• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*P:500
2  * Just as userspace programs request kernel operations through a system
3  * call, the Guest requests Host operations through a "hypercall".  You might
4  * notice this nomenclature doesn't really follow any logic, but the name has
5  * been around for long enough that we're stuck with it.  As you'd expect, this
6  * code is basically a one big switch statement.
7 :*/
8 
9 /*  Copyright (C) 2006 Rusty Russell IBM Corporation
10 
11     This program is free software; you can redistribute it and/or modify
12     it under the terms of the GNU General Public License as published by
13     the Free Software Foundation; either version 2 of the License, or
14     (at your option) any later version.
15 
16     This program is distributed in the hope that it will be useful,
17     but WITHOUT ANY WARRANTY; without even the implied warranty of
18     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19     GNU General Public License for more details.
20 
21     You should have received a copy of the GNU General Public License
22     along with this program; if not, write to the Free Software
23     Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA
24 */
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/mm.h>
28 #include <linux/ktime.h>
29 #include <asm/page.h>
30 #include <asm/pgtable.h>
31 #include "lg.h"
32 
33 /*H:120
34  * This is the core hypercall routine: where the Guest gets what it wants.
35  * Or gets killed.  Or, in the case of LHCALL_SHUTDOWN, both.
36  */
do_hcall(struct lg_cpu * cpu,struct hcall_args * args)37 static void do_hcall(struct lg_cpu *cpu, struct hcall_args *args)
38 {
39 	switch (args->arg0) {
40 	case LHCALL_FLUSH_ASYNC:
41 		/*
42 		 * This call does nothing, except by breaking out of the Guest
43 		 * it makes us process all the asynchronous hypercalls.
44 		 */
45 		break;
46 	case LHCALL_SEND_INTERRUPTS:
47 		/*
48 		 * This call does nothing too, but by breaking out of the Guest
49 		 * it makes us process any pending interrupts.
50 		 */
51 		break;
52 	case LHCALL_LGUEST_INIT:
53 		/*
54 		 * You can't get here unless you're already initialized.  Don't
55 		 * do that.
56 		 */
57 		kill_guest(cpu, "already have lguest_data");
58 		break;
59 	case LHCALL_SHUTDOWN: {
60 		char msg[128];
61 		/*
62 		 * Shutdown is such a trivial hypercall that we do it in five
63 		 * lines right here.
64 		 *
65 		 * If the lgread fails, it will call kill_guest() itself; the
66 		 * kill_guest() with the message will be ignored.
67 		 */
68 		__lgread(cpu, msg, args->arg1, sizeof(msg));
69 		msg[sizeof(msg)-1] = '\0';
70 		kill_guest(cpu, "CRASH: %s", msg);
71 		if (args->arg2 == LGUEST_SHUTDOWN_RESTART)
72 			cpu->lg->dead = ERR_PTR(-ERESTART);
73 		break;
74 	}
75 	case LHCALL_FLUSH_TLB:
76 		/* FLUSH_TLB comes in two flavors, depending on the argument: */
77 		if (args->arg1)
78 			guest_pagetable_clear_all(cpu);
79 		else
80 			guest_pagetable_flush_user(cpu);
81 		break;
82 
83 	/*
84 	 * All these calls simply pass the arguments through to the right
85 	 * routines.
86 	 */
87 	case LHCALL_NEW_PGTABLE:
88 		guest_new_pagetable(cpu, args->arg1);
89 		break;
90 	case LHCALL_SET_STACK:
91 		guest_set_stack(cpu, args->arg1, args->arg2, args->arg3);
92 		break;
93 	case LHCALL_SET_PTE:
94 #ifdef CONFIG_X86_PAE
95 		guest_set_pte(cpu, args->arg1, args->arg2,
96 				__pte(args->arg3 | (u64)args->arg4 << 32));
97 #else
98 		guest_set_pte(cpu, args->arg1, args->arg2, __pte(args->arg3));
99 #endif
100 		break;
101 	case LHCALL_SET_PGD:
102 		guest_set_pgd(cpu->lg, args->arg1, args->arg2);
103 		break;
104 #ifdef CONFIG_X86_PAE
105 	case LHCALL_SET_PMD:
106 		guest_set_pmd(cpu->lg, args->arg1, args->arg2);
107 		break;
108 #endif
109 	case LHCALL_SET_CLOCKEVENT:
110 		guest_set_clockevent(cpu, args->arg1);
111 		break;
112 	case LHCALL_TS:
113 		/* This sets the TS flag, as we saw used in run_guest(). */
114 		cpu->ts = args->arg1;
115 		break;
116 	case LHCALL_HALT:
117 		/* Similarly, this sets the halted flag for run_guest(). */
118 		cpu->halted = 1;
119 		break;
120 	case LHCALL_NOTIFY:
121 		cpu->pending_notify = args->arg1;
122 		break;
123 	default:
124 		/* It should be an architecture-specific hypercall. */
125 		if (lguest_arch_do_hcall(cpu, args))
126 			kill_guest(cpu, "Bad hypercall %li\n", args->arg0);
127 	}
128 }
129 
130 /*H:124
131  * Asynchronous hypercalls are easy: we just look in the array in the
132  * Guest's "struct lguest_data" to see if any new ones are marked "ready".
133  *
134  * We are careful to do these in order: obviously we respect the order the
135  * Guest put them in the ring, but we also promise the Guest that they will
136  * happen before any normal hypercall (which is why we check this before
137  * checking for a normal hcall).
138  */
do_async_hcalls(struct lg_cpu * cpu)139 static void do_async_hcalls(struct lg_cpu *cpu)
140 {
141 	unsigned int i;
142 	u8 st[LHCALL_RING_SIZE];
143 
144 	/* For simplicity, we copy the entire call status array in at once. */
145 	if (copy_from_user(&st, &cpu->lg->lguest_data->hcall_status, sizeof(st)))
146 		return;
147 
148 	/* We process "struct lguest_data"s hcalls[] ring once. */
149 	for (i = 0; i < ARRAY_SIZE(st); i++) {
150 		struct hcall_args args;
151 		/*
152 		 * We remember where we were up to from last time.  This makes
153 		 * sure that the hypercalls are done in the order the Guest
154 		 * places them in the ring.
155 		 */
156 		unsigned int n = cpu->next_hcall;
157 
158 		/* 0xFF means there's no call here (yet). */
159 		if (st[n] == 0xFF)
160 			break;
161 
162 		/*
163 		 * OK, we have hypercall.  Increment the "next_hcall" cursor,
164 		 * and wrap back to 0 if we reach the end.
165 		 */
166 		if (++cpu->next_hcall == LHCALL_RING_SIZE)
167 			cpu->next_hcall = 0;
168 
169 		/*
170 		 * Copy the hypercall arguments into a local copy of the
171 		 * hcall_args struct.
172 		 */
173 		if (copy_from_user(&args, &cpu->lg->lguest_data->hcalls[n],
174 				   sizeof(struct hcall_args))) {
175 			kill_guest(cpu, "Fetching async hypercalls");
176 			break;
177 		}
178 
179 		/* Do the hypercall, same as a normal one. */
180 		do_hcall(cpu, &args);
181 
182 		/* Mark the hypercall done. */
183 		if (put_user(0xFF, &cpu->lg->lguest_data->hcall_status[n])) {
184 			kill_guest(cpu, "Writing result for async hypercall");
185 			break;
186 		}
187 
188 		/*
189 		 * Stop doing hypercalls if they want to notify the Launcher:
190 		 * it needs to service this first.
191 		 */
192 		if (cpu->pending_notify)
193 			break;
194 	}
195 }
196 
197 /*
198  * Last of all, we look at what happens first of all.  The very first time the
199  * Guest makes a hypercall, we end up here to set things up:
200  */
initialize(struct lg_cpu * cpu)201 static void initialize(struct lg_cpu *cpu)
202 {
203 	/*
204 	 * You can't do anything until you're initialized.  The Guest knows the
205 	 * rules, so we're unforgiving here.
206 	 */
207 	if (cpu->hcall->arg0 != LHCALL_LGUEST_INIT) {
208 		kill_guest(cpu, "hypercall %li before INIT", cpu->hcall->arg0);
209 		return;
210 	}
211 
212 	if (lguest_arch_init_hypercalls(cpu))
213 		kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
214 
215 	/*
216 	 * The Guest tells us where we're not to deliver interrupts by putting
217 	 * the range of addresses into "struct lguest_data".
218 	 */
219 	if (get_user(cpu->lg->noirq_start, &cpu->lg->lguest_data->noirq_start)
220 	    || get_user(cpu->lg->noirq_end, &cpu->lg->lguest_data->noirq_end))
221 		kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
222 
223 	/*
224 	 * We write the current time into the Guest's data page once so it can
225 	 * set its clock.
226 	 */
227 	write_timestamp(cpu);
228 
229 	/* page_tables.c will also do some setup. */
230 	page_table_guest_data_init(cpu);
231 
232 	/*
233 	 * This is the one case where the above accesses might have been the
234 	 * first write to a Guest page.  This may have caused a copy-on-write
235 	 * fault, but the old page might be (read-only) in the Guest
236 	 * pagetable.
237 	 */
238 	guest_pagetable_clear_all(cpu);
239 }
240 /*:*/
241 
242 /*M:013
243  * If a Guest reads from a page (so creates a mapping) that it has never
244  * written to, and then the Launcher writes to it (ie. the output of a virtual
245  * device), the Guest will still see the old page.  In practice, this never
246  * happens: why would the Guest read a page which it has never written to?  But
247  * a similar scenario might one day bite us, so it's worth mentioning.
248  *
249  * Note that if we used a shared anonymous mapping in the Launcher instead of
250  * mapping /dev/zero private, we wouldn't worry about cop-on-write.  And we
251  * need that to switch the Launcher to processes (away from threads) anyway.
252 :*/
253 
254 /*H:100
255  * Hypercalls
256  *
257  * Remember from the Guest, hypercalls come in two flavors: normal and
258  * asynchronous.  This file handles both of types.
259  */
do_hypercalls(struct lg_cpu * cpu)260 void do_hypercalls(struct lg_cpu *cpu)
261 {
262 	/* Not initialized yet?  This hypercall must do it. */
263 	if (unlikely(!cpu->lg->lguest_data)) {
264 		/* Set up the "struct lguest_data" */
265 		initialize(cpu);
266 		/* Hcall is done. */
267 		cpu->hcall = NULL;
268 		return;
269 	}
270 
271 	/*
272 	 * The Guest has initialized.
273 	 *
274 	 * Look in the hypercall ring for the async hypercalls:
275 	 */
276 	do_async_hcalls(cpu);
277 
278 	/*
279 	 * If we stopped reading the hypercall ring because the Guest did a
280 	 * NOTIFY to the Launcher, we want to return now.  Otherwise we do
281 	 * the hypercall.
282 	 */
283 	if (!cpu->pending_notify) {
284 		do_hcall(cpu, cpu->hcall);
285 		/*
286 		 * Tricky point: we reset the hcall pointer to mark the
287 		 * hypercall as "done".  We use the hcall pointer rather than
288 		 * the trap number to indicate a hypercall is pending.
289 		 * Normally it doesn't matter: the Guest will run again and
290 		 * update the trap number before we come back here.
291 		 *
292 		 * However, if we are signalled or the Guest sends I/O to the
293 		 * Launcher, the run_guest() loop will exit without running the
294 		 * Guest.  When it comes back it would try to re-run the
295 		 * hypercall.  Finding that bug sucked.
296 		 */
297 		cpu->hcall = NULL;
298 	}
299 }
300 
301 /*
302  * This routine supplies the Guest with time: it's used for wallclock time at
303  * initial boot and as a rough time source if the TSC isn't available.
304  */
write_timestamp(struct lg_cpu * cpu)305 void write_timestamp(struct lg_cpu *cpu)
306 {
307 	struct timespec now;
308 	ktime_get_real_ts(&now);
309 	if (copy_to_user(&cpu->lg->lguest_data->time,
310 			 &now, sizeof(struct timespec)))
311 		kill_guest(cpu, "Writing timestamp");
312 }
313