• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/vmalloc.h>
17 
18 #include "f2fs.h"
19 #include "segment.h"
20 #include "node.h"
21 #include <trace/events/f2fs.h>
22 
23 /*
24  * This function balances dirty node and dentry pages.
25  * In addition, it controls garbage collection.
26  */
f2fs_balance_fs(struct f2fs_sb_info * sbi)27 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
28 {
29 	/*
30 	 * We should do GC or end up with checkpoint, if there are so many dirty
31 	 * dir/node pages without enough free segments.
32 	 */
33 	if (has_not_enough_free_secs(sbi, 0)) {
34 		mutex_lock(&sbi->gc_mutex);
35 		f2fs_gc(sbi);
36 	}
37 }
38 
__locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)39 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
40 		enum dirty_type dirty_type)
41 {
42 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
43 
44 	/* need not be added */
45 	if (IS_CURSEG(sbi, segno))
46 		return;
47 
48 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
49 		dirty_i->nr_dirty[dirty_type]++;
50 
51 	if (dirty_type == DIRTY) {
52 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
53 		enum dirty_type t = DIRTY_HOT_DATA;
54 
55 		dirty_type = sentry->type;
56 
57 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
58 			dirty_i->nr_dirty[dirty_type]++;
59 
60 		/* Only one bitmap should be set */
61 		for (; t <= DIRTY_COLD_NODE; t++) {
62 			if (t == dirty_type)
63 				continue;
64 			if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
65 				dirty_i->nr_dirty[t]--;
66 		}
67 	}
68 }
69 
__remove_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)70 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
71 		enum dirty_type dirty_type)
72 {
73 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
74 
75 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
76 		dirty_i->nr_dirty[dirty_type]--;
77 
78 	if (dirty_type == DIRTY) {
79 		enum dirty_type t = DIRTY_HOT_DATA;
80 
81 		/* clear all the bitmaps */
82 		for (; t <= DIRTY_COLD_NODE; t++)
83 			if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
84 				dirty_i->nr_dirty[t]--;
85 
86 		if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
87 			clear_bit(GET_SECNO(sbi, segno),
88 						dirty_i->victim_secmap);
89 	}
90 }
91 
92 /*
93  * Should not occur error such as -ENOMEM.
94  * Adding dirty entry into seglist is not critical operation.
95  * If a given segment is one of current working segments, it won't be added.
96  */
locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno)97 void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
98 {
99 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
100 	unsigned short valid_blocks;
101 
102 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
103 		return;
104 
105 	mutex_lock(&dirty_i->seglist_lock);
106 
107 	valid_blocks = get_valid_blocks(sbi, segno, 0);
108 
109 	if (valid_blocks == 0) {
110 		__locate_dirty_segment(sbi, segno, PRE);
111 		__remove_dirty_segment(sbi, segno, DIRTY);
112 	} else if (valid_blocks < sbi->blocks_per_seg) {
113 		__locate_dirty_segment(sbi, segno, DIRTY);
114 	} else {
115 		/* Recovery routine with SSR needs this */
116 		__remove_dirty_segment(sbi, segno, DIRTY);
117 	}
118 
119 	mutex_unlock(&dirty_i->seglist_lock);
120 	return;
121 }
122 
123 /*
124  * Should call clear_prefree_segments after checkpoint is done.
125  */
set_prefree_as_free_segments(struct f2fs_sb_info * sbi)126 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
127 {
128 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
129 	unsigned int segno, offset = 0;
130 	unsigned int total_segs = TOTAL_SEGS(sbi);
131 
132 	mutex_lock(&dirty_i->seglist_lock);
133 	while (1) {
134 		segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
135 				offset);
136 		if (segno >= total_segs)
137 			break;
138 		__set_test_and_free(sbi, segno);
139 		offset = segno + 1;
140 	}
141 	mutex_unlock(&dirty_i->seglist_lock);
142 }
143 
clear_prefree_segments(struct f2fs_sb_info * sbi)144 void clear_prefree_segments(struct f2fs_sb_info *sbi)
145 {
146 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
147 	unsigned int segno, offset = 0;
148 	unsigned int total_segs = TOTAL_SEGS(sbi);
149 
150 	mutex_lock(&dirty_i->seglist_lock);
151 	while (1) {
152 		segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
153 				offset);
154 		if (segno >= total_segs)
155 			break;
156 
157 		offset = segno + 1;
158 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[PRE]))
159 			dirty_i->nr_dirty[PRE]--;
160 
161 		/* Let's use trim */
162 		if (test_opt(sbi, DISCARD))
163 			blkdev_issue_discard(sbi->sb->s_bdev,
164 					START_BLOCK(sbi, segno) <<
165 					sbi->log_sectors_per_block,
166 					1 << (sbi->log_sectors_per_block +
167 						sbi->log_blocks_per_seg),
168 					GFP_NOFS, 0);
169 	}
170 	mutex_unlock(&dirty_i->seglist_lock);
171 }
172 
__mark_sit_entry_dirty(struct f2fs_sb_info * sbi,unsigned int segno)173 static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
174 {
175 	struct sit_info *sit_i = SIT_I(sbi);
176 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
177 		sit_i->dirty_sentries++;
178 }
179 
__set_sit_entry_type(struct f2fs_sb_info * sbi,int type,unsigned int segno,int modified)180 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
181 					unsigned int segno, int modified)
182 {
183 	struct seg_entry *se = get_seg_entry(sbi, segno);
184 	se->type = type;
185 	if (modified)
186 		__mark_sit_entry_dirty(sbi, segno);
187 }
188 
update_sit_entry(struct f2fs_sb_info * sbi,block_t blkaddr,int del)189 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
190 {
191 	struct seg_entry *se;
192 	unsigned int segno, offset;
193 	long int new_vblocks;
194 
195 	segno = GET_SEGNO(sbi, blkaddr);
196 
197 	se = get_seg_entry(sbi, segno);
198 	new_vblocks = se->valid_blocks + del;
199 	offset = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & (sbi->blocks_per_seg - 1);
200 
201 	BUG_ON((new_vblocks >> (sizeof(unsigned short) << 3) ||
202 				(new_vblocks > sbi->blocks_per_seg)));
203 
204 	se->valid_blocks = new_vblocks;
205 	se->mtime = get_mtime(sbi);
206 	SIT_I(sbi)->max_mtime = se->mtime;
207 
208 	/* Update valid block bitmap */
209 	if (del > 0) {
210 		if (f2fs_set_bit(offset, se->cur_valid_map))
211 			BUG();
212 	} else {
213 		if (!f2fs_clear_bit(offset, se->cur_valid_map))
214 			BUG();
215 	}
216 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
217 		se->ckpt_valid_blocks += del;
218 
219 	__mark_sit_entry_dirty(sbi, segno);
220 
221 	/* update total number of valid blocks to be written in ckpt area */
222 	SIT_I(sbi)->written_valid_blocks += del;
223 
224 	if (sbi->segs_per_sec > 1)
225 		get_sec_entry(sbi, segno)->valid_blocks += del;
226 }
227 
refresh_sit_entry(struct f2fs_sb_info * sbi,block_t old_blkaddr,block_t new_blkaddr)228 static void refresh_sit_entry(struct f2fs_sb_info *sbi,
229 			block_t old_blkaddr, block_t new_blkaddr)
230 {
231 	update_sit_entry(sbi, new_blkaddr, 1);
232 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
233 		update_sit_entry(sbi, old_blkaddr, -1);
234 }
235 
invalidate_blocks(struct f2fs_sb_info * sbi,block_t addr)236 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
237 {
238 	unsigned int segno = GET_SEGNO(sbi, addr);
239 	struct sit_info *sit_i = SIT_I(sbi);
240 
241 	BUG_ON(addr == NULL_ADDR);
242 	if (addr == NEW_ADDR)
243 		return;
244 
245 	/* add it into sit main buffer */
246 	mutex_lock(&sit_i->sentry_lock);
247 
248 	update_sit_entry(sbi, addr, -1);
249 
250 	/* add it into dirty seglist */
251 	locate_dirty_segment(sbi, segno);
252 
253 	mutex_unlock(&sit_i->sentry_lock);
254 }
255 
256 /*
257  * This function should be resided under the curseg_mutex lock
258  */
__add_sum_entry(struct f2fs_sb_info * sbi,int type,struct f2fs_summary * sum,unsigned short offset)259 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
260 		struct f2fs_summary *sum, unsigned short offset)
261 {
262 	struct curseg_info *curseg = CURSEG_I(sbi, type);
263 	void *addr = curseg->sum_blk;
264 	addr += offset * sizeof(struct f2fs_summary);
265 	memcpy(addr, sum, sizeof(struct f2fs_summary));
266 	return;
267 }
268 
269 /*
270  * Calculate the number of current summary pages for writing
271  */
npages_for_summary_flush(struct f2fs_sb_info * sbi)272 int npages_for_summary_flush(struct f2fs_sb_info *sbi)
273 {
274 	int total_size_bytes = 0;
275 	int valid_sum_count = 0;
276 	int i, sum_space;
277 
278 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
279 		if (sbi->ckpt->alloc_type[i] == SSR)
280 			valid_sum_count += sbi->blocks_per_seg;
281 		else
282 			valid_sum_count += curseg_blkoff(sbi, i);
283 	}
284 
285 	total_size_bytes = valid_sum_count * (SUMMARY_SIZE + 1)
286 			+ sizeof(struct nat_journal) + 2
287 			+ sizeof(struct sit_journal) + 2;
288 	sum_space = PAGE_CACHE_SIZE - SUM_FOOTER_SIZE;
289 	if (total_size_bytes < sum_space)
290 		return 1;
291 	else if (total_size_bytes < 2 * sum_space)
292 		return 2;
293 	return 3;
294 }
295 
296 /*
297  * Caller should put this summary page
298  */
get_sum_page(struct f2fs_sb_info * sbi,unsigned int segno)299 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
300 {
301 	return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
302 }
303 
write_sum_page(struct f2fs_sb_info * sbi,struct f2fs_summary_block * sum_blk,block_t blk_addr)304 static void write_sum_page(struct f2fs_sb_info *sbi,
305 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
306 {
307 	struct page *page = grab_meta_page(sbi, blk_addr);
308 	void *kaddr = page_address(page);
309 	memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
310 	set_page_dirty(page);
311 	f2fs_put_page(page, 1);
312 }
313 
check_prefree_segments(struct f2fs_sb_info * sbi,int type)314 static unsigned int check_prefree_segments(struct f2fs_sb_info *sbi, int type)
315 {
316 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
317 	unsigned long *prefree_segmap = dirty_i->dirty_segmap[PRE];
318 	unsigned int segno;
319 	unsigned int ofs = 0;
320 
321 	/*
322 	 * If there is not enough reserved sections,
323 	 * we should not reuse prefree segments.
324 	 */
325 	if (has_not_enough_free_secs(sbi, 0))
326 		return NULL_SEGNO;
327 
328 	/*
329 	 * NODE page should not reuse prefree segment,
330 	 * since those information is used for SPOR.
331 	 */
332 	if (IS_NODESEG(type))
333 		return NULL_SEGNO;
334 next:
335 	segno = find_next_bit(prefree_segmap, TOTAL_SEGS(sbi), ofs);
336 	ofs += sbi->segs_per_sec;
337 
338 	if (segno < TOTAL_SEGS(sbi)) {
339 		int i;
340 
341 		/* skip intermediate segments in a section */
342 		if (segno % sbi->segs_per_sec)
343 			goto next;
344 
345 		/* skip if the section is currently used */
346 		if (sec_usage_check(sbi, GET_SECNO(sbi, segno)))
347 			goto next;
348 
349 		/* skip if whole section is not prefree */
350 		for (i = 1; i < sbi->segs_per_sec; i++)
351 			if (!test_bit(segno + i, prefree_segmap))
352 				goto next;
353 
354 		/* skip if whole section was not free at the last checkpoint */
355 		for (i = 0; i < sbi->segs_per_sec; i++)
356 			if (get_seg_entry(sbi, segno + i)->ckpt_valid_blocks)
357 				goto next;
358 
359 		return segno;
360 	}
361 	return NULL_SEGNO;
362 }
363 
is_next_segment_free(struct f2fs_sb_info * sbi,int type)364 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
365 {
366 	struct curseg_info *curseg = CURSEG_I(sbi, type);
367 	unsigned int segno = curseg->segno;
368 	struct free_segmap_info *free_i = FREE_I(sbi);
369 
370 	if (segno + 1 < TOTAL_SEGS(sbi) && (segno + 1) % sbi->segs_per_sec)
371 		return !test_bit(segno + 1, free_i->free_segmap);
372 	return 0;
373 }
374 
375 /*
376  * Find a new segment from the free segments bitmap to right order
377  * This function should be returned with success, otherwise BUG
378  */
get_new_segment(struct f2fs_sb_info * sbi,unsigned int * newseg,bool new_sec,int dir)379 static void get_new_segment(struct f2fs_sb_info *sbi,
380 			unsigned int *newseg, bool new_sec, int dir)
381 {
382 	struct free_segmap_info *free_i = FREE_I(sbi);
383 	unsigned int segno, secno, zoneno;
384 	unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone;
385 	unsigned int hint = *newseg / sbi->segs_per_sec;
386 	unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
387 	unsigned int left_start = hint;
388 	bool init = true;
389 	int go_left = 0;
390 	int i;
391 
392 	write_lock(&free_i->segmap_lock);
393 
394 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
395 		segno = find_next_zero_bit(free_i->free_segmap,
396 					TOTAL_SEGS(sbi), *newseg + 1);
397 		if (segno - *newseg < sbi->segs_per_sec -
398 					(*newseg % sbi->segs_per_sec))
399 			goto got_it;
400 	}
401 find_other_zone:
402 	secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint);
403 	if (secno >= TOTAL_SECS(sbi)) {
404 		if (dir == ALLOC_RIGHT) {
405 			secno = find_next_zero_bit(free_i->free_secmap,
406 							TOTAL_SECS(sbi), 0);
407 			BUG_ON(secno >= TOTAL_SECS(sbi));
408 		} else {
409 			go_left = 1;
410 			left_start = hint - 1;
411 		}
412 	}
413 	if (go_left == 0)
414 		goto skip_left;
415 
416 	while (test_bit(left_start, free_i->free_secmap)) {
417 		if (left_start > 0) {
418 			left_start--;
419 			continue;
420 		}
421 		left_start = find_next_zero_bit(free_i->free_secmap,
422 							TOTAL_SECS(sbi), 0);
423 		BUG_ON(left_start >= TOTAL_SECS(sbi));
424 		break;
425 	}
426 	secno = left_start;
427 skip_left:
428 	hint = secno;
429 	segno = secno * sbi->segs_per_sec;
430 	zoneno = secno / sbi->secs_per_zone;
431 
432 	/* give up on finding another zone */
433 	if (!init)
434 		goto got_it;
435 	if (sbi->secs_per_zone == 1)
436 		goto got_it;
437 	if (zoneno == old_zoneno)
438 		goto got_it;
439 	if (dir == ALLOC_LEFT) {
440 		if (!go_left && zoneno + 1 >= total_zones)
441 			goto got_it;
442 		if (go_left && zoneno == 0)
443 			goto got_it;
444 	}
445 	for (i = 0; i < NR_CURSEG_TYPE; i++)
446 		if (CURSEG_I(sbi, i)->zone == zoneno)
447 			break;
448 
449 	if (i < NR_CURSEG_TYPE) {
450 		/* zone is in user, try another */
451 		if (go_left)
452 			hint = zoneno * sbi->secs_per_zone - 1;
453 		else if (zoneno + 1 >= total_zones)
454 			hint = 0;
455 		else
456 			hint = (zoneno + 1) * sbi->secs_per_zone;
457 		init = false;
458 		goto find_other_zone;
459 	}
460 got_it:
461 	/* set it as dirty segment in free segmap */
462 	BUG_ON(test_bit(segno, free_i->free_segmap));
463 	__set_inuse(sbi, segno);
464 	*newseg = segno;
465 	write_unlock(&free_i->segmap_lock);
466 }
467 
reset_curseg(struct f2fs_sb_info * sbi,int type,int modified)468 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
469 {
470 	struct curseg_info *curseg = CURSEG_I(sbi, type);
471 	struct summary_footer *sum_footer;
472 
473 	curseg->segno = curseg->next_segno;
474 	curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
475 	curseg->next_blkoff = 0;
476 	curseg->next_segno = NULL_SEGNO;
477 
478 	sum_footer = &(curseg->sum_blk->footer);
479 	memset(sum_footer, 0, sizeof(struct summary_footer));
480 	if (IS_DATASEG(type))
481 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
482 	if (IS_NODESEG(type))
483 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
484 	__set_sit_entry_type(sbi, type, curseg->segno, modified);
485 }
486 
487 /*
488  * Allocate a current working segment.
489  * This function always allocates a free segment in LFS manner.
490  */
new_curseg(struct f2fs_sb_info * sbi,int type,bool new_sec)491 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
492 {
493 	struct curseg_info *curseg = CURSEG_I(sbi, type);
494 	unsigned int segno = curseg->segno;
495 	int dir = ALLOC_LEFT;
496 
497 	write_sum_page(sbi, curseg->sum_blk,
498 				GET_SUM_BLOCK(sbi, curseg->segno));
499 	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
500 		dir = ALLOC_RIGHT;
501 
502 	if (test_opt(sbi, NOHEAP))
503 		dir = ALLOC_RIGHT;
504 
505 	get_new_segment(sbi, &segno, new_sec, dir);
506 	curseg->next_segno = segno;
507 	reset_curseg(sbi, type, 1);
508 	curseg->alloc_type = LFS;
509 }
510 
__next_free_blkoff(struct f2fs_sb_info * sbi,struct curseg_info * seg,block_t start)511 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
512 			struct curseg_info *seg, block_t start)
513 {
514 	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
515 	block_t ofs;
516 	for (ofs = start; ofs < sbi->blocks_per_seg; ofs++) {
517 		if (!f2fs_test_bit(ofs, se->ckpt_valid_map)
518 			&& !f2fs_test_bit(ofs, se->cur_valid_map))
519 			break;
520 	}
521 	seg->next_blkoff = ofs;
522 }
523 
524 /*
525  * If a segment is written by LFS manner, next block offset is just obtained
526  * by increasing the current block offset. However, if a segment is written by
527  * SSR manner, next block offset obtained by calling __next_free_blkoff
528  */
__refresh_next_blkoff(struct f2fs_sb_info * sbi,struct curseg_info * seg)529 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
530 				struct curseg_info *seg)
531 {
532 	if (seg->alloc_type == SSR)
533 		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
534 	else
535 		seg->next_blkoff++;
536 }
537 
538 /*
539  * This function always allocates a used segment (from dirty seglist) by SSR
540  * manner, so it should recover the existing segment information of valid blocks
541  */
change_curseg(struct f2fs_sb_info * sbi,int type,bool reuse)542 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
543 {
544 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
545 	struct curseg_info *curseg = CURSEG_I(sbi, type);
546 	unsigned int new_segno = curseg->next_segno;
547 	struct f2fs_summary_block *sum_node;
548 	struct page *sum_page;
549 
550 	write_sum_page(sbi, curseg->sum_blk,
551 				GET_SUM_BLOCK(sbi, curseg->segno));
552 	__set_test_and_inuse(sbi, new_segno);
553 
554 	mutex_lock(&dirty_i->seglist_lock);
555 	__remove_dirty_segment(sbi, new_segno, PRE);
556 	__remove_dirty_segment(sbi, new_segno, DIRTY);
557 	mutex_unlock(&dirty_i->seglist_lock);
558 
559 	reset_curseg(sbi, type, 1);
560 	curseg->alloc_type = SSR;
561 	__next_free_blkoff(sbi, curseg, 0);
562 
563 	if (reuse) {
564 		sum_page = get_sum_page(sbi, new_segno);
565 		sum_node = (struct f2fs_summary_block *)page_address(sum_page);
566 		memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
567 		f2fs_put_page(sum_page, 1);
568 	}
569 }
570 
get_ssr_segment(struct f2fs_sb_info * sbi,int type)571 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
572 {
573 	struct curseg_info *curseg = CURSEG_I(sbi, type);
574 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
575 
576 	if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
577 		return v_ops->get_victim(sbi,
578 				&(curseg)->next_segno, BG_GC, type, SSR);
579 
580 	/* For data segments, let's do SSR more intensively */
581 	for (; type >= CURSEG_HOT_DATA; type--)
582 		if (v_ops->get_victim(sbi, &(curseg)->next_segno,
583 						BG_GC, type, SSR))
584 			return 1;
585 	return 0;
586 }
587 
588 /*
589  * flush out current segment and replace it with new segment
590  * This function should be returned with success, otherwise BUG
591  */
allocate_segment_by_default(struct f2fs_sb_info * sbi,int type,bool force)592 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
593 						int type, bool force)
594 {
595 	struct curseg_info *curseg = CURSEG_I(sbi, type);
596 
597 	if (force) {
598 		new_curseg(sbi, type, true);
599 		goto out;
600 	}
601 
602 	curseg->next_segno = check_prefree_segments(sbi, type);
603 
604 	if (curseg->next_segno != NULL_SEGNO)
605 		change_curseg(sbi, type, false);
606 	else if (type == CURSEG_WARM_NODE)
607 		new_curseg(sbi, type, false);
608 	else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
609 		new_curseg(sbi, type, false);
610 	else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
611 		change_curseg(sbi, type, true);
612 	else
613 		new_curseg(sbi, type, false);
614 out:
615 	sbi->segment_count[curseg->alloc_type]++;
616 }
617 
allocate_new_segments(struct f2fs_sb_info * sbi)618 void allocate_new_segments(struct f2fs_sb_info *sbi)
619 {
620 	struct curseg_info *curseg;
621 	unsigned int old_curseg;
622 	int i;
623 
624 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
625 		curseg = CURSEG_I(sbi, i);
626 		old_curseg = curseg->segno;
627 		SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
628 		locate_dirty_segment(sbi, old_curseg);
629 	}
630 }
631 
632 static const struct segment_allocation default_salloc_ops = {
633 	.allocate_segment = allocate_segment_by_default,
634 };
635 
f2fs_end_io_write(struct bio * bio,int err)636 static void f2fs_end_io_write(struct bio *bio, int err)
637 {
638 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
639 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
640 	struct bio_private *p = bio->bi_private;
641 
642 	do {
643 		struct page *page = bvec->bv_page;
644 
645 		if (--bvec >= bio->bi_io_vec)
646 			prefetchw(&bvec->bv_page->flags);
647 		if (!uptodate) {
648 			SetPageError(page);
649 			if (page->mapping)
650 				set_bit(AS_EIO, &page->mapping->flags);
651 			set_ckpt_flags(p->sbi->ckpt, CP_ERROR_FLAG);
652 			p->sbi->sb->s_flags |= MS_RDONLY;
653 		}
654 		end_page_writeback(page);
655 		dec_page_count(p->sbi, F2FS_WRITEBACK);
656 	} while (bvec >= bio->bi_io_vec);
657 
658 	if (p->is_sync)
659 		complete(p->wait);
660 	kfree(p);
661 	bio_put(bio);
662 }
663 
f2fs_bio_alloc(struct block_device * bdev,int npages)664 struct bio *f2fs_bio_alloc(struct block_device *bdev, int npages)
665 {
666 	struct bio *bio;
667 	struct bio_private *priv;
668 retry:
669 	priv = kmalloc(sizeof(struct bio_private), GFP_NOFS);
670 	if (!priv) {
671 		cond_resched();
672 		goto retry;
673 	}
674 
675 	/* No failure on bio allocation */
676 	bio = bio_alloc(GFP_NOIO, npages);
677 	bio->bi_bdev = bdev;
678 	bio->bi_private = priv;
679 	return bio;
680 }
681 
do_submit_bio(struct f2fs_sb_info * sbi,enum page_type type,bool sync)682 static void do_submit_bio(struct f2fs_sb_info *sbi,
683 				enum page_type type, bool sync)
684 {
685 	int rw = sync ? WRITE_SYNC : WRITE;
686 	enum page_type btype = type > META ? META : type;
687 
688 	if (type >= META_FLUSH)
689 		rw = WRITE_FLUSH_FUA;
690 
691 	if (btype == META)
692 		rw |= REQ_META;
693 
694 	if (sbi->bio[btype]) {
695 		struct bio_private *p = sbi->bio[btype]->bi_private;
696 		p->sbi = sbi;
697 		sbi->bio[btype]->bi_end_io = f2fs_end_io_write;
698 
699 		trace_f2fs_do_submit_bio(sbi->sb, btype, sync, sbi->bio[btype]);
700 
701 		if (type == META_FLUSH) {
702 			DECLARE_COMPLETION_ONSTACK(wait);
703 			p->is_sync = true;
704 			p->wait = &wait;
705 			submit_bio(rw, sbi->bio[btype]);
706 			wait_for_completion(&wait);
707 		} else {
708 			p->is_sync = false;
709 			submit_bio(rw, sbi->bio[btype]);
710 		}
711 		sbi->bio[btype] = NULL;
712 	}
713 }
714 
f2fs_submit_bio(struct f2fs_sb_info * sbi,enum page_type type,bool sync)715 void f2fs_submit_bio(struct f2fs_sb_info *sbi, enum page_type type, bool sync)
716 {
717 	down_write(&sbi->bio_sem);
718 	do_submit_bio(sbi, type, sync);
719 	up_write(&sbi->bio_sem);
720 }
721 
submit_write_page(struct f2fs_sb_info * sbi,struct page * page,block_t blk_addr,enum page_type type)722 static void submit_write_page(struct f2fs_sb_info *sbi, struct page *page,
723 				block_t blk_addr, enum page_type type)
724 {
725 	struct block_device *bdev = sbi->sb->s_bdev;
726 
727 	verify_block_addr(sbi, blk_addr);
728 
729 	down_write(&sbi->bio_sem);
730 
731 	inc_page_count(sbi, F2FS_WRITEBACK);
732 
733 	if (sbi->bio[type] && sbi->last_block_in_bio[type] != blk_addr - 1)
734 		do_submit_bio(sbi, type, false);
735 alloc_new:
736 	if (sbi->bio[type] == NULL) {
737 		sbi->bio[type] = f2fs_bio_alloc(bdev, max_hw_blocks(sbi));
738 		sbi->bio[type]->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
739 		/*
740 		 * The end_io will be assigned at the sumbission phase.
741 		 * Until then, let bio_add_page() merge consecutive IOs as much
742 		 * as possible.
743 		 */
744 	}
745 
746 	if (bio_add_page(sbi->bio[type], page, PAGE_CACHE_SIZE, 0) <
747 							PAGE_CACHE_SIZE) {
748 		do_submit_bio(sbi, type, false);
749 		goto alloc_new;
750 	}
751 
752 	sbi->last_block_in_bio[type] = blk_addr;
753 
754 	up_write(&sbi->bio_sem);
755 	trace_f2fs_submit_write_page(page, blk_addr, type);
756 }
757 
__has_curseg_space(struct f2fs_sb_info * sbi,int type)758 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
759 {
760 	struct curseg_info *curseg = CURSEG_I(sbi, type);
761 	if (curseg->next_blkoff < sbi->blocks_per_seg)
762 		return true;
763 	return false;
764 }
765 
__get_segment_type_2(struct page * page,enum page_type p_type)766 static int __get_segment_type_2(struct page *page, enum page_type p_type)
767 {
768 	if (p_type == DATA)
769 		return CURSEG_HOT_DATA;
770 	else
771 		return CURSEG_HOT_NODE;
772 }
773 
__get_segment_type_4(struct page * page,enum page_type p_type)774 static int __get_segment_type_4(struct page *page, enum page_type p_type)
775 {
776 	if (p_type == DATA) {
777 		struct inode *inode = page->mapping->host;
778 
779 		if (S_ISDIR(inode->i_mode))
780 			return CURSEG_HOT_DATA;
781 		else
782 			return CURSEG_COLD_DATA;
783 	} else {
784 		if (IS_DNODE(page) && !is_cold_node(page))
785 			return CURSEG_HOT_NODE;
786 		else
787 			return CURSEG_COLD_NODE;
788 	}
789 }
790 
__get_segment_type_6(struct page * page,enum page_type p_type)791 static int __get_segment_type_6(struct page *page, enum page_type p_type)
792 {
793 	if (p_type == DATA) {
794 		struct inode *inode = page->mapping->host;
795 
796 		if (S_ISDIR(inode->i_mode))
797 			return CURSEG_HOT_DATA;
798 		else if (is_cold_data(page) || is_cold_file(inode))
799 			return CURSEG_COLD_DATA;
800 		else
801 			return CURSEG_WARM_DATA;
802 	} else {
803 		if (IS_DNODE(page))
804 			return is_cold_node(page) ? CURSEG_WARM_NODE :
805 						CURSEG_HOT_NODE;
806 		else
807 			return CURSEG_COLD_NODE;
808 	}
809 }
810 
__get_segment_type(struct page * page,enum page_type p_type)811 static int __get_segment_type(struct page *page, enum page_type p_type)
812 {
813 	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
814 	switch (sbi->active_logs) {
815 	case 2:
816 		return __get_segment_type_2(page, p_type);
817 	case 4:
818 		return __get_segment_type_4(page, p_type);
819 	}
820 	/* NR_CURSEG_TYPE(6) logs by default */
821 	BUG_ON(sbi->active_logs != NR_CURSEG_TYPE);
822 	return __get_segment_type_6(page, p_type);
823 }
824 
do_write_page(struct f2fs_sb_info * sbi,struct page * page,block_t old_blkaddr,block_t * new_blkaddr,struct f2fs_summary * sum,enum page_type p_type)825 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
826 			block_t old_blkaddr, block_t *new_blkaddr,
827 			struct f2fs_summary *sum, enum page_type p_type)
828 {
829 	struct sit_info *sit_i = SIT_I(sbi);
830 	struct curseg_info *curseg;
831 	unsigned int old_cursegno;
832 	int type;
833 
834 	type = __get_segment_type(page, p_type);
835 	curseg = CURSEG_I(sbi, type);
836 
837 	mutex_lock(&curseg->curseg_mutex);
838 
839 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
840 	old_cursegno = curseg->segno;
841 
842 	/*
843 	 * __add_sum_entry should be resided under the curseg_mutex
844 	 * because, this function updates a summary entry in the
845 	 * current summary block.
846 	 */
847 	__add_sum_entry(sbi, type, sum, curseg->next_blkoff);
848 
849 	mutex_lock(&sit_i->sentry_lock);
850 	__refresh_next_blkoff(sbi, curseg);
851 	sbi->block_count[curseg->alloc_type]++;
852 
853 	/*
854 	 * SIT information should be updated before segment allocation,
855 	 * since SSR needs latest valid block information.
856 	 */
857 	refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
858 
859 	if (!__has_curseg_space(sbi, type))
860 		sit_i->s_ops->allocate_segment(sbi, type, false);
861 
862 	locate_dirty_segment(sbi, old_cursegno);
863 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
864 	mutex_unlock(&sit_i->sentry_lock);
865 
866 	if (p_type == NODE)
867 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
868 
869 	/* writeout dirty page into bdev */
870 	submit_write_page(sbi, page, *new_blkaddr, p_type);
871 
872 	mutex_unlock(&curseg->curseg_mutex);
873 }
874 
write_meta_page(struct f2fs_sb_info * sbi,struct page * page)875 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
876 {
877 	set_page_writeback(page);
878 	submit_write_page(sbi, page, page->index, META);
879 }
880 
write_node_page(struct f2fs_sb_info * sbi,struct page * page,unsigned int nid,block_t old_blkaddr,block_t * new_blkaddr)881 void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
882 		unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
883 {
884 	struct f2fs_summary sum;
885 	set_summary(&sum, nid, 0, 0);
886 	do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, NODE);
887 }
888 
write_data_page(struct inode * inode,struct page * page,struct dnode_of_data * dn,block_t old_blkaddr,block_t * new_blkaddr)889 void write_data_page(struct inode *inode, struct page *page,
890 		struct dnode_of_data *dn, block_t old_blkaddr,
891 		block_t *new_blkaddr)
892 {
893 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
894 	struct f2fs_summary sum;
895 	struct node_info ni;
896 
897 	BUG_ON(old_blkaddr == NULL_ADDR);
898 	get_node_info(sbi, dn->nid, &ni);
899 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
900 
901 	do_write_page(sbi, page, old_blkaddr,
902 			new_blkaddr, &sum, DATA);
903 }
904 
rewrite_data_page(struct f2fs_sb_info * sbi,struct page * page,block_t old_blk_addr)905 void rewrite_data_page(struct f2fs_sb_info *sbi, struct page *page,
906 					block_t old_blk_addr)
907 {
908 	submit_write_page(sbi, page, old_blk_addr, DATA);
909 }
910 
recover_data_page(struct f2fs_sb_info * sbi,struct page * page,struct f2fs_summary * sum,block_t old_blkaddr,block_t new_blkaddr)911 void recover_data_page(struct f2fs_sb_info *sbi,
912 			struct page *page, struct f2fs_summary *sum,
913 			block_t old_blkaddr, block_t new_blkaddr)
914 {
915 	struct sit_info *sit_i = SIT_I(sbi);
916 	struct curseg_info *curseg;
917 	unsigned int segno, old_cursegno;
918 	struct seg_entry *se;
919 	int type;
920 
921 	segno = GET_SEGNO(sbi, new_blkaddr);
922 	se = get_seg_entry(sbi, segno);
923 	type = se->type;
924 
925 	if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
926 		if (old_blkaddr == NULL_ADDR)
927 			type = CURSEG_COLD_DATA;
928 		else
929 			type = CURSEG_WARM_DATA;
930 	}
931 	curseg = CURSEG_I(sbi, type);
932 
933 	mutex_lock(&curseg->curseg_mutex);
934 	mutex_lock(&sit_i->sentry_lock);
935 
936 	old_cursegno = curseg->segno;
937 
938 	/* change the current segment */
939 	if (segno != curseg->segno) {
940 		curseg->next_segno = segno;
941 		change_curseg(sbi, type, true);
942 	}
943 
944 	curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
945 					(sbi->blocks_per_seg - 1);
946 	__add_sum_entry(sbi, type, sum, curseg->next_blkoff);
947 
948 	refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
949 
950 	locate_dirty_segment(sbi, old_cursegno);
951 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
952 
953 	mutex_unlock(&sit_i->sentry_lock);
954 	mutex_unlock(&curseg->curseg_mutex);
955 }
956 
rewrite_node_page(struct f2fs_sb_info * sbi,struct page * page,struct f2fs_summary * sum,block_t old_blkaddr,block_t new_blkaddr)957 void rewrite_node_page(struct f2fs_sb_info *sbi,
958 			struct page *page, struct f2fs_summary *sum,
959 			block_t old_blkaddr, block_t new_blkaddr)
960 {
961 	struct sit_info *sit_i = SIT_I(sbi);
962 	int type = CURSEG_WARM_NODE;
963 	struct curseg_info *curseg;
964 	unsigned int segno, old_cursegno;
965 	block_t next_blkaddr = next_blkaddr_of_node(page);
966 	unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
967 
968 	curseg = CURSEG_I(sbi, type);
969 
970 	mutex_lock(&curseg->curseg_mutex);
971 	mutex_lock(&sit_i->sentry_lock);
972 
973 	segno = GET_SEGNO(sbi, new_blkaddr);
974 	old_cursegno = curseg->segno;
975 
976 	/* change the current segment */
977 	if (segno != curseg->segno) {
978 		curseg->next_segno = segno;
979 		change_curseg(sbi, type, true);
980 	}
981 	curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
982 					(sbi->blocks_per_seg - 1);
983 	__add_sum_entry(sbi, type, sum, curseg->next_blkoff);
984 
985 	/* change the current log to the next block addr in advance */
986 	if (next_segno != segno) {
987 		curseg->next_segno = next_segno;
988 		change_curseg(sbi, type, true);
989 	}
990 	curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, next_blkaddr) &
991 					(sbi->blocks_per_seg - 1);
992 
993 	/* rewrite node page */
994 	set_page_writeback(page);
995 	submit_write_page(sbi, page, new_blkaddr, NODE);
996 	f2fs_submit_bio(sbi, NODE, true);
997 	refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
998 
999 	locate_dirty_segment(sbi, old_cursegno);
1000 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1001 
1002 	mutex_unlock(&sit_i->sentry_lock);
1003 	mutex_unlock(&curseg->curseg_mutex);
1004 }
1005 
read_compacted_summaries(struct f2fs_sb_info * sbi)1006 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1007 {
1008 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1009 	struct curseg_info *seg_i;
1010 	unsigned char *kaddr;
1011 	struct page *page;
1012 	block_t start;
1013 	int i, j, offset;
1014 
1015 	start = start_sum_block(sbi);
1016 
1017 	page = get_meta_page(sbi, start++);
1018 	kaddr = (unsigned char *)page_address(page);
1019 
1020 	/* Step 1: restore nat cache */
1021 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1022 	memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1023 
1024 	/* Step 2: restore sit cache */
1025 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1026 	memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1027 						SUM_JOURNAL_SIZE);
1028 	offset = 2 * SUM_JOURNAL_SIZE;
1029 
1030 	/* Step 3: restore summary entries */
1031 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1032 		unsigned short blk_off;
1033 		unsigned int segno;
1034 
1035 		seg_i = CURSEG_I(sbi, i);
1036 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1037 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1038 		seg_i->next_segno = segno;
1039 		reset_curseg(sbi, i, 0);
1040 		seg_i->alloc_type = ckpt->alloc_type[i];
1041 		seg_i->next_blkoff = blk_off;
1042 
1043 		if (seg_i->alloc_type == SSR)
1044 			blk_off = sbi->blocks_per_seg;
1045 
1046 		for (j = 0; j < blk_off; j++) {
1047 			struct f2fs_summary *s;
1048 			s = (struct f2fs_summary *)(kaddr + offset);
1049 			seg_i->sum_blk->entries[j] = *s;
1050 			offset += SUMMARY_SIZE;
1051 			if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1052 						SUM_FOOTER_SIZE)
1053 				continue;
1054 
1055 			f2fs_put_page(page, 1);
1056 			page = NULL;
1057 
1058 			page = get_meta_page(sbi, start++);
1059 			kaddr = (unsigned char *)page_address(page);
1060 			offset = 0;
1061 		}
1062 	}
1063 	f2fs_put_page(page, 1);
1064 	return 0;
1065 }
1066 
read_normal_summaries(struct f2fs_sb_info * sbi,int type)1067 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1068 {
1069 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1070 	struct f2fs_summary_block *sum;
1071 	struct curseg_info *curseg;
1072 	struct page *new;
1073 	unsigned short blk_off;
1074 	unsigned int segno = 0;
1075 	block_t blk_addr = 0;
1076 
1077 	/* get segment number and block addr */
1078 	if (IS_DATASEG(type)) {
1079 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1080 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1081 							CURSEG_HOT_DATA]);
1082 		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1083 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1084 		else
1085 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1086 	} else {
1087 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
1088 							CURSEG_HOT_NODE]);
1089 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1090 							CURSEG_HOT_NODE]);
1091 		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1092 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1093 							type - CURSEG_HOT_NODE);
1094 		else
1095 			blk_addr = GET_SUM_BLOCK(sbi, segno);
1096 	}
1097 
1098 	new = get_meta_page(sbi, blk_addr);
1099 	sum = (struct f2fs_summary_block *)page_address(new);
1100 
1101 	if (IS_NODESEG(type)) {
1102 		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1103 			struct f2fs_summary *ns = &sum->entries[0];
1104 			int i;
1105 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1106 				ns->version = 0;
1107 				ns->ofs_in_node = 0;
1108 			}
1109 		} else {
1110 			if (restore_node_summary(sbi, segno, sum)) {
1111 				f2fs_put_page(new, 1);
1112 				return -EINVAL;
1113 			}
1114 		}
1115 	}
1116 
1117 	/* set uncompleted segment to curseg */
1118 	curseg = CURSEG_I(sbi, type);
1119 	mutex_lock(&curseg->curseg_mutex);
1120 	memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1121 	curseg->next_segno = segno;
1122 	reset_curseg(sbi, type, 0);
1123 	curseg->alloc_type = ckpt->alloc_type[type];
1124 	curseg->next_blkoff = blk_off;
1125 	mutex_unlock(&curseg->curseg_mutex);
1126 	f2fs_put_page(new, 1);
1127 	return 0;
1128 }
1129 
restore_curseg_summaries(struct f2fs_sb_info * sbi)1130 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1131 {
1132 	struct f2fs_summary_block *s_sits =
1133 		CURSEG_I(sbi, CURSEG_COLD_DATA)->sum_blk;
1134 	struct f2fs_summary_block *s_nats =
1135 		CURSEG_I(sbi, CURSEG_HOT_DATA)->sum_blk;
1136 	int type = CURSEG_HOT_DATA;
1137 
1138 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1139 		/* restore for compacted data summary */
1140 		if (read_compacted_summaries(sbi))
1141 			return -EINVAL;
1142 		type = CURSEG_HOT_NODE;
1143 	}
1144 
1145 	for (; type <= CURSEG_COLD_NODE; type++)
1146 		if (read_normal_summaries(sbi, type))
1147 			return -EINVAL;
1148 
1149 	/* sanity check for summary blocks */
1150 	if (nats_in_cursum(s_nats) > NAT_JOURNAL_ENTRIES ||
1151 			sits_in_cursum(s_sits) > SIT_JOURNAL_ENTRIES)
1152 		return -EINVAL;
1153 
1154 	return 0;
1155 }
1156 
write_compacted_summaries(struct f2fs_sb_info * sbi,block_t blkaddr)1157 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1158 {
1159 	struct page *page;
1160 	unsigned char *kaddr;
1161 	struct f2fs_summary *summary;
1162 	struct curseg_info *seg_i;
1163 	int written_size = 0;
1164 	int i, j;
1165 
1166 	page = grab_meta_page(sbi, blkaddr++);
1167 	kaddr = (unsigned char *)page_address(page);
1168 
1169 	/* Step 1: write nat cache */
1170 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1171 	memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1172 	written_size += SUM_JOURNAL_SIZE;
1173 
1174 	/* Step 2: write sit cache */
1175 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1176 	memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1177 						SUM_JOURNAL_SIZE);
1178 	written_size += SUM_JOURNAL_SIZE;
1179 
1180 	set_page_dirty(page);
1181 
1182 	/* Step 3: write summary entries */
1183 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1184 		unsigned short blkoff;
1185 		seg_i = CURSEG_I(sbi, i);
1186 		if (sbi->ckpt->alloc_type[i] == SSR)
1187 			blkoff = sbi->blocks_per_seg;
1188 		else
1189 			blkoff = curseg_blkoff(sbi, i);
1190 
1191 		for (j = 0; j < blkoff; j++) {
1192 			if (!page) {
1193 				page = grab_meta_page(sbi, blkaddr++);
1194 				kaddr = (unsigned char *)page_address(page);
1195 				written_size = 0;
1196 			}
1197 			summary = (struct f2fs_summary *)(kaddr + written_size);
1198 			*summary = seg_i->sum_blk->entries[j];
1199 			written_size += SUMMARY_SIZE;
1200 			set_page_dirty(page);
1201 
1202 			if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1203 							SUM_FOOTER_SIZE)
1204 				continue;
1205 
1206 			f2fs_put_page(page, 1);
1207 			page = NULL;
1208 		}
1209 	}
1210 	if (page)
1211 		f2fs_put_page(page, 1);
1212 }
1213 
write_normal_summaries(struct f2fs_sb_info * sbi,block_t blkaddr,int type)1214 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1215 					block_t blkaddr, int type)
1216 {
1217 	int i, end;
1218 	if (IS_DATASEG(type))
1219 		end = type + NR_CURSEG_DATA_TYPE;
1220 	else
1221 		end = type + NR_CURSEG_NODE_TYPE;
1222 
1223 	for (i = type; i < end; i++) {
1224 		struct curseg_info *sum = CURSEG_I(sbi, i);
1225 		mutex_lock(&sum->curseg_mutex);
1226 		write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1227 		mutex_unlock(&sum->curseg_mutex);
1228 	}
1229 }
1230 
write_data_summaries(struct f2fs_sb_info * sbi,block_t start_blk)1231 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1232 {
1233 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1234 		write_compacted_summaries(sbi, start_blk);
1235 	else
1236 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1237 }
1238 
write_node_summaries(struct f2fs_sb_info * sbi,block_t start_blk)1239 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1240 {
1241 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1242 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1243 	return;
1244 }
1245 
lookup_journal_in_cursum(struct f2fs_summary_block * sum,int type,unsigned int val,int alloc)1246 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1247 					unsigned int val, int alloc)
1248 {
1249 	int i;
1250 
1251 	if (type == NAT_JOURNAL) {
1252 		for (i = 0; i < nats_in_cursum(sum); i++) {
1253 			if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1254 				return i;
1255 		}
1256 		if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1257 			return update_nats_in_cursum(sum, 1);
1258 	} else if (type == SIT_JOURNAL) {
1259 		for (i = 0; i < sits_in_cursum(sum); i++)
1260 			if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1261 				return i;
1262 		if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1263 			return update_sits_in_cursum(sum, 1);
1264 	}
1265 	return -1;
1266 }
1267 
get_current_sit_page(struct f2fs_sb_info * sbi,unsigned int segno)1268 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1269 					unsigned int segno)
1270 {
1271 	struct sit_info *sit_i = SIT_I(sbi);
1272 	unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1273 	block_t blk_addr = sit_i->sit_base_addr + offset;
1274 
1275 	check_seg_range(sbi, segno);
1276 
1277 	/* calculate sit block address */
1278 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1279 		blk_addr += sit_i->sit_blocks;
1280 
1281 	return get_meta_page(sbi, blk_addr);
1282 }
1283 
get_next_sit_page(struct f2fs_sb_info * sbi,unsigned int start)1284 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1285 					unsigned int start)
1286 {
1287 	struct sit_info *sit_i = SIT_I(sbi);
1288 	struct page *src_page, *dst_page;
1289 	pgoff_t src_off, dst_off;
1290 	void *src_addr, *dst_addr;
1291 
1292 	src_off = current_sit_addr(sbi, start);
1293 	dst_off = next_sit_addr(sbi, src_off);
1294 
1295 	/* get current sit block page without lock */
1296 	src_page = get_meta_page(sbi, src_off);
1297 	dst_page = grab_meta_page(sbi, dst_off);
1298 	BUG_ON(PageDirty(src_page));
1299 
1300 	src_addr = page_address(src_page);
1301 	dst_addr = page_address(dst_page);
1302 	memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1303 
1304 	set_page_dirty(dst_page);
1305 	f2fs_put_page(src_page, 1);
1306 
1307 	set_to_next_sit(sit_i, start);
1308 
1309 	return dst_page;
1310 }
1311 
flush_sits_in_journal(struct f2fs_sb_info * sbi)1312 static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1313 {
1314 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1315 	struct f2fs_summary_block *sum = curseg->sum_blk;
1316 	int i;
1317 
1318 	/*
1319 	 * If the journal area in the current summary is full of sit entries,
1320 	 * all the sit entries will be flushed. Otherwise the sit entries
1321 	 * are not able to replace with newly hot sit entries.
1322 	 */
1323 	if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1324 		for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1325 			unsigned int segno;
1326 			segno = le32_to_cpu(segno_in_journal(sum, i));
1327 			__mark_sit_entry_dirty(sbi, segno);
1328 		}
1329 		update_sits_in_cursum(sum, -sits_in_cursum(sum));
1330 		return 1;
1331 	}
1332 	return 0;
1333 }
1334 
1335 /*
1336  * CP calls this function, which flushes SIT entries including sit_journal,
1337  * and moves prefree segs to free segs.
1338  */
flush_sit_entries(struct f2fs_sb_info * sbi)1339 void flush_sit_entries(struct f2fs_sb_info *sbi)
1340 {
1341 	struct sit_info *sit_i = SIT_I(sbi);
1342 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1343 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1344 	struct f2fs_summary_block *sum = curseg->sum_blk;
1345 	unsigned long nsegs = TOTAL_SEGS(sbi);
1346 	struct page *page = NULL;
1347 	struct f2fs_sit_block *raw_sit = NULL;
1348 	unsigned int start = 0, end = 0;
1349 	unsigned int segno = -1;
1350 	bool flushed;
1351 
1352 	mutex_lock(&curseg->curseg_mutex);
1353 	mutex_lock(&sit_i->sentry_lock);
1354 
1355 	/*
1356 	 * "flushed" indicates whether sit entries in journal are flushed
1357 	 * to the SIT area or not.
1358 	 */
1359 	flushed = flush_sits_in_journal(sbi);
1360 
1361 	while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
1362 		struct seg_entry *se = get_seg_entry(sbi, segno);
1363 		int sit_offset, offset;
1364 
1365 		sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1366 
1367 		if (flushed)
1368 			goto to_sit_page;
1369 
1370 		offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1371 		if (offset >= 0) {
1372 			segno_in_journal(sum, offset) = cpu_to_le32(segno);
1373 			seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1374 			goto flush_done;
1375 		}
1376 to_sit_page:
1377 		if (!page || (start > segno) || (segno > end)) {
1378 			if (page) {
1379 				f2fs_put_page(page, 1);
1380 				page = NULL;
1381 			}
1382 
1383 			start = START_SEGNO(sit_i, segno);
1384 			end = start + SIT_ENTRY_PER_BLOCK - 1;
1385 
1386 			/* read sit block that will be updated */
1387 			page = get_next_sit_page(sbi, start);
1388 			raw_sit = page_address(page);
1389 		}
1390 
1391 		/* udpate entry in SIT block */
1392 		seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1393 flush_done:
1394 		__clear_bit(segno, bitmap);
1395 		sit_i->dirty_sentries--;
1396 	}
1397 	mutex_unlock(&sit_i->sentry_lock);
1398 	mutex_unlock(&curseg->curseg_mutex);
1399 
1400 	/* writeout last modified SIT block */
1401 	f2fs_put_page(page, 1);
1402 
1403 	set_prefree_as_free_segments(sbi);
1404 }
1405 
build_sit_info(struct f2fs_sb_info * sbi)1406 static int build_sit_info(struct f2fs_sb_info *sbi)
1407 {
1408 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1409 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1410 	struct sit_info *sit_i;
1411 	unsigned int sit_segs, start;
1412 	char *src_bitmap, *dst_bitmap;
1413 	unsigned int bitmap_size;
1414 
1415 	/* allocate memory for SIT information */
1416 	sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1417 	if (!sit_i)
1418 		return -ENOMEM;
1419 
1420 	SM_I(sbi)->sit_info = sit_i;
1421 
1422 	sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1423 	if (!sit_i->sentries)
1424 		return -ENOMEM;
1425 
1426 	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1427 	sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1428 	if (!sit_i->dirty_sentries_bitmap)
1429 		return -ENOMEM;
1430 
1431 	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1432 		sit_i->sentries[start].cur_valid_map
1433 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1434 		sit_i->sentries[start].ckpt_valid_map
1435 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1436 		if (!sit_i->sentries[start].cur_valid_map
1437 				|| !sit_i->sentries[start].ckpt_valid_map)
1438 			return -ENOMEM;
1439 	}
1440 
1441 	if (sbi->segs_per_sec > 1) {
1442 		sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) *
1443 					sizeof(struct sec_entry));
1444 		if (!sit_i->sec_entries)
1445 			return -ENOMEM;
1446 	}
1447 
1448 	/* get information related with SIT */
1449 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1450 
1451 	/* setup SIT bitmap from ckeckpoint pack */
1452 	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1453 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1454 
1455 	dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1456 	if (!dst_bitmap)
1457 		return -ENOMEM;
1458 
1459 	/* init SIT information */
1460 	sit_i->s_ops = &default_salloc_ops;
1461 
1462 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1463 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1464 	sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1465 	sit_i->sit_bitmap = dst_bitmap;
1466 	sit_i->bitmap_size = bitmap_size;
1467 	sit_i->dirty_sentries = 0;
1468 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1469 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1470 	sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1471 	mutex_init(&sit_i->sentry_lock);
1472 	return 0;
1473 }
1474 
build_free_segmap(struct f2fs_sb_info * sbi)1475 static int build_free_segmap(struct f2fs_sb_info *sbi)
1476 {
1477 	struct f2fs_sm_info *sm_info = SM_I(sbi);
1478 	struct free_segmap_info *free_i;
1479 	unsigned int bitmap_size, sec_bitmap_size;
1480 
1481 	/* allocate memory for free segmap information */
1482 	free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1483 	if (!free_i)
1484 		return -ENOMEM;
1485 
1486 	SM_I(sbi)->free_info = free_i;
1487 
1488 	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1489 	free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1490 	if (!free_i->free_segmap)
1491 		return -ENOMEM;
1492 
1493 	sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1494 	free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1495 	if (!free_i->free_secmap)
1496 		return -ENOMEM;
1497 
1498 	/* set all segments as dirty temporarily */
1499 	memset(free_i->free_segmap, 0xff, bitmap_size);
1500 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1501 
1502 	/* init free segmap information */
1503 	free_i->start_segno =
1504 		(unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1505 	free_i->free_segments = 0;
1506 	free_i->free_sections = 0;
1507 	rwlock_init(&free_i->segmap_lock);
1508 	return 0;
1509 }
1510 
build_curseg(struct f2fs_sb_info * sbi)1511 static int build_curseg(struct f2fs_sb_info *sbi)
1512 {
1513 	struct curseg_info *array;
1514 	int i;
1515 
1516 	array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
1517 	if (!array)
1518 		return -ENOMEM;
1519 
1520 	SM_I(sbi)->curseg_array = array;
1521 
1522 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
1523 		mutex_init(&array[i].curseg_mutex);
1524 		array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1525 		if (!array[i].sum_blk)
1526 			return -ENOMEM;
1527 		array[i].segno = NULL_SEGNO;
1528 		array[i].next_blkoff = 0;
1529 	}
1530 	return restore_curseg_summaries(sbi);
1531 }
1532 
build_sit_entries(struct f2fs_sb_info * sbi)1533 static void build_sit_entries(struct f2fs_sb_info *sbi)
1534 {
1535 	struct sit_info *sit_i = SIT_I(sbi);
1536 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1537 	struct f2fs_summary_block *sum = curseg->sum_blk;
1538 	unsigned int start;
1539 
1540 	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1541 		struct seg_entry *se = &sit_i->sentries[start];
1542 		struct f2fs_sit_block *sit_blk;
1543 		struct f2fs_sit_entry sit;
1544 		struct page *page;
1545 		int i;
1546 
1547 		mutex_lock(&curseg->curseg_mutex);
1548 		for (i = 0; i < sits_in_cursum(sum); i++) {
1549 			if (le32_to_cpu(segno_in_journal(sum, i)) == start) {
1550 				sit = sit_in_journal(sum, i);
1551 				mutex_unlock(&curseg->curseg_mutex);
1552 				goto got_it;
1553 			}
1554 		}
1555 		mutex_unlock(&curseg->curseg_mutex);
1556 		page = get_current_sit_page(sbi, start);
1557 		sit_blk = (struct f2fs_sit_block *)page_address(page);
1558 		sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1559 		f2fs_put_page(page, 1);
1560 got_it:
1561 		check_block_count(sbi, start, &sit);
1562 		seg_info_from_raw_sit(se, &sit);
1563 		if (sbi->segs_per_sec > 1) {
1564 			struct sec_entry *e = get_sec_entry(sbi, start);
1565 			e->valid_blocks += se->valid_blocks;
1566 		}
1567 	}
1568 }
1569 
init_free_segmap(struct f2fs_sb_info * sbi)1570 static void init_free_segmap(struct f2fs_sb_info *sbi)
1571 {
1572 	unsigned int start;
1573 	int type;
1574 
1575 	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1576 		struct seg_entry *sentry = get_seg_entry(sbi, start);
1577 		if (!sentry->valid_blocks)
1578 			__set_free(sbi, start);
1579 	}
1580 
1581 	/* set use the current segments */
1582 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1583 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1584 		__set_test_and_inuse(sbi, curseg_t->segno);
1585 	}
1586 }
1587 
init_dirty_segmap(struct f2fs_sb_info * sbi)1588 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1589 {
1590 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1591 	struct free_segmap_info *free_i = FREE_I(sbi);
1592 	unsigned int segno = 0, offset = 0;
1593 	unsigned short valid_blocks;
1594 
1595 	while (segno < TOTAL_SEGS(sbi)) {
1596 		/* find dirty segment based on free segmap */
1597 		segno = find_next_inuse(free_i, TOTAL_SEGS(sbi), offset);
1598 		if (segno >= TOTAL_SEGS(sbi))
1599 			break;
1600 		offset = segno + 1;
1601 		valid_blocks = get_valid_blocks(sbi, segno, 0);
1602 		if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
1603 			continue;
1604 		mutex_lock(&dirty_i->seglist_lock);
1605 		__locate_dirty_segment(sbi, segno, DIRTY);
1606 		mutex_unlock(&dirty_i->seglist_lock);
1607 	}
1608 }
1609 
init_victim_secmap(struct f2fs_sb_info * sbi)1610 static int init_victim_secmap(struct f2fs_sb_info *sbi)
1611 {
1612 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1613 	unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1614 
1615 	dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
1616 	if (!dirty_i->victim_secmap)
1617 		return -ENOMEM;
1618 	return 0;
1619 }
1620 
build_dirty_segmap(struct f2fs_sb_info * sbi)1621 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1622 {
1623 	struct dirty_seglist_info *dirty_i;
1624 	unsigned int bitmap_size, i;
1625 
1626 	/* allocate memory for dirty segments list information */
1627 	dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1628 	if (!dirty_i)
1629 		return -ENOMEM;
1630 
1631 	SM_I(sbi)->dirty_info = dirty_i;
1632 	mutex_init(&dirty_i->seglist_lock);
1633 
1634 	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1635 
1636 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
1637 		dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1638 		if (!dirty_i->dirty_segmap[i])
1639 			return -ENOMEM;
1640 	}
1641 
1642 	init_dirty_segmap(sbi);
1643 	return init_victim_secmap(sbi);
1644 }
1645 
1646 /*
1647  * Update min, max modified time for cost-benefit GC algorithm
1648  */
init_min_max_mtime(struct f2fs_sb_info * sbi)1649 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1650 {
1651 	struct sit_info *sit_i = SIT_I(sbi);
1652 	unsigned int segno;
1653 
1654 	mutex_lock(&sit_i->sentry_lock);
1655 
1656 	sit_i->min_mtime = LLONG_MAX;
1657 
1658 	for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1659 		unsigned int i;
1660 		unsigned long long mtime = 0;
1661 
1662 		for (i = 0; i < sbi->segs_per_sec; i++)
1663 			mtime += get_seg_entry(sbi, segno + i)->mtime;
1664 
1665 		mtime = div_u64(mtime, sbi->segs_per_sec);
1666 
1667 		if (sit_i->min_mtime > mtime)
1668 			sit_i->min_mtime = mtime;
1669 	}
1670 	sit_i->max_mtime = get_mtime(sbi);
1671 	mutex_unlock(&sit_i->sentry_lock);
1672 }
1673 
build_segment_manager(struct f2fs_sb_info * sbi)1674 int build_segment_manager(struct f2fs_sb_info *sbi)
1675 {
1676 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1677 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1678 	struct f2fs_sm_info *sm_info;
1679 	int err;
1680 
1681 	sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1682 	if (!sm_info)
1683 		return -ENOMEM;
1684 
1685 	/* init sm info */
1686 	sbi->sm_info = sm_info;
1687 	INIT_LIST_HEAD(&sm_info->wblist_head);
1688 	spin_lock_init(&sm_info->wblist_lock);
1689 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1690 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1691 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1692 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1693 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1694 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1695 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1696 
1697 	err = build_sit_info(sbi);
1698 	if (err)
1699 		return err;
1700 	err = build_free_segmap(sbi);
1701 	if (err)
1702 		return err;
1703 	err = build_curseg(sbi);
1704 	if (err)
1705 		return err;
1706 
1707 	/* reinit free segmap based on SIT */
1708 	build_sit_entries(sbi);
1709 
1710 	init_free_segmap(sbi);
1711 	err = build_dirty_segmap(sbi);
1712 	if (err)
1713 		return err;
1714 
1715 	init_min_max_mtime(sbi);
1716 	return 0;
1717 }
1718 
discard_dirty_segmap(struct f2fs_sb_info * sbi,enum dirty_type dirty_type)1719 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1720 		enum dirty_type dirty_type)
1721 {
1722 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1723 
1724 	mutex_lock(&dirty_i->seglist_lock);
1725 	kfree(dirty_i->dirty_segmap[dirty_type]);
1726 	dirty_i->nr_dirty[dirty_type] = 0;
1727 	mutex_unlock(&dirty_i->seglist_lock);
1728 }
1729 
destroy_victim_secmap(struct f2fs_sb_info * sbi)1730 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
1731 {
1732 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1733 	kfree(dirty_i->victim_secmap);
1734 }
1735 
destroy_dirty_segmap(struct f2fs_sb_info * sbi)1736 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1737 {
1738 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1739 	int i;
1740 
1741 	if (!dirty_i)
1742 		return;
1743 
1744 	/* discard pre-free/dirty segments list */
1745 	for (i = 0; i < NR_DIRTY_TYPE; i++)
1746 		discard_dirty_segmap(sbi, i);
1747 
1748 	destroy_victim_secmap(sbi);
1749 	SM_I(sbi)->dirty_info = NULL;
1750 	kfree(dirty_i);
1751 }
1752 
destroy_curseg(struct f2fs_sb_info * sbi)1753 static void destroy_curseg(struct f2fs_sb_info *sbi)
1754 {
1755 	struct curseg_info *array = SM_I(sbi)->curseg_array;
1756 	int i;
1757 
1758 	if (!array)
1759 		return;
1760 	SM_I(sbi)->curseg_array = NULL;
1761 	for (i = 0; i < NR_CURSEG_TYPE; i++)
1762 		kfree(array[i].sum_blk);
1763 	kfree(array);
1764 }
1765 
destroy_free_segmap(struct f2fs_sb_info * sbi)1766 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1767 {
1768 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1769 	if (!free_i)
1770 		return;
1771 	SM_I(sbi)->free_info = NULL;
1772 	kfree(free_i->free_segmap);
1773 	kfree(free_i->free_secmap);
1774 	kfree(free_i);
1775 }
1776 
destroy_sit_info(struct f2fs_sb_info * sbi)1777 static void destroy_sit_info(struct f2fs_sb_info *sbi)
1778 {
1779 	struct sit_info *sit_i = SIT_I(sbi);
1780 	unsigned int start;
1781 
1782 	if (!sit_i)
1783 		return;
1784 
1785 	if (sit_i->sentries) {
1786 		for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1787 			kfree(sit_i->sentries[start].cur_valid_map);
1788 			kfree(sit_i->sentries[start].ckpt_valid_map);
1789 		}
1790 	}
1791 	vfree(sit_i->sentries);
1792 	vfree(sit_i->sec_entries);
1793 	kfree(sit_i->dirty_sentries_bitmap);
1794 
1795 	SM_I(sbi)->sit_info = NULL;
1796 	kfree(sit_i->sit_bitmap);
1797 	kfree(sit_i);
1798 }
1799 
destroy_segment_manager(struct f2fs_sb_info * sbi)1800 void destroy_segment_manager(struct f2fs_sb_info *sbi)
1801 {
1802 	struct f2fs_sm_info *sm_info = SM_I(sbi);
1803 	destroy_dirty_segmap(sbi);
1804 	destroy_curseg(sbi);
1805 	destroy_free_segmap(sbi);
1806 	destroy_sit_info(sbi);
1807 	sbi->sm_info = NULL;
1808 	kfree(sm_info);
1809 }
1810