish, then it does no good to call flush/stop thread, so
744 	 * return anyway.
745 	 */
746 	if (ret) {
747 		dev_err(&master->dev, "problem destroying queue\n");
748 		return ret;
749 	}
750 
751 	flush_kthread_worker(&master->kworker);
752 	kthread_stop(master->kworker_task);
753 
754 	return 0;
755 }
756 
757 /**
758  * spi_queued_transfer - transfer function for queued transfers
759  * @spi: spi device which is requesting transfer
760  * @msg: spi message which is to handled is queued to driver queue
761  */
spi_queued_transfer(struct spi_device * spi,struct spi_message * msg)762 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
763 {
764 	struct spi_master *master = spi->master;
765 	unsigned long flags;
766 
767 	spin_lock_irqsave(&master->queue_lock, flags);
768 
769 	if (!master->running) {
770 		spin_unlock_irqrestore(&master->queue_lock, flags);
771 		return -ESHUTDOWN;
772 	}
773 	msg->actual_length = 0;
774 	msg->status = -EINPROGRESS;
775 
776 	list_add_tail(&msg->queue, &master->queue);
777 	if (master->running && !master->busy)
778 		queue_kthread_work(&master->kworker, &master->pump_messages);
779 
780 	spin_unlock_irqrestore(&master->queue_lock, flags);
781 	return 0;
782 }
783 
spi_master_initialize_queue(struct spi_master * master)784 static int spi_master_initialize_queue(struct spi_master *master)
785 {
786 	int ret;
787 
788 	master->queued = true;
789 	master->transfer = spi_queued_transfer;
790 
791 	/* Initialize and start queue */
792 	ret = spi_init_queue(master);
793 	if (ret) {
794 		dev_err(&master->dev, "problem initializing queue\n");
795 		goto err_init_queue;
796 	}
797 	ret = spi_start_queue(master);
798 	if (ret) {
799 		dev_err(&master->dev, "problem starting queue\n");
800 		goto err_start_queue;
801 	}
802 
803 	return 0;
804 
805 err_start_queue:
806 err_init_queue:
807 	spi_destroy_queue(master);
808 	return ret;
809 }
810 
811 /*-------------------------------------------------------------------------*/
812 
813 #if defined(CONFIG_OF)
814 /**
815  * of_register_spi_devices() - Register child devices onto the SPI bus
816  * @master:	Pointer to spi_master device
817  *
818  * Registers an spi_device for each child node of master node which has a 'reg'
819  * property.
820  */
of_register_spi_devices(struct spi_master * master)821 static void of_register_spi_devices(struct spi_master *master)
822 {
823 	struct spi_device *spi;
824 	struct device_node *nc;
825 	const __be32 *prop;
826 	char modalias[SPI_NAME_SIZE + 4];
827 	int rc;
828 	int len;
829 
830 	if (!master->dev.of_node)
831 		return;
832 
833 	for_each_available_child_of_node(master->dev.of_node, nc) {
834 		/* Alloc an spi_device */
835 		spi = spi_alloc_device(master);
836 		if (!spi) {
837 			dev_err(&master->dev, "spi_device alloc error for %s\n",
838 				nc->full_name);
839 			spi_dev_put(spi);
840 			continue;
841 		}
842 
843 		/* Select device driver */
844 		if (of_modalias_node(nc, spi->modalias,
845 				     sizeof(spi->modalias)) < 0) {
846 			dev_err(&master->dev, "cannot find modalias for %s\n",
847 				nc->full_name);
848 			spi_dev_put(spi);
849 			continue;
850 		}
851 
852 		/* Device address */
853 		prop = of_get_property(nc, "reg", &len);
854 		if (!prop || len < sizeof(*prop)) {
855 			dev_err(&master->dev, "%s has no 'reg' property\n",
856 				nc->full_name);
857 			spi_dev_put(spi);
858 			continue;
859 		}
860 		spi->chip_select = be32_to_cpup(prop);
861 
862 		/* Mode (clock phase/polarity/etc.) */
863 		if (of_find_property(nc, "spi-cpha", NULL))
864 			spi->mode |= SPI_CPHA;
865 		if (of_find_property(nc, "spi-cpol", NULL))
866 			spi->mode |= SPI_CPOL;
867 		if (of_find_property(nc, "spi-cs-high", NULL))
868 			spi->mode |= SPI_CS_HIGH;
869 		if (of_find_property(nc, "spi-3wire", NULL))
870 			spi->mode |= SPI_3WIRE;
871 
872 		/* Device speed */
873 		prop = of_get_property(nc, "spi-max-frequency", &len);
874 		if (!prop || len < sizeof(*prop)) {
875 			dev_err(&master->dev, "%s has no 'spi-max-frequency' property\n",
876 				nc->full_name);
877 			spi_dev_put(spi);
878 			continue;
879 		}
880 		spi->max_speed_hz = be32_to_cpup(prop);
881 
882 		/* IRQ */
883 		spi->irq = irq_of_parse_and_map(nc, 0);
884 
885 		/* Store a pointer to the node in the device structure */
886 		of_node_get(nc);
887 		spi->dev.of_node = nc;
888 
889 		/* Register the new device */
890 		snprintf(modalias, sizeof(modalias), "%s%s", SPI_MODULE_PREFIX,
891 			 spi->modalias);
892 		request_module(modalias);
893 		rc = spi_add_device(spi);
894 		if (rc) {
895 			dev_err(&master->dev, "spi_device register error %s\n",
896 				nc->full_name);
897 			spi_dev_put(spi);
898 		}
899 
900 	}
901 }
902 #else
of_register_spi_devices(struct spi_master * master)903 static void of_register_spi_devices(struct spi_master *master) { }
904 #endif
905 
906 #ifdef CONFIG_ACPI
acpi_spi_add_resource(struct acpi_resource * ares,void * data)907 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
908 {
909 	struct spi_device *spi = data;
910 
911 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
912 		struct acpi_resource_spi_serialbus *sb;
913 
914 		sb = &ares->data.spi_serial_bus;
915 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
916 			spi->chip_select = sb->device_selection;
917 			spi->max_speed_hz = sb->connection_speed;
918 
919 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
920 				spi->mode |= SPI_CPHA;
921 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
922 				spi->mode |= SPI_CPOL;
923 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
924 				spi->mode |= SPI_CS_HIGH;
925 		}
926 	} else if (spi->irq < 0) {
927 		struct resource r;
928 
929 		if (acpi_dev_resource_interrupt(ares, 0, &r))
930 			spi->irq = r.start;
931 	}
932 
933 	/* Always tell the ACPI core to skip this resource */
934 	return 1;
935 }
936 
acpi_spi_add_device(acpi_handle handle,u32 level,void * data,void ** return_value)937 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
938 				       void *data, void **return_value)
939 {
940 	struct spi_master *master = data;
941 	struct list_head resource_list;
942 	struct acpi_device *adev;
943 	struct spi_device *spi;
944 	int ret;
945 
946 	if (acpi_bus_get_device(handle, &adev))
947 		return AE_OK;
948 	if (acpi_bus_get_status(adev) || !adev->status.present)
949 		return AE_OK;
950 
951 	spi = spi_alloc_device(master);
952 	if (!spi) {
953 		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
954 			dev_name(&adev->dev));
955 		return AE_NO_MEMORY;
956 	}
957 
958 	ACPI_HANDLE_SET(&spi->dev, handle);
959 	spi->irq = -1;
960 
961 	INIT_LIST_HEAD(&resource_list);
962 	ret = acpi_dev_get_resources(adev, &resource_list,
963 				     acpi_spi_add_resource, spi);
964 	acpi_dev_free_resource_list(&resource_list);
965 
966 	if (ret < 0 || !spi->max_speed_hz) {
967 		spi_dev_put(spi);
968 		return AE_OK;
969 	}
970 
971 	strlcpy(spi->modalias, dev_name(&adev->dev), sizeof(spi->modalias));
972 	if (spi_add_device(spi)) {
973 		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
974 			dev_name(&adev->dev));
975 		spi_dev_put(spi);
976 	}
977 
978 	return AE_OK;
979 }
980 
acpi_register_spi_devices(struct spi_master * master)981 static void acpi_register_spi_devices(struct spi_master *master)
982 {
983 	acpi_status status;
984 	acpi_handle handle;
985 
986 	handle = ACPI_HANDLE(master->dev.parent);
987 	if (!handle)
988 		return;
989 
990 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
991 				     acpi_spi_add_device, NULL,
992 				     master, NULL);
993 	if (ACPI_FAILURE(status))
994 		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
995 }
996 #else
acpi_register_spi_devices(struct spi_master * master)997 static inline void acpi_register_spi_devices(struct spi_master *master) {}
998 #endif /* CONFIG_ACPI */
999 
spi_master_release(struct device * dev)1000 static void spi_master_release(struct device *dev)
1001 {
1002 	struct spi_master *master;
1003 
1004 	master = container_of(dev, struct spi_master, dev);
1005 	kfree(master);
1006 }
1007 
1008 static struct class spi_master_class = {
1009 	.name		= "spi_master",
1010 	.owner		= THIS_MODULE,
1011 	.dev_release	= spi_master_release,
1012 };
1013 
1014 
1015 
1016 /**
1017  * spi_alloc_master - allocate SPI master controller
1018  * @dev: the controller, possibly using the platform_bus
1019  * @size: how much zeroed driver-private data to allocate; the pointer to this
1020  *	memory is in the driver_data field of the returned device,
1021  *	accessible with spi_master_get_devdata().
1022  * Context: can sleep
1023  *
1024  * This call is used only by SPI master controller drivers, which are the
1025  * only ones directly touching chip registers.  It's how they allocate
1026  * an spi_master structure, prior to calling spi_register_master().
1027  *
1028  * This must be called from context that can sleep.  It returns the SPI
1029  * master structure on success, else NULL.
1030  *
1031  * The caller is responsible for assigning the bus number and initializing
1032  * the master's methods before calling spi_register_master(); and (after errors
1033  * adding the device) calling spi_master_put() and kfree() to prevent a memory
1034  * leak.
1035  */
spi_alloc_master(struct device * dev,unsigned size)1036 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1037 {
1038 	struct spi_master	*master;
1039 
1040 	if (!dev)
1041 		return NULL;
1042 
1043 	master = kzalloc(size + sizeof *master, GFP_KERNEL);
1044 	if (!master)
1045 		return NULL;
1046 
1047 	device_initialize(&master->dev);
1048 	master->bus_num = -1;
1049 	master->num_chipselect = 1;
1050 	master->dev.class = &spi_master_class;
1051 	master->dev.parent = get_device(dev);
1052 	spi_master_set_devdata(master, &master[1]);
1053 
1054 	return master;
1055 }
1056 EXPORT_SYMBOL_GPL(spi_alloc_master);
1057 
1058 #ifdef CONFIG_OF
of_spi_register_master(struct spi_master * master)1059 static int of_spi_register_master(struct spi_master *master)
1060 {
1061 	int nb, i, *cs;
1062 	struct device_node *np = master->dev.of_node;
1063 
1064 	if (!np)
1065 		return 0;
1066 
1067 	nb = of_gpio_named_count(np, "cs-gpios");
1068 	master->num_chipselect = max(nb, (int)master->num_chipselect);
1069 
1070 	/* Return error only for an incorrectly formed cs-gpios property */
1071 	if (nb == 0 || nb == -ENOENT)
1072 		return 0;
1073 	else if (nb < 0)
1074 		return nb;
1075 
1076 	cs = devm_kzalloc(&master->dev,
1077 			  sizeof(int) * master->num_chipselect,
1078 			  GFP_KERNEL);
1079 	master->cs_gpios = cs;
1080 
1081 	if (!master->cs_gpios)
1082 		return -ENOMEM;
1083 
1084 	for (i = 0; i < master->num_chipselect; i++)
1085 		cs[i] = -ENOENT;
1086 
1087 	for (i = 0; i < nb; i++)
1088 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1089 
1090 	return 0;
1091 }
1092 #else
of_spi_register_master(struct spi_master * master)1093 static int of_spi_register_master(struct spi_master *master)
1094 {
1095 	return 0;
1096 }
1097 #endif
1098 
1099 /**
1100  * spi_register_master - register SPI master controller
1101  * @master: initialized master, originally from spi_alloc_master()
1102  * Context: can sleep
1103  *
1104  * SPI master controllers connect to their drivers using some non-SPI bus,
1105  * such as the platform bus.  The final stage of probe() in that code
1106  * includes calling spi_register_master() to hook up to this SPI bus glue.
1107  *
1108  * SPI controllers use board specific (often SOC specific) bus numbers,
1109  * and board-specific addressing for SPI devices combines those numbers
1110  * with chip select numbers.  Since SPI does not directly support dynamic
1111  * device identification, boards need configuration tables telling which
1112  * chip is at which address.
1113  *
1114  * This must be called from context that can sleep.  It returns zero on
1115  * success, else a negative error code (dropping the master's refcount).
1116  * After a successful return, the caller is responsible for calling
1117  * spi_unregister_master().
1118  */
spi_register_master(struct spi_master * master)1119 int spi_register_master(struct spi_master *master)
1120 {
1121 	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1122 	struct device		*dev = master->dev.parent;
1123 	struct boardinfo	*bi;
1124 	int			status = -ENODEV;
1125 	int			dynamic = 0;
1126 
1127 	if (!dev)
1128 		return -ENODEV;
1129 
1130 	status = of_spi_register_master(master);
1131 	if (status)
1132 		return status;
1133 
1134 	/* even if it's just one always-selected device, there must
1135 	 * be at least one chipselect
1136 	 */
1137 	if (master->num_chipselect == 0)
1138 		return -EINVAL;
1139 
1140 	if ((master->bus_num < 0) && master->dev.of_node)
1141 		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1142 
1143 	/* convention:  dynamically assigned bus IDs count down from the max */
1144 	if (master->bus_num < 0) {
1145 		/* FIXME switch to an IDR based scheme, something like
1146 		 * I2C now uses, so we can't run out of "dynamic" IDs
1147 		 */
1148 		master->bus_num = atomic_dec_return(&dyn_bus_id);
1149 		dynamic = 1;
1150 	}
1151 
1152 	spin_lock_init(&master->bus_lock_spinlock);
1153 	mutex_init(&master->bus_lock_mutex);
1154 	master->bus_lock_flag = 0;
1155 
1156 	/* register the device, then userspace will see it.
1157 	 * registration fails if the bus ID is in use.
1158 	 */
1159 	dev_set_name(&master->dev, "spi%u", master->bus_num);
1160 	status = device_add(&master->dev);
1161 	if (status < 0)
1162 		goto done;
1163 	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1164 			dynamic ? " (dynamic)" : "");
1165 
1166 	/* If we're using a queued driver, start the queue */
1167 	if (master->transfer)
1168 		dev_info(dev, "master is unqueued, this is deprecated\n");
1169 	else {
1170 		status = spi_master_initialize_queue(master);
1171 		if (status) {
1172 			device_unregister(&master->dev);
1173 			goto done;
1174 		}
1175 	}
1176 
1177 	mutex_lock(&board_lock);
1178 	list_add_tail(&master->list, &spi_master_list);
1179 	list_for_each_entry(bi, &board_list, list)
1180 		spi_match_master_to_boardinfo(master, &bi->board_info);
1181 	mutex_unlock(&board_lock);
1182 
1183 	/* Register devices from the device tree and ACPI */
1184 	of_register_spi_devices(master);
1185 	acpi_register_spi_devices(master);
1186 done:
1187 	return status;
1188 }
1189 EXPORT_SYMBOL_GPL(spi_register_master);
1190 
__unregister(struct device * dev,void * null)1191 static int __unregister(struct device *dev, void *null)
1192 {
1193 	spi_unregister_device(to_spi_device(dev));
1194 	return 0;
1195 }
1196 
1197 /**
1198  * spi_unregister_master - unregister SPI master controller
1199  * @master: the master being unregistered
1200  * Context: can sleep
1201  *
1202  * This call is used only by SPI master controller drivers, which are the
1203  * only ones directly touching chip registers.
1204  *
1205  * This must be called from context that can sleep.
1206  */
spi_unregister_master(struct spi_master * master)1207 void spi_unregister_master(struct spi_master *master)
1208 {
1209 	int dummy;
1210 
1211 	if (master->queued) {
1212 		if (spi_destroy_queue(master))
1213 			dev_err(&master->dev, "queue remove failed\n");
1214 	}
1215 
1216 	mutex_lock(&board_lock);
1217 	list_del(&master->list);
1218 	mutex_unlock(&board_lock);
1219 
1220 	dummy = device_for_each_child(&master->dev, NULL, __unregister);
1221 	device_unregister(&master->dev);
1222 }
1223 EXPORT_SYMBOL_GPL(spi_unregister_master);
1224 
spi_master_suspend(struct spi_master * master)1225 int spi_master_suspend(struct spi_master *master)
1226 {
1227 	int ret;
1228 
1229 	/* Basically no-ops for non-queued masters */
1230 	if (!master->queued)
1231 		return 0;
1232 
1233 	ret = spi_stop_queue(master);
1234 	if (ret)
1235 		dev_err(&master->dev, "queue stop failed\n");
1236 
1237 	return ret;
1238 }
1239 EXPORT_SYMBOL_GPL(spi_master_suspend);
1240 
spi_master_resume(struct spi_master * master)1241 int spi_master_resume(struct spi_master *master)
1242 {
1243 	int ret;
1244 
1245 	if (!master->queued)
1246 		return 0;
1247 
1248 	ret = spi_start_queue(master);
1249 	if (ret)
1250 		dev_err(&master->dev, "queue restart failed\n");
1251 
1252 	return ret;
1253 }
1254 EXPORT_SYMBOL_GPL(spi_master_resume);
1255 
__spi_master_match(struct device * dev,const void * data)1256 static int __spi_master_match(struct device *dev, const void *data)
1257 {
1258 	struct spi_master *m;
1259 	const u16 *bus_num = data;
1260 
1261 	m = container_of(dev, struct spi_master, dev);
1262 	return m->bus_num == *bus_num;
1263 }
1264 
1265 /**
1266  * spi_busnum_to_master - look up master associated with bus_num
1267  * @bus_num: the master's bus number
1268  * Context: can sleep
1269  *
1270  * This call may be used with devices that are registered after
1271  * arch init time.  It returns a refcounted pointer to the relevant
1272  * spi_master (which the caller must release), or NULL if there is
1273  * no such master registered.
1274  */
spi_busnum_to_master(u16 bus_num)1275 struct spi_master *spi_busnum_to_master(u16 bus_num)
1276 {
1277 	struct device		*dev;
1278 	struct spi_master	*master = NULL;
1279 
1280 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
1281 				__spi_master_match);
1282 	if (dev)
1283 		master = container_of(dev, struct spi_master, dev);
1284 	/* reference got in class_find_device */
1285 	return master;
1286 }
1287 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1288 
1289 
1290 /*-------------------------------------------------------------------------*/
1291 
1292 /* Core methods for SPI master protocol drivers.  Some of the
1293  * other core methods are currently defined as inline functions.
1294  */
1295 
1296 /**
1297  * spi_setup - setup SPI mode and clock rate
1298  * @spi: the device whose settings are being modified
1299  * Context: can sleep, and no requests are queued to the device
1300  *
1301  * SPI protocol drivers may need to update the transfer mode if the
1302  * device doesn't work with its default.  They may likewise need
1303  * to update clock rates or word sizes from initial values.  This function
1304  * changes those settings, and must be called from a context that can sleep.
1305  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1306  * effect the next time the device is selected and data is transferred to
1307  * or from it.  When this function returns, the spi device is deselected.
1308  *
1309  * Note that this call will fail if the protocol driver specifies an option
1310  * that the underlying controller or its driver does not support.  For
1311  * example, not all hardware supports wire transfers using nine bit words,
1312  * LSB-first wire encoding, or active-high chipselects.
1313  */
spi_setup(struct spi_device * spi)1314 int spi_setup(struct spi_device *spi)
1315 {
1316 	unsigned	bad_bits;
1317 	int		status = 0;
1318 
1319 	/* help drivers fail *cleanly* when they need options
1320 	 * that aren't supported with their current master
1321 	 */
1322 	bad_bits = spi->mode & ~spi->master->mode_bits;
1323 	if (bad_bits) {
1324 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1325 			bad_bits);
1326 		return -EINVAL;
1327 	}
1328 
1329 	if (!spi->bits_per_word)
1330 		spi->bits_per_word = 8;
1331 
1332 	if (spi->master->setup)
1333 		status = spi->master->setup(spi);
1334 
1335 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
1336 				"%u bits/w, %u Hz max --> %d\n",
1337 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1338 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1339 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1340 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
1341 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
1342 			spi->bits_per_word, spi->max_speed_hz,
1343 			status);
1344 
1345 	return status;
1346 }
1347 EXPORT_SYMBOL_GPL(spi_setup);
1348 
__spi_async(struct spi_device * spi,struct spi_message * message)1349 static int __spi_async(struct spi_device *spi, struct spi_message *message)
1350 {
1351 	struct spi_master *master = spi->master;
1352 	struct spi_transfer *xfer;
1353 
1354 	/* Half-duplex links include original MicroWire, and ones with
1355 	 * only one data pin like SPI_3WIRE (switches direction) or where
1356 	 * either MOSI or MISO is missing.  They can also be caused by
1357 	 * software limitations.
1358 	 */
1359 	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1360 			|| (spi->mode & SPI_3WIRE)) {
1361 		unsigned flags = master->flags;
1362 
1363 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
1364 			if (xfer->rx_buf && xfer->tx_buf)
1365 				return -EINVAL;
1366 			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1367 				return -EINVAL;
1368 			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1369 				return -EINVAL;
1370 		}
1371 	}
1372 
1373 	/**
1374 	 * Set transfer bits_per_word and max speed as spi device default if
1375 	 * it is not set for this transfer.
1376 	 */
1377 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
1378 		if (!xfer->bits_per_word)
1379 			xfer->bits_per_word = spi->bits_per_word;
1380 		if (!xfer->speed_hz)
1381 			xfer->speed_hz = spi->max_speed_hz;
1382 		if (master->bits_per_word_mask) {
1383 			/* Only 32 bits fit in the mask */
1384 			if (xfer->bits_per_word > 32)
1385 				return -EINVAL;
1386 			if (!(master->bits_per_word_mask &
1387 					BIT(xfer->bits_per_word - 1)))
1388 				return -EINVAL;
1389 		}
1390 	}
1391 
1392 	message->spi = spi;
1393 	message->status = -EINPROGRESS;
1394 	return master->transfer(spi, message);
1395 }
1396 
1397 /**
1398  * spi_async - asynchronous SPI transfer
1399  * @spi: device with which data will be exchanged
1400  * @message: describes the data transfers, including completion callback
1401  * Context: any (irqs may be blocked, etc)
1402  *
1403  * This call may be used in_irq and other contexts which can't sleep,
1404  * as well as from task contexts which can sleep.
1405  *
1406  * The completion callback is invoked in a context which can't sleep.
1407  * Before that invocation, the value of message->status is undefined.
1408  * When the callback is issued, message->status holds either zero (to
1409  * indicate complete success) or a negative error code.  After that
1410  * callback returns, the driver which issued the transfer request may
1411  * deallocate the associated memory; it's no longer in use by any SPI
1412  * core or controller driver code.
1413  *
1414  * Note that although all messages to a spi_device are handled in
1415  * FIFO order, messages may go to different devices in other orders.
1416  * Some device might be higher priority, or have various "hard" access
1417  * time requirements, for example.
1418  *
1419  * On detection of any fault during the transfer, processing of
1420  * the entire message is aborted, and the device is deselected.
1421  * Until returning from the associated message completion callback,
1422  * no other spi_message queued to that device will be processed.
1423  * (This rule applies equally to all the synchronous transfer calls,
1424  * which are wrappers around this core asynchronous primitive.)
1425  */
spi_async(struct spi_device * spi,struct spi_message * message)1426 int spi_async(struct spi_device *spi, struct spi_message *message)
1427 {
1428 	struct spi_master *master = spi->master;
1429 	int ret;
1430 	unsigned long flags;
1431 
1432 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1433 
1434 	if (master->bus_lock_flag)
1435 		ret = -EBUSY;
1436 	else
1437 		ret = __spi_async(spi, message);
1438 
1439 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1440 
1441 	return ret;
1442 }
1443 EXPORT_SYMBOL_GPL(spi_async);
1444 
1445 /**
1446  * spi_async_locked - version of spi_async with exclusive bus usage
1447  * @spi: device with which data will be exchanged
1448  * @message: describes the data transfers, including completion callback
1449  * Context: any (irqs may be blocked, etc)
1450  *
1451  * This call may be used in_irq and other contexts which can't sleep,
1452  * as well as from task contexts which can sleep.
1453  *
1454  * The completion callback is invoked in a context which can't sleep.
1455  * Before that invocation, the value of message->status is undefined.
1456  * When the callback is issued, message->status holds either zero (to
1457  * indicate complete success) or a negative error code.  After that
1458  * callback returns, the driver which issued the transfer request may
1459  * deallocate the associated memory; it's no longer in use by any SPI
1460  * core or controller driver code.
1461  *
1462  * Note that although all messages to a spi_device are handled in
1463  * FIFO order, messages may go to different devices in other orders.
1464  * Some device might be higher priority, or have various "hard" access
1465  * time requirements, for example.
1466  *
1467  * On detection of any fault during the transfer, processing of
1468  * the entire message is aborted, and the device is deselected.
1469  * Until returning from the associated message completion callback,
1470  * no other spi_message queued to that device will be processed.
1471  * (This rule applies equally to all the synchronous transfer calls,
1472  * which are wrappers around this core asynchronous primitive.)
1473  */
spi_async_locked(struct spi_device * spi,struct spi_message * message)1474 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
1475 {
1476 	struct spi_master *master = spi->master;
1477 	int ret;
1478 	unsigned long flags;
1479 
1480 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1481 
1482 	ret = __spi_async(spi, message);
1483 
1484 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1485 
1486 	return ret;
1487 
1488 }
1489 EXPORT_SYMBOL_GPL(spi_async_locked);
1490 
1491 
1492 /*-------------------------------------------------------------------------*/
1493 
1494 /* Utility methods for SPI master protocol drivers, layered on
1495  * top of the core.  Some other utility methods are defined as
1496  * inline functions.
1497  */
1498 
spi_complete(void * arg)1499 static void spi_complete(void *arg)
1500 {
1501 	complete(arg);
1502 }
1503 
__spi_sync(struct spi_device * spi,struct spi_message * message,int bus_locked)1504 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
1505 		      int bus_locked)
1506 {
1507 	DECLARE_COMPLETION_ONSTACK(done);
1508 	int status;
1509 	struct spi_master *master = spi->master;
1510 
1511 	message->complete = spi_complete;
1512 	message->context = &done;
1513 
1514 	if (!bus_locked)
1515 		mutex_lock(&master->bus_lock_mutex);
1516 
1517 	status = spi_async_locked(spi, message);
1518 
1519 	if (!bus_locked)
1520 		mutex_unlock(&master->bus_lock_mutex);
1521 
1522 	if (status == 0) {
1523 		wait_for_completion(&done);
1524 		status = message->status;
1525 	}
1526 	message->context = NULL;
1527 	return status;
1528 }
1529 
1530 /**
1531  * spi_sync - blocking/synchronous SPI data transfers
1532  * @spi: device with which data will be exchanged
1533  * @message: describes the data transfers
1534  * Context: can sleep
1535  *
1536  * This call may only be used from a context that may sleep.  The sleep
1537  * is non-interruptible, and has no timeout.  Low-overhead controller
1538  * drivers may DMA directly into and out of the message buffers.
1539  *
1540  * Note that the SPI device's chip select is active during the message,
1541  * and then is normally disabled between messages.  Drivers for some
1542  * frequently-used devices may want to minimize costs of selecting a chip,
1543  * by leaving it selected in anticipation that the next message will go
1544  * to the same chip.  (That may increase power usage.)
1545  *
1546  * Also, the caller is guaranteeing that the memory associated with the
1547  * message will not be freed before this call returns.
1548  *
1549  * It returns zero on success, else a negative error code.
1550  */
spi_sync(struct spi_device * spi,struct spi_message * message)1551 int spi_sync(struct spi_device *spi, struct spi_message *message)
1552 {
1553 	return __spi_sync(spi, message, 0);
1554 }
1555 EXPORT_SYMBOL_GPL(spi_sync);
1556 
1557 /**
1558  * spi_sync_locked - version of spi_sync with exclusive bus usage
1559  * @spi: device with which data will be exchanged
1560  * @message: describes the data transfers
1561  * Context: can sleep
1562  *
1563  * This call may only be used from a context that may sleep.  The sleep
1564  * is non-interruptible, and has no timeout.  Low-overhead controller
1565  * drivers may DMA directly into and out of the message buffers.
1566  *
1567  * This call should be used by drivers that require exclusive access to the
1568  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
1569  * be released by a spi_bus_unlock call when the exclusive access is over.
1570  *
1571  * It returns zero on success, else a negative error code.
1572  */
spi_sync_locked(struct spi_device * spi,struct spi_message * message)1573 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
1574 {
1575 	return __spi_sync(spi, message, 1);
1576 }
1577 EXPORT_SYMBOL_GPL(spi_sync_locked);
1578 
1579 /**
1580  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
1581  * @master: SPI bus master that should be locked for exclusive bus access
1582  * Context: can sleep
1583  *
1584  * This call may only be used from a context that may sleep.  The sleep
1585  * is non-interruptible, and has no timeout.
1586  *
1587  * This call should be used by drivers that require exclusive access to the
1588  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
1589  * exclusive access is over. Data transfer must be done by spi_sync_locked
1590  * and spi_async_locked calls when the SPI bus lock is held.
1591  *
1592  * It returns zero on success, else a negative error code.
1593  */
spi_bus_lock(struct spi_master * master)1594 int spi_bus_lock(struct spi_master *master)
1595 {
1596 	unsigned long flags;
1597 
1598 	mutex_lock(&master->bus_lock_mutex);
1599 
1600 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1601 	master->bus_lock_flag = 1;
1602 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1603 
1604 	/* mutex remains locked until spi_bus_unlock is called */
1605 
1606 	return 0;
1607 }
1608 EXPORT_SYMBOL_GPL(spi_bus_lock);
1609 
1610 /**
1611  * spi_bus_unlock - release the lock for exclusive SPI bus usage
1612  * @master: SPI bus master that was locked for exclusive bus access
1613  * Context: can sleep
1614  *
1615  * This call may only be used from a context that may sleep.  The sleep
1616  * is non-interruptible, and has no timeout.
1617  *
1618  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
1619  * call.
1620  *
1621  * It returns zero on success, else a negative error code.
1622  */
spi_bus_unlock(struct spi_master * master)1623 int spi_bus_unlock(struct spi_master *master)
1624 {
1625 	master->bus_lock_flag = 0;
1626 
1627 	mutex_unlock(&master->bus_lock_mutex);
1628 
1629 	return 0;
1630 }
1631 EXPORT_SYMBOL_GPL(spi_bus_unlock);
1632 
1633 /* portable code must never pass more than 32 bytes */
1634 #define	SPI_BUFSIZ	max(32,SMP_CACHE_BYTES)
1635 
1636 static u8	*buf;
1637 
1638 /**
1639  * spi_write_then_read - SPI synchronous write followed by read
1640  * @spi: device with which data will be exchanged
1641  * @txbuf: data to be written (need not be dma-safe)
1642  * @n_tx: size of txbuf, in bytes
1643  * @rxbuf: buffer into which data will be read (need not be dma-safe)
1644  * @n_rx: size of rxbuf, in bytes
1645  * Context: can sleep
1646  *
1647  * This performs a half duplex MicroWire style transaction with the
1648  * device, sending txbuf and then reading rxbuf.  The return value
1649  * is zero for success, else a negative errno status code.
1650  * This call may only be used from a context that may sleep.
1651  *
1652  * Parameters to this routine are always copied using a small buffer;
1653  * portable code should never use this for more than 32 bytes.
1654  * Performance-sensitive or bulk transfer code should instead use
1655  * spi_{async,sync}() calls with dma-safe buffers.
1656  */
spi_write_then_read(struct spi_device * spi,const void * txbuf,unsigned n_tx,void * rxbuf,unsigned n_rx)1657 int spi_write_then_read(struct spi_device *spi,
1658 		const void *txbuf, unsigned n_tx,
1659 		void *rxbuf, unsigned n_rx)
1660 {
1661 	static DEFINE_MUTEX(lock);
1662 
1663 	int			status;
1664 	struct spi_message	message;
1665 	struct spi_transfer	x[2];
1666 	u8			*local_buf;
1667 
1668 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
1669 	 * copying here, (as a pure convenience thing), but we can
1670 	 * keep heap costs out of the hot path unless someone else is
1671 	 * using the pre-allocated buffer or the transfer is too large.
1672 	 */
1673 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
1674 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
1675 				    GFP_KERNEL | GFP_DMA);
1676 		if (!local_buf)
1677 			return -ENOMEM;
1678 	} else {
1679 		local_buf = buf;
1680 	}
1681 
1682 	spi_message_init(&message);
1683 	memset(x, 0, sizeof x);
1684 	if (n_tx) {
1685 		x[0].len = n_tx;
1686 		spi_message_add_tail(&x[0], &message);
1687 	}
1688 	if (n_rx) {
1689 		x[1].len = n_rx;
1690 		spi_message_add_tail(&x[1], &message);
1691 	}
1692 
1693 	memcpy(local_buf, txbuf, n_tx);
1694 	x[0].tx_buf = local_buf;
1695 	x[1].rx_buf = local_buf + n_tx;
1696 
1697 	/* do the i/o */
1698 	status = spi_sync(spi, &message);
1699 	if (status == 0)
1700 		memcpy(rxbuf, x[1].rx_buf, n_rx);
1701 
1702 	if (x[0].tx_buf == buf)
1703 		mutex_unlock(&lock);
1704 	else
1705 		kfree(local_buf);
1706 
1707 	return status;
1708 }
1709 EXPORT_SYMBOL_GPL(spi_write_then_read);
1710 
1711 /*-------------------------------------------------------------------------*/
1712 
spi_init(void)1713 static int __init spi_init(void)
1714 {
1715 	int	status;
1716 
1717 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1718 	if (!buf) {
1719 		status = -ENOMEM;
1720 		goto err0;
1721 	}
1722 
1723 	status = bus_register(&spi_bus_type);
1724 	if (status < 0)
1725 		goto err1;
1726 
1727 	status = class_register(&spi_master_class);
1728 	if (status < 0)
1729 		goto err2;
1730 	return 0;
1731 
1732 err2:
1733 	bus_unregister(&spi_bus_type);
1734 err1:
1735 	kfree(buf);
1736 	buf = NULL;
1737 err0:
1738 	return status;
1739 }
1740 
1741 /* board_info is normally registered in arch_initcall(),
1742  * but even essential drivers wait till later
1743  *
1744  * REVISIT only boardinfo really needs static linking. the rest (device and
1745  * driver registration) _could_ be dynamically linked (modular) ... costs
1746  * include needing to have boardinfo data structures be much more public.
1747  */
1748 postcore_initcall(spi_init);
1749 
1750