1 /*
2 * cmm.c
3 *
4 * DSP-BIOS Bridge driver support functions for TI OMAP processors.
5 *
6 * The Communication(Shared) Memory Management(CMM) module provides
7 * shared memory management services for DSP/BIOS Bridge data streaming
8 * and messaging.
9 *
10 * Multiple shared memory segments can be registered with CMM.
11 * Each registered SM segment is represented by a SM "allocator" that
12 * describes a block of physically contiguous shared memory used for
13 * future allocations by CMM.
14 *
15 * Memory is coalesced back to the appropriate heap when a buffer is
16 * freed.
17 *
18 * Notes:
19 * Va: Virtual address.
20 * Pa: Physical or kernel system address.
21 *
22 * Copyright (C) 2005-2006 Texas Instruments, Inc.
23 *
24 * This package is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License version 2 as
26 * published by the Free Software Foundation.
27 *
28 * THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
29 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
30 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
31 */
32 #include <linux/types.h>
33 #include <linux/list.h>
34
35 /* ----------------------------------- DSP/BIOS Bridge */
36 #include <dspbridge/dbdefs.h>
37
38 /* ----------------------------------- OS Adaptation Layer */
39 #include <dspbridge/sync.h>
40
41 /* ----------------------------------- Platform Manager */
42 #include <dspbridge/dev.h>
43 #include <dspbridge/proc.h>
44
45 /* ----------------------------------- This */
46 #include <dspbridge/cmm.h>
47
48 /* ----------------------------------- Defines, Data Structures, Typedefs */
49 #define NEXT_PA(pnode) (pnode->pa + pnode->size)
50
51 /* Other bus/platform translations */
52 #define DSPPA2GPPPA(base, x, y) ((x)+(y))
53 #define GPPPA2DSPPA(base, x, y) ((x)-(y))
54
55 /*
56 * Allocators define a block of contiguous memory used for future allocations.
57 *
58 * sma - shared memory allocator.
59 * vma - virtual memory allocator.(not used).
60 */
61 struct cmm_allocator { /* sma */
62 unsigned int shm_base; /* Start of physical SM block */
63 u32 sm_size; /* Size of SM block in bytes */
64 unsigned int vm_base; /* Start of VM block. (Dev driver
65 * context for 'sma') */
66 u32 dsp_phys_addr_offset; /* DSP PA to GPP PA offset for this
67 * SM space */
68 s8 c_factor; /* DSPPa to GPPPa Conversion Factor */
69 unsigned int dsp_base; /* DSP virt base byte address */
70 u32 dsp_size; /* DSP seg size in bytes */
71 struct cmm_object *cmm_mgr; /* back ref to parent mgr */
72 /* node list of available memory */
73 struct list_head free_list;
74 /* node list of memory in use */
75 struct list_head in_use_list;
76 };
77
78 struct cmm_xlator { /* Pa<->Va translator object */
79 /* CMM object this translator associated */
80 struct cmm_object *cmm_mgr;
81 /*
82 * Client process virtual base address that corresponds to phys SM
83 * base address for translator's seg_id.
84 * Only 1 segment ID currently supported.
85 */
86 unsigned int virt_base; /* virtual base address */
87 u32 virt_size; /* size of virt space in bytes */
88 u32 seg_id; /* Segment Id */
89 };
90
91 /* CMM Mgr */
92 struct cmm_object {
93 /*
94 * Cmm Lock is used to serialize access mem manager for multi-threads.
95 */
96 struct mutex cmm_lock; /* Lock to access cmm mgr */
97 struct list_head node_free_list; /* Free list of memory nodes */
98 u32 min_block_size; /* Min SM block; default 16 bytes */
99 u32 page_size; /* Memory Page size (1k/4k) */
100 /* GPP SM segment ptrs */
101 struct cmm_allocator *pa_gppsm_seg_tab[CMM_MAXGPPSEGS];
102 };
103
104 /* Default CMM Mgr attributes */
105 static struct cmm_mgrattrs cmm_dfltmgrattrs = {
106 /* min_block_size, min block size(bytes) allocated by cmm mgr */
107 16
108 };
109
110 /* Default allocation attributes */
111 static struct cmm_attrs cmm_dfltalctattrs = {
112 1 /* seg_id, default segment Id for allocator */
113 };
114
115 /* Address translator default attrs */
116 static struct cmm_xlatorattrs cmm_dfltxlatorattrs = {
117 /* seg_id, does not have to match cmm_dfltalctattrs ul_seg_id */
118 1,
119 0, /* dsp_bufs */
120 0, /* dsp_buf_size */
121 NULL, /* vm_base */
122 0, /* vm_size */
123 };
124
125 /* SM node representing a block of memory. */
126 struct cmm_mnode {
127 struct list_head link; /* must be 1st element */
128 u32 pa; /* Phys addr */
129 u32 va; /* Virtual address in device process context */
130 u32 size; /* SM block size in bytes */
131 u32 client_proc; /* Process that allocated this mem block */
132 };
133
134 /* ----------------------------------- Function Prototypes */
135 static void add_to_free_list(struct cmm_allocator *allocator,
136 struct cmm_mnode *pnode);
137 static struct cmm_allocator *get_allocator(struct cmm_object *cmm_mgr_obj,
138 u32 ul_seg_id);
139 static struct cmm_mnode *get_free_block(struct cmm_allocator *allocator,
140 u32 usize);
141 static struct cmm_mnode *get_node(struct cmm_object *cmm_mgr_obj, u32 dw_pa,
142 u32 dw_va, u32 ul_size);
143 /* get available slot for new allocator */
144 static s32 get_slot(struct cmm_object *cmm_mgr_obj);
145 static void un_register_gppsm_seg(struct cmm_allocator *psma);
146
147 /*
148 * ======== cmm_calloc_buf ========
149 * Purpose:
150 * Allocate a SM buffer, zero contents, and return the physical address
151 * and optional driver context virtual address(pp_buf_va).
152 *
153 * The freelist is sorted in increasing size order. Get the first
154 * block that satifies the request and sort the remaining back on
155 * the freelist; if large enough. The kept block is placed on the
156 * inUseList.
157 */
cmm_calloc_buf(struct cmm_object * hcmm_mgr,u32 usize,struct cmm_attrs * pattrs,void ** pp_buf_va)158 void *cmm_calloc_buf(struct cmm_object *hcmm_mgr, u32 usize,
159 struct cmm_attrs *pattrs, void **pp_buf_va)
160 {
161 struct cmm_object *cmm_mgr_obj = (struct cmm_object *)hcmm_mgr;
162 void *buf_pa = NULL;
163 struct cmm_mnode *pnode = NULL;
164 struct cmm_mnode *new_node = NULL;
165 struct cmm_allocator *allocator = NULL;
166 u32 delta_size;
167 u8 *pbyte = NULL;
168 s32 cnt;
169
170 if (pattrs == NULL)
171 pattrs = &cmm_dfltalctattrs;
172
173 if (pp_buf_va != NULL)
174 *pp_buf_va = NULL;
175
176 if (cmm_mgr_obj && (usize != 0)) {
177 if (pattrs->seg_id > 0) {
178 /* SegId > 0 is SM */
179 /* get the allocator object for this segment id */
180 allocator =
181 get_allocator(cmm_mgr_obj, pattrs->seg_id);
182 /* keep block size a multiple of min_block_size */
183 usize =
184 ((usize - 1) & ~(cmm_mgr_obj->min_block_size -
185 1))
186 + cmm_mgr_obj->min_block_size;
187 mutex_lock(&cmm_mgr_obj->cmm_lock);
188 pnode = get_free_block(allocator, usize);
189 }
190 if (pnode) {
191 delta_size = (pnode->size - usize);
192 if (delta_size >= cmm_mgr_obj->min_block_size) {
193 /* create a new block with the leftovers and
194 * add to freelist */
195 new_node =
196 get_node(cmm_mgr_obj, pnode->pa + usize,
197 pnode->va + usize,
198 (u32) delta_size);
199 /* leftovers go free */
200 add_to_free_list(allocator, new_node);
201 /* adjust our node's size */
202 pnode->size = usize;
203 }
204 /* Tag node with client process requesting allocation
205 * We'll need to free up a process's alloc'd SM if the
206 * client process goes away.
207 */
208 /* Return TGID instead of process handle */
209 pnode->client_proc = current->tgid;
210
211 /* put our node on InUse list */
212 list_add_tail(&pnode->link, &allocator->in_use_list);
213 buf_pa = (void *)pnode->pa; /* physical address */
214 /* clear mem */
215 pbyte = (u8 *) pnode->va;
216 for (cnt = 0; cnt < (s32) usize; cnt++, pbyte++)
217 *pbyte = 0;
218
219 if (pp_buf_va != NULL) {
220 /* Virtual address */
221 *pp_buf_va = (void *)pnode->va;
222 }
223 }
224 mutex_unlock(&cmm_mgr_obj->cmm_lock);
225 }
226 return buf_pa;
227 }
228
229 /*
230 * ======== cmm_create ========
231 * Purpose:
232 * Create a communication memory manager object.
233 */
cmm_create(struct cmm_object ** ph_cmm_mgr,struct dev_object * hdev_obj,const struct cmm_mgrattrs * mgr_attrts)234 int cmm_create(struct cmm_object **ph_cmm_mgr,
235 struct dev_object *hdev_obj,
236 const struct cmm_mgrattrs *mgr_attrts)
237 {
238 struct cmm_object *cmm_obj = NULL;
239 int status = 0;
240
241 *ph_cmm_mgr = NULL;
242 /* create, zero, and tag a cmm mgr object */
243 cmm_obj = kzalloc(sizeof(struct cmm_object), GFP_KERNEL);
244 if (!cmm_obj)
245 return -ENOMEM;
246
247 if (mgr_attrts == NULL)
248 mgr_attrts = &cmm_dfltmgrattrs; /* set defaults */
249
250 /* save away smallest block allocation for this cmm mgr */
251 cmm_obj->min_block_size = mgr_attrts->min_block_size;
252 cmm_obj->page_size = PAGE_SIZE;
253
254 /* create node free list */
255 INIT_LIST_HEAD(&cmm_obj->node_free_list);
256 mutex_init(&cmm_obj->cmm_lock);
257 *ph_cmm_mgr = cmm_obj;
258
259 return status;
260 }
261
262 /*
263 * ======== cmm_destroy ========
264 * Purpose:
265 * Release the communication memory manager resources.
266 */
cmm_destroy(struct cmm_object * hcmm_mgr,bool force)267 int cmm_destroy(struct cmm_object *hcmm_mgr, bool force)
268 {
269 struct cmm_object *cmm_mgr_obj = (struct cmm_object *)hcmm_mgr;
270 struct cmm_info temp_info;
271 int status = 0;
272 s32 slot_seg;
273 struct cmm_mnode *node, *tmp;
274
275 if (!hcmm_mgr) {
276 status = -EFAULT;
277 return status;
278 }
279 mutex_lock(&cmm_mgr_obj->cmm_lock);
280 /* If not force then fail if outstanding allocations exist */
281 if (!force) {
282 /* Check for outstanding memory allocations */
283 status = cmm_get_info(hcmm_mgr, &temp_info);
284 if (!status) {
285 if (temp_info.total_in_use_cnt > 0) {
286 /* outstanding allocations */
287 status = -EPERM;
288 }
289 }
290 }
291 if (!status) {
292 /* UnRegister SM allocator */
293 for (slot_seg = 0; slot_seg < CMM_MAXGPPSEGS; slot_seg++) {
294 if (cmm_mgr_obj->pa_gppsm_seg_tab[slot_seg] != NULL) {
295 un_register_gppsm_seg
296 (cmm_mgr_obj->pa_gppsm_seg_tab[slot_seg]);
297 /* Set slot to NULL for future reuse */
298 cmm_mgr_obj->pa_gppsm_seg_tab[slot_seg] = NULL;
299 }
300 }
301 }
302 list_for_each_entry_safe(node, tmp, &cmm_mgr_obj->node_free_list,
303 link) {
304 list_del(&node->link);
305 kfree(node);
306 }
307 mutex_unlock(&cmm_mgr_obj->cmm_lock);
308 if (!status) {
309 /* delete CS & cmm mgr object */
310 mutex_destroy(&cmm_mgr_obj->cmm_lock);
311 kfree(cmm_mgr_obj);
312 }
313 return status;
314 }
315
316 /*
317 * ======== cmm_free_buf ========
318 * Purpose:
319 * Free the given buffer.
320 */
cmm_free_buf(struct cmm_object * hcmm_mgr,void * buf_pa,u32 ul_seg_id)321 int cmm_free_buf(struct cmm_object *hcmm_mgr, void *buf_pa, u32 ul_seg_id)
322 {
323 struct cmm_object *cmm_mgr_obj = (struct cmm_object *)hcmm_mgr;
324 int status = -EFAULT;
325 struct cmm_mnode *curr, *tmp;
326 struct cmm_allocator *allocator;
327 struct cmm_attrs *pattrs;
328
329 if (ul_seg_id == 0) {
330 pattrs = &cmm_dfltalctattrs;
331 ul_seg_id = pattrs->seg_id;
332 }
333 if (!hcmm_mgr || !(ul_seg_id > 0)) {
334 status = -EFAULT;
335 return status;
336 }
337
338 allocator = get_allocator(cmm_mgr_obj, ul_seg_id);
339 if (!allocator)
340 return status;
341
342 mutex_lock(&cmm_mgr_obj->cmm_lock);
343 list_for_each_entry_safe(curr, tmp, &allocator->in_use_list, link) {
344 if (curr->pa == (u32) buf_pa) {
345 list_del(&curr->link);
346 add_to_free_list(allocator, curr);
347 status = 0;
348 break;
349 }
350 }
351 mutex_unlock(&cmm_mgr_obj->cmm_lock);
352
353 return status;
354 }
355
356 /*
357 * ======== cmm_get_handle ========
358 * Purpose:
359 * Return the communication memory manager object for this device.
360 * This is typically called from the client process.
361 */
cmm_get_handle(void * hprocessor,struct cmm_object ** ph_cmm_mgr)362 int cmm_get_handle(void *hprocessor, struct cmm_object ** ph_cmm_mgr)
363 {
364 int status = 0;
365 struct dev_object *hdev_obj;
366
367 if (hprocessor != NULL)
368 status = proc_get_dev_object(hprocessor, &hdev_obj);
369 else
370 hdev_obj = dev_get_first(); /* default */
371
372 if (!status)
373 status = dev_get_cmm_mgr(hdev_obj, ph_cmm_mgr);
374
375 return status;
376 }
377
378 /*
379 * ======== cmm_get_info ========
380 * Purpose:
381 * Return the current memory utilization information.
382 */
cmm_get_info(struct cmm_object * hcmm_mgr,struct cmm_info * cmm_info_obj)383 int cmm_get_info(struct cmm_object *hcmm_mgr,
384 struct cmm_info *cmm_info_obj)
385 {
386 struct cmm_object *cmm_mgr_obj = (struct cmm_object *)hcmm_mgr;
387 u32 ul_seg;
388 int status = 0;
389 struct cmm_allocator *altr;
390 struct cmm_mnode *curr;
391
392 if (!hcmm_mgr) {
393 status = -EFAULT;
394 return status;
395 }
396 mutex_lock(&cmm_mgr_obj->cmm_lock);
397 cmm_info_obj->num_gppsm_segs = 0; /* # of SM segments */
398 /* Total # of outstanding alloc */
399 cmm_info_obj->total_in_use_cnt = 0;
400 /* min block size */
401 cmm_info_obj->min_block_size = cmm_mgr_obj->min_block_size;
402 /* check SM memory segments */
403 for (ul_seg = 1; ul_seg <= CMM_MAXGPPSEGS; ul_seg++) {
404 /* get the allocator object for this segment id */
405 altr = get_allocator(cmm_mgr_obj, ul_seg);
406 if (!altr)
407 continue;
408 cmm_info_obj->num_gppsm_segs++;
409 cmm_info_obj->seg_info[ul_seg - 1].seg_base_pa =
410 altr->shm_base - altr->dsp_size;
411 cmm_info_obj->seg_info[ul_seg - 1].total_seg_size =
412 altr->dsp_size + altr->sm_size;
413 cmm_info_obj->seg_info[ul_seg - 1].gpp_base_pa =
414 altr->shm_base;
415 cmm_info_obj->seg_info[ul_seg - 1].gpp_size =
416 altr->sm_size;
417 cmm_info_obj->seg_info[ul_seg - 1].dsp_base_va =
418 altr->dsp_base;
419 cmm_info_obj->seg_info[ul_seg - 1].dsp_size =
420 altr->dsp_size;
421 cmm_info_obj->seg_info[ul_seg - 1].seg_base_va =
422 altr->vm_base - altr->dsp_size;
423 cmm_info_obj->seg_info[ul_seg - 1].in_use_cnt = 0;
424
425 list_for_each_entry(curr, &altr->in_use_list, link) {
426 cmm_info_obj->total_in_use_cnt++;
427 cmm_info_obj->seg_info[ul_seg - 1].in_use_cnt++;
428 }
429 }
430 mutex_unlock(&cmm_mgr_obj->cmm_lock);
431 return status;
432 }
433
434 /*
435 * ======== cmm_register_gppsm_seg ========
436 * Purpose:
437 * Register a block of SM with the CMM to be used for later GPP SM
438 * allocations.
439 */
cmm_register_gppsm_seg(struct cmm_object * hcmm_mgr,u32 dw_gpp_base_pa,u32 ul_size,u32 dsp_addr_offset,s8 c_factor,u32 dw_dsp_base,u32 ul_dsp_size,u32 * sgmt_id,u32 gpp_base_va)440 int cmm_register_gppsm_seg(struct cmm_object *hcmm_mgr,
441 u32 dw_gpp_base_pa, u32 ul_size,
442 u32 dsp_addr_offset, s8 c_factor,
443 u32 dw_dsp_base, u32 ul_dsp_size,
444 u32 *sgmt_id, u32 gpp_base_va)
445 {
446 struct cmm_object *cmm_mgr_obj = (struct cmm_object *)hcmm_mgr;
447 struct cmm_allocator *psma = NULL;
448 int status = 0;
449 struct cmm_mnode *new_node;
450 s32 slot_seg;
451
452 dev_dbg(bridge, "%s: dw_gpp_base_pa %x ul_size %x dsp_addr_offset %x "
453 "dw_dsp_base %x ul_dsp_size %x gpp_base_va %x\n",
454 __func__, dw_gpp_base_pa, ul_size, dsp_addr_offset,
455 dw_dsp_base, ul_dsp_size, gpp_base_va);
456
457 if (!hcmm_mgr)
458 return -EFAULT;
459
460 /* make sure we have room for another allocator */
461 mutex_lock(&cmm_mgr_obj->cmm_lock);
462
463 slot_seg = get_slot(cmm_mgr_obj);
464 if (slot_seg < 0) {
465 status = -EPERM;
466 goto func_end;
467 }
468
469 /* Check if input ul_size is big enough to alloc at least one block */
470 if (ul_size < cmm_mgr_obj->min_block_size) {
471 status = -EINVAL;
472 goto func_end;
473 }
474
475 /* create, zero, and tag an SM allocator object */
476 psma = kzalloc(sizeof(struct cmm_allocator), GFP_KERNEL);
477 if (!psma) {
478 status = -ENOMEM;
479 goto func_end;
480 }
481
482 psma->cmm_mgr = hcmm_mgr; /* ref to parent */
483 psma->shm_base = dw_gpp_base_pa; /* SM Base phys */
484 psma->sm_size = ul_size; /* SM segment size in bytes */
485 psma->vm_base = gpp_base_va;
486 psma->dsp_phys_addr_offset = dsp_addr_offset;
487 psma->c_factor = c_factor;
488 psma->dsp_base = dw_dsp_base;
489 psma->dsp_size = ul_dsp_size;
490 if (psma->vm_base == 0) {
491 status = -EPERM;
492 goto func_end;
493 }
494 /* return the actual segment identifier */
495 *sgmt_id = (u32) slot_seg + 1;
496
497 INIT_LIST_HEAD(&psma->free_list);
498 INIT_LIST_HEAD(&psma->in_use_list);
499
500 /* Get a mem node for this hunk-o-memory */
501 new_node = get_node(cmm_mgr_obj, dw_gpp_base_pa,
502 psma->vm_base, ul_size);
503 /* Place node on the SM allocator's free list */
504 if (new_node) {
505 list_add_tail(&new_node->link, &psma->free_list);
506 } else {
507 status = -ENOMEM;
508 goto func_end;
509 }
510 /* make entry */
511 cmm_mgr_obj->pa_gppsm_seg_tab[slot_seg] = psma;
512
513 func_end:
514 /* Cleanup allocator */
515 if (status && psma)
516 un_register_gppsm_seg(psma);
517 mutex_unlock(&cmm_mgr_obj->cmm_lock);
518
519 return status;
520 }
521
522 /*
523 * ======== cmm_un_register_gppsm_seg ========
524 * Purpose:
525 * UnRegister GPP SM segments with the CMM.
526 */
cmm_un_register_gppsm_seg(struct cmm_object * hcmm_mgr,u32 ul_seg_id)527 int cmm_un_register_gppsm_seg(struct cmm_object *hcmm_mgr,
528 u32 ul_seg_id)
529 {
530 struct cmm_object *cmm_mgr_obj = (struct cmm_object *)hcmm_mgr;
531 int status = 0;
532 struct cmm_allocator *psma;
533 u32 ul_id = ul_seg_id;
534
535 if (!hcmm_mgr)
536 return -EFAULT;
537
538 if (ul_seg_id == CMM_ALLSEGMENTS)
539 ul_id = 1;
540
541 if ((ul_id <= 0) || (ul_id > CMM_MAXGPPSEGS))
542 return -EINVAL;
543
544 /*
545 * FIXME: CMM_MAXGPPSEGS == 1. why use a while cycle? Seems to me like
546 * the ul_seg_id is not needed here. It must be always 1.
547 */
548 while (ul_id <= CMM_MAXGPPSEGS) {
549 mutex_lock(&cmm_mgr_obj->cmm_lock);
550 /* slot = seg_id-1 */
551 psma = cmm_mgr_obj->pa_gppsm_seg_tab[ul_id - 1];
552 if (psma != NULL) {
553 un_register_gppsm_seg(psma);
554 /* Set alctr ptr to NULL for future reuse */
555 cmm_mgr_obj->pa_gppsm_seg_tab[ul_id - 1] = NULL;
556 } else if (ul_seg_id != CMM_ALLSEGMENTS) {
557 status = -EPERM;
558 }
559 mutex_unlock(&cmm_mgr_obj->cmm_lock);
560 if (ul_seg_id != CMM_ALLSEGMENTS)
561 break;
562
563 ul_id++;
564 } /* end while */
565 return status;
566 }
567
568 /*
569 * ======== un_register_gppsm_seg ========
570 * Purpose:
571 * UnRegister the SM allocator by freeing all its resources and
572 * nulling cmm mgr table entry.
573 * Note:
574 * This routine is always called within cmm lock crit sect.
575 */
un_register_gppsm_seg(struct cmm_allocator * psma)576 static void un_register_gppsm_seg(struct cmm_allocator *psma)
577 {
578 struct cmm_mnode *curr, *tmp;
579
580 /* free nodes on free list */
581 list_for_each_entry_safe(curr, tmp, &psma->free_list, link) {
582 list_del(&curr->link);
583 kfree(curr);
584 }
585
586 /* free nodes on InUse list */
587 list_for_each_entry_safe(curr, tmp, &psma->in_use_list, link) {
588 list_del(&curr->link);
589 kfree(curr);
590 }
591
592 if ((void *)psma->vm_base != NULL)
593 MEM_UNMAP_LINEAR_ADDRESS((void *)psma->vm_base);
594
595 /* Free allocator itself */
596 kfree(psma);
597 }
598
599 /*
600 * ======== get_slot ========
601 * Purpose:
602 * An available slot # is returned. Returns negative on failure.
603 */
get_slot(struct cmm_object * cmm_mgr_obj)604 static s32 get_slot(struct cmm_object *cmm_mgr_obj)
605 {
606 s32 slot_seg = -1; /* neg on failure */
607 /* get first available slot in cmm mgr SMSegTab[] */
608 for (slot_seg = 0; slot_seg < CMM_MAXGPPSEGS; slot_seg++) {
609 if (cmm_mgr_obj->pa_gppsm_seg_tab[slot_seg] == NULL)
610 break;
611
612 }
613 if (slot_seg == CMM_MAXGPPSEGS)
614 slot_seg = -1; /* failed */
615
616 return slot_seg;
617 }
618
619 /*
620 * ======== get_node ========
621 * Purpose:
622 * Get a memory node from freelist or create a new one.
623 */
get_node(struct cmm_object * cmm_mgr_obj,u32 dw_pa,u32 dw_va,u32 ul_size)624 static struct cmm_mnode *get_node(struct cmm_object *cmm_mgr_obj, u32 dw_pa,
625 u32 dw_va, u32 ul_size)
626 {
627 struct cmm_mnode *pnode;
628
629 /* Check cmm mgr's node freelist */
630 if (list_empty(&cmm_mgr_obj->node_free_list)) {
631 pnode = kzalloc(sizeof(struct cmm_mnode), GFP_KERNEL);
632 if (!pnode)
633 return NULL;
634 } else {
635 /* surely a valid element */
636 pnode = list_first_entry(&cmm_mgr_obj->node_free_list,
637 struct cmm_mnode, link);
638 list_del_init(&pnode->link);
639 }
640
641 pnode->pa = dw_pa;
642 pnode->va = dw_va;
643 pnode->size = ul_size;
644
645 return pnode;
646 }
647
648 /*
649 * ======== delete_node ========
650 * Purpose:
651 * Put a memory node on the cmm nodelist for later use.
652 * Doesn't actually delete the node. Heap thrashing friendly.
653 */
delete_node(struct cmm_object * cmm_mgr_obj,struct cmm_mnode * pnode)654 static void delete_node(struct cmm_object *cmm_mgr_obj, struct cmm_mnode *pnode)
655 {
656 list_add_tail(&pnode->link, &cmm_mgr_obj->node_free_list);
657 }
658
659 /*
660 * ====== get_free_block ========
661 * Purpose:
662 * Scan the free block list and return the first block that satisfies
663 * the size.
664 */
get_free_block(struct cmm_allocator * allocator,u32 usize)665 static struct cmm_mnode *get_free_block(struct cmm_allocator *allocator,
666 u32 usize)
667 {
668 struct cmm_mnode *node, *tmp;
669
670 if (!allocator)
671 return NULL;
672
673 list_for_each_entry_safe(node, tmp, &allocator->free_list, link) {
674 if (usize <= node->size) {
675 list_del(&node->link);
676 return node;
677 }
678 }
679
680 return NULL;
681 }
682
683 /*
684 * ======== add_to_free_list ========
685 * Purpose:
686 * Coalesce node into the freelist in ascending size order.
687 */
add_to_free_list(struct cmm_allocator * allocator,struct cmm_mnode * node)688 static void add_to_free_list(struct cmm_allocator *allocator,
689 struct cmm_mnode *node)
690 {
691 struct cmm_mnode *curr;
692
693 if (!node) {
694 pr_err("%s: failed - node is NULL\n", __func__);
695 return;
696 }
697
698 list_for_each_entry(curr, &allocator->free_list, link) {
699 if (NEXT_PA(curr) == node->pa) {
700 curr->size += node->size;
701 delete_node(allocator->cmm_mgr, node);
702 return;
703 }
704 if (curr->pa == NEXT_PA(node)) {
705 curr->pa = node->pa;
706 curr->va = node->va;
707 curr->size += node->size;
708 delete_node(allocator->cmm_mgr, node);
709 return;
710 }
711 }
712 list_for_each_entry(curr, &allocator->free_list, link) {
713 if (curr->size >= node->size) {
714 list_add_tail(&node->link, &curr->link);
715 return;
716 }
717 }
718 list_add_tail(&node->link, &allocator->free_list);
719 }
720
721 /*
722 * ======== get_allocator ========
723 * Purpose:
724 * Return the allocator for the given SM Segid.
725 * SegIds: 1,2,3..max.
726 */
get_allocator(struct cmm_object * cmm_mgr_obj,u32 ul_seg_id)727 static struct cmm_allocator *get_allocator(struct cmm_object *cmm_mgr_obj,
728 u32 ul_seg_id)
729 {
730 return cmm_mgr_obj->pa_gppsm_seg_tab[ul_seg_id - 1];
731 }
732
733 /*
734 * The CMM_Xlator[xxx] routines below are used by Node and Stream
735 * to perform SM address translation to the client process address space.
736 * A "translator" object is created by a node/stream for each SM seg used.
737 */
738
739 /*
740 * ======== cmm_xlator_create ========
741 * Purpose:
742 * Create an address translator object.
743 */
cmm_xlator_create(struct cmm_xlatorobject ** xlator,struct cmm_object * hcmm_mgr,struct cmm_xlatorattrs * xlator_attrs)744 int cmm_xlator_create(struct cmm_xlatorobject **xlator,
745 struct cmm_object *hcmm_mgr,
746 struct cmm_xlatorattrs *xlator_attrs)
747 {
748 struct cmm_xlator *xlator_object = NULL;
749 int status = 0;
750
751 *xlator = NULL;
752 if (xlator_attrs == NULL)
753 xlator_attrs = &cmm_dfltxlatorattrs; /* set defaults */
754
755 xlator_object = kzalloc(sizeof(struct cmm_xlator), GFP_KERNEL);
756 if (xlator_object != NULL) {
757 xlator_object->cmm_mgr = hcmm_mgr; /* ref back to CMM */
758 /* SM seg_id */
759 xlator_object->seg_id = xlator_attrs->seg_id;
760 } else {
761 status = -ENOMEM;
762 }
763 if (!status)
764 *xlator = (struct cmm_xlatorobject *)xlator_object;
765
766 return status;
767 }
768
769 /*
770 * ======== cmm_xlator_alloc_buf ========
771 */
cmm_xlator_alloc_buf(struct cmm_xlatorobject * xlator,void * va_buf,u32 pa_size)772 void *cmm_xlator_alloc_buf(struct cmm_xlatorobject *xlator, void *va_buf,
773 u32 pa_size)
774 {
775 struct cmm_xlator *xlator_obj = (struct cmm_xlator *)xlator;
776 void *pbuf = NULL;
777 void *tmp_va_buff;
778 struct cmm_attrs attrs;
779
780 if (xlator_obj) {
781 attrs.seg_id = xlator_obj->seg_id;
782 __raw_writel(0, va_buf);
783 /* Alloc SM */
784 pbuf =
785 cmm_calloc_buf(xlator_obj->cmm_mgr, pa_size, &attrs, NULL);
786 if (pbuf) {
787 /* convert to translator(node/strm) process Virtual
788 * address */
789 tmp_va_buff = cmm_xlator_translate(xlator,
790 pbuf, CMM_PA2VA);
791 __raw_writel((u32)tmp_va_buff, va_buf);
792 }
793 }
794 return pbuf;
795 }
796
797 /*
798 * ======== cmm_xlator_free_buf ========
799 * Purpose:
800 * Free the given SM buffer and descriptor.
801 * Does not free virtual memory.
802 */
cmm_xlator_free_buf(struct cmm_xlatorobject * xlator,void * buf_va)803 int cmm_xlator_free_buf(struct cmm_xlatorobject *xlator, void *buf_va)
804 {
805 struct cmm_xlator *xlator_obj = (struct cmm_xlator *)xlator;
806 int status = -EPERM;
807 void *buf_pa = NULL;
808
809 if (xlator_obj) {
810 /* convert Va to Pa so we can free it. */
811 buf_pa = cmm_xlator_translate(xlator, buf_va, CMM_VA2PA);
812 if (buf_pa) {
813 status = cmm_free_buf(xlator_obj->cmm_mgr, buf_pa,
814 xlator_obj->seg_id);
815 if (status) {
816 /* Uh oh, this shouldn't happen. Descriptor
817 * gone! */
818 pr_err("%s, line %d: Assertion failed\n",
819 __FILE__, __LINE__);
820 }
821 }
822 }
823 return status;
824 }
825
826 /*
827 * ======== cmm_xlator_info ========
828 * Purpose:
829 * Set/Get translator info.
830 */
cmm_xlator_info(struct cmm_xlatorobject * xlator,u8 ** paddr,u32 ul_size,u32 segm_id,bool set_info)831 int cmm_xlator_info(struct cmm_xlatorobject *xlator, u8 ** paddr,
832 u32 ul_size, u32 segm_id, bool set_info)
833 {
834 struct cmm_xlator *xlator_obj = (struct cmm_xlator *)xlator;
835 int status = 0;
836
837 if (xlator_obj) {
838 if (set_info) {
839 /* set translators virtual address range */
840 xlator_obj->virt_base = (u32) *paddr;
841 xlator_obj->virt_size = ul_size;
842 } else { /* return virt base address */
843 *paddr = (u8 *) xlator_obj->virt_base;
844 }
845 } else {
846 status = -EFAULT;
847 }
848 return status;
849 }
850
851 /*
852 * ======== cmm_xlator_translate ========
853 */
cmm_xlator_translate(struct cmm_xlatorobject * xlator,void * paddr,enum cmm_xlatetype xtype)854 void *cmm_xlator_translate(struct cmm_xlatorobject *xlator, void *paddr,
855 enum cmm_xlatetype xtype)
856 {
857 u32 dw_addr_xlate = 0;
858 struct cmm_xlator *xlator_obj = (struct cmm_xlator *)xlator;
859 struct cmm_object *cmm_mgr_obj = NULL;
860 struct cmm_allocator *allocator = NULL;
861 u32 dw_offset = 0;
862
863 if (!xlator_obj)
864 goto loop_cont;
865
866 cmm_mgr_obj = (struct cmm_object *)xlator_obj->cmm_mgr;
867 /* get this translator's default SM allocator */
868 allocator = cmm_mgr_obj->pa_gppsm_seg_tab[xlator_obj->seg_id - 1];
869 if (!allocator)
870 goto loop_cont;
871
872 if ((xtype == CMM_VA2DSPPA) || (xtype == CMM_VA2PA) ||
873 (xtype == CMM_PA2VA)) {
874 if (xtype == CMM_PA2VA) {
875 /* Gpp Va = Va Base + offset */
876 dw_offset = (u8 *) paddr - (u8 *) (allocator->shm_base -
877 allocator->
878 dsp_size);
879 dw_addr_xlate = xlator_obj->virt_base + dw_offset;
880 /* Check if translated Va base is in range */
881 if ((dw_addr_xlate < xlator_obj->virt_base) ||
882 (dw_addr_xlate >=
883 (xlator_obj->virt_base +
884 xlator_obj->virt_size))) {
885 dw_addr_xlate = 0; /* bad address */
886 }
887 } else {
888 /* Gpp PA = Gpp Base + offset */
889 dw_offset =
890 (u8 *) paddr - (u8 *) xlator_obj->virt_base;
891 dw_addr_xlate =
892 allocator->shm_base - allocator->dsp_size +
893 dw_offset;
894 }
895 } else {
896 dw_addr_xlate = (u32) paddr;
897 }
898 /*Now convert address to proper target physical address if needed */
899 if ((xtype == CMM_VA2DSPPA) || (xtype == CMM_PA2DSPPA)) {
900 /* Got Gpp Pa now, convert to DSP Pa */
901 dw_addr_xlate =
902 GPPPA2DSPPA((allocator->shm_base - allocator->dsp_size),
903 dw_addr_xlate,
904 allocator->dsp_phys_addr_offset *
905 allocator->c_factor);
906 } else if (xtype == CMM_DSPPA2PA) {
907 /* Got DSP Pa, convert to GPP Pa */
908 dw_addr_xlate =
909 DSPPA2GPPPA(allocator->shm_base - allocator->dsp_size,
910 dw_addr_xlate,
911 allocator->dsp_phys_addr_offset *
912 allocator->c_factor);
913 }
914 loop_cont:
915 return (void *)dw_addr_xlate;
916 }
917