• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 #ifndef _BCACHE_UTIL_H
3 #define _BCACHE_UTIL_H
4 
5 #include <linux/errno.h>
6 #include <linux/kernel.h>
7 #include <linux/llist.h>
8 #include <linux/ratelimit.h>
9 #include <linux/vmalloc.h>
10 #include <linux/workqueue.h>
11 
12 #include "closure.h"
13 
14 #define PAGE_SECTORS		(PAGE_SIZE / 512)
15 
16 struct closure;
17 
18 #include <trace/events/bcache.h>
19 
20 #ifdef CONFIG_BCACHE_EDEBUG
21 
22 #define atomic_dec_bug(v)	BUG_ON(atomic_dec_return(v) < 0)
23 #define atomic_inc_bug(v, i)	BUG_ON(atomic_inc_return(v) <= i)
24 
25 #else /* EDEBUG */
26 
27 #define atomic_dec_bug(v)	atomic_dec(v)
28 #define atomic_inc_bug(v, i)	atomic_inc(v)
29 
30 #endif
31 
32 #define BITMASK(name, type, field, offset, size)		\
33 static inline uint64_t name(const type *k)			\
34 { return (k->field >> offset) & ~(((uint64_t) ~0) << size); }	\
35 								\
36 static inline void SET_##name(type *k, uint64_t v)		\
37 {								\
38 	k->field &= ~(~((uint64_t) ~0 << size) << offset);	\
39 	k->field |= v << offset;				\
40 }
41 
42 #define DECLARE_HEAP(type, name)					\
43 	struct {							\
44 		size_t size, used;					\
45 		type *data;						\
46 	} name
47 
48 #define init_heap(heap, _size, gfp)					\
49 ({									\
50 	size_t _bytes;							\
51 	(heap)->used = 0;						\
52 	(heap)->size = (_size);						\
53 	_bytes = (heap)->size * sizeof(*(heap)->data);			\
54 	(heap)->data = NULL;						\
55 	if (_bytes < KMALLOC_MAX_SIZE)					\
56 		(heap)->data = kmalloc(_bytes, (gfp));			\
57 	if ((!(heap)->data) && ((gfp) & GFP_KERNEL))			\
58 		(heap)->data = vmalloc(_bytes);				\
59 	(heap)->data;							\
60 })
61 
62 #define free_heap(heap)							\
63 do {									\
64 	if (is_vmalloc_addr((heap)->data))				\
65 		vfree((heap)->data);					\
66 	else								\
67 		kfree((heap)->data);					\
68 	(heap)->data = NULL;						\
69 } while (0)
70 
71 #define heap_swap(h, i, j)	swap((h)->data[i], (h)->data[j])
72 
73 #define heap_sift(h, i, cmp)						\
74 do {									\
75 	size_t _r, _j = i;						\
76 									\
77 	for (; _j * 2 + 1 < (h)->used; _j = _r) {			\
78 		_r = _j * 2 + 1;					\
79 		if (_r + 1 < (h)->used &&				\
80 		    cmp((h)->data[_r], (h)->data[_r + 1]))		\
81 			_r++;						\
82 									\
83 		if (cmp((h)->data[_r], (h)->data[_j]))			\
84 			break;						\
85 		heap_swap(h, _r, _j);					\
86 	}								\
87 } while (0)
88 
89 #define heap_sift_down(h, i, cmp)					\
90 do {									\
91 	while (i) {							\
92 		size_t p = (i - 1) / 2;					\
93 		if (cmp((h)->data[i], (h)->data[p]))			\
94 			break;						\
95 		heap_swap(h, i, p);					\
96 		i = p;							\
97 	}								\
98 } while (0)
99 
100 #define heap_add(h, d, cmp)						\
101 ({									\
102 	bool _r = !heap_full(h);					\
103 	if (_r) {							\
104 		size_t _i = (h)->used++;				\
105 		(h)->data[_i] = d;					\
106 									\
107 		heap_sift_down(h, _i, cmp);				\
108 		heap_sift(h, _i, cmp);					\
109 	}								\
110 	_r;								\
111 })
112 
113 #define heap_pop(h, d, cmp)						\
114 ({									\
115 	bool _r = (h)->used;						\
116 	if (_r) {							\
117 		(d) = (h)->data[0];					\
118 		(h)->used--;						\
119 		heap_swap(h, 0, (h)->used);				\
120 		heap_sift(h, 0, cmp);					\
121 	}								\
122 	_r;								\
123 })
124 
125 #define heap_peek(h)	((h)->size ? (h)->data[0] : NULL)
126 
127 #define heap_full(h)	((h)->used == (h)->size)
128 
129 #define DECLARE_FIFO(type, name)					\
130 	struct {							\
131 		size_t front, back, size, mask;				\
132 		type *data;						\
133 	} name
134 
135 #define fifo_for_each(c, fifo, iter)					\
136 	for (iter = (fifo)->front;					\
137 	     c = (fifo)->data[iter], iter != (fifo)->back;		\
138 	     iter = (iter + 1) & (fifo)->mask)
139 
140 #define __init_fifo(fifo, gfp)						\
141 ({									\
142 	size_t _allocated_size, _bytes;					\
143 	BUG_ON(!(fifo)->size);						\
144 									\
145 	_allocated_size = roundup_pow_of_two((fifo)->size + 1);		\
146 	_bytes = _allocated_size * sizeof(*(fifo)->data);		\
147 									\
148 	(fifo)->mask = _allocated_size - 1;				\
149 	(fifo)->front = (fifo)->back = 0;				\
150 	(fifo)->data = NULL;						\
151 									\
152 	if (_bytes < KMALLOC_MAX_SIZE)					\
153 		(fifo)->data = kmalloc(_bytes, (gfp));			\
154 	if ((!(fifo)->data) && ((gfp) & GFP_KERNEL))			\
155 		(fifo)->data = vmalloc(_bytes);				\
156 	(fifo)->data;							\
157 })
158 
159 #define init_fifo_exact(fifo, _size, gfp)				\
160 ({									\
161 	(fifo)->size = (_size);						\
162 	__init_fifo(fifo, gfp);						\
163 })
164 
165 #define init_fifo(fifo, _size, gfp)					\
166 ({									\
167 	(fifo)->size = (_size);						\
168 	if ((fifo)->size > 4)						\
169 		(fifo)->size = roundup_pow_of_two((fifo)->size) - 1;	\
170 	__init_fifo(fifo, gfp);						\
171 })
172 
173 #define free_fifo(fifo)							\
174 do {									\
175 	if (is_vmalloc_addr((fifo)->data))				\
176 		vfree((fifo)->data);					\
177 	else								\
178 		kfree((fifo)->data);					\
179 	(fifo)->data = NULL;						\
180 } while (0)
181 
182 #define fifo_used(fifo)		(((fifo)->back - (fifo)->front) & (fifo)->mask)
183 #define fifo_free(fifo)		((fifo)->size - fifo_used(fifo))
184 
185 #define fifo_empty(fifo)	(!fifo_used(fifo))
186 #define fifo_full(fifo)		(!fifo_free(fifo))
187 
188 #define fifo_front(fifo)	((fifo)->data[(fifo)->front])
189 #define fifo_back(fifo)							\
190 	((fifo)->data[((fifo)->back - 1) & (fifo)->mask])
191 
192 #define fifo_idx(fifo, p)	(((p) - &fifo_front(fifo)) & (fifo)->mask)
193 
194 #define fifo_push_back(fifo, i)						\
195 ({									\
196 	bool _r = !fifo_full((fifo));					\
197 	if (_r) {							\
198 		(fifo)->data[(fifo)->back++] = (i);			\
199 		(fifo)->back &= (fifo)->mask;				\
200 	}								\
201 	_r;								\
202 })
203 
204 #define fifo_pop_front(fifo, i)						\
205 ({									\
206 	bool _r = !fifo_empty((fifo));					\
207 	if (_r) {							\
208 		(i) = (fifo)->data[(fifo)->front++];			\
209 		(fifo)->front &= (fifo)->mask;				\
210 	}								\
211 	_r;								\
212 })
213 
214 #define fifo_push_front(fifo, i)					\
215 ({									\
216 	bool _r = !fifo_full((fifo));					\
217 	if (_r) {							\
218 		--(fifo)->front;					\
219 		(fifo)->front &= (fifo)->mask;				\
220 		(fifo)->data[(fifo)->front] = (i);			\
221 	}								\
222 	_r;								\
223 })
224 
225 #define fifo_pop_back(fifo, i)						\
226 ({									\
227 	bool _r = !fifo_empty((fifo));					\
228 	if (_r) {							\
229 		--(fifo)->back;						\
230 		(fifo)->back &= (fifo)->mask;				\
231 		(i) = (fifo)->data[(fifo)->back]			\
232 	}								\
233 	_r;								\
234 })
235 
236 #define fifo_push(fifo, i)	fifo_push_back(fifo, (i))
237 #define fifo_pop(fifo, i)	fifo_pop_front(fifo, (i))
238 
239 #define fifo_swap(l, r)							\
240 do {									\
241 	swap((l)->front, (r)->front);					\
242 	swap((l)->back, (r)->back);					\
243 	swap((l)->size, (r)->size);					\
244 	swap((l)->mask, (r)->mask);					\
245 	swap((l)->data, (r)->data);					\
246 } while (0)
247 
248 #define fifo_move(dest, src)						\
249 do {									\
250 	typeof(*((dest)->data)) _t;					\
251 	while (!fifo_full(dest) &&					\
252 	       fifo_pop(src, _t))					\
253 		fifo_push(dest, _t);					\
254 } while (0)
255 
256 /*
257  * Simple array based allocator - preallocates a number of elements and you can
258  * never allocate more than that, also has no locking.
259  *
260  * Handy because if you know you only need a fixed number of elements you don't
261  * have to worry about memory allocation failure, and sometimes a mempool isn't
262  * what you want.
263  *
264  * We treat the free elements as entries in a singly linked list, and the
265  * freelist as a stack - allocating and freeing push and pop off the freelist.
266  */
267 
268 #define DECLARE_ARRAY_ALLOCATOR(type, name, size)			\
269 	struct {							\
270 		type	*freelist;					\
271 		type	data[size];					\
272 	} name
273 
274 #define array_alloc(array)						\
275 ({									\
276 	typeof((array)->freelist) _ret = (array)->freelist;		\
277 									\
278 	if (_ret)							\
279 		(array)->freelist = *((typeof((array)->freelist) *) _ret);\
280 									\
281 	_ret;								\
282 })
283 
284 #define array_free(array, ptr)						\
285 do {									\
286 	typeof((array)->freelist) _ptr = ptr;				\
287 									\
288 	*((typeof((array)->freelist) *) _ptr) = (array)->freelist;	\
289 	(array)->freelist = _ptr;					\
290 } while (0)
291 
292 #define array_allocator_init(array)					\
293 do {									\
294 	typeof((array)->freelist) _i;					\
295 									\
296 	BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *));	\
297 	(array)->freelist = NULL;					\
298 									\
299 	for (_i = (array)->data;					\
300 	     _i < (array)->data + ARRAY_SIZE((array)->data);		\
301 	     _i++)							\
302 		array_free(array, _i);					\
303 } while (0)
304 
305 #define array_freelist_empty(array)	((array)->freelist == NULL)
306 
307 #define ANYSINT_MAX(t)							\
308 	((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
309 
310 int bch_strtoint_h(const char *, int *);
311 int bch_strtouint_h(const char *, unsigned int *);
312 int bch_strtoll_h(const char *, long long *);
313 int bch_strtoull_h(const char *, unsigned long long *);
314 
bch_strtol_h(const char * cp,long * res)315 static inline int bch_strtol_h(const char *cp, long *res)
316 {
317 #if BITS_PER_LONG == 32
318 	return bch_strtoint_h(cp, (int *) res);
319 #else
320 	return bch_strtoll_h(cp, (long long *) res);
321 #endif
322 }
323 
bch_strtoul_h(const char * cp,long * res)324 static inline int bch_strtoul_h(const char *cp, long *res)
325 {
326 #if BITS_PER_LONG == 32
327 	return bch_strtouint_h(cp, (unsigned int *) res);
328 #else
329 	return bch_strtoull_h(cp, (unsigned long long *) res);
330 #endif
331 }
332 
333 #define strtoi_h(cp, res)						\
334 	(__builtin_types_compatible_p(typeof(*res), int)		\
335 	? bch_strtoint_h(cp, (void *) res)				\
336 	: __builtin_types_compatible_p(typeof(*res), long)		\
337 	? bch_strtol_h(cp, (void *) res)				\
338 	: __builtin_types_compatible_p(typeof(*res), long long)		\
339 	? bch_strtoll_h(cp, (void *) res)				\
340 	: __builtin_types_compatible_p(typeof(*res), unsigned int)	\
341 	? bch_strtouint_h(cp, (void *) res)				\
342 	: __builtin_types_compatible_p(typeof(*res), unsigned long)	\
343 	? bch_strtoul_h(cp, (void *) res)				\
344 	: __builtin_types_compatible_p(typeof(*res), unsigned long long)\
345 	? bch_strtoull_h(cp, (void *) res) : -EINVAL)
346 
347 #define strtoul_safe(cp, var)						\
348 ({									\
349 	unsigned long _v;						\
350 	int _r = kstrtoul(cp, 10, &_v);					\
351 	if (!_r)							\
352 		var = _v;						\
353 	_r;								\
354 })
355 
356 #define strtoul_safe_clamp(cp, var, min, max)				\
357 ({									\
358 	unsigned long _v;						\
359 	int _r = kstrtoul(cp, 10, &_v);					\
360 	if (!_r)							\
361 		var = clamp_t(typeof(var), _v, min, max);		\
362 	_r;								\
363 })
364 
365 #define snprint(buf, size, var)						\
366 	snprintf(buf, size,						\
367 		__builtin_types_compatible_p(typeof(var), int)		\
368 		     ? "%i\n" :						\
369 		__builtin_types_compatible_p(typeof(var), unsigned)	\
370 		     ? "%u\n" :						\
371 		__builtin_types_compatible_p(typeof(var), long)		\
372 		     ? "%li\n" :					\
373 		__builtin_types_compatible_p(typeof(var), unsigned long)\
374 		     ? "%lu\n" :					\
375 		__builtin_types_compatible_p(typeof(var), int64_t)	\
376 		     ? "%lli\n" :					\
377 		__builtin_types_compatible_p(typeof(var), uint64_t)	\
378 		     ? "%llu\n" :					\
379 		__builtin_types_compatible_p(typeof(var), const char *)	\
380 		     ? "%s\n" : "%i\n", var)
381 
382 ssize_t bch_hprint(char *buf, int64_t v);
383 
384 bool bch_is_zero(const char *p, size_t n);
385 int bch_parse_uuid(const char *s, char *uuid);
386 
387 ssize_t bch_snprint_string_list(char *buf, size_t size, const char * const list[],
388 			    size_t selected);
389 
390 ssize_t bch_read_string_list(const char *buf, const char * const list[]);
391 
392 struct time_stats {
393 	/*
394 	 * all fields are in nanoseconds, averages are ewmas stored left shifted
395 	 * by 8
396 	 */
397 	uint64_t	max_duration;
398 	uint64_t	average_duration;
399 	uint64_t	average_frequency;
400 	uint64_t	last;
401 };
402 
403 void bch_time_stats_update(struct time_stats *stats, uint64_t time);
404 
405 #define NSEC_PER_ns			1L
406 #define NSEC_PER_us			NSEC_PER_USEC
407 #define NSEC_PER_ms			NSEC_PER_MSEC
408 #define NSEC_PER_sec			NSEC_PER_SEC
409 
410 #define __print_time_stat(stats, name, stat, units)			\
411 	sysfs_print(name ## _ ## stat ## _ ## units,			\
412 		    div_u64((stats)->stat >> 8, NSEC_PER_ ## units))
413 
414 #define sysfs_print_time_stats(stats, name,				\
415 			       frequency_units,				\
416 			       duration_units)				\
417 do {									\
418 	__print_time_stat(stats, name,					\
419 			  average_frequency,	frequency_units);	\
420 	__print_time_stat(stats, name,					\
421 			  average_duration,	duration_units);	\
422 	__print_time_stat(stats, name,					\
423 			  max_duration,		duration_units);	\
424 									\
425 	sysfs_print(name ## _last_ ## frequency_units, (stats)->last	\
426 		    ? div_s64(local_clock() - (stats)->last,		\
427 			      NSEC_PER_ ## frequency_units)		\
428 		    : -1LL);						\
429 } while (0)
430 
431 #define sysfs_time_stats_attribute(name,				\
432 				   frequency_units,			\
433 				   duration_units)			\
434 read_attribute(name ## _average_frequency_ ## frequency_units);		\
435 read_attribute(name ## _average_duration_ ## duration_units);		\
436 read_attribute(name ## _max_duration_ ## duration_units);		\
437 read_attribute(name ## _last_ ## frequency_units)
438 
439 #define sysfs_time_stats_attribute_list(name,				\
440 					frequency_units,		\
441 					duration_units)			\
442 &sysfs_ ## name ## _average_frequency_ ## frequency_units,		\
443 &sysfs_ ## name ## _average_duration_ ## duration_units,		\
444 &sysfs_ ## name ## _max_duration_ ## duration_units,			\
445 &sysfs_ ## name ## _last_ ## frequency_units,
446 
447 #define ewma_add(ewma, val, weight, factor)				\
448 ({									\
449 	(ewma) *= (weight) - 1;						\
450 	(ewma) += (val) << factor;					\
451 	(ewma) /= (weight);						\
452 	(ewma) >> factor;						\
453 })
454 
455 struct ratelimit {
456 	uint64_t		next;
457 	unsigned		rate;
458 };
459 
ratelimit_reset(struct ratelimit * d)460 static inline void ratelimit_reset(struct ratelimit *d)
461 {
462 	d->next = local_clock();
463 }
464 
465 unsigned bch_next_delay(struct ratelimit *d, uint64_t done);
466 
467 #define __DIV_SAFE(n, d, zero)						\
468 ({									\
469 	typeof(n) _n = (n);						\
470 	typeof(d) _d = (d);						\
471 	_d ? _n / _d : zero;						\
472 })
473 
474 #define DIV_SAFE(n, d)	__DIV_SAFE(n, d, 0)
475 
476 #define container_of_or_null(ptr, type, member)				\
477 ({									\
478 	typeof(ptr) _ptr = ptr;						\
479 	_ptr ? container_of(_ptr, type, member) : NULL;			\
480 })
481 
482 #define RB_INSERT(root, new, member, cmp)				\
483 ({									\
484 	__label__ dup;							\
485 	struct rb_node **n = &(root)->rb_node, *parent = NULL;		\
486 	typeof(new) this;						\
487 	int res, ret = -1;						\
488 									\
489 	while (*n) {							\
490 		parent = *n;						\
491 		this = container_of(*n, typeof(*(new)), member);	\
492 		res = cmp(new, this);					\
493 		if (!res)						\
494 			goto dup;					\
495 		n = res < 0						\
496 			? &(*n)->rb_left				\
497 			: &(*n)->rb_right;				\
498 	}								\
499 									\
500 	rb_link_node(&(new)->member, parent, n);			\
501 	rb_insert_color(&(new)->member, root);				\
502 	ret = 0;							\
503 dup:									\
504 	ret;								\
505 })
506 
507 #define RB_SEARCH(root, search, member, cmp)				\
508 ({									\
509 	struct rb_node *n = (root)->rb_node;				\
510 	typeof(&(search)) this, ret = NULL;				\
511 	int res;							\
512 									\
513 	while (n) {							\
514 		this = container_of(n, typeof(search), member);		\
515 		res = cmp(&(search), this);				\
516 		if (!res) {						\
517 			ret = this;					\
518 			break;						\
519 		}							\
520 		n = res < 0						\
521 			? n->rb_left					\
522 			: n->rb_right;					\
523 	}								\
524 	ret;								\
525 })
526 
527 #define RB_GREATER(root, search, member, cmp)				\
528 ({									\
529 	struct rb_node *n = (root)->rb_node;				\
530 	typeof(&(search)) this, ret = NULL;				\
531 	int res;							\
532 									\
533 	while (n) {							\
534 		this = container_of(n, typeof(search), member);		\
535 		res = cmp(&(search), this);				\
536 		if (res < 0) {						\
537 			ret = this;					\
538 			n = n->rb_left;					\
539 		} else							\
540 			n = n->rb_right;				\
541 	}								\
542 	ret;								\
543 })
544 
545 #define RB_FIRST(root, type, member)					\
546 	container_of_or_null(rb_first(root), type, member)
547 
548 #define RB_LAST(root, type, member)					\
549 	container_of_or_null(rb_last(root), type, member)
550 
551 #define RB_NEXT(ptr, member)						\
552 	container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member)
553 
554 #define RB_PREV(ptr, member)						\
555 	container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member)
556 
557 /* Does linear interpolation between powers of two */
fract_exp_two(unsigned x,unsigned fract_bits)558 static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits)
559 {
560 	unsigned fract = x & ~(~0 << fract_bits);
561 
562 	x >>= fract_bits;
563 	x   = 1 << x;
564 	x  += (x * fract) >> fract_bits;
565 
566 	return x;
567 }
568 
569 #define bio_end(bio)	((bio)->bi_sector + bio_sectors(bio))
570 
571 void bch_bio_map(struct bio *bio, void *base);
572 
573 int bch_bio_alloc_pages(struct bio *bio, gfp_t gfp);
574 
bdev_sectors(struct block_device * bdev)575 static inline sector_t bdev_sectors(struct block_device *bdev)
576 {
577 	return bdev->bd_inode->i_size >> 9;
578 }
579 
580 #define closure_bio_submit(bio, cl, dev)				\
581 do {									\
582 	closure_get(cl);						\
583 	bch_generic_make_request(bio, &(dev)->bio_split_hook);		\
584 } while (0)
585 
586 uint64_t bch_crc64_update(uint64_t, const void *, size_t);
587 uint64_t bch_crc64(const void *, size_t);
588 
589 #endif /* _BCACHE_UTIL_H */
590