1 /**
2 * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
3 *
4 * This source file is released under GPL v2 license (no other versions).
5 * See the COPYING file included in the main directory of this source
6 * distribution for the license terms and conditions.
7 *
8 * @File cthw20k1.c
9 *
10 * @Brief
11 * This file contains the implementation of hardware access methord for 20k1.
12 *
13 * @Author Liu Chun
14 * @Date Jun 24 2008
15 *
16 */
17
18 #include <linux/types.h>
19 #include <linux/slab.h>
20 #include <linux/pci.h>
21 #include <linux/io.h>
22 #include <linux/string.h>
23 #include <linux/spinlock.h>
24 #include <linux/kernel.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include "cthw20k1.h"
28 #include "ct20k1reg.h"
29
30 #if BITS_PER_LONG == 32
31 #define CT_XFI_DMA_MASK DMA_BIT_MASK(32) /* 32 bit PTE */
32 #else
33 #define CT_XFI_DMA_MASK DMA_BIT_MASK(64) /* 64 bit PTE */
34 #endif
35
36 struct hw20k1 {
37 struct hw hw;
38 spinlock_t reg_20k1_lock;
39 spinlock_t reg_pci_lock;
40 };
41
42 static u32 hw_read_20kx(struct hw *hw, u32 reg);
43 static void hw_write_20kx(struct hw *hw, u32 reg, u32 data);
44 static u32 hw_read_pci(struct hw *hw, u32 reg);
45 static void hw_write_pci(struct hw *hw, u32 reg, u32 data);
46
47 /*
48 * Type definition block.
49 * The layout of control structures can be directly applied on 20k2 chip.
50 */
51
52 /*
53 * SRC control block definitions.
54 */
55
56 /* SRC resource control block */
57 #define SRCCTL_STATE 0x00000007
58 #define SRCCTL_BM 0x00000008
59 #define SRCCTL_RSR 0x00000030
60 #define SRCCTL_SF 0x000001C0
61 #define SRCCTL_WR 0x00000200
62 #define SRCCTL_PM 0x00000400
63 #define SRCCTL_ROM 0x00001800
64 #define SRCCTL_VO 0x00002000
65 #define SRCCTL_ST 0x00004000
66 #define SRCCTL_IE 0x00008000
67 #define SRCCTL_ILSZ 0x000F0000
68 #define SRCCTL_BP 0x00100000
69
70 #define SRCCCR_CISZ 0x000007FF
71 #define SRCCCR_CWA 0x001FF800
72 #define SRCCCR_D 0x00200000
73 #define SRCCCR_RS 0x01C00000
74 #define SRCCCR_NAL 0x3E000000
75 #define SRCCCR_RA 0xC0000000
76
77 #define SRCCA_CA 0x03FFFFFF
78 #define SRCCA_RS 0x1C000000
79 #define SRCCA_NAL 0xE0000000
80
81 #define SRCSA_SA 0x03FFFFFF
82
83 #define SRCLA_LA 0x03FFFFFF
84
85 /* Mixer Parameter Ring ram Low and Hight register.
86 * Fixed-point value in 8.24 format for parameter channel */
87 #define MPRLH_PITCH 0xFFFFFFFF
88
89 /* SRC resource register dirty flags */
90 union src_dirty {
91 struct {
92 u16 ctl:1;
93 u16 ccr:1;
94 u16 sa:1;
95 u16 la:1;
96 u16 ca:1;
97 u16 mpr:1;
98 u16 czbfs:1; /* Clear Z-Buffers */
99 u16 rsv:9;
100 } bf;
101 u16 data;
102 };
103
104 struct src_rsc_ctrl_blk {
105 unsigned int ctl;
106 unsigned int ccr;
107 unsigned int ca;
108 unsigned int sa;
109 unsigned int la;
110 unsigned int mpr;
111 union src_dirty dirty;
112 };
113
114 /* SRC manager control block */
115 union src_mgr_dirty {
116 struct {
117 u16 enb0:1;
118 u16 enb1:1;
119 u16 enb2:1;
120 u16 enb3:1;
121 u16 enb4:1;
122 u16 enb5:1;
123 u16 enb6:1;
124 u16 enb7:1;
125 u16 enbsa:1;
126 u16 rsv:7;
127 } bf;
128 u16 data;
129 };
130
131 struct src_mgr_ctrl_blk {
132 unsigned int enbsa;
133 unsigned int enb[8];
134 union src_mgr_dirty dirty;
135 };
136
137 /* SRCIMP manager control block */
138 #define SRCAIM_ARC 0x00000FFF
139 #define SRCAIM_NXT 0x00FF0000
140 #define SRCAIM_SRC 0xFF000000
141
142 struct srcimap {
143 unsigned int srcaim;
144 unsigned int idx;
145 };
146
147 /* SRCIMP manager register dirty flags */
148 union srcimp_mgr_dirty {
149 struct {
150 u16 srcimap:1;
151 u16 rsv:15;
152 } bf;
153 u16 data;
154 };
155
156 struct srcimp_mgr_ctrl_blk {
157 struct srcimap srcimap;
158 union srcimp_mgr_dirty dirty;
159 };
160
161 /*
162 * Function implementation block.
163 */
164
src_get_rsc_ctrl_blk(void ** rblk)165 static int src_get_rsc_ctrl_blk(void **rblk)
166 {
167 struct src_rsc_ctrl_blk *blk;
168
169 *rblk = NULL;
170 blk = kzalloc(sizeof(*blk), GFP_KERNEL);
171 if (!blk)
172 return -ENOMEM;
173
174 *rblk = blk;
175
176 return 0;
177 }
178
src_put_rsc_ctrl_blk(void * blk)179 static int src_put_rsc_ctrl_blk(void *blk)
180 {
181 kfree((struct src_rsc_ctrl_blk *)blk);
182
183 return 0;
184 }
185
src_set_state(void * blk,unsigned int state)186 static int src_set_state(void *blk, unsigned int state)
187 {
188 struct src_rsc_ctrl_blk *ctl = blk;
189
190 set_field(&ctl->ctl, SRCCTL_STATE, state);
191 ctl->dirty.bf.ctl = 1;
192 return 0;
193 }
194
src_set_bm(void * blk,unsigned int bm)195 static int src_set_bm(void *blk, unsigned int bm)
196 {
197 struct src_rsc_ctrl_blk *ctl = blk;
198
199 set_field(&ctl->ctl, SRCCTL_BM, bm);
200 ctl->dirty.bf.ctl = 1;
201 return 0;
202 }
203
src_set_rsr(void * blk,unsigned int rsr)204 static int src_set_rsr(void *blk, unsigned int rsr)
205 {
206 struct src_rsc_ctrl_blk *ctl = blk;
207
208 set_field(&ctl->ctl, SRCCTL_RSR, rsr);
209 ctl->dirty.bf.ctl = 1;
210 return 0;
211 }
212
src_set_sf(void * blk,unsigned int sf)213 static int src_set_sf(void *blk, unsigned int sf)
214 {
215 struct src_rsc_ctrl_blk *ctl = blk;
216
217 set_field(&ctl->ctl, SRCCTL_SF, sf);
218 ctl->dirty.bf.ctl = 1;
219 return 0;
220 }
221
src_set_wr(void * blk,unsigned int wr)222 static int src_set_wr(void *blk, unsigned int wr)
223 {
224 struct src_rsc_ctrl_blk *ctl = blk;
225
226 set_field(&ctl->ctl, SRCCTL_WR, wr);
227 ctl->dirty.bf.ctl = 1;
228 return 0;
229 }
230
src_set_pm(void * blk,unsigned int pm)231 static int src_set_pm(void *blk, unsigned int pm)
232 {
233 struct src_rsc_ctrl_blk *ctl = blk;
234
235 set_field(&ctl->ctl, SRCCTL_PM, pm);
236 ctl->dirty.bf.ctl = 1;
237 return 0;
238 }
239
src_set_rom(void * blk,unsigned int rom)240 static int src_set_rom(void *blk, unsigned int rom)
241 {
242 struct src_rsc_ctrl_blk *ctl = blk;
243
244 set_field(&ctl->ctl, SRCCTL_ROM, rom);
245 ctl->dirty.bf.ctl = 1;
246 return 0;
247 }
248
src_set_vo(void * blk,unsigned int vo)249 static int src_set_vo(void *blk, unsigned int vo)
250 {
251 struct src_rsc_ctrl_blk *ctl = blk;
252
253 set_field(&ctl->ctl, SRCCTL_VO, vo);
254 ctl->dirty.bf.ctl = 1;
255 return 0;
256 }
257
src_set_st(void * blk,unsigned int st)258 static int src_set_st(void *blk, unsigned int st)
259 {
260 struct src_rsc_ctrl_blk *ctl = blk;
261
262 set_field(&ctl->ctl, SRCCTL_ST, st);
263 ctl->dirty.bf.ctl = 1;
264 return 0;
265 }
266
src_set_ie(void * blk,unsigned int ie)267 static int src_set_ie(void *blk, unsigned int ie)
268 {
269 struct src_rsc_ctrl_blk *ctl = blk;
270
271 set_field(&ctl->ctl, SRCCTL_IE, ie);
272 ctl->dirty.bf.ctl = 1;
273 return 0;
274 }
275
src_set_ilsz(void * blk,unsigned int ilsz)276 static int src_set_ilsz(void *blk, unsigned int ilsz)
277 {
278 struct src_rsc_ctrl_blk *ctl = blk;
279
280 set_field(&ctl->ctl, SRCCTL_ILSZ, ilsz);
281 ctl->dirty.bf.ctl = 1;
282 return 0;
283 }
284
src_set_bp(void * blk,unsigned int bp)285 static int src_set_bp(void *blk, unsigned int bp)
286 {
287 struct src_rsc_ctrl_blk *ctl = blk;
288
289 set_field(&ctl->ctl, SRCCTL_BP, bp);
290 ctl->dirty.bf.ctl = 1;
291 return 0;
292 }
293
src_set_cisz(void * blk,unsigned int cisz)294 static int src_set_cisz(void *blk, unsigned int cisz)
295 {
296 struct src_rsc_ctrl_blk *ctl = blk;
297
298 set_field(&ctl->ccr, SRCCCR_CISZ, cisz);
299 ctl->dirty.bf.ccr = 1;
300 return 0;
301 }
302
src_set_ca(void * blk,unsigned int ca)303 static int src_set_ca(void *blk, unsigned int ca)
304 {
305 struct src_rsc_ctrl_blk *ctl = blk;
306
307 set_field(&ctl->ca, SRCCA_CA, ca);
308 ctl->dirty.bf.ca = 1;
309 return 0;
310 }
311
src_set_sa(void * blk,unsigned int sa)312 static int src_set_sa(void *blk, unsigned int sa)
313 {
314 struct src_rsc_ctrl_blk *ctl = blk;
315
316 set_field(&ctl->sa, SRCSA_SA, sa);
317 ctl->dirty.bf.sa = 1;
318 return 0;
319 }
320
src_set_la(void * blk,unsigned int la)321 static int src_set_la(void *blk, unsigned int la)
322 {
323 struct src_rsc_ctrl_blk *ctl = blk;
324
325 set_field(&ctl->la, SRCLA_LA, la);
326 ctl->dirty.bf.la = 1;
327 return 0;
328 }
329
src_set_pitch(void * blk,unsigned int pitch)330 static int src_set_pitch(void *blk, unsigned int pitch)
331 {
332 struct src_rsc_ctrl_blk *ctl = blk;
333
334 set_field(&ctl->mpr, MPRLH_PITCH, pitch);
335 ctl->dirty.bf.mpr = 1;
336 return 0;
337 }
338
src_set_clear_zbufs(void * blk,unsigned int clear)339 static int src_set_clear_zbufs(void *blk, unsigned int clear)
340 {
341 ((struct src_rsc_ctrl_blk *)blk)->dirty.bf.czbfs = (clear ? 1 : 0);
342 return 0;
343 }
344
src_set_dirty(void * blk,unsigned int flags)345 static int src_set_dirty(void *blk, unsigned int flags)
346 {
347 ((struct src_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff);
348 return 0;
349 }
350
src_set_dirty_all(void * blk)351 static int src_set_dirty_all(void *blk)
352 {
353 ((struct src_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0);
354 return 0;
355 }
356
357 #define AR_SLOT_SIZE 4096
358 #define AR_SLOT_BLOCK_SIZE 16
359 #define AR_PTS_PITCH 6
360 #define AR_PARAM_SRC_OFFSET 0x60
361
src_param_pitch_mixer(unsigned int src_idx)362 static unsigned int src_param_pitch_mixer(unsigned int src_idx)
363 {
364 return ((src_idx << 4) + AR_PTS_PITCH + AR_SLOT_SIZE
365 - AR_PARAM_SRC_OFFSET) % AR_SLOT_SIZE;
366
367 }
368
src_commit_write(struct hw * hw,unsigned int idx,void * blk)369 static int src_commit_write(struct hw *hw, unsigned int idx, void *blk)
370 {
371 struct src_rsc_ctrl_blk *ctl = blk;
372 int i;
373
374 if (ctl->dirty.bf.czbfs) {
375 /* Clear Z-Buffer registers */
376 for (i = 0; i < 8; i++)
377 hw_write_20kx(hw, SRCUPZ+idx*0x100+i*0x4, 0);
378
379 for (i = 0; i < 4; i++)
380 hw_write_20kx(hw, SRCDN0Z+idx*0x100+i*0x4, 0);
381
382 for (i = 0; i < 8; i++)
383 hw_write_20kx(hw, SRCDN1Z+idx*0x100+i*0x4, 0);
384
385 ctl->dirty.bf.czbfs = 0;
386 }
387 if (ctl->dirty.bf.mpr) {
388 /* Take the parameter mixer resource in the same group as that
389 * the idx src is in for simplicity. Unlike src, all conjugate
390 * parameter mixer resources must be programmed for
391 * corresponding conjugate src resources. */
392 unsigned int pm_idx = src_param_pitch_mixer(idx);
393 hw_write_20kx(hw, PRING_LO_HI+4*pm_idx, ctl->mpr);
394 hw_write_20kx(hw, PMOPLO+8*pm_idx, 0x3);
395 hw_write_20kx(hw, PMOPHI+8*pm_idx, 0x0);
396 ctl->dirty.bf.mpr = 0;
397 }
398 if (ctl->dirty.bf.sa) {
399 hw_write_20kx(hw, SRCSA+idx*0x100, ctl->sa);
400 ctl->dirty.bf.sa = 0;
401 }
402 if (ctl->dirty.bf.la) {
403 hw_write_20kx(hw, SRCLA+idx*0x100, ctl->la);
404 ctl->dirty.bf.la = 0;
405 }
406 if (ctl->dirty.bf.ca) {
407 hw_write_20kx(hw, SRCCA+idx*0x100, ctl->ca);
408 ctl->dirty.bf.ca = 0;
409 }
410
411 /* Write srccf register */
412 hw_write_20kx(hw, SRCCF+idx*0x100, 0x0);
413
414 if (ctl->dirty.bf.ccr) {
415 hw_write_20kx(hw, SRCCCR+idx*0x100, ctl->ccr);
416 ctl->dirty.bf.ccr = 0;
417 }
418 if (ctl->dirty.bf.ctl) {
419 hw_write_20kx(hw, SRCCTL+idx*0x100, ctl->ctl);
420 ctl->dirty.bf.ctl = 0;
421 }
422
423 return 0;
424 }
425
src_get_ca(struct hw * hw,unsigned int idx,void * blk)426 static int src_get_ca(struct hw *hw, unsigned int idx, void *blk)
427 {
428 struct src_rsc_ctrl_blk *ctl = blk;
429
430 ctl->ca = hw_read_20kx(hw, SRCCA+idx*0x100);
431 ctl->dirty.bf.ca = 0;
432
433 return get_field(ctl->ca, SRCCA_CA);
434 }
435
src_get_dirty(void * blk)436 static unsigned int src_get_dirty(void *blk)
437 {
438 return ((struct src_rsc_ctrl_blk *)blk)->dirty.data;
439 }
440
src_dirty_conj_mask(void)441 static unsigned int src_dirty_conj_mask(void)
442 {
443 return 0x20;
444 }
445
src_mgr_enbs_src(void * blk,unsigned int idx)446 static int src_mgr_enbs_src(void *blk, unsigned int idx)
447 {
448 ((struct src_mgr_ctrl_blk *)blk)->enbsa = ~(0x0);
449 ((struct src_mgr_ctrl_blk *)blk)->dirty.bf.enbsa = 1;
450 ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32));
451 return 0;
452 }
453
src_mgr_enb_src(void * blk,unsigned int idx)454 static int src_mgr_enb_src(void *blk, unsigned int idx)
455 {
456 ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32));
457 ((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32));
458 return 0;
459 }
460
src_mgr_dsb_src(void * blk,unsigned int idx)461 static int src_mgr_dsb_src(void *blk, unsigned int idx)
462 {
463 ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] &= ~(0x1 << (idx%32));
464 ((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32));
465 return 0;
466 }
467
src_mgr_commit_write(struct hw * hw,void * blk)468 static int src_mgr_commit_write(struct hw *hw, void *blk)
469 {
470 struct src_mgr_ctrl_blk *ctl = blk;
471 int i;
472 unsigned int ret;
473
474 if (ctl->dirty.bf.enbsa) {
475 do {
476 ret = hw_read_20kx(hw, SRCENBSTAT);
477 } while (ret & 0x1);
478 hw_write_20kx(hw, SRCENBS, ctl->enbsa);
479 ctl->dirty.bf.enbsa = 0;
480 }
481 for (i = 0; i < 8; i++) {
482 if ((ctl->dirty.data & (0x1 << i))) {
483 hw_write_20kx(hw, SRCENB+(i*0x100), ctl->enb[i]);
484 ctl->dirty.data &= ~(0x1 << i);
485 }
486 }
487
488 return 0;
489 }
490
src_mgr_get_ctrl_blk(void ** rblk)491 static int src_mgr_get_ctrl_blk(void **rblk)
492 {
493 struct src_mgr_ctrl_blk *blk;
494
495 *rblk = NULL;
496 blk = kzalloc(sizeof(*blk), GFP_KERNEL);
497 if (!blk)
498 return -ENOMEM;
499
500 *rblk = blk;
501
502 return 0;
503 }
504
src_mgr_put_ctrl_blk(void * blk)505 static int src_mgr_put_ctrl_blk(void *blk)
506 {
507 kfree((struct src_mgr_ctrl_blk *)blk);
508
509 return 0;
510 }
511
srcimp_mgr_get_ctrl_blk(void ** rblk)512 static int srcimp_mgr_get_ctrl_blk(void **rblk)
513 {
514 struct srcimp_mgr_ctrl_blk *blk;
515
516 *rblk = NULL;
517 blk = kzalloc(sizeof(*blk), GFP_KERNEL);
518 if (!blk)
519 return -ENOMEM;
520
521 *rblk = blk;
522
523 return 0;
524 }
525
srcimp_mgr_put_ctrl_blk(void * blk)526 static int srcimp_mgr_put_ctrl_blk(void *blk)
527 {
528 kfree((struct srcimp_mgr_ctrl_blk *)blk);
529
530 return 0;
531 }
532
srcimp_mgr_set_imaparc(void * blk,unsigned int slot)533 static int srcimp_mgr_set_imaparc(void *blk, unsigned int slot)
534 {
535 struct srcimp_mgr_ctrl_blk *ctl = blk;
536
537 set_field(&ctl->srcimap.srcaim, SRCAIM_ARC, slot);
538 ctl->dirty.bf.srcimap = 1;
539 return 0;
540 }
541
srcimp_mgr_set_imapuser(void * blk,unsigned int user)542 static int srcimp_mgr_set_imapuser(void *blk, unsigned int user)
543 {
544 struct srcimp_mgr_ctrl_blk *ctl = blk;
545
546 set_field(&ctl->srcimap.srcaim, SRCAIM_SRC, user);
547 ctl->dirty.bf.srcimap = 1;
548 return 0;
549 }
550
srcimp_mgr_set_imapnxt(void * blk,unsigned int next)551 static int srcimp_mgr_set_imapnxt(void *blk, unsigned int next)
552 {
553 struct srcimp_mgr_ctrl_blk *ctl = blk;
554
555 set_field(&ctl->srcimap.srcaim, SRCAIM_NXT, next);
556 ctl->dirty.bf.srcimap = 1;
557 return 0;
558 }
559
srcimp_mgr_set_imapaddr(void * blk,unsigned int addr)560 static int srcimp_mgr_set_imapaddr(void *blk, unsigned int addr)
561 {
562 struct srcimp_mgr_ctrl_blk *ctl = blk;
563
564 ctl->srcimap.idx = addr;
565 ctl->dirty.bf.srcimap = 1;
566 return 0;
567 }
568
srcimp_mgr_commit_write(struct hw * hw,void * blk)569 static int srcimp_mgr_commit_write(struct hw *hw, void *blk)
570 {
571 struct srcimp_mgr_ctrl_blk *ctl = blk;
572
573 if (ctl->dirty.bf.srcimap) {
574 hw_write_20kx(hw, SRCIMAP+ctl->srcimap.idx*0x100,
575 ctl->srcimap.srcaim);
576 ctl->dirty.bf.srcimap = 0;
577 }
578
579 return 0;
580 }
581
582 /*
583 * AMIXER control block definitions.
584 */
585
586 #define AMOPLO_M 0x00000003
587 #define AMOPLO_X 0x0003FFF0
588 #define AMOPLO_Y 0xFFFC0000
589
590 #define AMOPHI_SADR 0x000000FF
591 #define AMOPHI_SE 0x80000000
592
593 /* AMIXER resource register dirty flags */
594 union amixer_dirty {
595 struct {
596 u16 amoplo:1;
597 u16 amophi:1;
598 u16 rsv:14;
599 } bf;
600 u16 data;
601 };
602
603 /* AMIXER resource control block */
604 struct amixer_rsc_ctrl_blk {
605 unsigned int amoplo;
606 unsigned int amophi;
607 union amixer_dirty dirty;
608 };
609
amixer_set_mode(void * blk,unsigned int mode)610 static int amixer_set_mode(void *blk, unsigned int mode)
611 {
612 struct amixer_rsc_ctrl_blk *ctl = blk;
613
614 set_field(&ctl->amoplo, AMOPLO_M, mode);
615 ctl->dirty.bf.amoplo = 1;
616 return 0;
617 }
618
amixer_set_iv(void * blk,unsigned int iv)619 static int amixer_set_iv(void *blk, unsigned int iv)
620 {
621 /* 20k1 amixer does not have this field */
622 return 0;
623 }
624
amixer_set_x(void * blk,unsigned int x)625 static int amixer_set_x(void *blk, unsigned int x)
626 {
627 struct amixer_rsc_ctrl_blk *ctl = blk;
628
629 set_field(&ctl->amoplo, AMOPLO_X, x);
630 ctl->dirty.bf.amoplo = 1;
631 return 0;
632 }
633
amixer_set_y(void * blk,unsigned int y)634 static int amixer_set_y(void *blk, unsigned int y)
635 {
636 struct amixer_rsc_ctrl_blk *ctl = blk;
637
638 set_field(&ctl->amoplo, AMOPLO_Y, y);
639 ctl->dirty.bf.amoplo = 1;
640 return 0;
641 }
642
amixer_set_sadr(void * blk,unsigned int sadr)643 static int amixer_set_sadr(void *blk, unsigned int sadr)
644 {
645 struct amixer_rsc_ctrl_blk *ctl = blk;
646
647 set_field(&ctl->amophi, AMOPHI_SADR, sadr);
648 ctl->dirty.bf.amophi = 1;
649 return 0;
650 }
651
amixer_set_se(void * blk,unsigned int se)652 static int amixer_set_se(void *blk, unsigned int se)
653 {
654 struct amixer_rsc_ctrl_blk *ctl = blk;
655
656 set_field(&ctl->amophi, AMOPHI_SE, se);
657 ctl->dirty.bf.amophi = 1;
658 return 0;
659 }
660
amixer_set_dirty(void * blk,unsigned int flags)661 static int amixer_set_dirty(void *blk, unsigned int flags)
662 {
663 ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff);
664 return 0;
665 }
666
amixer_set_dirty_all(void * blk)667 static int amixer_set_dirty_all(void *blk)
668 {
669 ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0);
670 return 0;
671 }
672
amixer_commit_write(struct hw * hw,unsigned int idx,void * blk)673 static int amixer_commit_write(struct hw *hw, unsigned int idx, void *blk)
674 {
675 struct amixer_rsc_ctrl_blk *ctl = blk;
676
677 if (ctl->dirty.bf.amoplo || ctl->dirty.bf.amophi) {
678 hw_write_20kx(hw, AMOPLO+idx*8, ctl->amoplo);
679 ctl->dirty.bf.amoplo = 0;
680 hw_write_20kx(hw, AMOPHI+idx*8, ctl->amophi);
681 ctl->dirty.bf.amophi = 0;
682 }
683
684 return 0;
685 }
686
amixer_get_y(void * blk)687 static int amixer_get_y(void *blk)
688 {
689 struct amixer_rsc_ctrl_blk *ctl = blk;
690
691 return get_field(ctl->amoplo, AMOPLO_Y);
692 }
693
amixer_get_dirty(void * blk)694 static unsigned int amixer_get_dirty(void *blk)
695 {
696 return ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data;
697 }
698
amixer_rsc_get_ctrl_blk(void ** rblk)699 static int amixer_rsc_get_ctrl_blk(void **rblk)
700 {
701 struct amixer_rsc_ctrl_blk *blk;
702
703 *rblk = NULL;
704 blk = kzalloc(sizeof(*blk), GFP_KERNEL);
705 if (!blk)
706 return -ENOMEM;
707
708 *rblk = blk;
709
710 return 0;
711 }
712
amixer_rsc_put_ctrl_blk(void * blk)713 static int amixer_rsc_put_ctrl_blk(void *blk)
714 {
715 kfree((struct amixer_rsc_ctrl_blk *)blk);
716
717 return 0;
718 }
719
amixer_mgr_get_ctrl_blk(void ** rblk)720 static int amixer_mgr_get_ctrl_blk(void **rblk)
721 {
722 /*amixer_mgr_ctrl_blk_t *blk;*/
723
724 *rblk = NULL;
725 /*blk = kzalloc(sizeof(*blk), GFP_KERNEL);
726 if (!blk)
727 return -ENOMEM;
728
729 *rblk = blk;*/
730
731 return 0;
732 }
733
amixer_mgr_put_ctrl_blk(void * blk)734 static int amixer_mgr_put_ctrl_blk(void *blk)
735 {
736 /*kfree((amixer_mgr_ctrl_blk_t *)blk);*/
737
738 return 0;
739 }
740
741 /*
742 * DAIO control block definitions.
743 */
744
745 /* Receiver Sample Rate Tracker Control register */
746 #define SRTCTL_SRCR 0x000000FF
747 #define SRTCTL_SRCL 0x0000FF00
748 #define SRTCTL_RSR 0x00030000
749 #define SRTCTL_DRAT 0x000C0000
750 #define SRTCTL_RLE 0x10000000
751 #define SRTCTL_RLP 0x20000000
752 #define SRTCTL_EC 0x40000000
753 #define SRTCTL_ET 0x80000000
754
755 /* DAIO Receiver register dirty flags */
756 union dai_dirty {
757 struct {
758 u16 srtctl:1;
759 u16 rsv:15;
760 } bf;
761 u16 data;
762 };
763
764 /* DAIO Receiver control block */
765 struct dai_ctrl_blk {
766 unsigned int srtctl;
767 union dai_dirty dirty;
768 };
769
770 /* S/PDIF Transmitter register dirty flags */
771 union dao_dirty {
772 struct {
773 u16 spos:1;
774 u16 rsv:15;
775 } bf;
776 u16 data;
777 };
778
779 /* S/PDIF Transmitter control block */
780 struct dao_ctrl_blk {
781 unsigned int spos; /* S/PDIF Output Channel Status Register */
782 union dao_dirty dirty;
783 };
784
785 /* Audio Input Mapper RAM */
786 #define AIM_ARC 0x00000FFF
787 #define AIM_NXT 0x007F0000
788
789 struct daoimap {
790 unsigned int aim;
791 unsigned int idx;
792 };
793
794 /* I2S Transmitter/Receiver Control register */
795 #define I2SCTL_EA 0x00000004
796 #define I2SCTL_EI 0x00000010
797
798 /* S/PDIF Transmitter Control register */
799 #define SPOCTL_OE 0x00000001
800 #define SPOCTL_OS 0x0000000E
801 #define SPOCTL_RIV 0x00000010
802 #define SPOCTL_LIV 0x00000020
803 #define SPOCTL_SR 0x000000C0
804
805 /* S/PDIF Receiver Control register */
806 #define SPICTL_EN 0x00000001
807 #define SPICTL_I24 0x00000002
808 #define SPICTL_IB 0x00000004
809 #define SPICTL_SM 0x00000008
810 #define SPICTL_VM 0x00000010
811
812 /* DAIO manager register dirty flags */
813 union daio_mgr_dirty {
814 struct {
815 u32 i2soctl:4;
816 u32 i2sictl:4;
817 u32 spoctl:4;
818 u32 spictl:4;
819 u32 daoimap:1;
820 u32 rsv:15;
821 } bf;
822 u32 data;
823 };
824
825 /* DAIO manager control block */
826 struct daio_mgr_ctrl_blk {
827 unsigned int i2sctl;
828 unsigned int spoctl;
829 unsigned int spictl;
830 struct daoimap daoimap;
831 union daio_mgr_dirty dirty;
832 };
833
dai_srt_set_srcr(void * blk,unsigned int src)834 static int dai_srt_set_srcr(void *blk, unsigned int src)
835 {
836 struct dai_ctrl_blk *ctl = blk;
837
838 set_field(&ctl->srtctl, SRTCTL_SRCR, src);
839 ctl->dirty.bf.srtctl = 1;
840 return 0;
841 }
842
dai_srt_set_srcl(void * blk,unsigned int src)843 static int dai_srt_set_srcl(void *blk, unsigned int src)
844 {
845 struct dai_ctrl_blk *ctl = blk;
846
847 set_field(&ctl->srtctl, SRTCTL_SRCL, src);
848 ctl->dirty.bf.srtctl = 1;
849 return 0;
850 }
851
dai_srt_set_rsr(void * blk,unsigned int rsr)852 static int dai_srt_set_rsr(void *blk, unsigned int rsr)
853 {
854 struct dai_ctrl_blk *ctl = blk;
855
856 set_field(&ctl->srtctl, SRTCTL_RSR, rsr);
857 ctl->dirty.bf.srtctl = 1;
858 return 0;
859 }
860
dai_srt_set_drat(void * blk,unsigned int drat)861 static int dai_srt_set_drat(void *blk, unsigned int drat)
862 {
863 struct dai_ctrl_blk *ctl = blk;
864
865 set_field(&ctl->srtctl, SRTCTL_DRAT, drat);
866 ctl->dirty.bf.srtctl = 1;
867 return 0;
868 }
869
dai_srt_set_ec(void * blk,unsigned int ec)870 static int dai_srt_set_ec(void *blk, unsigned int ec)
871 {
872 struct dai_ctrl_blk *ctl = blk;
873
874 set_field(&ctl->srtctl, SRTCTL_EC, ec ? 1 : 0);
875 ctl->dirty.bf.srtctl = 1;
876 return 0;
877 }
878
dai_srt_set_et(void * blk,unsigned int et)879 static int dai_srt_set_et(void *blk, unsigned int et)
880 {
881 struct dai_ctrl_blk *ctl = blk;
882
883 set_field(&ctl->srtctl, SRTCTL_ET, et ? 1 : 0);
884 ctl->dirty.bf.srtctl = 1;
885 return 0;
886 }
887
dai_commit_write(struct hw * hw,unsigned int idx,void * blk)888 static int dai_commit_write(struct hw *hw, unsigned int idx, void *blk)
889 {
890 struct dai_ctrl_blk *ctl = blk;
891
892 if (ctl->dirty.bf.srtctl) {
893 if (idx < 4) {
894 /* S/PDIF SRTs */
895 hw_write_20kx(hw, SRTSCTL+0x4*idx, ctl->srtctl);
896 } else {
897 /* I2S SRT */
898 hw_write_20kx(hw, SRTICTL, ctl->srtctl);
899 }
900 ctl->dirty.bf.srtctl = 0;
901 }
902
903 return 0;
904 }
905
dai_get_ctrl_blk(void ** rblk)906 static int dai_get_ctrl_blk(void **rblk)
907 {
908 struct dai_ctrl_blk *blk;
909
910 *rblk = NULL;
911 blk = kzalloc(sizeof(*blk), GFP_KERNEL);
912 if (!blk)
913 return -ENOMEM;
914
915 *rblk = blk;
916
917 return 0;
918 }
919
dai_put_ctrl_blk(void * blk)920 static int dai_put_ctrl_blk(void *blk)
921 {
922 kfree((struct dai_ctrl_blk *)blk);
923
924 return 0;
925 }
926
dao_set_spos(void * blk,unsigned int spos)927 static int dao_set_spos(void *blk, unsigned int spos)
928 {
929 ((struct dao_ctrl_blk *)blk)->spos = spos;
930 ((struct dao_ctrl_blk *)blk)->dirty.bf.spos = 1;
931 return 0;
932 }
933
dao_commit_write(struct hw * hw,unsigned int idx,void * blk)934 static int dao_commit_write(struct hw *hw, unsigned int idx, void *blk)
935 {
936 struct dao_ctrl_blk *ctl = blk;
937
938 if (ctl->dirty.bf.spos) {
939 if (idx < 4) {
940 /* S/PDIF SPOSx */
941 hw_write_20kx(hw, SPOS+0x4*idx, ctl->spos);
942 }
943 ctl->dirty.bf.spos = 0;
944 }
945
946 return 0;
947 }
948
dao_get_spos(void * blk,unsigned int * spos)949 static int dao_get_spos(void *blk, unsigned int *spos)
950 {
951 *spos = ((struct dao_ctrl_blk *)blk)->spos;
952 return 0;
953 }
954
dao_get_ctrl_blk(void ** rblk)955 static int dao_get_ctrl_blk(void **rblk)
956 {
957 struct dao_ctrl_blk *blk;
958
959 *rblk = NULL;
960 blk = kzalloc(sizeof(*blk), GFP_KERNEL);
961 if (!blk)
962 return -ENOMEM;
963
964 *rblk = blk;
965
966 return 0;
967 }
968
dao_put_ctrl_blk(void * blk)969 static int dao_put_ctrl_blk(void *blk)
970 {
971 kfree((struct dao_ctrl_blk *)blk);
972
973 return 0;
974 }
975
daio_mgr_enb_dai(void * blk,unsigned int idx)976 static int daio_mgr_enb_dai(void *blk, unsigned int idx)
977 {
978 struct daio_mgr_ctrl_blk *ctl = blk;
979
980 if (idx < 4) {
981 /* S/PDIF input */
982 set_field(&ctl->spictl, SPICTL_EN << (idx*8), 1);
983 ctl->dirty.bf.spictl |= (0x1 << idx);
984 } else {
985 /* I2S input */
986 idx %= 4;
987 set_field(&ctl->i2sctl, I2SCTL_EI << (idx*8), 1);
988 ctl->dirty.bf.i2sictl |= (0x1 << idx);
989 }
990 return 0;
991 }
992
daio_mgr_dsb_dai(void * blk,unsigned int idx)993 static int daio_mgr_dsb_dai(void *blk, unsigned int idx)
994 {
995 struct daio_mgr_ctrl_blk *ctl = blk;
996
997 if (idx < 4) {
998 /* S/PDIF input */
999 set_field(&ctl->spictl, SPICTL_EN << (idx*8), 0);
1000 ctl->dirty.bf.spictl |= (0x1 << idx);
1001 } else {
1002 /* I2S input */
1003 idx %= 4;
1004 set_field(&ctl->i2sctl, I2SCTL_EI << (idx*8), 0);
1005 ctl->dirty.bf.i2sictl |= (0x1 << idx);
1006 }
1007 return 0;
1008 }
1009
daio_mgr_enb_dao(void * blk,unsigned int idx)1010 static int daio_mgr_enb_dao(void *blk, unsigned int idx)
1011 {
1012 struct daio_mgr_ctrl_blk *ctl = blk;
1013
1014 if (idx < 4) {
1015 /* S/PDIF output */
1016 set_field(&ctl->spoctl, SPOCTL_OE << (idx*8), 1);
1017 ctl->dirty.bf.spoctl |= (0x1 << idx);
1018 } else {
1019 /* I2S output */
1020 idx %= 4;
1021 set_field(&ctl->i2sctl, I2SCTL_EA << (idx*8), 1);
1022 ctl->dirty.bf.i2soctl |= (0x1 << idx);
1023 }
1024 return 0;
1025 }
1026
daio_mgr_dsb_dao(void * blk,unsigned int idx)1027 static int daio_mgr_dsb_dao(void *blk, unsigned int idx)
1028 {
1029 struct daio_mgr_ctrl_blk *ctl = blk;
1030
1031 if (idx < 4) {
1032 /* S/PDIF output */
1033 set_field(&ctl->spoctl, SPOCTL_OE << (idx*8), 0);
1034 ctl->dirty.bf.spoctl |= (0x1 << idx);
1035 } else {
1036 /* I2S output */
1037 idx %= 4;
1038 set_field(&ctl->i2sctl, I2SCTL_EA << (idx*8), 0);
1039 ctl->dirty.bf.i2soctl |= (0x1 << idx);
1040 }
1041 return 0;
1042 }
1043
daio_mgr_dao_init(void * blk,unsigned int idx,unsigned int conf)1044 static int daio_mgr_dao_init(void *blk, unsigned int idx, unsigned int conf)
1045 {
1046 struct daio_mgr_ctrl_blk *ctl = blk;
1047
1048 if (idx < 4) {
1049 /* S/PDIF output */
1050 switch ((conf & 0x7)) {
1051 case 0:
1052 set_field(&ctl->spoctl, SPOCTL_SR << (idx*8), 3);
1053 break; /* CDIF */
1054 case 1:
1055 set_field(&ctl->spoctl, SPOCTL_SR << (idx*8), 0);
1056 break;
1057 case 2:
1058 set_field(&ctl->spoctl, SPOCTL_SR << (idx*8), 1);
1059 break;
1060 case 4:
1061 set_field(&ctl->spoctl, SPOCTL_SR << (idx*8), 2);
1062 break;
1063 default:
1064 break;
1065 }
1066 set_field(&ctl->spoctl, SPOCTL_LIV << (idx*8),
1067 (conf >> 4) & 0x1); /* Non-audio */
1068 set_field(&ctl->spoctl, SPOCTL_RIV << (idx*8),
1069 (conf >> 4) & 0x1); /* Non-audio */
1070 set_field(&ctl->spoctl, SPOCTL_OS << (idx*8),
1071 ((conf >> 3) & 0x1) ? 2 : 2); /* Raw */
1072
1073 ctl->dirty.bf.spoctl |= (0x1 << idx);
1074 } else {
1075 /* I2S output */
1076 /*idx %= 4; */
1077 }
1078 return 0;
1079 }
1080
daio_mgr_set_imaparc(void * blk,unsigned int slot)1081 static int daio_mgr_set_imaparc(void *blk, unsigned int slot)
1082 {
1083 struct daio_mgr_ctrl_blk *ctl = blk;
1084
1085 set_field(&ctl->daoimap.aim, AIM_ARC, slot);
1086 ctl->dirty.bf.daoimap = 1;
1087 return 0;
1088 }
1089
daio_mgr_set_imapnxt(void * blk,unsigned int next)1090 static int daio_mgr_set_imapnxt(void *blk, unsigned int next)
1091 {
1092 struct daio_mgr_ctrl_blk *ctl = blk;
1093
1094 set_field(&ctl->daoimap.aim, AIM_NXT, next);
1095 ctl->dirty.bf.daoimap = 1;
1096 return 0;
1097 }
1098
daio_mgr_set_imapaddr(void * blk,unsigned int addr)1099 static int daio_mgr_set_imapaddr(void *blk, unsigned int addr)
1100 {
1101 struct daio_mgr_ctrl_blk *ctl = blk;
1102
1103 ctl->daoimap.idx = addr;
1104 ctl->dirty.bf.daoimap = 1;
1105 return 0;
1106 }
1107
daio_mgr_commit_write(struct hw * hw,void * blk)1108 static int daio_mgr_commit_write(struct hw *hw, void *blk)
1109 {
1110 struct daio_mgr_ctrl_blk *ctl = blk;
1111 int i;
1112
1113 if (ctl->dirty.bf.i2sictl || ctl->dirty.bf.i2soctl) {
1114 for (i = 0; i < 4; i++) {
1115 if ((ctl->dirty.bf.i2sictl & (0x1 << i)))
1116 ctl->dirty.bf.i2sictl &= ~(0x1 << i);
1117
1118 if ((ctl->dirty.bf.i2soctl & (0x1 << i)))
1119 ctl->dirty.bf.i2soctl &= ~(0x1 << i);
1120 }
1121 hw_write_20kx(hw, I2SCTL, ctl->i2sctl);
1122 mdelay(1);
1123 }
1124 if (ctl->dirty.bf.spoctl) {
1125 for (i = 0; i < 4; i++) {
1126 if ((ctl->dirty.bf.spoctl & (0x1 << i)))
1127 ctl->dirty.bf.spoctl &= ~(0x1 << i);
1128 }
1129 hw_write_20kx(hw, SPOCTL, ctl->spoctl);
1130 mdelay(1);
1131 }
1132 if (ctl->dirty.bf.spictl) {
1133 for (i = 0; i < 4; i++) {
1134 if ((ctl->dirty.bf.spictl & (0x1 << i)))
1135 ctl->dirty.bf.spictl &= ~(0x1 << i);
1136 }
1137 hw_write_20kx(hw, SPICTL, ctl->spictl);
1138 mdelay(1);
1139 }
1140 if (ctl->dirty.bf.daoimap) {
1141 hw_write_20kx(hw, DAOIMAP+ctl->daoimap.idx*4,
1142 ctl->daoimap.aim);
1143 ctl->dirty.bf.daoimap = 0;
1144 }
1145
1146 return 0;
1147 }
1148
daio_mgr_get_ctrl_blk(struct hw * hw,void ** rblk)1149 static int daio_mgr_get_ctrl_blk(struct hw *hw, void **rblk)
1150 {
1151 struct daio_mgr_ctrl_blk *blk;
1152
1153 *rblk = NULL;
1154 blk = kzalloc(sizeof(*blk), GFP_KERNEL);
1155 if (!blk)
1156 return -ENOMEM;
1157
1158 blk->i2sctl = hw_read_20kx(hw, I2SCTL);
1159 blk->spoctl = hw_read_20kx(hw, SPOCTL);
1160 blk->spictl = hw_read_20kx(hw, SPICTL);
1161
1162 *rblk = blk;
1163
1164 return 0;
1165 }
1166
daio_mgr_put_ctrl_blk(void * blk)1167 static int daio_mgr_put_ctrl_blk(void *blk)
1168 {
1169 kfree((struct daio_mgr_ctrl_blk *)blk);
1170
1171 return 0;
1172 }
1173
1174 /* Timer interrupt */
set_timer_irq(struct hw * hw,int enable)1175 static int set_timer_irq(struct hw *hw, int enable)
1176 {
1177 hw_write_20kx(hw, GIE, enable ? IT_INT : 0);
1178 return 0;
1179 }
1180
set_timer_tick(struct hw * hw,unsigned int ticks)1181 static int set_timer_tick(struct hw *hw, unsigned int ticks)
1182 {
1183 if (ticks)
1184 ticks |= TIMR_IE | TIMR_IP;
1185 hw_write_20kx(hw, TIMR, ticks);
1186 return 0;
1187 }
1188
get_wc(struct hw * hw)1189 static unsigned int get_wc(struct hw *hw)
1190 {
1191 return hw_read_20kx(hw, WC);
1192 }
1193
1194 /* Card hardware initialization block */
1195 struct dac_conf {
1196 unsigned int msr; /* master sample rate in rsrs */
1197 };
1198
1199 struct adc_conf {
1200 unsigned int msr; /* master sample rate in rsrs */
1201 unsigned char input; /* the input source of ADC */
1202 unsigned char mic20db; /* boost mic by 20db if input is microphone */
1203 };
1204
1205 struct daio_conf {
1206 unsigned int msr; /* master sample rate in rsrs */
1207 };
1208
1209 struct trn_conf {
1210 unsigned long vm_pgt_phys;
1211 };
1212
hw_daio_init(struct hw * hw,const struct daio_conf * info)1213 static int hw_daio_init(struct hw *hw, const struct daio_conf *info)
1214 {
1215 u32 i2sorg;
1216 u32 spdorg;
1217
1218 /* Read I2S CTL. Keep original value. */
1219 /*i2sorg = hw_read_20kx(hw, I2SCTL);*/
1220 i2sorg = 0x94040404; /* enable all audio out and I2S-D input */
1221 /* Program I2S with proper master sample rate and enable
1222 * the correct I2S channel. */
1223 i2sorg &= 0xfffffffc;
1224
1225 /* Enable S/PDIF-out-A in fixed 24-bit data
1226 * format and default to 48kHz. */
1227 /* Disable all before doing any changes. */
1228 hw_write_20kx(hw, SPOCTL, 0x0);
1229 spdorg = 0x05;
1230
1231 switch (info->msr) {
1232 case 1:
1233 i2sorg |= 1;
1234 spdorg |= (0x0 << 6);
1235 break;
1236 case 2:
1237 i2sorg |= 2;
1238 spdorg |= (0x1 << 6);
1239 break;
1240 case 4:
1241 i2sorg |= 3;
1242 spdorg |= (0x2 << 6);
1243 break;
1244 default:
1245 i2sorg |= 1;
1246 break;
1247 }
1248
1249 hw_write_20kx(hw, I2SCTL, i2sorg);
1250 hw_write_20kx(hw, SPOCTL, spdorg);
1251
1252 /* Enable S/PDIF-in-A in fixed 24-bit data format. */
1253 /* Disable all before doing any changes. */
1254 hw_write_20kx(hw, SPICTL, 0x0);
1255 mdelay(1);
1256 spdorg = 0x0a0a0a0a;
1257 hw_write_20kx(hw, SPICTL, spdorg);
1258 mdelay(1);
1259
1260 return 0;
1261 }
1262
1263 /* TRANSPORT operations */
hw_trn_init(struct hw * hw,const struct trn_conf * info)1264 static int hw_trn_init(struct hw *hw, const struct trn_conf *info)
1265 {
1266 u32 trnctl;
1267 u32 ptp_phys_low, ptp_phys_high;
1268
1269 /* Set up device page table */
1270 if ((~0UL) == info->vm_pgt_phys) {
1271 printk(KERN_ERR "Wrong device page table page address!\n");
1272 return -1;
1273 }
1274
1275 trnctl = 0x13; /* 32-bit, 4k-size page */
1276 ptp_phys_low = (u32)info->vm_pgt_phys;
1277 ptp_phys_high = upper_32_bits(info->vm_pgt_phys);
1278 if (sizeof(void *) == 8) /* 64bit address */
1279 trnctl |= (1 << 2);
1280 #if 0 /* Only 4k h/w pages for simplicitiy */
1281 #if PAGE_SIZE == 8192
1282 trnctl |= (1<<5);
1283 #endif
1284 #endif
1285 hw_write_20kx(hw, PTPALX, ptp_phys_low);
1286 hw_write_20kx(hw, PTPAHX, ptp_phys_high);
1287 hw_write_20kx(hw, TRNCTL, trnctl);
1288 hw_write_20kx(hw, TRNIS, 0x200c01); /* really needed? */
1289
1290 return 0;
1291 }
1292
1293 /* Card initialization */
1294 #define GCTL_EAC 0x00000001
1295 #define GCTL_EAI 0x00000002
1296 #define GCTL_BEP 0x00000004
1297 #define GCTL_BES 0x00000008
1298 #define GCTL_DSP 0x00000010
1299 #define GCTL_DBP 0x00000020
1300 #define GCTL_ABP 0x00000040
1301 #define GCTL_TBP 0x00000080
1302 #define GCTL_SBP 0x00000100
1303 #define GCTL_FBP 0x00000200
1304 #define GCTL_XA 0x00000400
1305 #define GCTL_ET 0x00000800
1306 #define GCTL_PR 0x00001000
1307 #define GCTL_MRL 0x00002000
1308 #define GCTL_SDE 0x00004000
1309 #define GCTL_SDI 0x00008000
1310 #define GCTL_SM 0x00010000
1311 #define GCTL_SR 0x00020000
1312 #define GCTL_SD 0x00040000
1313 #define GCTL_SE 0x00080000
1314 #define GCTL_AID 0x00100000
1315
hw_pll_init(struct hw * hw,unsigned int rsr)1316 static int hw_pll_init(struct hw *hw, unsigned int rsr)
1317 {
1318 unsigned int pllctl;
1319 int i;
1320
1321 pllctl = (48000 == rsr) ? 0x1480a001 : 0x1480a731;
1322 for (i = 0; i < 3; i++) {
1323 if (hw_read_20kx(hw, PLLCTL) == pllctl)
1324 break;
1325
1326 hw_write_20kx(hw, PLLCTL, pllctl);
1327 mdelay(40);
1328 }
1329 if (i >= 3) {
1330 printk(KERN_ALERT "PLL initialization failed!!!\n");
1331 return -EBUSY;
1332 }
1333
1334 return 0;
1335 }
1336
hw_auto_init(struct hw * hw)1337 static int hw_auto_init(struct hw *hw)
1338 {
1339 unsigned int gctl;
1340 int i;
1341
1342 gctl = hw_read_20kx(hw, GCTL);
1343 set_field(&gctl, GCTL_EAI, 0);
1344 hw_write_20kx(hw, GCTL, gctl);
1345 set_field(&gctl, GCTL_EAI, 1);
1346 hw_write_20kx(hw, GCTL, gctl);
1347 mdelay(10);
1348 for (i = 0; i < 400000; i++) {
1349 gctl = hw_read_20kx(hw, GCTL);
1350 if (get_field(gctl, GCTL_AID))
1351 break;
1352 }
1353 if (!get_field(gctl, GCTL_AID)) {
1354 printk(KERN_ALERT "Card Auto-init failed!!!\n");
1355 return -EBUSY;
1356 }
1357
1358 return 0;
1359 }
1360
i2c_unlock(struct hw * hw)1361 static int i2c_unlock(struct hw *hw)
1362 {
1363 if ((hw_read_pci(hw, 0xcc) & 0xff) == 0xaa)
1364 return 0;
1365
1366 hw_write_pci(hw, 0xcc, 0x8c);
1367 hw_write_pci(hw, 0xcc, 0x0e);
1368 if ((hw_read_pci(hw, 0xcc) & 0xff) == 0xaa)
1369 return 0;
1370
1371 hw_write_pci(hw, 0xcc, 0xee);
1372 hw_write_pci(hw, 0xcc, 0xaa);
1373 if ((hw_read_pci(hw, 0xcc) & 0xff) == 0xaa)
1374 return 0;
1375
1376 return -1;
1377 }
1378
i2c_lock(struct hw * hw)1379 static void i2c_lock(struct hw *hw)
1380 {
1381 if ((hw_read_pci(hw, 0xcc) & 0xff) == 0xaa)
1382 hw_write_pci(hw, 0xcc, 0x00);
1383 }
1384
i2c_write(struct hw * hw,u32 device,u32 addr,u32 data)1385 static void i2c_write(struct hw *hw, u32 device, u32 addr, u32 data)
1386 {
1387 unsigned int ret;
1388
1389 do {
1390 ret = hw_read_pci(hw, 0xEC);
1391 } while (!(ret & 0x800000));
1392 hw_write_pci(hw, 0xE0, device);
1393 hw_write_pci(hw, 0xE4, (data << 8) | (addr & 0xff));
1394 }
1395
1396 /* DAC operations */
1397
hw_reset_dac(struct hw * hw)1398 static int hw_reset_dac(struct hw *hw)
1399 {
1400 u32 i;
1401 u16 gpioorg;
1402 unsigned int ret;
1403
1404 if (i2c_unlock(hw))
1405 return -1;
1406
1407 do {
1408 ret = hw_read_pci(hw, 0xEC);
1409 } while (!(ret & 0x800000));
1410 hw_write_pci(hw, 0xEC, 0x05); /* write to i2c status control */
1411
1412 /* To be effective, need to reset the DAC twice. */
1413 for (i = 0; i < 2; i++) {
1414 /* set gpio */
1415 mdelay(100);
1416 gpioorg = (u16)hw_read_20kx(hw, GPIO);
1417 gpioorg &= 0xfffd;
1418 hw_write_20kx(hw, GPIO, gpioorg);
1419 mdelay(1);
1420 hw_write_20kx(hw, GPIO, gpioorg | 0x2);
1421 }
1422
1423 i2c_write(hw, 0x00180080, 0x01, 0x80);
1424 i2c_write(hw, 0x00180080, 0x02, 0x10);
1425
1426 i2c_lock(hw);
1427
1428 return 0;
1429 }
1430
hw_dac_init(struct hw * hw,const struct dac_conf * info)1431 static int hw_dac_init(struct hw *hw, const struct dac_conf *info)
1432 {
1433 u32 data;
1434 u16 gpioorg;
1435 unsigned int ret;
1436
1437 if (hw->model == CTSB055X) {
1438 /* SB055x, unmute outputs */
1439 gpioorg = (u16)hw_read_20kx(hw, GPIO);
1440 gpioorg &= 0xffbf; /* set GPIO6 to low */
1441 gpioorg |= 2; /* set GPIO1 to high */
1442 hw_write_20kx(hw, GPIO, gpioorg);
1443 return 0;
1444 }
1445
1446 /* mute outputs */
1447 gpioorg = (u16)hw_read_20kx(hw, GPIO);
1448 gpioorg &= 0xffbf;
1449 hw_write_20kx(hw, GPIO, gpioorg);
1450
1451 hw_reset_dac(hw);
1452
1453 if (i2c_unlock(hw))
1454 return -1;
1455
1456 hw_write_pci(hw, 0xEC, 0x05); /* write to i2c status control */
1457 do {
1458 ret = hw_read_pci(hw, 0xEC);
1459 } while (!(ret & 0x800000));
1460
1461 switch (info->msr) {
1462 case 1:
1463 data = 0x24;
1464 break;
1465 case 2:
1466 data = 0x25;
1467 break;
1468 case 4:
1469 data = 0x26;
1470 break;
1471 default:
1472 data = 0x24;
1473 break;
1474 }
1475
1476 i2c_write(hw, 0x00180080, 0x06, data);
1477 i2c_write(hw, 0x00180080, 0x09, data);
1478 i2c_write(hw, 0x00180080, 0x0c, data);
1479 i2c_write(hw, 0x00180080, 0x0f, data);
1480
1481 i2c_lock(hw);
1482
1483 /* unmute outputs */
1484 gpioorg = (u16)hw_read_20kx(hw, GPIO);
1485 gpioorg = gpioorg | 0x40;
1486 hw_write_20kx(hw, GPIO, gpioorg);
1487
1488 return 0;
1489 }
1490
1491 /* ADC operations */
1492
is_adc_input_selected_SB055x(struct hw * hw,enum ADCSRC type)1493 static int is_adc_input_selected_SB055x(struct hw *hw, enum ADCSRC type)
1494 {
1495 return 0;
1496 }
1497
is_adc_input_selected_SBx(struct hw * hw,enum ADCSRC type)1498 static int is_adc_input_selected_SBx(struct hw *hw, enum ADCSRC type)
1499 {
1500 u32 data;
1501
1502 data = hw_read_20kx(hw, GPIO);
1503 switch (type) {
1504 case ADC_MICIN:
1505 data = ((data & (0x1<<7)) && (data & (0x1<<8)));
1506 break;
1507 case ADC_LINEIN:
1508 data = (!(data & (0x1<<7)) && (data & (0x1<<8)));
1509 break;
1510 case ADC_NONE: /* Digital I/O */
1511 data = (!(data & (0x1<<8)));
1512 break;
1513 default:
1514 data = 0;
1515 }
1516 return data;
1517 }
1518
is_adc_input_selected_hendrix(struct hw * hw,enum ADCSRC type)1519 static int is_adc_input_selected_hendrix(struct hw *hw, enum ADCSRC type)
1520 {
1521 u32 data;
1522
1523 data = hw_read_20kx(hw, GPIO);
1524 switch (type) {
1525 case ADC_MICIN:
1526 data = (data & (0x1 << 7)) ? 1 : 0;
1527 break;
1528 case ADC_LINEIN:
1529 data = (data & (0x1 << 7)) ? 0 : 1;
1530 break;
1531 default:
1532 data = 0;
1533 }
1534 return data;
1535 }
1536
hw_is_adc_input_selected(struct hw * hw,enum ADCSRC type)1537 static int hw_is_adc_input_selected(struct hw *hw, enum ADCSRC type)
1538 {
1539 switch (hw->model) {
1540 case CTSB055X:
1541 return is_adc_input_selected_SB055x(hw, type);
1542 case CTSB073X:
1543 return is_adc_input_selected_hendrix(hw, type);
1544 case CTUAA:
1545 return is_adc_input_selected_hendrix(hw, type);
1546 default:
1547 return is_adc_input_selected_SBx(hw, type);
1548 }
1549 }
1550
1551 static int
adc_input_select_SB055x(struct hw * hw,enum ADCSRC type,unsigned char boost)1552 adc_input_select_SB055x(struct hw *hw, enum ADCSRC type, unsigned char boost)
1553 {
1554 u32 data;
1555
1556 /*
1557 * check and set the following GPIO bits accordingly
1558 * ADC_Gain = GPIO2
1559 * DRM_off = GPIO3
1560 * Mic_Pwr_on = GPIO7
1561 * Digital_IO_Sel = GPIO8
1562 * Mic_Sw = GPIO9
1563 * Aux/MicLine_Sw = GPIO12
1564 */
1565 data = hw_read_20kx(hw, GPIO);
1566 data &= 0xec73;
1567 switch (type) {
1568 case ADC_MICIN:
1569 data |= (0x1<<7) | (0x1<<8) | (0x1<<9) ;
1570 data |= boost ? (0x1<<2) : 0;
1571 break;
1572 case ADC_LINEIN:
1573 data |= (0x1<<8);
1574 break;
1575 case ADC_AUX:
1576 data |= (0x1<<8) | (0x1<<12);
1577 break;
1578 case ADC_NONE:
1579 data |= (0x1<<12); /* set to digital */
1580 break;
1581 default:
1582 return -1;
1583 }
1584
1585 hw_write_20kx(hw, GPIO, data);
1586
1587 return 0;
1588 }
1589
1590
1591 static int
adc_input_select_SBx(struct hw * hw,enum ADCSRC type,unsigned char boost)1592 adc_input_select_SBx(struct hw *hw, enum ADCSRC type, unsigned char boost)
1593 {
1594 u32 data;
1595 u32 i2c_data;
1596 unsigned int ret;
1597
1598 if (i2c_unlock(hw))
1599 return -1;
1600
1601 do {
1602 ret = hw_read_pci(hw, 0xEC);
1603 } while (!(ret & 0x800000)); /* i2c ready poll */
1604 /* set i2c access mode as Direct Control */
1605 hw_write_pci(hw, 0xEC, 0x05);
1606
1607 data = hw_read_20kx(hw, GPIO);
1608 switch (type) {
1609 case ADC_MICIN:
1610 data |= ((0x1 << 7) | (0x1 << 8));
1611 i2c_data = 0x1; /* Mic-in */
1612 break;
1613 case ADC_LINEIN:
1614 data &= ~(0x1 << 7);
1615 data |= (0x1 << 8);
1616 i2c_data = 0x2; /* Line-in */
1617 break;
1618 case ADC_NONE:
1619 data &= ~(0x1 << 8);
1620 i2c_data = 0x0; /* set to Digital */
1621 break;
1622 default:
1623 i2c_lock(hw);
1624 return -1;
1625 }
1626 hw_write_20kx(hw, GPIO, data);
1627 i2c_write(hw, 0x001a0080, 0x2a, i2c_data);
1628 if (boost) {
1629 i2c_write(hw, 0x001a0080, 0x1c, 0xe7); /* +12dB boost */
1630 i2c_write(hw, 0x001a0080, 0x1e, 0xe7); /* +12dB boost */
1631 } else {
1632 i2c_write(hw, 0x001a0080, 0x1c, 0xcf); /* No boost */
1633 i2c_write(hw, 0x001a0080, 0x1e, 0xcf); /* No boost */
1634 }
1635
1636 i2c_lock(hw);
1637
1638 return 0;
1639 }
1640
1641 static int
adc_input_select_hendrix(struct hw * hw,enum ADCSRC type,unsigned char boost)1642 adc_input_select_hendrix(struct hw *hw, enum ADCSRC type, unsigned char boost)
1643 {
1644 u32 data;
1645 u32 i2c_data;
1646 unsigned int ret;
1647
1648 if (i2c_unlock(hw))
1649 return -1;
1650
1651 do {
1652 ret = hw_read_pci(hw, 0xEC);
1653 } while (!(ret & 0x800000)); /* i2c ready poll */
1654 /* set i2c access mode as Direct Control */
1655 hw_write_pci(hw, 0xEC, 0x05);
1656
1657 data = hw_read_20kx(hw, GPIO);
1658 switch (type) {
1659 case ADC_MICIN:
1660 data |= (0x1 << 7);
1661 i2c_data = 0x1; /* Mic-in */
1662 break;
1663 case ADC_LINEIN:
1664 data &= ~(0x1 << 7);
1665 i2c_data = 0x2; /* Line-in */
1666 break;
1667 default:
1668 i2c_lock(hw);
1669 return -1;
1670 }
1671 hw_write_20kx(hw, GPIO, data);
1672 i2c_write(hw, 0x001a0080, 0x2a, i2c_data);
1673 if (boost) {
1674 i2c_write(hw, 0x001a0080, 0x1c, 0xe7); /* +12dB boost */
1675 i2c_write(hw, 0x001a0080, 0x1e, 0xe7); /* +12dB boost */
1676 } else {
1677 i2c_write(hw, 0x001a0080, 0x1c, 0xcf); /* No boost */
1678 i2c_write(hw, 0x001a0080, 0x1e, 0xcf); /* No boost */
1679 }
1680
1681 i2c_lock(hw);
1682
1683 return 0;
1684 }
1685
hw_adc_input_select(struct hw * hw,enum ADCSRC type)1686 static int hw_adc_input_select(struct hw *hw, enum ADCSRC type)
1687 {
1688 int state = type == ADC_MICIN;
1689
1690 switch (hw->model) {
1691 case CTSB055X:
1692 return adc_input_select_SB055x(hw, type, state);
1693 case CTSB073X:
1694 return adc_input_select_hendrix(hw, type, state);
1695 case CTUAA:
1696 return adc_input_select_hendrix(hw, type, state);
1697 default:
1698 return adc_input_select_SBx(hw, type, state);
1699 }
1700 }
1701
adc_init_SB055x(struct hw * hw,int input,int mic20db)1702 static int adc_init_SB055x(struct hw *hw, int input, int mic20db)
1703 {
1704 return adc_input_select_SB055x(hw, input, mic20db);
1705 }
1706
adc_init_SBx(struct hw * hw,int input,int mic20db)1707 static int adc_init_SBx(struct hw *hw, int input, int mic20db)
1708 {
1709 u16 gpioorg;
1710 u16 input_source;
1711 u32 adcdata;
1712 unsigned int ret;
1713
1714 input_source = 0x100; /* default to analog */
1715 switch (input) {
1716 case ADC_MICIN:
1717 adcdata = 0x1;
1718 input_source = 0x180; /* set GPIO7 to select Mic */
1719 break;
1720 case ADC_LINEIN:
1721 adcdata = 0x2;
1722 break;
1723 case ADC_VIDEO:
1724 adcdata = 0x4;
1725 break;
1726 case ADC_AUX:
1727 adcdata = 0x8;
1728 break;
1729 case ADC_NONE:
1730 adcdata = 0x0;
1731 input_source = 0x0; /* set to Digital */
1732 break;
1733 default:
1734 adcdata = 0x0;
1735 break;
1736 }
1737
1738 if (i2c_unlock(hw))
1739 return -1;
1740
1741 do {
1742 ret = hw_read_pci(hw, 0xEC);
1743 } while (!(ret & 0x800000)); /* i2c ready poll */
1744 hw_write_pci(hw, 0xEC, 0x05); /* write to i2c status control */
1745
1746 i2c_write(hw, 0x001a0080, 0x0e, 0x08);
1747 i2c_write(hw, 0x001a0080, 0x18, 0x0a);
1748 i2c_write(hw, 0x001a0080, 0x28, 0x86);
1749 i2c_write(hw, 0x001a0080, 0x2a, adcdata);
1750
1751 if (mic20db) {
1752 i2c_write(hw, 0x001a0080, 0x1c, 0xf7);
1753 i2c_write(hw, 0x001a0080, 0x1e, 0xf7);
1754 } else {
1755 i2c_write(hw, 0x001a0080, 0x1c, 0xcf);
1756 i2c_write(hw, 0x001a0080, 0x1e, 0xcf);
1757 }
1758
1759 if (!(hw_read_20kx(hw, ID0) & 0x100))
1760 i2c_write(hw, 0x001a0080, 0x16, 0x26);
1761
1762 i2c_lock(hw);
1763
1764 gpioorg = (u16)hw_read_20kx(hw, GPIO);
1765 gpioorg &= 0xfe7f;
1766 gpioorg |= input_source;
1767 hw_write_20kx(hw, GPIO, gpioorg);
1768
1769 return 0;
1770 }
1771
hw_adc_init(struct hw * hw,const struct adc_conf * info)1772 static int hw_adc_init(struct hw *hw, const struct adc_conf *info)
1773 {
1774 if (hw->model == CTSB055X)
1775 return adc_init_SB055x(hw, info->input, info->mic20db);
1776 else
1777 return adc_init_SBx(hw, info->input, info->mic20db);
1778 }
1779
hw_capabilities(struct hw * hw)1780 static struct capabilities hw_capabilities(struct hw *hw)
1781 {
1782 struct capabilities cap;
1783
1784 /* SB073x and Vista compatible cards have no digit IO switch */
1785 cap.digit_io_switch = !(hw->model == CTSB073X || hw->model == CTUAA);
1786 cap.dedicated_mic = 0;
1787 cap.output_switch = 0;
1788 cap.mic_source_switch = 0;
1789
1790 return cap;
1791 }
1792
1793 #define CTLBITS(a, b, c, d) (((a) << 24) | ((b) << 16) | ((c) << 8) | (d))
1794
1795 #define UAA_CFG_PWRSTATUS 0x44
1796 #define UAA_CFG_SPACE_FLAG 0xA0
1797 #define UAA_CORE_CHANGE 0x3FFC
uaa_to_xfi(struct pci_dev * pci)1798 static int uaa_to_xfi(struct pci_dev *pci)
1799 {
1800 unsigned int bar0, bar1, bar2, bar3, bar4, bar5;
1801 unsigned int cmd, irq, cl_size, l_timer, pwr;
1802 unsigned int is_uaa;
1803 unsigned int data[4] = {0};
1804 unsigned int io_base;
1805 void *mem_base;
1806 int i;
1807 const u32 CTLX = CTLBITS('C', 'T', 'L', 'X');
1808 const u32 CTL_ = CTLBITS('C', 'T', 'L', '-');
1809 const u32 CTLF = CTLBITS('C', 'T', 'L', 'F');
1810 const u32 CTLi = CTLBITS('C', 'T', 'L', 'i');
1811 const u32 CTLA = CTLBITS('C', 'T', 'L', 'A');
1812 const u32 CTLZ = CTLBITS('C', 'T', 'L', 'Z');
1813 const u32 CTLL = CTLBITS('C', 'T', 'L', 'L');
1814
1815 /* By default, Hendrix card UAA Bar0 should be using memory... */
1816 io_base = pci_resource_start(pci, 0);
1817 mem_base = ioremap(io_base, pci_resource_len(pci, 0));
1818 if (!mem_base)
1819 return -ENOENT;
1820
1821 /* Read current mode from Mode Change Register */
1822 for (i = 0; i < 4; i++)
1823 data[i] = readl(mem_base + UAA_CORE_CHANGE);
1824
1825 /* Determine current mode... */
1826 if (data[0] == CTLA) {
1827 is_uaa = ((data[1] == CTLZ && data[2] == CTLL
1828 && data[3] == CTLA) || (data[1] == CTLA
1829 && data[2] == CTLZ && data[3] == CTLL));
1830 } else if (data[0] == CTLZ) {
1831 is_uaa = (data[1] == CTLL
1832 && data[2] == CTLA && data[3] == CTLA);
1833 } else if (data[0] == CTLL) {
1834 is_uaa = (data[1] == CTLA
1835 && data[2] == CTLA && data[3] == CTLZ);
1836 } else {
1837 is_uaa = 0;
1838 }
1839
1840 if (!is_uaa) {
1841 /* Not in UAA mode currently. Return directly. */
1842 iounmap(mem_base);
1843 return 0;
1844 }
1845
1846 pci_read_config_dword(pci, PCI_BASE_ADDRESS_0, &bar0);
1847 pci_read_config_dword(pci, PCI_BASE_ADDRESS_1, &bar1);
1848 pci_read_config_dword(pci, PCI_BASE_ADDRESS_2, &bar2);
1849 pci_read_config_dword(pci, PCI_BASE_ADDRESS_3, &bar3);
1850 pci_read_config_dword(pci, PCI_BASE_ADDRESS_4, &bar4);
1851 pci_read_config_dword(pci, PCI_BASE_ADDRESS_5, &bar5);
1852 pci_read_config_dword(pci, PCI_INTERRUPT_LINE, &irq);
1853 pci_read_config_dword(pci, PCI_CACHE_LINE_SIZE, &cl_size);
1854 pci_read_config_dword(pci, PCI_LATENCY_TIMER, &l_timer);
1855 pci_read_config_dword(pci, UAA_CFG_PWRSTATUS, &pwr);
1856 pci_read_config_dword(pci, PCI_COMMAND, &cmd);
1857
1858 /* Set up X-Fi core PCI configuration space. */
1859 /* Switch to X-Fi config space with BAR0 exposed. */
1860 pci_write_config_dword(pci, UAA_CFG_SPACE_FLAG, 0x87654321);
1861 /* Copy UAA's BAR5 into X-Fi BAR0 */
1862 pci_write_config_dword(pci, PCI_BASE_ADDRESS_0, bar5);
1863 /* Switch to X-Fi config space without BAR0 exposed. */
1864 pci_write_config_dword(pci, UAA_CFG_SPACE_FLAG, 0x12345678);
1865 pci_write_config_dword(pci, PCI_BASE_ADDRESS_1, bar1);
1866 pci_write_config_dword(pci, PCI_BASE_ADDRESS_2, bar2);
1867 pci_write_config_dword(pci, PCI_BASE_ADDRESS_3, bar3);
1868 pci_write_config_dword(pci, PCI_BASE_ADDRESS_4, bar4);
1869 pci_write_config_dword(pci, PCI_INTERRUPT_LINE, irq);
1870 pci_write_config_dword(pci, PCI_CACHE_LINE_SIZE, cl_size);
1871 pci_write_config_dword(pci, PCI_LATENCY_TIMER, l_timer);
1872 pci_write_config_dword(pci, UAA_CFG_PWRSTATUS, pwr);
1873 pci_write_config_dword(pci, PCI_COMMAND, cmd);
1874
1875 /* Switch to X-Fi mode */
1876 writel(CTLX, (mem_base + UAA_CORE_CHANGE));
1877 writel(CTL_, (mem_base + UAA_CORE_CHANGE));
1878 writel(CTLF, (mem_base + UAA_CORE_CHANGE));
1879 writel(CTLi, (mem_base + UAA_CORE_CHANGE));
1880
1881 iounmap(mem_base);
1882
1883 return 0;
1884 }
1885
ct_20k1_interrupt(int irq,void * dev_id)1886 static irqreturn_t ct_20k1_interrupt(int irq, void *dev_id)
1887 {
1888 struct hw *hw = dev_id;
1889 unsigned int status;
1890
1891 status = hw_read_20kx(hw, GIP);
1892 if (!status)
1893 return IRQ_NONE;
1894
1895 if (hw->irq_callback)
1896 hw->irq_callback(hw->irq_callback_data, status);
1897
1898 hw_write_20kx(hw, GIP, status);
1899 return IRQ_HANDLED;
1900 }
1901
hw_card_start(struct hw * hw)1902 static int hw_card_start(struct hw *hw)
1903 {
1904 int err;
1905 struct pci_dev *pci = hw->pci;
1906
1907 err = pci_enable_device(pci);
1908 if (err < 0)
1909 return err;
1910
1911 /* Set DMA transfer mask */
1912 if (pci_set_dma_mask(pci, CT_XFI_DMA_MASK) < 0 ||
1913 pci_set_consistent_dma_mask(pci, CT_XFI_DMA_MASK) < 0) {
1914 printk(KERN_ERR "architecture does not support PCI "
1915 "busmaster DMA with mask 0x%llx\n",
1916 CT_XFI_DMA_MASK);
1917 err = -ENXIO;
1918 goto error1;
1919 }
1920
1921 if (!hw->io_base) {
1922 err = pci_request_regions(pci, "XFi");
1923 if (err < 0)
1924 goto error1;
1925
1926 if (hw->model == CTUAA)
1927 hw->io_base = pci_resource_start(pci, 5);
1928 else
1929 hw->io_base = pci_resource_start(pci, 0);
1930
1931 }
1932
1933 /* Switch to X-Fi mode from UAA mode if neeeded */
1934 if (hw->model == CTUAA) {
1935 err = uaa_to_xfi(pci);
1936 if (err)
1937 goto error2;
1938
1939 }
1940
1941 if (hw->irq < 0) {
1942 err = request_irq(pci->irq, ct_20k1_interrupt, IRQF_SHARED,
1943 KBUILD_MODNAME, hw);
1944 if (err < 0) {
1945 printk(KERN_ERR "XFi: Cannot get irq %d\n", pci->irq);
1946 goto error2;
1947 }
1948 hw->irq = pci->irq;
1949 }
1950
1951 pci_set_master(pci);
1952
1953 return 0;
1954
1955 error2:
1956 pci_release_regions(pci);
1957 hw->io_base = 0;
1958 error1:
1959 pci_disable_device(pci);
1960 return err;
1961 }
1962
hw_card_stop(struct hw * hw)1963 static int hw_card_stop(struct hw *hw)
1964 {
1965 unsigned int data;
1966
1967 /* disable transport bus master and queueing of request */
1968 hw_write_20kx(hw, TRNCTL, 0x00);
1969
1970 /* disable pll */
1971 data = hw_read_20kx(hw, PLLCTL);
1972 hw_write_20kx(hw, PLLCTL, (data & (~(0x0F<<12))));
1973
1974 /* TODO: Disable interrupt and so on... */
1975 if (hw->irq >= 0)
1976 synchronize_irq(hw->irq);
1977 return 0;
1978 }
1979
hw_card_shutdown(struct hw * hw)1980 static int hw_card_shutdown(struct hw *hw)
1981 {
1982 if (hw->irq >= 0)
1983 free_irq(hw->irq, hw);
1984
1985 hw->irq = -1;
1986
1987 if (hw->mem_base)
1988 iounmap((void *)hw->mem_base);
1989
1990 hw->mem_base = (unsigned long)NULL;
1991
1992 if (hw->io_base)
1993 pci_release_regions(hw->pci);
1994
1995 hw->io_base = 0;
1996
1997 pci_disable_device(hw->pci);
1998
1999 return 0;
2000 }
2001
hw_card_init(struct hw * hw,struct card_conf * info)2002 static int hw_card_init(struct hw *hw, struct card_conf *info)
2003 {
2004 int err;
2005 unsigned int gctl;
2006 u32 data;
2007 struct dac_conf dac_info = {0};
2008 struct adc_conf adc_info = {0};
2009 struct daio_conf daio_info = {0};
2010 struct trn_conf trn_info = {0};
2011
2012 /* Get PCI io port base address and do Hendrix switch if needed. */
2013 err = hw_card_start(hw);
2014 if (err)
2015 return err;
2016
2017 /* PLL init */
2018 err = hw_pll_init(hw, info->rsr);
2019 if (err < 0)
2020 return err;
2021
2022 /* kick off auto-init */
2023 err = hw_auto_init(hw);
2024 if (err < 0)
2025 return err;
2026
2027 /* Enable audio ring */
2028 gctl = hw_read_20kx(hw, GCTL);
2029 set_field(&gctl, GCTL_EAC, 1);
2030 set_field(&gctl, GCTL_DBP, 1);
2031 set_field(&gctl, GCTL_TBP, 1);
2032 set_field(&gctl, GCTL_FBP, 1);
2033 set_field(&gctl, GCTL_ET, 1);
2034 hw_write_20kx(hw, GCTL, gctl);
2035 mdelay(10);
2036
2037 /* Reset all global pending interrupts */
2038 hw_write_20kx(hw, GIE, 0);
2039 /* Reset all SRC pending interrupts */
2040 hw_write_20kx(hw, SRCIP, 0);
2041 mdelay(30);
2042
2043 /* Detect the card ID and configure GPIO accordingly. */
2044 switch (hw->model) {
2045 case CTSB055X:
2046 hw_write_20kx(hw, GPIOCTL, 0x13fe);
2047 break;
2048 case CTSB073X:
2049 hw_write_20kx(hw, GPIOCTL, 0x00e6);
2050 break;
2051 case CTUAA:
2052 hw_write_20kx(hw, GPIOCTL, 0x00c2);
2053 break;
2054 default:
2055 hw_write_20kx(hw, GPIOCTL, 0x01e6);
2056 break;
2057 }
2058
2059 trn_info.vm_pgt_phys = info->vm_pgt_phys;
2060 err = hw_trn_init(hw, &trn_info);
2061 if (err < 0)
2062 return err;
2063
2064 daio_info.msr = info->msr;
2065 err = hw_daio_init(hw, &daio_info);
2066 if (err < 0)
2067 return err;
2068
2069 dac_info.msr = info->msr;
2070 err = hw_dac_init(hw, &dac_info);
2071 if (err < 0)
2072 return err;
2073
2074 adc_info.msr = info->msr;
2075 adc_info.input = ADC_LINEIN;
2076 adc_info.mic20db = 0;
2077 err = hw_adc_init(hw, &adc_info);
2078 if (err < 0)
2079 return err;
2080
2081 data = hw_read_20kx(hw, SRCMCTL);
2082 data |= 0x1; /* Enables input from the audio ring */
2083 hw_write_20kx(hw, SRCMCTL, data);
2084
2085 return 0;
2086 }
2087
2088 #ifdef CONFIG_PM_SLEEP
hw_suspend(struct hw * hw)2089 static int hw_suspend(struct hw *hw)
2090 {
2091 struct pci_dev *pci = hw->pci;
2092
2093 hw_card_stop(hw);
2094
2095 if (hw->model == CTUAA) {
2096 /* Switch to UAA config space. */
2097 pci_write_config_dword(pci, UAA_CFG_SPACE_FLAG, 0x0);
2098 }
2099
2100 pci_disable_device(pci);
2101 pci_save_state(pci);
2102 pci_set_power_state(pci, PCI_D3hot);
2103
2104 return 0;
2105 }
2106
hw_resume(struct hw * hw,struct card_conf * info)2107 static int hw_resume(struct hw *hw, struct card_conf *info)
2108 {
2109 struct pci_dev *pci = hw->pci;
2110
2111 pci_set_power_state(pci, PCI_D0);
2112 pci_restore_state(pci);
2113
2114 /* Re-initialize card hardware. */
2115 return hw_card_init(hw, info);
2116 }
2117 #endif
2118
hw_read_20kx(struct hw * hw,u32 reg)2119 static u32 hw_read_20kx(struct hw *hw, u32 reg)
2120 {
2121 u32 value;
2122 unsigned long flags;
2123
2124 spin_lock_irqsave(
2125 &container_of(hw, struct hw20k1, hw)->reg_20k1_lock, flags);
2126 outl(reg, hw->io_base + 0x0);
2127 value = inl(hw->io_base + 0x4);
2128 spin_unlock_irqrestore(
2129 &container_of(hw, struct hw20k1, hw)->reg_20k1_lock, flags);
2130
2131 return value;
2132 }
2133
hw_write_20kx(struct hw * hw,u32 reg,u32 data)2134 static void hw_write_20kx(struct hw *hw, u32 reg, u32 data)
2135 {
2136 unsigned long flags;
2137
2138 spin_lock_irqsave(
2139 &container_of(hw, struct hw20k1, hw)->reg_20k1_lock, flags);
2140 outl(reg, hw->io_base + 0x0);
2141 outl(data, hw->io_base + 0x4);
2142 spin_unlock_irqrestore(
2143 &container_of(hw, struct hw20k1, hw)->reg_20k1_lock, flags);
2144
2145 }
2146
hw_read_pci(struct hw * hw,u32 reg)2147 static u32 hw_read_pci(struct hw *hw, u32 reg)
2148 {
2149 u32 value;
2150 unsigned long flags;
2151
2152 spin_lock_irqsave(
2153 &container_of(hw, struct hw20k1, hw)->reg_pci_lock, flags);
2154 outl(reg, hw->io_base + 0x10);
2155 value = inl(hw->io_base + 0x14);
2156 spin_unlock_irqrestore(
2157 &container_of(hw, struct hw20k1, hw)->reg_pci_lock, flags);
2158
2159 return value;
2160 }
2161
hw_write_pci(struct hw * hw,u32 reg,u32 data)2162 static void hw_write_pci(struct hw *hw, u32 reg, u32 data)
2163 {
2164 unsigned long flags;
2165
2166 spin_lock_irqsave(
2167 &container_of(hw, struct hw20k1, hw)->reg_pci_lock, flags);
2168 outl(reg, hw->io_base + 0x10);
2169 outl(data, hw->io_base + 0x14);
2170 spin_unlock_irqrestore(
2171 &container_of(hw, struct hw20k1, hw)->reg_pci_lock, flags);
2172 }
2173
2174 static struct hw ct20k1_preset = {
2175 .irq = -1,
2176
2177 .card_init = hw_card_init,
2178 .card_stop = hw_card_stop,
2179 .pll_init = hw_pll_init,
2180 .is_adc_source_selected = hw_is_adc_input_selected,
2181 .select_adc_source = hw_adc_input_select,
2182 .capabilities = hw_capabilities,
2183 #ifdef CONFIG_PM_SLEEP
2184 .suspend = hw_suspend,
2185 .resume = hw_resume,
2186 #endif
2187
2188 .src_rsc_get_ctrl_blk = src_get_rsc_ctrl_blk,
2189 .src_rsc_put_ctrl_blk = src_put_rsc_ctrl_blk,
2190 .src_mgr_get_ctrl_blk = src_mgr_get_ctrl_blk,
2191 .src_mgr_put_ctrl_blk = src_mgr_put_ctrl_blk,
2192 .src_set_state = src_set_state,
2193 .src_set_bm = src_set_bm,
2194 .src_set_rsr = src_set_rsr,
2195 .src_set_sf = src_set_sf,
2196 .src_set_wr = src_set_wr,
2197 .src_set_pm = src_set_pm,
2198 .src_set_rom = src_set_rom,
2199 .src_set_vo = src_set_vo,
2200 .src_set_st = src_set_st,
2201 .src_set_ie = src_set_ie,
2202 .src_set_ilsz = src_set_ilsz,
2203 .src_set_bp = src_set_bp,
2204 .src_set_cisz = src_set_cisz,
2205 .src_set_ca = src_set_ca,
2206 .src_set_sa = src_set_sa,
2207 .src_set_la = src_set_la,
2208 .src_set_pitch = src_set_pitch,
2209 .src_set_dirty = src_set_dirty,
2210 .src_set_clear_zbufs = src_set_clear_zbufs,
2211 .src_set_dirty_all = src_set_dirty_all,
2212 .src_commit_write = src_commit_write,
2213 .src_get_ca = src_get_ca,
2214 .src_get_dirty = src_get_dirty,
2215 .src_dirty_conj_mask = src_dirty_conj_mask,
2216 .src_mgr_enbs_src = src_mgr_enbs_src,
2217 .src_mgr_enb_src = src_mgr_enb_src,
2218 .src_mgr_dsb_src = src_mgr_dsb_src,
2219 .src_mgr_commit_write = src_mgr_commit_write,
2220
2221 .srcimp_mgr_get_ctrl_blk = srcimp_mgr_get_ctrl_blk,
2222 .srcimp_mgr_put_ctrl_blk = srcimp_mgr_put_ctrl_blk,
2223 .srcimp_mgr_set_imaparc = srcimp_mgr_set_imaparc,
2224 .srcimp_mgr_set_imapuser = srcimp_mgr_set_imapuser,
2225 .srcimp_mgr_set_imapnxt = srcimp_mgr_set_imapnxt,
2226 .srcimp_mgr_set_imapaddr = srcimp_mgr_set_imapaddr,
2227 .srcimp_mgr_commit_write = srcimp_mgr_commit_write,
2228
2229 .amixer_rsc_get_ctrl_blk = amixer_rsc_get_ctrl_blk,
2230 .amixer_rsc_put_ctrl_blk = amixer_rsc_put_ctrl_blk,
2231 .amixer_mgr_get_ctrl_blk = amixer_mgr_get_ctrl_blk,
2232 .amixer_mgr_put_ctrl_blk = amixer_mgr_put_ctrl_blk,
2233 .amixer_set_mode = amixer_set_mode,
2234 .amixer_set_iv = amixer_set_iv,
2235 .amixer_set_x = amixer_set_x,
2236 .amixer_set_y = amixer_set_y,
2237 .amixer_set_sadr = amixer_set_sadr,
2238 .amixer_set_se = amixer_set_se,
2239 .amixer_set_dirty = amixer_set_dirty,
2240 .amixer_set_dirty_all = amixer_set_dirty_all,
2241 .amixer_commit_write = amixer_commit_write,
2242 .amixer_get_y = amixer_get_y,
2243 .amixer_get_dirty = amixer_get_dirty,
2244
2245 .dai_get_ctrl_blk = dai_get_ctrl_blk,
2246 .dai_put_ctrl_blk = dai_put_ctrl_blk,
2247 .dai_srt_set_srco = dai_srt_set_srcr,
2248 .dai_srt_set_srcm = dai_srt_set_srcl,
2249 .dai_srt_set_rsr = dai_srt_set_rsr,
2250 .dai_srt_set_drat = dai_srt_set_drat,
2251 .dai_srt_set_ec = dai_srt_set_ec,
2252 .dai_srt_set_et = dai_srt_set_et,
2253 .dai_commit_write = dai_commit_write,
2254
2255 .dao_get_ctrl_blk = dao_get_ctrl_blk,
2256 .dao_put_ctrl_blk = dao_put_ctrl_blk,
2257 .dao_set_spos = dao_set_spos,
2258 .dao_commit_write = dao_commit_write,
2259 .dao_get_spos = dao_get_spos,
2260
2261 .daio_mgr_get_ctrl_blk = daio_mgr_get_ctrl_blk,
2262 .daio_mgr_put_ctrl_blk = daio_mgr_put_ctrl_blk,
2263 .daio_mgr_enb_dai = daio_mgr_enb_dai,
2264 .daio_mgr_dsb_dai = daio_mgr_dsb_dai,
2265 .daio_mgr_enb_dao = daio_mgr_enb_dao,
2266 .daio_mgr_dsb_dao = daio_mgr_dsb_dao,
2267 .daio_mgr_dao_init = daio_mgr_dao_init,
2268 .daio_mgr_set_imaparc = daio_mgr_set_imaparc,
2269 .daio_mgr_set_imapnxt = daio_mgr_set_imapnxt,
2270 .daio_mgr_set_imapaddr = daio_mgr_set_imapaddr,
2271 .daio_mgr_commit_write = daio_mgr_commit_write,
2272
2273 .set_timer_irq = set_timer_irq,
2274 .set_timer_tick = set_timer_tick,
2275 .get_wc = get_wc,
2276 };
2277
create_20k1_hw_obj(struct hw ** rhw)2278 int create_20k1_hw_obj(struct hw **rhw)
2279 {
2280 struct hw20k1 *hw20k1;
2281
2282 *rhw = NULL;
2283 hw20k1 = kzalloc(sizeof(*hw20k1), GFP_KERNEL);
2284 if (!hw20k1)
2285 return -ENOMEM;
2286
2287 spin_lock_init(&hw20k1->reg_20k1_lock);
2288 spin_lock_init(&hw20k1->reg_pci_lock);
2289
2290 hw20k1->hw = ct20k1_preset;
2291
2292 *rhw = &hw20k1->hw;
2293
2294 return 0;
2295 }
2296
destroy_20k1_hw_obj(struct hw * hw)2297 int destroy_20k1_hw_obj(struct hw *hw)
2298 {
2299 if (hw->io_base)
2300 hw_card_shutdown(hw);
2301
2302 kfree(container_of(hw, struct hw20k1, hw));
2303 return 0;
2304 }
2305