1
2 #ifndef _BCACHE_UTIL_H
3 #define _BCACHE_UTIL_H
4
5 #include <linux/errno.h>
6 #include <linux/kernel.h>
7 #include <linux/llist.h>
8 #include <linux/ratelimit.h>
9 #include <linux/vmalloc.h>
10 #include <linux/workqueue.h>
11
12 #include "closure.h"
13
14 #define PAGE_SECTORS (PAGE_SIZE / 512)
15
16 struct closure;
17
18 #include <trace/events/bcache.h>
19
20 #ifdef CONFIG_BCACHE_EDEBUG
21
22 #define atomic_dec_bug(v) BUG_ON(atomic_dec_return(v) < 0)
23 #define atomic_inc_bug(v, i) BUG_ON(atomic_inc_return(v) <= i)
24
25 #else /* EDEBUG */
26
27 #define atomic_dec_bug(v) atomic_dec(v)
28 #define atomic_inc_bug(v, i) atomic_inc(v)
29
30 #endif
31
32 #define BITMASK(name, type, field, offset, size) \
33 static inline uint64_t name(const type *k) \
34 { return (k->field >> offset) & ~(((uint64_t) ~0) << size); } \
35 \
36 static inline void SET_##name(type *k, uint64_t v) \
37 { \
38 k->field &= ~(~((uint64_t) ~0 << size) << offset); \
39 k->field |= v << offset; \
40 }
41
42 #define DECLARE_HEAP(type, name) \
43 struct { \
44 size_t size, used; \
45 type *data; \
46 } name
47
48 #define init_heap(heap, _size, gfp) \
49 ({ \
50 size_t _bytes; \
51 (heap)->used = 0; \
52 (heap)->size = (_size); \
53 _bytes = (heap)->size * sizeof(*(heap)->data); \
54 (heap)->data = NULL; \
55 if (_bytes < KMALLOC_MAX_SIZE) \
56 (heap)->data = kmalloc(_bytes, (gfp)); \
57 if ((!(heap)->data) && ((gfp) & GFP_KERNEL)) \
58 (heap)->data = vmalloc(_bytes); \
59 (heap)->data; \
60 })
61
62 #define free_heap(heap) \
63 do { \
64 if (is_vmalloc_addr((heap)->data)) \
65 vfree((heap)->data); \
66 else \
67 kfree((heap)->data); \
68 (heap)->data = NULL; \
69 } while (0)
70
71 #define heap_swap(h, i, j) swap((h)->data[i], (h)->data[j])
72
73 #define heap_sift(h, i, cmp) \
74 do { \
75 size_t _r, _j = i; \
76 \
77 for (; _j * 2 + 1 < (h)->used; _j = _r) { \
78 _r = _j * 2 + 1; \
79 if (_r + 1 < (h)->used && \
80 cmp((h)->data[_r], (h)->data[_r + 1])) \
81 _r++; \
82 \
83 if (cmp((h)->data[_r], (h)->data[_j])) \
84 break; \
85 heap_swap(h, _r, _j); \
86 } \
87 } while (0)
88
89 #define heap_sift_down(h, i, cmp) \
90 do { \
91 while (i) { \
92 size_t p = (i - 1) / 2; \
93 if (cmp((h)->data[i], (h)->data[p])) \
94 break; \
95 heap_swap(h, i, p); \
96 i = p; \
97 } \
98 } while (0)
99
100 #define heap_add(h, d, cmp) \
101 ({ \
102 bool _r = !heap_full(h); \
103 if (_r) { \
104 size_t _i = (h)->used++; \
105 (h)->data[_i] = d; \
106 \
107 heap_sift_down(h, _i, cmp); \
108 heap_sift(h, _i, cmp); \
109 } \
110 _r; \
111 })
112
113 #define heap_pop(h, d, cmp) \
114 ({ \
115 bool _r = (h)->used; \
116 if (_r) { \
117 (d) = (h)->data[0]; \
118 (h)->used--; \
119 heap_swap(h, 0, (h)->used); \
120 heap_sift(h, 0, cmp); \
121 } \
122 _r; \
123 })
124
125 #define heap_peek(h) ((h)->size ? (h)->data[0] : NULL)
126
127 #define heap_full(h) ((h)->used == (h)->size)
128
129 #define DECLARE_FIFO(type, name) \
130 struct { \
131 size_t front, back, size, mask; \
132 type *data; \
133 } name
134
135 #define fifo_for_each(c, fifo, iter) \
136 for (iter = (fifo)->front; \
137 c = (fifo)->data[iter], iter != (fifo)->back; \
138 iter = (iter + 1) & (fifo)->mask)
139
140 #define __init_fifo(fifo, gfp) \
141 ({ \
142 size_t _allocated_size, _bytes; \
143 BUG_ON(!(fifo)->size); \
144 \
145 _allocated_size = roundup_pow_of_two((fifo)->size + 1); \
146 _bytes = _allocated_size * sizeof(*(fifo)->data); \
147 \
148 (fifo)->mask = _allocated_size - 1; \
149 (fifo)->front = (fifo)->back = 0; \
150 (fifo)->data = NULL; \
151 \
152 if (_bytes < KMALLOC_MAX_SIZE) \
153 (fifo)->data = kmalloc(_bytes, (gfp)); \
154 if ((!(fifo)->data) && ((gfp) & GFP_KERNEL)) \
155 (fifo)->data = vmalloc(_bytes); \
156 (fifo)->data; \
157 })
158
159 #define init_fifo_exact(fifo, _size, gfp) \
160 ({ \
161 (fifo)->size = (_size); \
162 __init_fifo(fifo, gfp); \
163 })
164
165 #define init_fifo(fifo, _size, gfp) \
166 ({ \
167 (fifo)->size = (_size); \
168 if ((fifo)->size > 4) \
169 (fifo)->size = roundup_pow_of_two((fifo)->size) - 1; \
170 __init_fifo(fifo, gfp); \
171 })
172
173 #define free_fifo(fifo) \
174 do { \
175 if (is_vmalloc_addr((fifo)->data)) \
176 vfree((fifo)->data); \
177 else \
178 kfree((fifo)->data); \
179 (fifo)->data = NULL; \
180 } while (0)
181
182 #define fifo_used(fifo) (((fifo)->back - (fifo)->front) & (fifo)->mask)
183 #define fifo_free(fifo) ((fifo)->size - fifo_used(fifo))
184
185 #define fifo_empty(fifo) (!fifo_used(fifo))
186 #define fifo_full(fifo) (!fifo_free(fifo))
187
188 #define fifo_front(fifo) ((fifo)->data[(fifo)->front])
189 #define fifo_back(fifo) \
190 ((fifo)->data[((fifo)->back - 1) & (fifo)->mask])
191
192 #define fifo_idx(fifo, p) (((p) - &fifo_front(fifo)) & (fifo)->mask)
193
194 #define fifo_push_back(fifo, i) \
195 ({ \
196 bool _r = !fifo_full((fifo)); \
197 if (_r) { \
198 (fifo)->data[(fifo)->back++] = (i); \
199 (fifo)->back &= (fifo)->mask; \
200 } \
201 _r; \
202 })
203
204 #define fifo_pop_front(fifo, i) \
205 ({ \
206 bool _r = !fifo_empty((fifo)); \
207 if (_r) { \
208 (i) = (fifo)->data[(fifo)->front++]; \
209 (fifo)->front &= (fifo)->mask; \
210 } \
211 _r; \
212 })
213
214 #define fifo_push_front(fifo, i) \
215 ({ \
216 bool _r = !fifo_full((fifo)); \
217 if (_r) { \
218 --(fifo)->front; \
219 (fifo)->front &= (fifo)->mask; \
220 (fifo)->data[(fifo)->front] = (i); \
221 } \
222 _r; \
223 })
224
225 #define fifo_pop_back(fifo, i) \
226 ({ \
227 bool _r = !fifo_empty((fifo)); \
228 if (_r) { \
229 --(fifo)->back; \
230 (fifo)->back &= (fifo)->mask; \
231 (i) = (fifo)->data[(fifo)->back] \
232 } \
233 _r; \
234 })
235
236 #define fifo_push(fifo, i) fifo_push_back(fifo, (i))
237 #define fifo_pop(fifo, i) fifo_pop_front(fifo, (i))
238
239 #define fifo_swap(l, r) \
240 do { \
241 swap((l)->front, (r)->front); \
242 swap((l)->back, (r)->back); \
243 swap((l)->size, (r)->size); \
244 swap((l)->mask, (r)->mask); \
245 swap((l)->data, (r)->data); \
246 } while (0)
247
248 #define fifo_move(dest, src) \
249 do { \
250 typeof(*((dest)->data)) _t; \
251 while (!fifo_full(dest) && \
252 fifo_pop(src, _t)) \
253 fifo_push(dest, _t); \
254 } while (0)
255
256 /*
257 * Simple array based allocator - preallocates a number of elements and you can
258 * never allocate more than that, also has no locking.
259 *
260 * Handy because if you know you only need a fixed number of elements you don't
261 * have to worry about memory allocation failure, and sometimes a mempool isn't
262 * what you want.
263 *
264 * We treat the free elements as entries in a singly linked list, and the
265 * freelist as a stack - allocating and freeing push and pop off the freelist.
266 */
267
268 #define DECLARE_ARRAY_ALLOCATOR(type, name, size) \
269 struct { \
270 type *freelist; \
271 type data[size]; \
272 } name
273
274 #define array_alloc(array) \
275 ({ \
276 typeof((array)->freelist) _ret = (array)->freelist; \
277 \
278 if (_ret) \
279 (array)->freelist = *((typeof((array)->freelist) *) _ret);\
280 \
281 _ret; \
282 })
283
284 #define array_free(array, ptr) \
285 do { \
286 typeof((array)->freelist) _ptr = ptr; \
287 \
288 *((typeof((array)->freelist) *) _ptr) = (array)->freelist; \
289 (array)->freelist = _ptr; \
290 } while (0)
291
292 #define array_allocator_init(array) \
293 do { \
294 typeof((array)->freelist) _i; \
295 \
296 BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *)); \
297 (array)->freelist = NULL; \
298 \
299 for (_i = (array)->data; \
300 _i < (array)->data + ARRAY_SIZE((array)->data); \
301 _i++) \
302 array_free(array, _i); \
303 } while (0)
304
305 #define array_freelist_empty(array) ((array)->freelist == NULL)
306
307 #define ANYSINT_MAX(t) \
308 ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
309
310 int bch_strtoint_h(const char *, int *);
311 int bch_strtouint_h(const char *, unsigned int *);
312 int bch_strtoll_h(const char *, long long *);
313 int bch_strtoull_h(const char *, unsigned long long *);
314
bch_strtol_h(const char * cp,long * res)315 static inline int bch_strtol_h(const char *cp, long *res)
316 {
317 #if BITS_PER_LONG == 32
318 return bch_strtoint_h(cp, (int *) res);
319 #else
320 return bch_strtoll_h(cp, (long long *) res);
321 #endif
322 }
323
bch_strtoul_h(const char * cp,long * res)324 static inline int bch_strtoul_h(const char *cp, long *res)
325 {
326 #if BITS_PER_LONG == 32
327 return bch_strtouint_h(cp, (unsigned int *) res);
328 #else
329 return bch_strtoull_h(cp, (unsigned long long *) res);
330 #endif
331 }
332
333 #define strtoi_h(cp, res) \
334 (__builtin_types_compatible_p(typeof(*res), int) \
335 ? bch_strtoint_h(cp, (void *) res) \
336 : __builtin_types_compatible_p(typeof(*res), long) \
337 ? bch_strtol_h(cp, (void *) res) \
338 : __builtin_types_compatible_p(typeof(*res), long long) \
339 ? bch_strtoll_h(cp, (void *) res) \
340 : __builtin_types_compatible_p(typeof(*res), unsigned int) \
341 ? bch_strtouint_h(cp, (void *) res) \
342 : __builtin_types_compatible_p(typeof(*res), unsigned long) \
343 ? bch_strtoul_h(cp, (void *) res) \
344 : __builtin_types_compatible_p(typeof(*res), unsigned long long)\
345 ? bch_strtoull_h(cp, (void *) res) : -EINVAL)
346
347 #define strtoul_safe(cp, var) \
348 ({ \
349 unsigned long _v; \
350 int _r = kstrtoul(cp, 10, &_v); \
351 if (!_r) \
352 var = _v; \
353 _r; \
354 })
355
356 #define strtoul_safe_clamp(cp, var, min, max) \
357 ({ \
358 unsigned long _v; \
359 int _r = kstrtoul(cp, 10, &_v); \
360 if (!_r) \
361 var = clamp_t(typeof(var), _v, min, max); \
362 _r; \
363 })
364
365 #define snprint(buf, size, var) \
366 snprintf(buf, size, \
367 __builtin_types_compatible_p(typeof(var), int) \
368 ? "%i\n" : \
369 __builtin_types_compatible_p(typeof(var), unsigned) \
370 ? "%u\n" : \
371 __builtin_types_compatible_p(typeof(var), long) \
372 ? "%li\n" : \
373 __builtin_types_compatible_p(typeof(var), unsigned long)\
374 ? "%lu\n" : \
375 __builtin_types_compatible_p(typeof(var), int64_t) \
376 ? "%lli\n" : \
377 __builtin_types_compatible_p(typeof(var), uint64_t) \
378 ? "%llu\n" : \
379 __builtin_types_compatible_p(typeof(var), const char *) \
380 ? "%s\n" : "%i\n", var)
381
382 ssize_t bch_hprint(char *buf, int64_t v);
383
384 bool bch_is_zero(const char *p, size_t n);
385 int bch_parse_uuid(const char *s, char *uuid);
386
387 ssize_t bch_snprint_string_list(char *buf, size_t size, const char * const list[],
388 size_t selected);
389
390 ssize_t bch_read_string_list(const char *buf, const char * const list[]);
391
392 struct time_stats {
393 /*
394 * all fields are in nanoseconds, averages are ewmas stored left shifted
395 * by 8
396 */
397 uint64_t max_duration;
398 uint64_t average_duration;
399 uint64_t average_frequency;
400 uint64_t last;
401 };
402
403 void bch_time_stats_update(struct time_stats *stats, uint64_t time);
404
405 #define NSEC_PER_ns 1L
406 #define NSEC_PER_us NSEC_PER_USEC
407 #define NSEC_PER_ms NSEC_PER_MSEC
408 #define NSEC_PER_sec NSEC_PER_SEC
409
410 #define __print_time_stat(stats, name, stat, units) \
411 sysfs_print(name ## _ ## stat ## _ ## units, \
412 div_u64((stats)->stat >> 8, NSEC_PER_ ## units))
413
414 #define sysfs_print_time_stats(stats, name, \
415 frequency_units, \
416 duration_units) \
417 do { \
418 __print_time_stat(stats, name, \
419 average_frequency, frequency_units); \
420 __print_time_stat(stats, name, \
421 average_duration, duration_units); \
422 __print_time_stat(stats, name, \
423 max_duration, duration_units); \
424 \
425 sysfs_print(name ## _last_ ## frequency_units, (stats)->last \
426 ? div_s64(local_clock() - (stats)->last, \
427 NSEC_PER_ ## frequency_units) \
428 : -1LL); \
429 } while (0)
430
431 #define sysfs_time_stats_attribute(name, \
432 frequency_units, \
433 duration_units) \
434 read_attribute(name ## _average_frequency_ ## frequency_units); \
435 read_attribute(name ## _average_duration_ ## duration_units); \
436 read_attribute(name ## _max_duration_ ## duration_units); \
437 read_attribute(name ## _last_ ## frequency_units)
438
439 #define sysfs_time_stats_attribute_list(name, \
440 frequency_units, \
441 duration_units) \
442 &sysfs_ ## name ## _average_frequency_ ## frequency_units, \
443 &sysfs_ ## name ## _average_duration_ ## duration_units, \
444 &sysfs_ ## name ## _max_duration_ ## duration_units, \
445 &sysfs_ ## name ## _last_ ## frequency_units,
446
447 #define ewma_add(ewma, val, weight, factor) \
448 ({ \
449 (ewma) *= (weight) - 1; \
450 (ewma) += (val) << factor; \
451 (ewma) /= (weight); \
452 (ewma) >> factor; \
453 })
454
455 struct ratelimit {
456 uint64_t next;
457 unsigned rate;
458 };
459
ratelimit_reset(struct ratelimit * d)460 static inline void ratelimit_reset(struct ratelimit *d)
461 {
462 d->next = local_clock();
463 }
464
465 unsigned bch_next_delay(struct ratelimit *d, uint64_t done);
466
467 #define __DIV_SAFE(n, d, zero) \
468 ({ \
469 typeof(n) _n = (n); \
470 typeof(d) _d = (d); \
471 _d ? _n / _d : zero; \
472 })
473
474 #define DIV_SAFE(n, d) __DIV_SAFE(n, d, 0)
475
476 #define container_of_or_null(ptr, type, member) \
477 ({ \
478 typeof(ptr) _ptr = ptr; \
479 _ptr ? container_of(_ptr, type, member) : NULL; \
480 })
481
482 #define RB_INSERT(root, new, member, cmp) \
483 ({ \
484 __label__ dup; \
485 struct rb_node **n = &(root)->rb_node, *parent = NULL; \
486 typeof(new) this; \
487 int res, ret = -1; \
488 \
489 while (*n) { \
490 parent = *n; \
491 this = container_of(*n, typeof(*(new)), member); \
492 res = cmp(new, this); \
493 if (!res) \
494 goto dup; \
495 n = res < 0 \
496 ? &(*n)->rb_left \
497 : &(*n)->rb_right; \
498 } \
499 \
500 rb_link_node(&(new)->member, parent, n); \
501 rb_insert_color(&(new)->member, root); \
502 ret = 0; \
503 dup: \
504 ret; \
505 })
506
507 #define RB_SEARCH(root, search, member, cmp) \
508 ({ \
509 struct rb_node *n = (root)->rb_node; \
510 typeof(&(search)) this, ret = NULL; \
511 int res; \
512 \
513 while (n) { \
514 this = container_of(n, typeof(search), member); \
515 res = cmp(&(search), this); \
516 if (!res) { \
517 ret = this; \
518 break; \
519 } \
520 n = res < 0 \
521 ? n->rb_left \
522 : n->rb_right; \
523 } \
524 ret; \
525 })
526
527 #define RB_GREATER(root, search, member, cmp) \
528 ({ \
529 struct rb_node *n = (root)->rb_node; \
530 typeof(&(search)) this, ret = NULL; \
531 int res; \
532 \
533 while (n) { \
534 this = container_of(n, typeof(search), member); \
535 res = cmp(&(search), this); \
536 if (res < 0) { \
537 ret = this; \
538 n = n->rb_left; \
539 } else \
540 n = n->rb_right; \
541 } \
542 ret; \
543 })
544
545 #define RB_FIRST(root, type, member) \
546 container_of_or_null(rb_first(root), type, member)
547
548 #define RB_LAST(root, type, member) \
549 container_of_or_null(rb_last(root), type, member)
550
551 #define RB_NEXT(ptr, member) \
552 container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member)
553
554 #define RB_PREV(ptr, member) \
555 container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member)
556
557 /* Does linear interpolation between powers of two */
fract_exp_two(unsigned x,unsigned fract_bits)558 static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits)
559 {
560 unsigned fract = x & ~(~0 << fract_bits);
561
562 x >>= fract_bits;
563 x = 1 << x;
564 x += (x * fract) >> fract_bits;
565
566 return x;
567 }
568
569 #define bio_end(bio) ((bio)->bi_sector + bio_sectors(bio))
570
571 void bch_bio_map(struct bio *bio, void *base);
572
573 int bch_bio_alloc_pages(struct bio *bio, gfp_t gfp);
574
bdev_sectors(struct block_device * bdev)575 static inline sector_t bdev_sectors(struct block_device *bdev)
576 {
577 return bdev->bd_inode->i_size >> 9;
578 }
579
580 #define closure_bio_submit(bio, cl, dev) \
581 do { \
582 closure_get(cl); \
583 bch_generic_make_request(bio, &(dev)->bio_split_hook); \
584 } while (0)
585
586 uint64_t bch_crc64_update(uint64_t, const void *, size_t);
587 uint64_t bch_crc64(const void *, size_t);
588
589 #endif /* _BCACHE_UTIL_H */
590