1 /*
2 * Copyright (C) 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2006 Red Hat GmbH
4 *
5 * This file is released under the GPL.
6 *
7 * Kcopyd provides a simple interface for copying an area of one
8 * block-device to one or more other block-devices, with an asynchronous
9 * completion notification.
10 */
11
12 #include <linux/types.h>
13 #include <linux/atomic.h>
14 #include <linux/blkdev.h>
15 #include <linux/fs.h>
16 #include <linux/init.h>
17 #include <linux/list.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/pagemap.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/workqueue.h>
24 #include <linux/mutex.h>
25 #include <linux/delay.h>
26 #include <linux/device-mapper.h>
27 #include <linux/dm-kcopyd.h>
28
29 #include "dm.h"
30
31 #define SUB_JOB_SIZE 128
32 #define SPLIT_COUNT 8
33 #define MIN_JOBS 8
34 #define RESERVE_PAGES (DIV_ROUND_UP(SUB_JOB_SIZE << SECTOR_SHIFT, PAGE_SIZE))
35
36 /*-----------------------------------------------------------------
37 * Each kcopyd client has its own little pool of preallocated
38 * pages for kcopyd io.
39 *---------------------------------------------------------------*/
40 struct dm_kcopyd_client {
41 struct page_list *pages;
42 unsigned nr_reserved_pages;
43 unsigned nr_free_pages;
44
45 struct dm_io_client *io_client;
46
47 wait_queue_head_t destroyq;
48 atomic_t nr_jobs;
49
50 mempool_t *job_pool;
51
52 struct workqueue_struct *kcopyd_wq;
53 struct work_struct kcopyd_work;
54
55 struct dm_kcopyd_throttle *throttle;
56
57 /*
58 * We maintain three lists of jobs:
59 *
60 * i) jobs waiting for pages
61 * ii) jobs that have pages, and are waiting for the io to be issued.
62 * iii) jobs that have completed.
63 *
64 * All three of these are protected by job_lock.
65 */
66 spinlock_t job_lock;
67 struct list_head complete_jobs;
68 struct list_head io_jobs;
69 struct list_head pages_jobs;
70 };
71
72 static struct page_list zero_page_list;
73
74 static DEFINE_SPINLOCK(throttle_spinlock);
75
76 /*
77 * IO/IDLE accounting slowly decays after (1 << ACCOUNT_INTERVAL_SHIFT) period.
78 * When total_period >= (1 << ACCOUNT_INTERVAL_SHIFT) the counters are divided
79 * by 2.
80 */
81 #define ACCOUNT_INTERVAL_SHIFT SHIFT_HZ
82
83 /*
84 * Sleep this number of milliseconds.
85 *
86 * The value was decided experimentally.
87 * Smaller values seem to cause an increased copy rate above the limit.
88 * The reason for this is unknown but possibly due to jiffies rounding errors
89 * or read/write cache inside the disk.
90 */
91 #define SLEEP_MSEC 100
92
93 /*
94 * Maximum number of sleep events. There is a theoretical livelock if more
95 * kcopyd clients do work simultaneously which this limit avoids.
96 */
97 #define MAX_SLEEPS 10
98
io_job_start(struct dm_kcopyd_throttle * t)99 static void io_job_start(struct dm_kcopyd_throttle *t)
100 {
101 unsigned throttle, now, difference;
102 int slept = 0, skew;
103
104 if (unlikely(!t))
105 return;
106
107 try_again:
108 spin_lock_irq(&throttle_spinlock);
109
110 throttle = ACCESS_ONCE(t->throttle);
111
112 if (likely(throttle >= 100))
113 goto skip_limit;
114
115 now = jiffies;
116 difference = now - t->last_jiffies;
117 t->last_jiffies = now;
118 if (t->num_io_jobs)
119 t->io_period += difference;
120 t->total_period += difference;
121
122 /*
123 * Maintain sane values if we got a temporary overflow.
124 */
125 if (unlikely(t->io_period > t->total_period))
126 t->io_period = t->total_period;
127
128 if (unlikely(t->total_period >= (1 << ACCOUNT_INTERVAL_SHIFT))) {
129 int shift = fls(t->total_period >> ACCOUNT_INTERVAL_SHIFT);
130 t->total_period >>= shift;
131 t->io_period >>= shift;
132 }
133
134 skew = t->io_period - throttle * t->total_period / 100;
135
136 if (unlikely(skew > 0) && slept < MAX_SLEEPS) {
137 slept++;
138 spin_unlock_irq(&throttle_spinlock);
139 msleep(SLEEP_MSEC);
140 goto try_again;
141 }
142
143 skip_limit:
144 t->num_io_jobs++;
145
146 spin_unlock_irq(&throttle_spinlock);
147 }
148
io_job_finish(struct dm_kcopyd_throttle * t)149 static void io_job_finish(struct dm_kcopyd_throttle *t)
150 {
151 unsigned long flags;
152
153 if (unlikely(!t))
154 return;
155
156 spin_lock_irqsave(&throttle_spinlock, flags);
157
158 t->num_io_jobs--;
159
160 if (likely(ACCESS_ONCE(t->throttle) >= 100))
161 goto skip_limit;
162
163 if (!t->num_io_jobs) {
164 unsigned now, difference;
165
166 now = jiffies;
167 difference = now - t->last_jiffies;
168 t->last_jiffies = now;
169
170 t->io_period += difference;
171 t->total_period += difference;
172
173 /*
174 * Maintain sane values if we got a temporary overflow.
175 */
176 if (unlikely(t->io_period > t->total_period))
177 t->io_period = t->total_period;
178 }
179
180 skip_limit:
181 spin_unlock_irqrestore(&throttle_spinlock, flags);
182 }
183
184
wake(struct dm_kcopyd_client * kc)185 static void wake(struct dm_kcopyd_client *kc)
186 {
187 queue_work(kc->kcopyd_wq, &kc->kcopyd_work);
188 }
189
190 /*
191 * Obtain one page for the use of kcopyd.
192 */
alloc_pl(gfp_t gfp)193 static struct page_list *alloc_pl(gfp_t gfp)
194 {
195 struct page_list *pl;
196
197 pl = kmalloc(sizeof(*pl), gfp);
198 if (!pl)
199 return NULL;
200
201 pl->page = alloc_page(gfp);
202 if (!pl->page) {
203 kfree(pl);
204 return NULL;
205 }
206
207 return pl;
208 }
209
free_pl(struct page_list * pl)210 static void free_pl(struct page_list *pl)
211 {
212 __free_page(pl->page);
213 kfree(pl);
214 }
215
216 /*
217 * Add the provided pages to a client's free page list, releasing
218 * back to the system any beyond the reserved_pages limit.
219 */
kcopyd_put_pages(struct dm_kcopyd_client * kc,struct page_list * pl)220 static void kcopyd_put_pages(struct dm_kcopyd_client *kc, struct page_list *pl)
221 {
222 struct page_list *next;
223
224 do {
225 next = pl->next;
226
227 if (kc->nr_free_pages >= kc->nr_reserved_pages)
228 free_pl(pl);
229 else {
230 pl->next = kc->pages;
231 kc->pages = pl;
232 kc->nr_free_pages++;
233 }
234
235 pl = next;
236 } while (pl);
237 }
238
kcopyd_get_pages(struct dm_kcopyd_client * kc,unsigned int nr,struct page_list ** pages)239 static int kcopyd_get_pages(struct dm_kcopyd_client *kc,
240 unsigned int nr, struct page_list **pages)
241 {
242 struct page_list *pl;
243
244 *pages = NULL;
245
246 do {
247 pl = alloc_pl(__GFP_NOWARN | __GFP_NORETRY);
248 if (unlikely(!pl)) {
249 /* Use reserved pages */
250 pl = kc->pages;
251 if (unlikely(!pl))
252 goto out_of_memory;
253 kc->pages = pl->next;
254 kc->nr_free_pages--;
255 }
256 pl->next = *pages;
257 *pages = pl;
258 } while (--nr);
259
260 return 0;
261
262 out_of_memory:
263 if (*pages)
264 kcopyd_put_pages(kc, *pages);
265 return -ENOMEM;
266 }
267
268 /*
269 * These three functions resize the page pool.
270 */
drop_pages(struct page_list * pl)271 static void drop_pages(struct page_list *pl)
272 {
273 struct page_list *next;
274
275 while (pl) {
276 next = pl->next;
277 free_pl(pl);
278 pl = next;
279 }
280 }
281
282 /*
283 * Allocate and reserve nr_pages for the use of a specific client.
284 */
client_reserve_pages(struct dm_kcopyd_client * kc,unsigned nr_pages)285 static int client_reserve_pages(struct dm_kcopyd_client *kc, unsigned nr_pages)
286 {
287 unsigned i;
288 struct page_list *pl = NULL, *next;
289
290 for (i = 0; i < nr_pages; i++) {
291 next = alloc_pl(GFP_KERNEL);
292 if (!next) {
293 if (pl)
294 drop_pages(pl);
295 return -ENOMEM;
296 }
297 next->next = pl;
298 pl = next;
299 }
300
301 kc->nr_reserved_pages += nr_pages;
302 kcopyd_put_pages(kc, pl);
303
304 return 0;
305 }
306
client_free_pages(struct dm_kcopyd_client * kc)307 static void client_free_pages(struct dm_kcopyd_client *kc)
308 {
309 BUG_ON(kc->nr_free_pages != kc->nr_reserved_pages);
310 drop_pages(kc->pages);
311 kc->pages = NULL;
312 kc->nr_free_pages = kc->nr_reserved_pages = 0;
313 }
314
315 /*-----------------------------------------------------------------
316 * kcopyd_jobs need to be allocated by the *clients* of kcopyd,
317 * for this reason we use a mempool to prevent the client from
318 * ever having to do io (which could cause a deadlock).
319 *---------------------------------------------------------------*/
320 struct kcopyd_job {
321 struct dm_kcopyd_client *kc;
322 struct list_head list;
323 unsigned long flags;
324
325 /*
326 * Error state of the job.
327 */
328 int read_err;
329 unsigned long write_err;
330
331 /*
332 * Either READ or WRITE
333 */
334 int rw;
335 struct dm_io_region source;
336
337 /*
338 * The destinations for the transfer.
339 */
340 unsigned int num_dests;
341 struct dm_io_region dests[DM_KCOPYD_MAX_REGIONS];
342
343 struct page_list *pages;
344
345 /*
346 * Set this to ensure you are notified when the job has
347 * completed. 'context' is for callback to use.
348 */
349 dm_kcopyd_notify_fn fn;
350 void *context;
351
352 /*
353 * These fields are only used if the job has been split
354 * into more manageable parts.
355 */
356 struct mutex lock;
357 atomic_t sub_jobs;
358 sector_t progress;
359
360 struct kcopyd_job *master_job;
361 };
362
363 static struct kmem_cache *_job_cache;
364
dm_kcopyd_init(void)365 int __init dm_kcopyd_init(void)
366 {
367 _job_cache = kmem_cache_create("kcopyd_job",
368 sizeof(struct kcopyd_job) * (SPLIT_COUNT + 1),
369 __alignof__(struct kcopyd_job), 0, NULL);
370 if (!_job_cache)
371 return -ENOMEM;
372
373 zero_page_list.next = &zero_page_list;
374 zero_page_list.page = ZERO_PAGE(0);
375
376 return 0;
377 }
378
dm_kcopyd_exit(void)379 void dm_kcopyd_exit(void)
380 {
381 kmem_cache_destroy(_job_cache);
382 _job_cache = NULL;
383 }
384
385 /*
386 * Functions to push and pop a job onto the head of a given job
387 * list.
388 */
pop(struct list_head * jobs,struct dm_kcopyd_client * kc)389 static struct kcopyd_job *pop(struct list_head *jobs,
390 struct dm_kcopyd_client *kc)
391 {
392 struct kcopyd_job *job = NULL;
393 unsigned long flags;
394
395 spin_lock_irqsave(&kc->job_lock, flags);
396
397 if (!list_empty(jobs)) {
398 job = list_entry(jobs->next, struct kcopyd_job, list);
399 list_del(&job->list);
400 }
401 spin_unlock_irqrestore(&kc->job_lock, flags);
402
403 return job;
404 }
405
push(struct list_head * jobs,struct kcopyd_job * job)406 static void push(struct list_head *jobs, struct kcopyd_job *job)
407 {
408 unsigned long flags;
409 struct dm_kcopyd_client *kc = job->kc;
410
411 spin_lock_irqsave(&kc->job_lock, flags);
412 list_add_tail(&job->list, jobs);
413 spin_unlock_irqrestore(&kc->job_lock, flags);
414 }
415
416
push_head(struct list_head * jobs,struct kcopyd_job * job)417 static void push_head(struct list_head *jobs, struct kcopyd_job *job)
418 {
419 unsigned long flags;
420 struct dm_kcopyd_client *kc = job->kc;
421
422 spin_lock_irqsave(&kc->job_lock, flags);
423 list_add(&job->list, jobs);
424 spin_unlock_irqrestore(&kc->job_lock, flags);
425 }
426
427 /*
428 * These three functions process 1 item from the corresponding
429 * job list.
430 *
431 * They return:
432 * < 0: error
433 * 0: success
434 * > 0: can't process yet.
435 */
run_complete_job(struct kcopyd_job * job)436 static int run_complete_job(struct kcopyd_job *job)
437 {
438 void *context = job->context;
439 int read_err = job->read_err;
440 unsigned long write_err = job->write_err;
441 dm_kcopyd_notify_fn fn = job->fn;
442 struct dm_kcopyd_client *kc = job->kc;
443
444 if (job->pages && job->pages != &zero_page_list)
445 kcopyd_put_pages(kc, job->pages);
446 /*
447 * If this is the master job, the sub jobs have already
448 * completed so we can free everything.
449 */
450 if (job->master_job == job)
451 mempool_free(job, kc->job_pool);
452 fn(read_err, write_err, context);
453
454 if (atomic_dec_and_test(&kc->nr_jobs))
455 wake_up(&kc->destroyq);
456
457 return 0;
458 }
459
complete_io(unsigned long error,void * context)460 static void complete_io(unsigned long error, void *context)
461 {
462 struct kcopyd_job *job = (struct kcopyd_job *) context;
463 struct dm_kcopyd_client *kc = job->kc;
464
465 io_job_finish(kc->throttle);
466
467 if (error) {
468 if (job->rw & WRITE)
469 job->write_err |= error;
470 else
471 job->read_err = 1;
472
473 if (!test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags)) {
474 push(&kc->complete_jobs, job);
475 wake(kc);
476 return;
477 }
478 }
479
480 if (job->rw & WRITE)
481 push(&kc->complete_jobs, job);
482
483 else {
484 job->rw = WRITE;
485 push(&kc->io_jobs, job);
486 }
487
488 wake(kc);
489 }
490
491 /*
492 * Request io on as many buffer heads as we can currently get for
493 * a particular job.
494 */
run_io_job(struct kcopyd_job * job)495 static int run_io_job(struct kcopyd_job *job)
496 {
497 int r;
498 struct dm_io_request io_req = {
499 .bi_rw = job->rw,
500 .mem.type = DM_IO_PAGE_LIST,
501 .mem.ptr.pl = job->pages,
502 .mem.offset = 0,
503 .notify.fn = complete_io,
504 .notify.context = job,
505 .client = job->kc->io_client,
506 };
507
508 io_job_start(job->kc->throttle);
509
510 if (job->rw == READ)
511 r = dm_io(&io_req, 1, &job->source, NULL);
512 else
513 r = dm_io(&io_req, job->num_dests, job->dests, NULL);
514
515 return r;
516 }
517
run_pages_job(struct kcopyd_job * job)518 static int run_pages_job(struct kcopyd_job *job)
519 {
520 int r;
521 unsigned nr_pages = dm_div_up(job->dests[0].count, PAGE_SIZE >> 9);
522
523 r = kcopyd_get_pages(job->kc, nr_pages, &job->pages);
524 if (!r) {
525 /* this job is ready for io */
526 push(&job->kc->io_jobs, job);
527 return 0;
528 }
529
530 if (r == -ENOMEM)
531 /* can't complete now */
532 return 1;
533
534 return r;
535 }
536
537 /*
538 * Run through a list for as long as possible. Returns the count
539 * of successful jobs.
540 */
process_jobs(struct list_head * jobs,struct dm_kcopyd_client * kc,int (* fn)(struct kcopyd_job *))541 static int process_jobs(struct list_head *jobs, struct dm_kcopyd_client *kc,
542 int (*fn) (struct kcopyd_job *))
543 {
544 struct kcopyd_job *job;
545 int r, count = 0;
546
547 while ((job = pop(jobs, kc))) {
548
549 r = fn(job);
550
551 if (r < 0) {
552 /* error this rogue job */
553 if (job->rw & WRITE)
554 job->write_err = (unsigned long) -1L;
555 else
556 job->read_err = 1;
557 push(&kc->complete_jobs, job);
558 break;
559 }
560
561 if (r > 0) {
562 /*
563 * We couldn't service this job ATM, so
564 * push this job back onto the list.
565 */
566 push_head(jobs, job);
567 break;
568 }
569
570 count++;
571 }
572
573 return count;
574 }
575
576 /*
577 * kcopyd does this every time it's woken up.
578 */
do_work(struct work_struct * work)579 static void do_work(struct work_struct *work)
580 {
581 struct dm_kcopyd_client *kc = container_of(work,
582 struct dm_kcopyd_client, kcopyd_work);
583 struct blk_plug plug;
584
585 /*
586 * The order that these are called is *very* important.
587 * complete jobs can free some pages for pages jobs.
588 * Pages jobs when successful will jump onto the io jobs
589 * list. io jobs call wake when they complete and it all
590 * starts again.
591 */
592 blk_start_plug(&plug);
593 process_jobs(&kc->complete_jobs, kc, run_complete_job);
594 process_jobs(&kc->pages_jobs, kc, run_pages_job);
595 process_jobs(&kc->io_jobs, kc, run_io_job);
596 blk_finish_plug(&plug);
597 }
598
599 /*
600 * If we are copying a small region we just dispatch a single job
601 * to do the copy, otherwise the io has to be split up into many
602 * jobs.
603 */
dispatch_job(struct kcopyd_job * job)604 static void dispatch_job(struct kcopyd_job *job)
605 {
606 struct dm_kcopyd_client *kc = job->kc;
607 atomic_inc(&kc->nr_jobs);
608 if (unlikely(!job->source.count))
609 push(&kc->complete_jobs, job);
610 else if (job->pages == &zero_page_list)
611 push(&kc->io_jobs, job);
612 else
613 push(&kc->pages_jobs, job);
614 wake(kc);
615 }
616
segment_complete(int read_err,unsigned long write_err,void * context)617 static void segment_complete(int read_err, unsigned long write_err,
618 void *context)
619 {
620 /* FIXME: tidy this function */
621 sector_t progress = 0;
622 sector_t count = 0;
623 struct kcopyd_job *sub_job = (struct kcopyd_job *) context;
624 struct kcopyd_job *job = sub_job->master_job;
625 struct dm_kcopyd_client *kc = job->kc;
626
627 mutex_lock(&job->lock);
628
629 /* update the error */
630 if (read_err)
631 job->read_err = 1;
632
633 if (write_err)
634 job->write_err |= write_err;
635
636 /*
637 * Only dispatch more work if there hasn't been an error.
638 */
639 if ((!job->read_err && !job->write_err) ||
640 test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags)) {
641 /* get the next chunk of work */
642 progress = job->progress;
643 count = job->source.count - progress;
644 if (count) {
645 if (count > SUB_JOB_SIZE)
646 count = SUB_JOB_SIZE;
647
648 job->progress += count;
649 }
650 }
651 mutex_unlock(&job->lock);
652
653 if (count) {
654 int i;
655
656 *sub_job = *job;
657 sub_job->source.sector += progress;
658 sub_job->source.count = count;
659
660 for (i = 0; i < job->num_dests; i++) {
661 sub_job->dests[i].sector += progress;
662 sub_job->dests[i].count = count;
663 }
664
665 sub_job->fn = segment_complete;
666 sub_job->context = sub_job;
667 dispatch_job(sub_job);
668
669 } else if (atomic_dec_and_test(&job->sub_jobs)) {
670
671 /*
672 * Queue the completion callback to the kcopyd thread.
673 *
674 * Some callers assume that all the completions are called
675 * from a single thread and don't race with each other.
676 *
677 * We must not call the callback directly here because this
678 * code may not be executing in the thread.
679 */
680 push(&kc->complete_jobs, job);
681 wake(kc);
682 }
683 }
684
685 /*
686 * Create some sub jobs to share the work between them.
687 */
split_job(struct kcopyd_job * master_job)688 static void split_job(struct kcopyd_job *master_job)
689 {
690 int i;
691
692 atomic_inc(&master_job->kc->nr_jobs);
693
694 atomic_set(&master_job->sub_jobs, SPLIT_COUNT);
695 for (i = 0; i < SPLIT_COUNT; i++) {
696 master_job[i + 1].master_job = master_job;
697 segment_complete(0, 0u, &master_job[i + 1]);
698 }
699 }
700
dm_kcopyd_copy(struct dm_kcopyd_client * kc,struct dm_io_region * from,unsigned int num_dests,struct dm_io_region * dests,unsigned int flags,dm_kcopyd_notify_fn fn,void * context)701 int dm_kcopyd_copy(struct dm_kcopyd_client *kc, struct dm_io_region *from,
702 unsigned int num_dests, struct dm_io_region *dests,
703 unsigned int flags, dm_kcopyd_notify_fn fn, void *context)
704 {
705 struct kcopyd_job *job;
706 int i;
707
708 /*
709 * Allocate an array of jobs consisting of one master job
710 * followed by SPLIT_COUNT sub jobs.
711 */
712 job = mempool_alloc(kc->job_pool, GFP_NOIO);
713
714 /*
715 * set up for the read.
716 */
717 job->kc = kc;
718 job->flags = flags;
719 job->read_err = 0;
720 job->write_err = 0;
721
722 job->num_dests = num_dests;
723 memcpy(&job->dests, dests, sizeof(*dests) * num_dests);
724
725 if (from) {
726 job->source = *from;
727 job->pages = NULL;
728 job->rw = READ;
729 } else {
730 memset(&job->source, 0, sizeof job->source);
731 job->source.count = job->dests[0].count;
732 job->pages = &zero_page_list;
733
734 /*
735 * Use WRITE SAME to optimize zeroing if all dests support it.
736 */
737 job->rw = WRITE | REQ_WRITE_SAME;
738 for (i = 0; i < job->num_dests; i++)
739 if (!bdev_write_same(job->dests[i].bdev)) {
740 job->rw = WRITE;
741 break;
742 }
743 }
744
745 job->fn = fn;
746 job->context = context;
747 job->master_job = job;
748
749 if (job->source.count <= SUB_JOB_SIZE)
750 dispatch_job(job);
751 else {
752 mutex_init(&job->lock);
753 job->progress = 0;
754 split_job(job);
755 }
756
757 return 0;
758 }
759 EXPORT_SYMBOL(dm_kcopyd_copy);
760
dm_kcopyd_zero(struct dm_kcopyd_client * kc,unsigned num_dests,struct dm_io_region * dests,unsigned flags,dm_kcopyd_notify_fn fn,void * context)761 int dm_kcopyd_zero(struct dm_kcopyd_client *kc,
762 unsigned num_dests, struct dm_io_region *dests,
763 unsigned flags, dm_kcopyd_notify_fn fn, void *context)
764 {
765 return dm_kcopyd_copy(kc, NULL, num_dests, dests, flags, fn, context);
766 }
767 EXPORT_SYMBOL(dm_kcopyd_zero);
768
dm_kcopyd_prepare_callback(struct dm_kcopyd_client * kc,dm_kcopyd_notify_fn fn,void * context)769 void *dm_kcopyd_prepare_callback(struct dm_kcopyd_client *kc,
770 dm_kcopyd_notify_fn fn, void *context)
771 {
772 struct kcopyd_job *job;
773
774 job = mempool_alloc(kc->job_pool, GFP_NOIO);
775
776 memset(job, 0, sizeof(struct kcopyd_job));
777 job->kc = kc;
778 job->fn = fn;
779 job->context = context;
780 job->master_job = job;
781
782 atomic_inc(&kc->nr_jobs);
783
784 return job;
785 }
786 EXPORT_SYMBOL(dm_kcopyd_prepare_callback);
787
dm_kcopyd_do_callback(void * j,int read_err,unsigned long write_err)788 void dm_kcopyd_do_callback(void *j, int read_err, unsigned long write_err)
789 {
790 struct kcopyd_job *job = j;
791 struct dm_kcopyd_client *kc = job->kc;
792
793 job->read_err = read_err;
794 job->write_err = write_err;
795
796 push(&kc->complete_jobs, job);
797 wake(kc);
798 }
799 EXPORT_SYMBOL(dm_kcopyd_do_callback);
800
801 /*
802 * Cancels a kcopyd job, eg. someone might be deactivating a
803 * mirror.
804 */
805 #if 0
806 int kcopyd_cancel(struct kcopyd_job *job, int block)
807 {
808 /* FIXME: finish */
809 return -1;
810 }
811 #endif /* 0 */
812
813 /*-----------------------------------------------------------------
814 * Client setup
815 *---------------------------------------------------------------*/
dm_kcopyd_client_create(struct dm_kcopyd_throttle * throttle)816 struct dm_kcopyd_client *dm_kcopyd_client_create(struct dm_kcopyd_throttle *throttle)
817 {
818 int r = -ENOMEM;
819 struct dm_kcopyd_client *kc;
820
821 kc = kmalloc(sizeof(*kc), GFP_KERNEL);
822 if (!kc)
823 return ERR_PTR(-ENOMEM);
824
825 spin_lock_init(&kc->job_lock);
826 INIT_LIST_HEAD(&kc->complete_jobs);
827 INIT_LIST_HEAD(&kc->io_jobs);
828 INIT_LIST_HEAD(&kc->pages_jobs);
829 kc->throttle = throttle;
830
831 kc->job_pool = mempool_create_slab_pool(MIN_JOBS, _job_cache);
832 if (!kc->job_pool)
833 goto bad_slab;
834
835 INIT_WORK(&kc->kcopyd_work, do_work);
836 kc->kcopyd_wq = alloc_workqueue("kcopyd",
837 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
838 if (!kc->kcopyd_wq)
839 goto bad_workqueue;
840
841 kc->pages = NULL;
842 kc->nr_reserved_pages = kc->nr_free_pages = 0;
843 r = client_reserve_pages(kc, RESERVE_PAGES);
844 if (r)
845 goto bad_client_pages;
846
847 kc->io_client = dm_io_client_create();
848 if (IS_ERR(kc->io_client)) {
849 r = PTR_ERR(kc->io_client);
850 goto bad_io_client;
851 }
852
853 init_waitqueue_head(&kc->destroyq);
854 atomic_set(&kc->nr_jobs, 0);
855
856 return kc;
857
858 bad_io_client:
859 client_free_pages(kc);
860 bad_client_pages:
861 destroy_workqueue(kc->kcopyd_wq);
862 bad_workqueue:
863 mempool_destroy(kc->job_pool);
864 bad_slab:
865 kfree(kc);
866
867 return ERR_PTR(r);
868 }
869 EXPORT_SYMBOL(dm_kcopyd_client_create);
870
dm_kcopyd_client_destroy(struct dm_kcopyd_client * kc)871 void dm_kcopyd_client_destroy(struct dm_kcopyd_client *kc)
872 {
873 /* Wait for completion of all jobs submitted by this client. */
874 wait_event(kc->destroyq, !atomic_read(&kc->nr_jobs));
875
876 BUG_ON(!list_empty(&kc->complete_jobs));
877 BUG_ON(!list_empty(&kc->io_jobs));
878 BUG_ON(!list_empty(&kc->pages_jobs));
879 destroy_workqueue(kc->kcopyd_wq);
880 dm_io_client_destroy(kc->io_client);
881 client_free_pages(kc);
882 mempool_destroy(kc->job_pool);
883 kfree(kc);
884 }
885 EXPORT_SYMBOL(dm_kcopyd_client_destroy);
886