1 /*
2 * SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/kmod.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/cache.h>
27 #include <linux/mutex.h>
28 #include <linux/of_device.h>
29 #include <linux/of_irq.h>
30 #include <linux/slab.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/spi/spi.h>
33 #include <linux/of_gpio.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/export.h>
36 #include <linux/sched/rt.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/ioport.h>
40 #include <linux/acpi.h>
41
spidev_release(struct device * dev)42 static void spidev_release(struct device *dev)
43 {
44 struct spi_device *spi = to_spi_device(dev);
45
46 /* spi masters may cleanup for released devices */
47 if (spi->master->cleanup)
48 spi->master->cleanup(spi);
49
50 spi_master_put(spi->master);
51 kfree(spi);
52 }
53
54 static ssize_t
modalias_show(struct device * dev,struct device_attribute * a,char * buf)55 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
56 {
57 const struct spi_device *spi = to_spi_device(dev);
58
59 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
60 }
61
62 static struct device_attribute spi_dev_attrs[] = {
63 __ATTR_RO(modalias),
64 __ATTR_NULL,
65 };
66
67 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
68 * and the sysfs version makes coldplug work too.
69 */
70
spi_match_id(const struct spi_device_id * id,const struct spi_device * sdev)71 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
72 const struct spi_device *sdev)
73 {
74 while (id->name[0]) {
75 if (!strcmp(sdev->modalias, id->name))
76 return id;
77 id++;
78 }
79 return NULL;
80 }
81
spi_get_device_id(const struct spi_device * sdev)82 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
83 {
84 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
85
86 return spi_match_id(sdrv->id_table, sdev);
87 }
88 EXPORT_SYMBOL_GPL(spi_get_device_id);
89
spi_match_device(struct device * dev,struct device_driver * drv)90 static int spi_match_device(struct device *dev, struct device_driver *drv)
91 {
92 const struct spi_device *spi = to_spi_device(dev);
93 const struct spi_driver *sdrv = to_spi_driver(drv);
94
95 /* Attempt an OF style match */
96 if (of_driver_match_device(dev, drv))
97 return 1;
98
99 /* Then try ACPI */
100 if (acpi_driver_match_device(dev, drv))
101 return 1;
102
103 if (sdrv->id_table)
104 return !!spi_match_id(sdrv->id_table, spi);
105
106 return strcmp(spi->modalias, drv->name) == 0;
107 }
108
spi_uevent(struct device * dev,struct kobj_uevent_env * env)109 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
110 {
111 const struct spi_device *spi = to_spi_device(dev);
112
113 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
114 return 0;
115 }
116
117 #ifdef CONFIG_PM_SLEEP
spi_legacy_suspend(struct device * dev,pm_message_t message)118 static int spi_legacy_suspend(struct device *dev, pm_message_t message)
119 {
120 int value = 0;
121 struct spi_driver *drv = to_spi_driver(dev->driver);
122
123 /* suspend will stop irqs and dma; no more i/o */
124 if (drv) {
125 if (drv->suspend)
126 value = drv->suspend(to_spi_device(dev), message);
127 else
128 dev_dbg(dev, "... can't suspend\n");
129 }
130 return value;
131 }
132
spi_legacy_resume(struct device * dev)133 static int spi_legacy_resume(struct device *dev)
134 {
135 int value = 0;
136 struct spi_driver *drv = to_spi_driver(dev->driver);
137
138 /* resume may restart the i/o queue */
139 if (drv) {
140 if (drv->resume)
141 value = drv->resume(to_spi_device(dev));
142 else
143 dev_dbg(dev, "... can't resume\n");
144 }
145 return value;
146 }
147
spi_pm_suspend(struct device * dev)148 static int spi_pm_suspend(struct device *dev)
149 {
150 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
151
152 if (pm)
153 return pm_generic_suspend(dev);
154 else
155 return spi_legacy_suspend(dev, PMSG_SUSPEND);
156 }
157
spi_pm_resume(struct device * dev)158 static int spi_pm_resume(struct device *dev)
159 {
160 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
161
162 if (pm)
163 return pm_generic_resume(dev);
164 else
165 return spi_legacy_resume(dev);
166 }
167
spi_pm_freeze(struct device * dev)168 static int spi_pm_freeze(struct device *dev)
169 {
170 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
171
172 if (pm)
173 return pm_generic_freeze(dev);
174 else
175 return spi_legacy_suspend(dev, PMSG_FREEZE);
176 }
177
spi_pm_thaw(struct device * dev)178 static int spi_pm_thaw(struct device *dev)
179 {
180 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
181
182 if (pm)
183 return pm_generic_thaw(dev);
184 else
185 return spi_legacy_resume(dev);
186 }
187
spi_pm_poweroff(struct device * dev)188 static int spi_pm_poweroff(struct device *dev)
189 {
190 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
191
192 if (pm)
193 return pm_generic_poweroff(dev);
194 else
195 return spi_legacy_suspend(dev, PMSG_HIBERNATE);
196 }
197
spi_pm_restore(struct device * dev)198 static int spi_pm_restore(struct device *dev)
199 {
200 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
201
202 if (pm)
203 return pm_generic_restore(dev);
204 else
205 return spi_legacy_resume(dev);
206 }
207 #else
208 #define spi_pm_suspend NULL
209 #define spi_pm_resume NULL
210 #define spi_pm_freeze NULL
211 #define spi_pm_thaw NULL
212 #define spi_pm_poweroff NULL
213 #define spi_pm_restore NULL
214 #endif
215
216 static const struct dev_pm_ops spi_pm = {
217 .suspend = spi_pm_suspend,
218 .resume = spi_pm_resume,
219 .freeze = spi_pm_freeze,
220 .thaw = spi_pm_thaw,
221 .poweroff = spi_pm_poweroff,
222 .restore = spi_pm_restore,
223 SET_RUNTIME_PM_OPS(
224 pm_generic_runtime_suspend,
225 pm_generic_runtime_resume,
226 pm_generic_runtime_idle
227 )
228 };
229
230 struct bus_type spi_bus_type = {
231 .name = "spi",
232 .dev_attrs = spi_dev_attrs,
233 .match = spi_match_device,
234 .uevent = spi_uevent,
235 .pm = &spi_pm,
236 };
237 EXPORT_SYMBOL_GPL(spi_bus_type);
238
239
spi_drv_probe(struct device * dev)240 static int spi_drv_probe(struct device *dev)
241 {
242 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
243
244 return sdrv->probe(to_spi_device(dev));
245 }
246
spi_drv_remove(struct device * dev)247 static int spi_drv_remove(struct device *dev)
248 {
249 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
250
251 return sdrv->remove(to_spi_device(dev));
252 }
253
spi_drv_shutdown(struct device * dev)254 static void spi_drv_shutdown(struct device *dev)
255 {
256 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
257
258 sdrv->shutdown(to_spi_device(dev));
259 }
260
261 /**
262 * spi_register_driver - register a SPI driver
263 * @sdrv: the driver to register
264 * Context: can sleep
265 */
spi_register_driver(struct spi_driver * sdrv)266 int spi_register_driver(struct spi_driver *sdrv)
267 {
268 sdrv->driver.bus = &spi_bus_type;
269 if (sdrv->probe)
270 sdrv->driver.probe = spi_drv_probe;
271 if (sdrv->remove)
272 sdrv->driver.remove = spi_drv_remove;
273 if (sdrv->shutdown)
274 sdrv->driver.shutdown = spi_drv_shutdown;
275 return driver_register(&sdrv->driver);
276 }
277 EXPORT_SYMBOL_GPL(spi_register_driver);
278
279 /*-------------------------------------------------------------------------*/
280
281 /* SPI devices should normally not be created by SPI device drivers; that
282 * would make them board-specific. Similarly with SPI master drivers.
283 * Device registration normally goes into like arch/.../mach.../board-YYY.c
284 * with other readonly (flashable) information about mainboard devices.
285 */
286
287 struct boardinfo {
288 struct list_head list;
289 struct spi_board_info board_info;
290 };
291
292 static LIST_HEAD(board_list);
293 static LIST_HEAD(spi_master_list);
294
295 /*
296 * Used to protect add/del opertion for board_info list and
297 * spi_master list, and their matching process
298 */
299 static DEFINE_MUTEX(board_lock);
300
301 /**
302 * spi_alloc_device - Allocate a new SPI device
303 * @master: Controller to which device is connected
304 * Context: can sleep
305 *
306 * Allows a driver to allocate and initialize a spi_device without
307 * registering it immediately. This allows a driver to directly
308 * fill the spi_device with device parameters before calling
309 * spi_add_device() on it.
310 *
311 * Caller is responsible to call spi_add_device() on the returned
312 * spi_device structure to add it to the SPI master. If the caller
313 * needs to discard the spi_device without adding it, then it should
314 * call spi_dev_put() on it.
315 *
316 * Returns a pointer to the new device, or NULL.
317 */
spi_alloc_device(struct spi_master * master)318 struct spi_device *spi_alloc_device(struct spi_master *master)
319 {
320 struct spi_device *spi;
321 struct device *dev = master->dev.parent;
322
323 if (!spi_master_get(master))
324 return NULL;
325
326 spi = kzalloc(sizeof *spi, GFP_KERNEL);
327 if (!spi) {
328 dev_err(dev, "cannot alloc spi_device\n");
329 spi_master_put(master);
330 return NULL;
331 }
332
333 spi->master = master;
334 spi->dev.parent = &master->dev;
335 spi->dev.bus = &spi_bus_type;
336 spi->dev.release = spidev_release;
337 spi->cs_gpio = -ENOENT;
338 device_initialize(&spi->dev);
339 return spi;
340 }
341 EXPORT_SYMBOL_GPL(spi_alloc_device);
342
343 /**
344 * spi_add_device - Add spi_device allocated with spi_alloc_device
345 * @spi: spi_device to register
346 *
347 * Companion function to spi_alloc_device. Devices allocated with
348 * spi_alloc_device can be added onto the spi bus with this function.
349 *
350 * Returns 0 on success; negative errno on failure
351 */
spi_add_device(struct spi_device * spi)352 int spi_add_device(struct spi_device *spi)
353 {
354 static DEFINE_MUTEX(spi_add_lock);
355 struct spi_master *master = spi->master;
356 struct device *dev = master->dev.parent;
357 struct device *d;
358 int status;
359
360 /* Chipselects are numbered 0..max; validate. */
361 if (spi->chip_select >= master->num_chipselect) {
362 dev_err(dev, "cs%d >= max %d\n",
363 spi->chip_select,
364 master->num_chipselect);
365 return -EINVAL;
366 }
367
368 /* Set the bus ID string */
369 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
370 spi->chip_select);
371
372
373 /* We need to make sure there's no other device with this
374 * chipselect **BEFORE** we call setup(), else we'll trash
375 * its configuration. Lock against concurrent add() calls.
376 */
377 mutex_lock(&spi_add_lock);
378
379 d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
380 if (d != NULL) {
381 dev_err(dev, "chipselect %d already in use\n",
382 spi->chip_select);
383 put_device(d);
384 status = -EBUSY;
385 goto done;
386 }
387
388 if (master->cs_gpios)
389 spi->cs_gpio = master->cs_gpios[spi->chip_select];
390
391 /* Drivers may modify this initial i/o setup, but will
392 * normally rely on the device being setup. Devices
393 * using SPI_CS_HIGH can't coexist well otherwise...
394 */
395 status = spi_setup(spi);
396 if (status < 0) {
397 dev_err(dev, "can't setup %s, status %d\n",
398 dev_name(&spi->dev), status);
399 goto done;
400 }
401
402 /* Device may be bound to an active driver when this returns */
403 status = device_add(&spi->dev);
404 if (status < 0)
405 dev_err(dev, "can't add %s, status %d\n",
406 dev_name(&spi->dev), status);
407 else
408 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
409
410 done:
411 mutex_unlock(&spi_add_lock);
412 return status;
413 }
414 EXPORT_SYMBOL_GPL(spi_add_device);
415
416 /**
417 * spi_new_device - instantiate one new SPI device
418 * @master: Controller to which device is connected
419 * @chip: Describes the SPI device
420 * Context: can sleep
421 *
422 * On typical mainboards, this is purely internal; and it's not needed
423 * after board init creates the hard-wired devices. Some development
424 * platforms may not be able to use spi_register_board_info though, and
425 * this is exported so that for example a USB or parport based adapter
426 * driver could add devices (which it would learn about out-of-band).
427 *
428 * Returns the new device, or NULL.
429 */
spi_new_device(struct spi_master * master,struct spi_board_info * chip)430 struct spi_device *spi_new_device(struct spi_master *master,
431 struct spi_board_info *chip)
432 {
433 struct spi_device *proxy;
434 int status;
435
436 /* NOTE: caller did any chip->bus_num checks necessary.
437 *
438 * Also, unless we change the return value convention to use
439 * error-or-pointer (not NULL-or-pointer), troubleshootability
440 * suggests syslogged diagnostics are best here (ugh).
441 */
442
443 proxy = spi_alloc_device(master);
444 if (!proxy)
445 return NULL;
446
447 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
448
449 proxy->chip_select = chip->chip_select;
450 proxy->max_speed_hz = chip->max_speed_hz;
451 proxy->mode = chip->mode;
452 proxy->irq = chip->irq;
453 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
454 proxy->dev.platform_data = (void *) chip->platform_data;
455 proxy->controller_data = chip->controller_data;
456 proxy->controller_state = NULL;
457
458 status = spi_add_device(proxy);
459 if (status < 0) {
460 spi_dev_put(proxy);
461 return NULL;
462 }
463
464 return proxy;
465 }
466 EXPORT_SYMBOL_GPL(spi_new_device);
467
spi_match_master_to_boardinfo(struct spi_master * master,struct spi_board_info * bi)468 static void spi_match_master_to_boardinfo(struct spi_master *master,
469 struct spi_board_info *bi)
470 {
471 struct spi_device *dev;
472
473 if (master->bus_num != bi->bus_num)
474 return;
475
476 dev = spi_new_device(master, bi);
477 if (!dev)
478 dev_err(master->dev.parent, "can't create new device for %s\n",
479 bi->modalias);
480 }
481
482 /**
483 * spi_register_board_info - register SPI devices for a given board
484 * @info: array of chip descriptors
485 * @n: how many descriptors are provided
486 * Context: can sleep
487 *
488 * Board-specific early init code calls this (probably during arch_initcall)
489 * with segments of the SPI device table. Any device nodes are created later,
490 * after the relevant parent SPI controller (bus_num) is defined. We keep
491 * this table of devices forever, so that reloading a controller driver will
492 * not make Linux forget about these hard-wired devices.
493 *
494 * Other code can also call this, e.g. a particular add-on board might provide
495 * SPI devices through its expansion connector, so code initializing that board
496 * would naturally declare its SPI devices.
497 *
498 * The board info passed can safely be __initdata ... but be careful of
499 * any embedded pointers (platform_data, etc), they're copied as-is.
500 */
spi_register_board_info(struct spi_board_info const * info,unsigned n)501 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
502 {
503 struct boardinfo *bi;
504 int i;
505
506 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
507 if (!bi)
508 return -ENOMEM;
509
510 for (i = 0; i < n; i++, bi++, info++) {
511 struct spi_master *master;
512
513 memcpy(&bi->board_info, info, sizeof(*info));
514 mutex_lock(&board_lock);
515 list_add_tail(&bi->list, &board_list);
516 list_for_each_entry(master, &spi_master_list, list)
517 spi_match_master_to_boardinfo(master, &bi->board_info);
518 mutex_unlock(&board_lock);
519 }
520
521 return 0;
522 }
523
524 /*-------------------------------------------------------------------------*/
525
526 /**
527 * spi_pump_messages - kthread work function which processes spi message queue
528 * @work: pointer to kthread work struct contained in the master struct
529 *
530 * This function checks if there is any spi message in the queue that
531 * needs processing and if so call out to the driver to initialize hardware
532 * and transfer each message.
533 *
534 */
spi_pump_messages(struct kthread_work * work)535 static void spi_pump_messages(struct kthread_work *work)
536 {
537 struct spi_master *master =
538 container_of(work, struct spi_master, pump_messages);
539 unsigned long flags;
540 bool was_busy = false;
541 int ret;
542
543 /* Lock queue and check for queue work */
544 spin_lock_irqsave(&master->queue_lock, flags);
545 if (list_empty(&master->queue) || !master->running) {
546 if (!master->busy) {
547 spin_unlock_irqrestore(&master->queue_lock, flags);
548 return;
549 }
550 master->busy = false;
551 spin_unlock_irqrestore(&master->queue_lock, flags);
552 if (master->unprepare_transfer_hardware &&
553 master->unprepare_transfer_hardware(master))
554 dev_err(&master->dev,
555 "failed to unprepare transfer hardware\n");
556 return;
557 }
558
559 /* Make sure we are not already running a message */
560 if (master->cur_msg) {
561 spin_unlock_irqrestore(&master->queue_lock, flags);
562 return;
563 }
564 /* Extract head of queue */
565 master->cur_msg =
566 list_entry(master->queue.next, struct spi_message, queue);
567
568 list_del_init(&master->cur_msg->queue);
569 if (master->busy)
570 was_busy = true;
571 else
572 master->busy = true;
573 spin_unlock_irqrestore(&master->queue_lock, flags);
574
575 if (!was_busy && master->prepare_transfer_hardware) {
576 ret = master->prepare_transfer_hardware(master);
577 if (ret) {
578 dev_err(&master->dev,
579 "failed to prepare transfer hardware\n");
580 return;
581 }
582 }
583
584 ret = master->transfer_one_message(master, master->cur_msg);
585 if (ret) {
586 dev_err(&master->dev,
587 "failed to transfer one message from queue\n");
588 return;
589 }
590 }
591
spi_init_queue(struct spi_master * master)592 static int spi_init_queue(struct spi_master *master)
593 {
594 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
595
596 INIT_LIST_HEAD(&master->queue);
597 spin_lock_init(&master->queue_lock);
598
599 master->running = false;
600 master->busy = false;
601
602 init_kthread_worker(&master->kworker);
603 master->kworker_task = kthread_run(kthread_worker_fn,
604 &master->kworker,
605 dev_name(&master->dev));
606 if (IS_ERR(master->kworker_task)) {
607 dev_err(&master->dev, "failed to create message pump task\n");
608 return -ENOMEM;
609 }
610 init_kthread_work(&master->pump_messages, spi_pump_messages);
611
612 /*
613 * Master config will indicate if this controller should run the
614 * message pump with high (realtime) priority to reduce the transfer
615 * latency on the bus by minimising the delay between a transfer
616 * request and the scheduling of the message pump thread. Without this
617 * setting the message pump thread will remain at default priority.
618 */
619 if (master->rt) {
620 dev_info(&master->dev,
621 "will run message pump with realtime priority\n");
622 sched_setscheduler(master->kworker_task, SCHED_FIFO, ¶m);
623 }
624
625 return 0;
626 }
627
628 /**
629 * spi_get_next_queued_message() - called by driver to check for queued
630 * messages
631 * @master: the master to check for queued messages
632 *
633 * If there are more messages in the queue, the next message is returned from
634 * this call.
635 */
spi_get_next_queued_message(struct spi_master * master)636 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
637 {
638 struct spi_message *next;
639 unsigned long flags;
640
641 /* get a pointer to the next message, if any */
642 spin_lock_irqsave(&master->queue_lock, flags);
643 if (list_empty(&master->queue))
644 next = NULL;
645 else
646 next = list_entry(master->queue.next,
647 struct spi_message, queue);
648 spin_unlock_irqrestore(&master->queue_lock, flags);
649
650 return next;
651 }
652 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
653
654 /**
655 * spi_finalize_current_message() - the current message is complete
656 * @master: the master to return the message to
657 *
658 * Called by the driver to notify the core that the message in the front of the
659 * queue is complete and can be removed from the queue.
660 */
spi_finalize_current_message(struct spi_master * master)661 void spi_finalize_current_message(struct spi_master *master)
662 {
663 struct spi_message *mesg;
664 unsigned long flags;
665
666 spin_lock_irqsave(&master->queue_lock, flags);
667 mesg = master->cur_msg;
668 master->cur_msg = NULL;
669
670 queue_kthread_work(&master->kworker, &master->pump_messages);
671 spin_unlock_irqrestore(&master->queue_lock, flags);
672
673 mesg->state = NULL;
674 if (mesg->complete)
675 mesg->complete(mesg->context);
676 }
677 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
678
spi_start_queue(struct spi_master * master)679 static int spi_start_queue(struct spi_master *master)
680 {
681 unsigned long flags;
682
683 spin_lock_irqsave(&master->queue_lock, flags);
684
685 if (master->running || master->busy) {
686 spin_unlock_irqrestore(&master->queue_lock, flags);
687 return -EBUSY;
688 }
689
690 master->running = true;
691 master->cur_msg = NULL;
692 spin_unlock_irqrestore(&master->queue_lock, flags);
693
694 queue_kthread_work(&master->kworker, &master->pump_messages);
695
696 return 0;
697 }
698
spi_stop_queue(struct spi_master * master)699 static int spi_stop_queue(struct spi_master *master)
700 {
701 unsigned long flags;
702 unsigned limit = 500;
703 int ret = 0;
704
705 spin_lock_irqsave(&master->queue_lock, flags);
706
707 /*
708 * This is a bit lame, but is optimized for the common execution path.
709 * A wait_queue on the master->busy could be used, but then the common
710 * execution path (pump_messages) would be required to call wake_up or
711 * friends on every SPI message. Do this instead.
712 */
713 while ((!list_empty(&master->queue) || master->busy) && limit--) {
714 spin_unlock_irqrestore(&master->queue_lock, flags);
715 msleep(10);
716 spin_lock_irqsave(&master->queue_lock, flags);
717 }
718
719 if (!list_empty(&master->queue) || master->busy)
720 ret = -EBUSY;
721 else
722 master->running = false;
723
724 spin_unlock_irqrestore(&master->queue_lock, flags);
725
726 if (ret) {
727 dev_warn(&master->dev,
728 "could not stop message queue\n");
729 return ret;
730 }
731 return ret;
732 }
733
spi_destroy_queue(struct spi_master * master)734 static int spi_destroy_queue(struct spi_master *master)
735 {
736 int ret;
737
738 ret = spi_stop_queue(master);
739
740 /*
741 * flush_kthread_worker will block until all work is done.
742 * If the reason that stop_queue timed out is that the work will never
743 * finish, then it does no good to call flush/stop thread, so
744 * return anyway.
745 */
746 if (ret) {
747 dev_err(&master->dev, "problem destroying queue\n");
748 return ret;
749 }
750
751 flush_kthread_worker(&master->kworker);
752 kthread_stop(master->kworker_task);
753
754 return 0;
755 }
756
757 /**
758 * spi_queued_transfer - transfer function for queued transfers
759 * @spi: spi device which is requesting transfer
760 * @msg: spi message which is to handled is queued to driver queue
761 */
spi_queued_transfer(struct spi_device * spi,struct spi_message * msg)762 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
763 {
764 struct spi_master *master = spi->master;
765 unsigned long flags;
766
767 spin_lock_irqsave(&master->queue_lock, flags);
768
769 if (!master->running) {
770 spin_unlock_irqrestore(&master->queue_lock, flags);
771 return -ESHUTDOWN;
772 }
773 msg->actual_length = 0;
774 msg->status = -EINPROGRESS;
775
776 list_add_tail(&msg->queue, &master->queue);
777 if (master->running && !master->busy)
778 queue_kthread_work(&master->kworker, &master->pump_messages);
779
780 spin_unlock_irqrestore(&master->queue_lock, flags);
781 return 0;
782 }
783
spi_master_initialize_queue(struct spi_master * master)784 static int spi_master_initialize_queue(struct spi_master *master)
785 {
786 int ret;
787
788 master->queued = true;
789 master->transfer = spi_queued_transfer;
790
791 /* Initialize and start queue */
792 ret = spi_init_queue(master);
793 if (ret) {
794 dev_err(&master->dev, "problem initializing queue\n");
795 goto err_init_queue;
796 }
797 ret = spi_start_queue(master);
798 if (ret) {
799 dev_err(&master->dev, "problem starting queue\n");
800 goto err_start_queue;
801 }
802
803 return 0;
804
805 err_start_queue:
806 err_init_queue:
807 spi_destroy_queue(master);
808 return ret;
809 }
810
811 /*-------------------------------------------------------------------------*/
812
813 #if defined(CONFIG_OF)
814 /**
815 * of_register_spi_devices() - Register child devices onto the SPI bus
816 * @master: Pointer to spi_master device
817 *
818 * Registers an spi_device for each child node of master node which has a 'reg'
819 * property.
820 */
of_register_spi_devices(struct spi_master * master)821 static void of_register_spi_devices(struct spi_master *master)
822 {
823 struct spi_device *spi;
824 struct device_node *nc;
825 const __be32 *prop;
826 char modalias[SPI_NAME_SIZE + 4];
827 int rc;
828 int len;
829
830 if (!master->dev.of_node)
831 return;
832
833 for_each_available_child_of_node(master->dev.of_node, nc) {
834 /* Alloc an spi_device */
835 spi = spi_alloc_device(master);
836 if (!spi) {
837 dev_err(&master->dev, "spi_device alloc error for %s\n",
838 nc->full_name);
839 spi_dev_put(spi);
840 continue;
841 }
842
843 /* Select device driver */
844 if (of_modalias_node(nc, spi->modalias,
845 sizeof(spi->modalias)) < 0) {
846 dev_err(&master->dev, "cannot find modalias for %s\n",
847 nc->full_name);
848 spi_dev_put(spi);
849 continue;
850 }
851
852 /* Device address */
853 prop = of_get_property(nc, "reg", &len);
854 if (!prop || len < sizeof(*prop)) {
855 dev_err(&master->dev, "%s has no 'reg' property\n",
856 nc->full_name);
857 spi_dev_put(spi);
858 continue;
859 }
860 spi->chip_select = be32_to_cpup(prop);
861
862 /* Mode (clock phase/polarity/etc.) */
863 if (of_find_property(nc, "spi-cpha", NULL))
864 spi->mode |= SPI_CPHA;
865 if (of_find_property(nc, "spi-cpol", NULL))
866 spi->mode |= SPI_CPOL;
867 if (of_find_property(nc, "spi-cs-high", NULL))
868 spi->mode |= SPI_CS_HIGH;
869 if (of_find_property(nc, "spi-3wire", NULL))
870 spi->mode |= SPI_3WIRE;
871
872 /* Device speed */
873 prop = of_get_property(nc, "spi-max-frequency", &len);
874 if (!prop || len < sizeof(*prop)) {
875 dev_err(&master->dev, "%s has no 'spi-max-frequency' property\n",
876 nc->full_name);
877 spi_dev_put(spi);
878 continue;
879 }
880 spi->max_speed_hz = be32_to_cpup(prop);
881
882 /* IRQ */
883 spi->irq = irq_of_parse_and_map(nc, 0);
884
885 /* Store a pointer to the node in the device structure */
886 of_node_get(nc);
887 spi->dev.of_node = nc;
888
889 /* Register the new device */
890 snprintf(modalias, sizeof(modalias), "%s%s", SPI_MODULE_PREFIX,
891 spi->modalias);
892 request_module(modalias);
893 rc = spi_add_device(spi);
894 if (rc) {
895 dev_err(&master->dev, "spi_device register error %s\n",
896 nc->full_name);
897 spi_dev_put(spi);
898 }
899
900 }
901 }
902 #else
of_register_spi_devices(struct spi_master * master)903 static void of_register_spi_devices(struct spi_master *master) { }
904 #endif
905
906 #ifdef CONFIG_ACPI
acpi_spi_add_resource(struct acpi_resource * ares,void * data)907 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
908 {
909 struct spi_device *spi = data;
910
911 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
912 struct acpi_resource_spi_serialbus *sb;
913
914 sb = &ares->data.spi_serial_bus;
915 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
916 spi->chip_select = sb->device_selection;
917 spi->max_speed_hz = sb->connection_speed;
918
919 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
920 spi->mode |= SPI_CPHA;
921 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
922 spi->mode |= SPI_CPOL;
923 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
924 spi->mode |= SPI_CS_HIGH;
925 }
926 } else if (spi->irq < 0) {
927 struct resource r;
928
929 if (acpi_dev_resource_interrupt(ares, 0, &r))
930 spi->irq = r.start;
931 }
932
933 /* Always tell the ACPI core to skip this resource */
934 return 1;
935 }
936
acpi_spi_add_device(acpi_handle handle,u32 level,void * data,void ** return_value)937 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
938 void *data, void **return_value)
939 {
940 struct spi_master *master = data;
941 struct list_head resource_list;
942 struct acpi_device *adev;
943 struct spi_device *spi;
944 int ret;
945
946 if (acpi_bus_get_device(handle, &adev))
947 return AE_OK;
948 if (acpi_bus_get_status(adev) || !adev->status.present)
949 return AE_OK;
950
951 spi = spi_alloc_device(master);
952 if (!spi) {
953 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
954 dev_name(&adev->dev));
955 return AE_NO_MEMORY;
956 }
957
958 ACPI_HANDLE_SET(&spi->dev, handle);
959 spi->irq = -1;
960
961 INIT_LIST_HEAD(&resource_list);
962 ret = acpi_dev_get_resources(adev, &resource_list,
963 acpi_spi_add_resource, spi);
964 acpi_dev_free_resource_list(&resource_list);
965
966 if (ret < 0 || !spi->max_speed_hz) {
967 spi_dev_put(spi);
968 return AE_OK;
969 }
970
971 strlcpy(spi->modalias, dev_name(&adev->dev), sizeof(spi->modalias));
972 if (spi_add_device(spi)) {
973 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
974 dev_name(&adev->dev));
975 spi_dev_put(spi);
976 }
977
978 return AE_OK;
979 }
980
acpi_register_spi_devices(struct spi_master * master)981 static void acpi_register_spi_devices(struct spi_master *master)
982 {
983 acpi_status status;
984 acpi_handle handle;
985
986 handle = ACPI_HANDLE(master->dev.parent);
987 if (!handle)
988 return;
989
990 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
991 acpi_spi_add_device, NULL,
992 master, NULL);
993 if (ACPI_FAILURE(status))
994 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
995 }
996 #else
acpi_register_spi_devices(struct spi_master * master)997 static inline void acpi_register_spi_devices(struct spi_master *master) {}
998 #endif /* CONFIG_ACPI */
999
spi_master_release(struct device * dev)1000 static void spi_master_release(struct device *dev)
1001 {
1002 struct spi_master *master;
1003
1004 master = container_of(dev, struct spi_master, dev);
1005 kfree(master);
1006 }
1007
1008 static struct class spi_master_class = {
1009 .name = "spi_master",
1010 .owner = THIS_MODULE,
1011 .dev_release = spi_master_release,
1012 };
1013
1014
1015
1016 /**
1017 * spi_alloc_master - allocate SPI master controller
1018 * @dev: the controller, possibly using the platform_bus
1019 * @size: how much zeroed driver-private data to allocate; the pointer to this
1020 * memory is in the driver_data field of the returned device,
1021 * accessible with spi_master_get_devdata().
1022 * Context: can sleep
1023 *
1024 * This call is used only by SPI master controller drivers, which are the
1025 * only ones directly touching chip registers. It's how they allocate
1026 * an spi_master structure, prior to calling spi_register_master().
1027 *
1028 * This must be called from context that can sleep. It returns the SPI
1029 * master structure on success, else NULL.
1030 *
1031 * The caller is responsible for assigning the bus number and initializing
1032 * the master's methods before calling spi_register_master(); and (after errors
1033 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1034 * leak.
1035 */
spi_alloc_master(struct device * dev,unsigned size)1036 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1037 {
1038 struct spi_master *master;
1039
1040 if (!dev)
1041 return NULL;
1042
1043 master = kzalloc(size + sizeof *master, GFP_KERNEL);
1044 if (!master)
1045 return NULL;
1046
1047 device_initialize(&master->dev);
1048 master->bus_num = -1;
1049 master->num_chipselect = 1;
1050 master->dev.class = &spi_master_class;
1051 master->dev.parent = get_device(dev);
1052 spi_master_set_devdata(master, &master[1]);
1053
1054 return master;
1055 }
1056 EXPORT_SYMBOL_GPL(spi_alloc_master);
1057
1058 #ifdef CONFIG_OF
of_spi_register_master(struct spi_master * master)1059 static int of_spi_register_master(struct spi_master *master)
1060 {
1061 int nb, i, *cs;
1062 struct device_node *np = master->dev.of_node;
1063
1064 if (!np)
1065 return 0;
1066
1067 nb = of_gpio_named_count(np, "cs-gpios");
1068 master->num_chipselect = max(nb, (int)master->num_chipselect);
1069
1070 /* Return error only for an incorrectly formed cs-gpios property */
1071 if (nb == 0 || nb == -ENOENT)
1072 return 0;
1073 else if (nb < 0)
1074 return nb;
1075
1076 cs = devm_kzalloc(&master->dev,
1077 sizeof(int) * master->num_chipselect,
1078 GFP_KERNEL);
1079 master->cs_gpios = cs;
1080
1081 if (!master->cs_gpios)
1082 return -ENOMEM;
1083
1084 for (i = 0; i < master->num_chipselect; i++)
1085 cs[i] = -ENOENT;
1086
1087 for (i = 0; i < nb; i++)
1088 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1089
1090 return 0;
1091 }
1092 #else
of_spi_register_master(struct spi_master * master)1093 static int of_spi_register_master(struct spi_master *master)
1094 {
1095 return 0;
1096 }
1097 #endif
1098
1099 /**
1100 * spi_register_master - register SPI master controller
1101 * @master: initialized master, originally from spi_alloc_master()
1102 * Context: can sleep
1103 *
1104 * SPI master controllers connect to their drivers using some non-SPI bus,
1105 * such as the platform bus. The final stage of probe() in that code
1106 * includes calling spi_register_master() to hook up to this SPI bus glue.
1107 *
1108 * SPI controllers use board specific (often SOC specific) bus numbers,
1109 * and board-specific addressing for SPI devices combines those numbers
1110 * with chip select numbers. Since SPI does not directly support dynamic
1111 * device identification, boards need configuration tables telling which
1112 * chip is at which address.
1113 *
1114 * This must be called from context that can sleep. It returns zero on
1115 * success, else a negative error code (dropping the master's refcount).
1116 * After a successful return, the caller is responsible for calling
1117 * spi_unregister_master().
1118 */
spi_register_master(struct spi_master * master)1119 int spi_register_master(struct spi_master *master)
1120 {
1121 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1122 struct device *dev = master->dev.parent;
1123 struct boardinfo *bi;
1124 int status = -ENODEV;
1125 int dynamic = 0;
1126
1127 if (!dev)
1128 return -ENODEV;
1129
1130 status = of_spi_register_master(master);
1131 if (status)
1132 return status;
1133
1134 /* even if it's just one always-selected device, there must
1135 * be at least one chipselect
1136 */
1137 if (master->num_chipselect == 0)
1138 return -EINVAL;
1139
1140 if ((master->bus_num < 0) && master->dev.of_node)
1141 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1142
1143 /* convention: dynamically assigned bus IDs count down from the max */
1144 if (master->bus_num < 0) {
1145 /* FIXME switch to an IDR based scheme, something like
1146 * I2C now uses, so we can't run out of "dynamic" IDs
1147 */
1148 master->bus_num = atomic_dec_return(&dyn_bus_id);
1149 dynamic = 1;
1150 }
1151
1152 spin_lock_init(&master->bus_lock_spinlock);
1153 mutex_init(&master->bus_lock_mutex);
1154 master->bus_lock_flag = 0;
1155
1156 /* register the device, then userspace will see it.
1157 * registration fails if the bus ID is in use.
1158 */
1159 dev_set_name(&master->dev, "spi%u", master->bus_num);
1160 status = device_add(&master->dev);
1161 if (status < 0)
1162 goto done;
1163 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1164 dynamic ? " (dynamic)" : "");
1165
1166 /* If we're using a queued driver, start the queue */
1167 if (master->transfer)
1168 dev_info(dev, "master is unqueued, this is deprecated\n");
1169 else {
1170 status = spi_master_initialize_queue(master);
1171 if (status) {
1172 device_unregister(&master->dev);
1173 goto done;
1174 }
1175 }
1176
1177 mutex_lock(&board_lock);
1178 list_add_tail(&master->list, &spi_master_list);
1179 list_for_each_entry(bi, &board_list, list)
1180 spi_match_master_to_boardinfo(master, &bi->board_info);
1181 mutex_unlock(&board_lock);
1182
1183 /* Register devices from the device tree and ACPI */
1184 of_register_spi_devices(master);
1185 acpi_register_spi_devices(master);
1186 done:
1187 return status;
1188 }
1189 EXPORT_SYMBOL_GPL(spi_register_master);
1190
__unregister(struct device * dev,void * null)1191 static int __unregister(struct device *dev, void *null)
1192 {
1193 spi_unregister_device(to_spi_device(dev));
1194 return 0;
1195 }
1196
1197 /**
1198 * spi_unregister_master - unregister SPI master controller
1199 * @master: the master being unregistered
1200 * Context: can sleep
1201 *
1202 * This call is used only by SPI master controller drivers, which are the
1203 * only ones directly touching chip registers.
1204 *
1205 * This must be called from context that can sleep.
1206 */
spi_unregister_master(struct spi_master * master)1207 void spi_unregister_master(struct spi_master *master)
1208 {
1209 int dummy;
1210
1211 if (master->queued) {
1212 if (spi_destroy_queue(master))
1213 dev_err(&master->dev, "queue remove failed\n");
1214 }
1215
1216 mutex_lock(&board_lock);
1217 list_del(&master->list);
1218 mutex_unlock(&board_lock);
1219
1220 dummy = device_for_each_child(&master->dev, NULL, __unregister);
1221 device_unregister(&master->dev);
1222 }
1223 EXPORT_SYMBOL_GPL(spi_unregister_master);
1224
spi_master_suspend(struct spi_master * master)1225 int spi_master_suspend(struct spi_master *master)
1226 {
1227 int ret;
1228
1229 /* Basically no-ops for non-queued masters */
1230 if (!master->queued)
1231 return 0;
1232
1233 ret = spi_stop_queue(master);
1234 if (ret)
1235 dev_err(&master->dev, "queue stop failed\n");
1236
1237 return ret;
1238 }
1239 EXPORT_SYMBOL_GPL(spi_master_suspend);
1240
spi_master_resume(struct spi_master * master)1241 int spi_master_resume(struct spi_master *master)
1242 {
1243 int ret;
1244
1245 if (!master->queued)
1246 return 0;
1247
1248 ret = spi_start_queue(master);
1249 if (ret)
1250 dev_err(&master->dev, "queue restart failed\n");
1251
1252 return ret;
1253 }
1254 EXPORT_SYMBOL_GPL(spi_master_resume);
1255
__spi_master_match(struct device * dev,const void * data)1256 static int __spi_master_match(struct device *dev, const void *data)
1257 {
1258 struct spi_master *m;
1259 const u16 *bus_num = data;
1260
1261 m = container_of(dev, struct spi_master, dev);
1262 return m->bus_num == *bus_num;
1263 }
1264
1265 /**
1266 * spi_busnum_to_master - look up master associated with bus_num
1267 * @bus_num: the master's bus number
1268 * Context: can sleep
1269 *
1270 * This call may be used with devices that are registered after
1271 * arch init time. It returns a refcounted pointer to the relevant
1272 * spi_master (which the caller must release), or NULL if there is
1273 * no such master registered.
1274 */
spi_busnum_to_master(u16 bus_num)1275 struct spi_master *spi_busnum_to_master(u16 bus_num)
1276 {
1277 struct device *dev;
1278 struct spi_master *master = NULL;
1279
1280 dev = class_find_device(&spi_master_class, NULL, &bus_num,
1281 __spi_master_match);
1282 if (dev)
1283 master = container_of(dev, struct spi_master, dev);
1284 /* reference got in class_find_device */
1285 return master;
1286 }
1287 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1288
1289
1290 /*-------------------------------------------------------------------------*/
1291
1292 /* Core methods for SPI master protocol drivers. Some of the
1293 * other core methods are currently defined as inline functions.
1294 */
1295
1296 /**
1297 * spi_setup - setup SPI mode and clock rate
1298 * @spi: the device whose settings are being modified
1299 * Context: can sleep, and no requests are queued to the device
1300 *
1301 * SPI protocol drivers may need to update the transfer mode if the
1302 * device doesn't work with its default. They may likewise need
1303 * to update clock rates or word sizes from initial values. This function
1304 * changes those settings, and must be called from a context that can sleep.
1305 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1306 * effect the next time the device is selected and data is transferred to
1307 * or from it. When this function returns, the spi device is deselected.
1308 *
1309 * Note that this call will fail if the protocol driver specifies an option
1310 * that the underlying controller or its driver does not support. For
1311 * example, not all hardware supports wire transfers using nine bit words,
1312 * LSB-first wire encoding, or active-high chipselects.
1313 */
spi_setup(struct spi_device * spi)1314 int spi_setup(struct spi_device *spi)
1315 {
1316 unsigned bad_bits;
1317 int status = 0;
1318
1319 /* help drivers fail *cleanly* when they need options
1320 * that aren't supported with their current master
1321 */
1322 bad_bits = spi->mode & ~spi->master->mode_bits;
1323 if (bad_bits) {
1324 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1325 bad_bits);
1326 return -EINVAL;
1327 }
1328
1329 if (!spi->bits_per_word)
1330 spi->bits_per_word = 8;
1331
1332 if (spi->master->setup)
1333 status = spi->master->setup(spi);
1334
1335 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
1336 "%u bits/w, %u Hz max --> %d\n",
1337 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1338 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1339 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1340 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
1341 (spi->mode & SPI_LOOP) ? "loopback, " : "",
1342 spi->bits_per_word, spi->max_speed_hz,
1343 status);
1344
1345 return status;
1346 }
1347 EXPORT_SYMBOL_GPL(spi_setup);
1348
__spi_async(struct spi_device * spi,struct spi_message * message)1349 static int __spi_async(struct spi_device *spi, struct spi_message *message)
1350 {
1351 struct spi_master *master = spi->master;
1352 struct spi_transfer *xfer;
1353
1354 /* Half-duplex links include original MicroWire, and ones with
1355 * only one data pin like SPI_3WIRE (switches direction) or where
1356 * either MOSI or MISO is missing. They can also be caused by
1357 * software limitations.
1358 */
1359 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1360 || (spi->mode & SPI_3WIRE)) {
1361 unsigned flags = master->flags;
1362
1363 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1364 if (xfer->rx_buf && xfer->tx_buf)
1365 return -EINVAL;
1366 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1367 return -EINVAL;
1368 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1369 return -EINVAL;
1370 }
1371 }
1372
1373 /**
1374 * Set transfer bits_per_word and max speed as spi device default if
1375 * it is not set for this transfer.
1376 */
1377 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1378 if (!xfer->bits_per_word)
1379 xfer->bits_per_word = spi->bits_per_word;
1380 if (!xfer->speed_hz)
1381 xfer->speed_hz = spi->max_speed_hz;
1382 if (master->bits_per_word_mask) {
1383 /* Only 32 bits fit in the mask */
1384 if (xfer->bits_per_word > 32)
1385 return -EINVAL;
1386 if (!(master->bits_per_word_mask &
1387 BIT(xfer->bits_per_word - 1)))
1388 return -EINVAL;
1389 }
1390 }
1391
1392 message->spi = spi;
1393 message->status = -EINPROGRESS;
1394 return master->transfer(spi, message);
1395 }
1396
1397 /**
1398 * spi_async - asynchronous SPI transfer
1399 * @spi: device with which data will be exchanged
1400 * @message: describes the data transfers, including completion callback
1401 * Context: any (irqs may be blocked, etc)
1402 *
1403 * This call may be used in_irq and other contexts which can't sleep,
1404 * as well as from task contexts which can sleep.
1405 *
1406 * The completion callback is invoked in a context which can't sleep.
1407 * Before that invocation, the value of message->status is undefined.
1408 * When the callback is issued, message->status holds either zero (to
1409 * indicate complete success) or a negative error code. After that
1410 * callback returns, the driver which issued the transfer request may
1411 * deallocate the associated memory; it's no longer in use by any SPI
1412 * core or controller driver code.
1413 *
1414 * Note that although all messages to a spi_device are handled in
1415 * FIFO order, messages may go to different devices in other orders.
1416 * Some device might be higher priority, or have various "hard" access
1417 * time requirements, for example.
1418 *
1419 * On detection of any fault during the transfer, processing of
1420 * the entire message is aborted, and the device is deselected.
1421 * Until returning from the associated message completion callback,
1422 * no other spi_message queued to that device will be processed.
1423 * (This rule applies equally to all the synchronous transfer calls,
1424 * which are wrappers around this core asynchronous primitive.)
1425 */
spi_async(struct spi_device * spi,struct spi_message * message)1426 int spi_async(struct spi_device *spi, struct spi_message *message)
1427 {
1428 struct spi_master *master = spi->master;
1429 int ret;
1430 unsigned long flags;
1431
1432 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1433
1434 if (master->bus_lock_flag)
1435 ret = -EBUSY;
1436 else
1437 ret = __spi_async(spi, message);
1438
1439 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1440
1441 return ret;
1442 }
1443 EXPORT_SYMBOL_GPL(spi_async);
1444
1445 /**
1446 * spi_async_locked - version of spi_async with exclusive bus usage
1447 * @spi: device with which data will be exchanged
1448 * @message: describes the data transfers, including completion callback
1449 * Context: any (irqs may be blocked, etc)
1450 *
1451 * This call may be used in_irq and other contexts which can't sleep,
1452 * as well as from task contexts which can sleep.
1453 *
1454 * The completion callback is invoked in a context which can't sleep.
1455 * Before that invocation, the value of message->status is undefined.
1456 * When the callback is issued, message->status holds either zero (to
1457 * indicate complete success) or a negative error code. After that
1458 * callback returns, the driver which issued the transfer request may
1459 * deallocate the associated memory; it's no longer in use by any SPI
1460 * core or controller driver code.
1461 *
1462 * Note that although all messages to a spi_device are handled in
1463 * FIFO order, messages may go to different devices in other orders.
1464 * Some device might be higher priority, or have various "hard" access
1465 * time requirements, for example.
1466 *
1467 * On detection of any fault during the transfer, processing of
1468 * the entire message is aborted, and the device is deselected.
1469 * Until returning from the associated message completion callback,
1470 * no other spi_message queued to that device will be processed.
1471 * (This rule applies equally to all the synchronous transfer calls,
1472 * which are wrappers around this core asynchronous primitive.)
1473 */
spi_async_locked(struct spi_device * spi,struct spi_message * message)1474 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
1475 {
1476 struct spi_master *master = spi->master;
1477 int ret;
1478 unsigned long flags;
1479
1480 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1481
1482 ret = __spi_async(spi, message);
1483
1484 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1485
1486 return ret;
1487
1488 }
1489 EXPORT_SYMBOL_GPL(spi_async_locked);
1490
1491
1492 /*-------------------------------------------------------------------------*/
1493
1494 /* Utility methods for SPI master protocol drivers, layered on
1495 * top of the core. Some other utility methods are defined as
1496 * inline functions.
1497 */
1498
spi_complete(void * arg)1499 static void spi_complete(void *arg)
1500 {
1501 complete(arg);
1502 }
1503
__spi_sync(struct spi_device * spi,struct spi_message * message,int bus_locked)1504 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
1505 int bus_locked)
1506 {
1507 DECLARE_COMPLETION_ONSTACK(done);
1508 int status;
1509 struct spi_master *master = spi->master;
1510
1511 message->complete = spi_complete;
1512 message->context = &done;
1513
1514 if (!bus_locked)
1515 mutex_lock(&master->bus_lock_mutex);
1516
1517 status = spi_async_locked(spi, message);
1518
1519 if (!bus_locked)
1520 mutex_unlock(&master->bus_lock_mutex);
1521
1522 if (status == 0) {
1523 wait_for_completion(&done);
1524 status = message->status;
1525 }
1526 message->context = NULL;
1527 return status;
1528 }
1529
1530 /**
1531 * spi_sync - blocking/synchronous SPI data transfers
1532 * @spi: device with which data will be exchanged
1533 * @message: describes the data transfers
1534 * Context: can sleep
1535 *
1536 * This call may only be used from a context that may sleep. The sleep
1537 * is non-interruptible, and has no timeout. Low-overhead controller
1538 * drivers may DMA directly into and out of the message buffers.
1539 *
1540 * Note that the SPI device's chip select is active during the message,
1541 * and then is normally disabled between messages. Drivers for some
1542 * frequently-used devices may want to minimize costs of selecting a chip,
1543 * by leaving it selected in anticipation that the next message will go
1544 * to the same chip. (That may increase power usage.)
1545 *
1546 * Also, the caller is guaranteeing that the memory associated with the
1547 * message will not be freed before this call returns.
1548 *
1549 * It returns zero on success, else a negative error code.
1550 */
spi_sync(struct spi_device * spi,struct spi_message * message)1551 int spi_sync(struct spi_device *spi, struct spi_message *message)
1552 {
1553 return __spi_sync(spi, message, 0);
1554 }
1555 EXPORT_SYMBOL_GPL(spi_sync);
1556
1557 /**
1558 * spi_sync_locked - version of spi_sync with exclusive bus usage
1559 * @spi: device with which data will be exchanged
1560 * @message: describes the data transfers
1561 * Context: can sleep
1562 *
1563 * This call may only be used from a context that may sleep. The sleep
1564 * is non-interruptible, and has no timeout. Low-overhead controller
1565 * drivers may DMA directly into and out of the message buffers.
1566 *
1567 * This call should be used by drivers that require exclusive access to the
1568 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
1569 * be released by a spi_bus_unlock call when the exclusive access is over.
1570 *
1571 * It returns zero on success, else a negative error code.
1572 */
spi_sync_locked(struct spi_device * spi,struct spi_message * message)1573 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
1574 {
1575 return __spi_sync(spi, message, 1);
1576 }
1577 EXPORT_SYMBOL_GPL(spi_sync_locked);
1578
1579 /**
1580 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
1581 * @master: SPI bus master that should be locked for exclusive bus access
1582 * Context: can sleep
1583 *
1584 * This call may only be used from a context that may sleep. The sleep
1585 * is non-interruptible, and has no timeout.
1586 *
1587 * This call should be used by drivers that require exclusive access to the
1588 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
1589 * exclusive access is over. Data transfer must be done by spi_sync_locked
1590 * and spi_async_locked calls when the SPI bus lock is held.
1591 *
1592 * It returns zero on success, else a negative error code.
1593 */
spi_bus_lock(struct spi_master * master)1594 int spi_bus_lock(struct spi_master *master)
1595 {
1596 unsigned long flags;
1597
1598 mutex_lock(&master->bus_lock_mutex);
1599
1600 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1601 master->bus_lock_flag = 1;
1602 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1603
1604 /* mutex remains locked until spi_bus_unlock is called */
1605
1606 return 0;
1607 }
1608 EXPORT_SYMBOL_GPL(spi_bus_lock);
1609
1610 /**
1611 * spi_bus_unlock - release the lock for exclusive SPI bus usage
1612 * @master: SPI bus master that was locked for exclusive bus access
1613 * Context: can sleep
1614 *
1615 * This call may only be used from a context that may sleep. The sleep
1616 * is non-interruptible, and has no timeout.
1617 *
1618 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
1619 * call.
1620 *
1621 * It returns zero on success, else a negative error code.
1622 */
spi_bus_unlock(struct spi_master * master)1623 int spi_bus_unlock(struct spi_master *master)
1624 {
1625 master->bus_lock_flag = 0;
1626
1627 mutex_unlock(&master->bus_lock_mutex);
1628
1629 return 0;
1630 }
1631 EXPORT_SYMBOL_GPL(spi_bus_unlock);
1632
1633 /* portable code must never pass more than 32 bytes */
1634 #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES)
1635
1636 static u8 *buf;
1637
1638 /**
1639 * spi_write_then_read - SPI synchronous write followed by read
1640 * @spi: device with which data will be exchanged
1641 * @txbuf: data to be written (need not be dma-safe)
1642 * @n_tx: size of txbuf, in bytes
1643 * @rxbuf: buffer into which data will be read (need not be dma-safe)
1644 * @n_rx: size of rxbuf, in bytes
1645 * Context: can sleep
1646 *
1647 * This performs a half duplex MicroWire style transaction with the
1648 * device, sending txbuf and then reading rxbuf. The return value
1649 * is zero for success, else a negative errno status code.
1650 * This call may only be used from a context that may sleep.
1651 *
1652 * Parameters to this routine are always copied using a small buffer;
1653 * portable code should never use this for more than 32 bytes.
1654 * Performance-sensitive or bulk transfer code should instead use
1655 * spi_{async,sync}() calls with dma-safe buffers.
1656 */
spi_write_then_read(struct spi_device * spi,const void * txbuf,unsigned n_tx,void * rxbuf,unsigned n_rx)1657 int spi_write_then_read(struct spi_device *spi,
1658 const void *txbuf, unsigned n_tx,
1659 void *rxbuf, unsigned n_rx)
1660 {
1661 static DEFINE_MUTEX(lock);
1662
1663 int status;
1664 struct spi_message message;
1665 struct spi_transfer x[2];
1666 u8 *local_buf;
1667
1668 /* Use preallocated DMA-safe buffer if we can. We can't avoid
1669 * copying here, (as a pure convenience thing), but we can
1670 * keep heap costs out of the hot path unless someone else is
1671 * using the pre-allocated buffer or the transfer is too large.
1672 */
1673 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
1674 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
1675 GFP_KERNEL | GFP_DMA);
1676 if (!local_buf)
1677 return -ENOMEM;
1678 } else {
1679 local_buf = buf;
1680 }
1681
1682 spi_message_init(&message);
1683 memset(x, 0, sizeof x);
1684 if (n_tx) {
1685 x[0].len = n_tx;
1686 spi_message_add_tail(&x[0], &message);
1687 }
1688 if (n_rx) {
1689 x[1].len = n_rx;
1690 spi_message_add_tail(&x[1], &message);
1691 }
1692
1693 memcpy(local_buf, txbuf, n_tx);
1694 x[0].tx_buf = local_buf;
1695 x[1].rx_buf = local_buf + n_tx;
1696
1697 /* do the i/o */
1698 status = spi_sync(spi, &message);
1699 if (status == 0)
1700 memcpy(rxbuf, x[1].rx_buf, n_rx);
1701
1702 if (x[0].tx_buf == buf)
1703 mutex_unlock(&lock);
1704 else
1705 kfree(local_buf);
1706
1707 return status;
1708 }
1709 EXPORT_SYMBOL_GPL(spi_write_then_read);
1710
1711 /*-------------------------------------------------------------------------*/
1712
spi_init(void)1713 static int __init spi_init(void)
1714 {
1715 int status;
1716
1717 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1718 if (!buf) {
1719 status = -ENOMEM;
1720 goto err0;
1721 }
1722
1723 status = bus_register(&spi_bus_type);
1724 if (status < 0)
1725 goto err1;
1726
1727 status = class_register(&spi_master_class);
1728 if (status < 0)
1729 goto err2;
1730 return 0;
1731
1732 err2:
1733 bus_unregister(&spi_bus_type);
1734 err1:
1735 kfree(buf);
1736 buf = NULL;
1737 err0:
1738 return status;
1739 }
1740
1741 /* board_info is normally registered in arch_initcall(),
1742 * but even essential drivers wait till later
1743 *
1744 * REVISIT only boardinfo really needs static linking. the rest (device and
1745 * driver registration) _could_ be dynamically linked (modular) ... costs
1746 * include needing to have boardinfo data structures be much more public.
1747 */
1748 postcore_initcall(spi_init);
1749
1750