• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 /* 82562G 10/100 Network Connection
30  * 82562G-2 10/100 Network Connection
31  * 82562GT 10/100 Network Connection
32  * 82562GT-2 10/100 Network Connection
33  * 82562V 10/100 Network Connection
34  * 82562V-2 10/100 Network Connection
35  * 82566DC-2 Gigabit Network Connection
36  * 82566DC Gigabit Network Connection
37  * 82566DM-2 Gigabit Network Connection
38  * 82566DM Gigabit Network Connection
39  * 82566MC Gigabit Network Connection
40  * 82566MM Gigabit Network Connection
41  * 82567LM Gigabit Network Connection
42  * 82567LF Gigabit Network Connection
43  * 82567V Gigabit Network Connection
44  * 82567LM-2 Gigabit Network Connection
45  * 82567LF-2 Gigabit Network Connection
46  * 82567V-2 Gigabit Network Connection
47  * 82567LF-3 Gigabit Network Connection
48  * 82567LM-3 Gigabit Network Connection
49  * 82567LM-4 Gigabit Network Connection
50  * 82577LM Gigabit Network Connection
51  * 82577LC Gigabit Network Connection
52  * 82578DM Gigabit Network Connection
53  * 82578DC Gigabit Network Connection
54  * 82579LM Gigabit Network Connection
55  * 82579V Gigabit Network Connection
56  */
57 
58 #include "e1000.h"
59 
60 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
61 /* Offset 04h HSFSTS */
62 union ich8_hws_flash_status {
63 	struct ich8_hsfsts {
64 		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
65 		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
66 		u16 dael:1;	/* bit 2 Direct Access error Log */
67 		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
68 		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
69 		u16 reserved1:2;	/* bit 13:6 Reserved */
70 		u16 reserved2:6;	/* bit 13:6 Reserved */
71 		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
72 		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
73 	} hsf_status;
74 	u16 regval;
75 };
76 
77 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
78 /* Offset 06h FLCTL */
79 union ich8_hws_flash_ctrl {
80 	struct ich8_hsflctl {
81 		u16 flcgo:1;	/* 0 Flash Cycle Go */
82 		u16 flcycle:2;	/* 2:1 Flash Cycle */
83 		u16 reserved:5;	/* 7:3 Reserved  */
84 		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
85 		u16 flockdn:6;	/* 15:10 Reserved */
86 	} hsf_ctrl;
87 	u16 regval;
88 };
89 
90 /* ICH Flash Region Access Permissions */
91 union ich8_hws_flash_regacc {
92 	struct ich8_flracc {
93 		u32 grra:8;	/* 0:7 GbE region Read Access */
94 		u32 grwa:8;	/* 8:15 GbE region Write Access */
95 		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
96 		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
97 	} hsf_flregacc;
98 	u16 regval;
99 };
100 
101 /* ICH Flash Protected Region */
102 union ich8_flash_protected_range {
103 	struct ich8_pr {
104 		u32 base:13;     /* 0:12 Protected Range Base */
105 		u32 reserved1:2; /* 13:14 Reserved */
106 		u32 rpe:1;       /* 15 Read Protection Enable */
107 		u32 limit:13;    /* 16:28 Protected Range Limit */
108 		u32 reserved2:2; /* 29:30 Reserved */
109 		u32 wpe:1;       /* 31 Write Protection Enable */
110 	} range;
111 	u32 regval;
112 };
113 
114 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
115 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
116 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
117 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
118 						u32 offset, u8 byte);
119 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
120 					 u8 *data);
121 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
122 					 u16 *data);
123 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
124 					 u8 size, u16 *data);
125 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
126 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
127 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
129 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
130 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
131 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
132 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
133 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
134 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
135 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
136 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
137 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
138 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
139 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
140 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
141 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
142 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
143 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
144 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
145 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
146 
__er16flash(struct e1000_hw * hw,unsigned long reg)147 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
148 {
149 	return readw(hw->flash_address + reg);
150 }
151 
__er32flash(struct e1000_hw * hw,unsigned long reg)152 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
153 {
154 	return readl(hw->flash_address + reg);
155 }
156 
__ew16flash(struct e1000_hw * hw,unsigned long reg,u16 val)157 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
158 {
159 	writew(val, hw->flash_address + reg);
160 }
161 
__ew32flash(struct e1000_hw * hw,unsigned long reg,u32 val)162 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
163 {
164 	writel(val, hw->flash_address + reg);
165 }
166 
167 #define er16flash(reg)		__er16flash(hw, (reg))
168 #define er32flash(reg)		__er32flash(hw, (reg))
169 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
170 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
171 
172 /**
173  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
174  *  @hw: pointer to the HW structure
175  *
176  *  Test access to the PHY registers by reading the PHY ID registers.  If
177  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
178  *  otherwise assume the read PHY ID is correct if it is valid.
179  *
180  *  Assumes the sw/fw/hw semaphore is already acquired.
181  **/
e1000_phy_is_accessible_pchlan(struct e1000_hw * hw)182 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
183 {
184 	u16 phy_reg = 0;
185 	u32 phy_id = 0;
186 	s32 ret_val;
187 	u16 retry_count;
188 
189 	for (retry_count = 0; retry_count < 2; retry_count++) {
190 		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
191 		if (ret_val || (phy_reg == 0xFFFF))
192 			continue;
193 		phy_id = (u32)(phy_reg << 16);
194 
195 		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
196 		if (ret_val || (phy_reg == 0xFFFF)) {
197 			phy_id = 0;
198 			continue;
199 		}
200 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
201 		break;
202 	}
203 
204 	if (hw->phy.id) {
205 		if (hw->phy.id == phy_id)
206 			return true;
207 	} else if (phy_id) {
208 		hw->phy.id = phy_id;
209 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
210 		return true;
211 	}
212 
213 	/* In case the PHY needs to be in mdio slow mode,
214 	 * set slow mode and try to get the PHY id again.
215 	 */
216 	hw->phy.ops.release(hw);
217 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
218 	if (!ret_val)
219 		ret_val = e1000e_get_phy_id(hw);
220 	hw->phy.ops.acquire(hw);
221 
222 	return !ret_val;
223 }
224 
225 /**
226  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
227  *  @hw: pointer to the HW structure
228  *
229  *  Workarounds/flow necessary for PHY initialization during driver load
230  *  and resume paths.
231  **/
e1000_init_phy_workarounds_pchlan(struct e1000_hw * hw)232 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
233 {
234 	u32 mac_reg, fwsm = er32(FWSM);
235 	s32 ret_val;
236 	u16 phy_reg;
237 
238 	/* Gate automatic PHY configuration by hardware on managed and
239 	 * non-managed 82579 and newer adapters.
240 	 */
241 	e1000_gate_hw_phy_config_ich8lan(hw, true);
242 
243 	ret_val = hw->phy.ops.acquire(hw);
244 	if (ret_val) {
245 		e_dbg("Failed to initialize PHY flow\n");
246 		goto out;
247 	}
248 
249 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
250 	 * inaccessible and resetting the PHY is not blocked, toggle the
251 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
252 	 */
253 	switch (hw->mac.type) {
254 	case e1000_pch_lpt:
255 		if (e1000_phy_is_accessible_pchlan(hw))
256 			break;
257 
258 		/* Before toggling LANPHYPC, see if PHY is accessible by
259 		 * forcing MAC to SMBus mode first.
260 		 */
261 		mac_reg = er32(CTRL_EXT);
262 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
263 		ew32(CTRL_EXT, mac_reg);
264 
265 		/* fall-through */
266 	case e1000_pch2lan:
267 		if (e1000_phy_is_accessible_pchlan(hw)) {
268 			if (hw->mac.type == e1000_pch_lpt) {
269 				/* Unforce SMBus mode in PHY */
270 				e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
271 				phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
272 				e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
273 
274 				/* Unforce SMBus mode in MAC */
275 				mac_reg = er32(CTRL_EXT);
276 				mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
277 				ew32(CTRL_EXT, mac_reg);
278 			}
279 			break;
280 		}
281 
282 		/* fall-through */
283 	case e1000_pchlan:
284 		if ((hw->mac.type == e1000_pchlan) &&
285 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
286 			break;
287 
288 		if (hw->phy.ops.check_reset_block(hw)) {
289 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
290 			break;
291 		}
292 
293 		e_dbg("Toggling LANPHYPC\n");
294 
295 		/* Set Phy Config Counter to 50msec */
296 		mac_reg = er32(FEXTNVM3);
297 		mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
298 		mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
299 		ew32(FEXTNVM3, mac_reg);
300 
301 		if (hw->mac.type == e1000_pch_lpt) {
302 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
303 			 * So ensure that the MAC is also out of SMBus mode
304 			 */
305 			mac_reg = er32(CTRL_EXT);
306 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
307 			ew32(CTRL_EXT, mac_reg);
308 		}
309 
310 		/* Toggle LANPHYPC Value bit */
311 		mac_reg = er32(CTRL);
312 		mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
313 		mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
314 		ew32(CTRL, mac_reg);
315 		e1e_flush();
316 		usleep_range(10, 20);
317 		mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
318 		ew32(CTRL, mac_reg);
319 		e1e_flush();
320 		if (hw->mac.type < e1000_pch_lpt) {
321 			msleep(50);
322 		} else {
323 			u16 count = 20;
324 			do {
325 				usleep_range(5000, 10000);
326 			} while (!(er32(CTRL_EXT) &
327 				   E1000_CTRL_EXT_LPCD) && count--);
328 		}
329 		break;
330 	default:
331 		break;
332 	}
333 
334 	hw->phy.ops.release(hw);
335 
336 	/* Reset the PHY before any access to it.  Doing so, ensures
337 	 * that the PHY is in a known good state before we read/write
338 	 * PHY registers.  The generic reset is sufficient here,
339 	 * because we haven't determined the PHY type yet.
340 	 */
341 	ret_val = e1000e_phy_hw_reset_generic(hw);
342 
343 out:
344 	/* Ungate automatic PHY configuration on non-managed 82579 */
345 	if ((hw->mac.type == e1000_pch2lan) &&
346 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
347 		usleep_range(10000, 20000);
348 		e1000_gate_hw_phy_config_ich8lan(hw, false);
349 	}
350 
351 	return ret_val;
352 }
353 
354 /**
355  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
356  *  @hw: pointer to the HW structure
357  *
358  *  Initialize family-specific PHY parameters and function pointers.
359  **/
e1000_init_phy_params_pchlan(struct e1000_hw * hw)360 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
361 {
362 	struct e1000_phy_info *phy = &hw->phy;
363 	s32 ret_val;
364 
365 	phy->addr                     = 1;
366 	phy->reset_delay_us           = 100;
367 
368 	phy->ops.set_page             = e1000_set_page_igp;
369 	phy->ops.read_reg             = e1000_read_phy_reg_hv;
370 	phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
371 	phy->ops.read_reg_page        = e1000_read_phy_reg_page_hv;
372 	phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
373 	phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
374 	phy->ops.write_reg            = e1000_write_phy_reg_hv;
375 	phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
376 	phy->ops.write_reg_page       = e1000_write_phy_reg_page_hv;
377 	phy->ops.power_up             = e1000_power_up_phy_copper;
378 	phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
379 	phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
380 
381 	phy->id = e1000_phy_unknown;
382 
383 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
384 	if (ret_val)
385 		return ret_val;
386 
387 	if (phy->id == e1000_phy_unknown)
388 		switch (hw->mac.type) {
389 		default:
390 			ret_val = e1000e_get_phy_id(hw);
391 			if (ret_val)
392 				return ret_val;
393 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
394 				break;
395 			/* fall-through */
396 		case e1000_pch2lan:
397 		case e1000_pch_lpt:
398 			/* In case the PHY needs to be in mdio slow mode,
399 			 * set slow mode and try to get the PHY id again.
400 			 */
401 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
402 			if (ret_val)
403 				return ret_val;
404 			ret_val = e1000e_get_phy_id(hw);
405 			if (ret_val)
406 				return ret_val;
407 			break;
408 		}
409 	phy->type = e1000e_get_phy_type_from_id(phy->id);
410 
411 	switch (phy->type) {
412 	case e1000_phy_82577:
413 	case e1000_phy_82579:
414 	case e1000_phy_i217:
415 		phy->ops.check_polarity = e1000_check_polarity_82577;
416 		phy->ops.force_speed_duplex =
417 		    e1000_phy_force_speed_duplex_82577;
418 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
419 		phy->ops.get_info = e1000_get_phy_info_82577;
420 		phy->ops.commit = e1000e_phy_sw_reset;
421 		break;
422 	case e1000_phy_82578:
423 		phy->ops.check_polarity = e1000_check_polarity_m88;
424 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
425 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
426 		phy->ops.get_info = e1000e_get_phy_info_m88;
427 		break;
428 	default:
429 		ret_val = -E1000_ERR_PHY;
430 		break;
431 	}
432 
433 	return ret_val;
434 }
435 
436 /**
437  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
438  *  @hw: pointer to the HW structure
439  *
440  *  Initialize family-specific PHY parameters and function pointers.
441  **/
e1000_init_phy_params_ich8lan(struct e1000_hw * hw)442 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
443 {
444 	struct e1000_phy_info *phy = &hw->phy;
445 	s32 ret_val;
446 	u16 i = 0;
447 
448 	phy->addr			= 1;
449 	phy->reset_delay_us		= 100;
450 
451 	phy->ops.power_up               = e1000_power_up_phy_copper;
452 	phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
453 
454 	/* We may need to do this twice - once for IGP and if that fails,
455 	 * we'll set BM func pointers and try again
456 	 */
457 	ret_val = e1000e_determine_phy_address(hw);
458 	if (ret_val) {
459 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
460 		phy->ops.read_reg  = e1000e_read_phy_reg_bm;
461 		ret_val = e1000e_determine_phy_address(hw);
462 		if (ret_val) {
463 			e_dbg("Cannot determine PHY addr. Erroring out\n");
464 			return ret_val;
465 		}
466 	}
467 
468 	phy->id = 0;
469 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
470 	       (i++ < 100)) {
471 		usleep_range(1000, 2000);
472 		ret_val = e1000e_get_phy_id(hw);
473 		if (ret_val)
474 			return ret_val;
475 	}
476 
477 	/* Verify phy id */
478 	switch (phy->id) {
479 	case IGP03E1000_E_PHY_ID:
480 		phy->type = e1000_phy_igp_3;
481 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
482 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
483 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
484 		phy->ops.get_info = e1000e_get_phy_info_igp;
485 		phy->ops.check_polarity = e1000_check_polarity_igp;
486 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
487 		break;
488 	case IFE_E_PHY_ID:
489 	case IFE_PLUS_E_PHY_ID:
490 	case IFE_C_E_PHY_ID:
491 		phy->type = e1000_phy_ife;
492 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
493 		phy->ops.get_info = e1000_get_phy_info_ife;
494 		phy->ops.check_polarity = e1000_check_polarity_ife;
495 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
496 		break;
497 	case BME1000_E_PHY_ID:
498 		phy->type = e1000_phy_bm;
499 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
500 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
501 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
502 		phy->ops.commit = e1000e_phy_sw_reset;
503 		phy->ops.get_info = e1000e_get_phy_info_m88;
504 		phy->ops.check_polarity = e1000_check_polarity_m88;
505 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
506 		break;
507 	default:
508 		return -E1000_ERR_PHY;
509 		break;
510 	}
511 
512 	return 0;
513 }
514 
515 /**
516  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
517  *  @hw: pointer to the HW structure
518  *
519  *  Initialize family-specific NVM parameters and function
520  *  pointers.
521  **/
e1000_init_nvm_params_ich8lan(struct e1000_hw * hw)522 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
523 {
524 	struct e1000_nvm_info *nvm = &hw->nvm;
525 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
526 	u32 gfpreg, sector_base_addr, sector_end_addr;
527 	u16 i;
528 
529 	/* Can't read flash registers if the register set isn't mapped. */
530 	if (!hw->flash_address) {
531 		e_dbg("ERROR: Flash registers not mapped\n");
532 		return -E1000_ERR_CONFIG;
533 	}
534 
535 	nvm->type = e1000_nvm_flash_sw;
536 
537 	gfpreg = er32flash(ICH_FLASH_GFPREG);
538 
539 	/* sector_X_addr is a "sector"-aligned address (4096 bytes)
540 	 * Add 1 to sector_end_addr since this sector is included in
541 	 * the overall size.
542 	 */
543 	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
544 	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
545 
546 	/* flash_base_addr is byte-aligned */
547 	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
548 
549 	/* find total size of the NVM, then cut in half since the total
550 	 * size represents two separate NVM banks.
551 	 */
552 	nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
553 				<< FLASH_SECTOR_ADDR_SHIFT);
554 	nvm->flash_bank_size /= 2;
555 	/* Adjust to word count */
556 	nvm->flash_bank_size /= sizeof(u16);
557 
558 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
559 
560 	/* Clear shadow ram */
561 	for (i = 0; i < nvm->word_size; i++) {
562 		dev_spec->shadow_ram[i].modified = false;
563 		dev_spec->shadow_ram[i].value    = 0xFFFF;
564 	}
565 
566 	return 0;
567 }
568 
569 /**
570  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
571  *  @hw: pointer to the HW structure
572  *
573  *  Initialize family-specific MAC parameters and function
574  *  pointers.
575  **/
e1000_init_mac_params_ich8lan(struct e1000_hw * hw)576 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
577 {
578 	struct e1000_mac_info *mac = &hw->mac;
579 
580 	/* Set media type function pointer */
581 	hw->phy.media_type = e1000_media_type_copper;
582 
583 	/* Set mta register count */
584 	mac->mta_reg_count = 32;
585 	/* Set rar entry count */
586 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
587 	if (mac->type == e1000_ich8lan)
588 		mac->rar_entry_count--;
589 	/* FWSM register */
590 	mac->has_fwsm = true;
591 	/* ARC subsystem not supported */
592 	mac->arc_subsystem_valid = false;
593 	/* Adaptive IFS supported */
594 	mac->adaptive_ifs = true;
595 
596 	/* LED and other operations */
597 	switch (mac->type) {
598 	case e1000_ich8lan:
599 	case e1000_ich9lan:
600 	case e1000_ich10lan:
601 		/* check management mode */
602 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
603 		/* ID LED init */
604 		mac->ops.id_led_init = e1000e_id_led_init_generic;
605 		/* blink LED */
606 		mac->ops.blink_led = e1000e_blink_led_generic;
607 		/* setup LED */
608 		mac->ops.setup_led = e1000e_setup_led_generic;
609 		/* cleanup LED */
610 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
611 		/* turn on/off LED */
612 		mac->ops.led_on = e1000_led_on_ich8lan;
613 		mac->ops.led_off = e1000_led_off_ich8lan;
614 		break;
615 	case e1000_pch2lan:
616 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
617 		mac->ops.rar_set = e1000_rar_set_pch2lan;
618 		/* fall-through */
619 	case e1000_pch_lpt:
620 	case e1000_pchlan:
621 		/* check management mode */
622 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
623 		/* ID LED init */
624 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
625 		/* setup LED */
626 		mac->ops.setup_led = e1000_setup_led_pchlan;
627 		/* cleanup LED */
628 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
629 		/* turn on/off LED */
630 		mac->ops.led_on = e1000_led_on_pchlan;
631 		mac->ops.led_off = e1000_led_off_pchlan;
632 		break;
633 	default:
634 		break;
635 	}
636 
637 	if (mac->type == e1000_pch_lpt) {
638 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
639 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
640 		mac->ops.setup_physical_interface =
641 		    e1000_setup_copper_link_pch_lpt;
642 	}
643 
644 	/* Enable PCS Lock-loss workaround for ICH8 */
645 	if (mac->type == e1000_ich8lan)
646 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
647 
648 	return 0;
649 }
650 
651 /**
652  *  __e1000_access_emi_reg_locked - Read/write EMI register
653  *  @hw: pointer to the HW structure
654  *  @addr: EMI address to program
655  *  @data: pointer to value to read/write from/to the EMI address
656  *  @read: boolean flag to indicate read or write
657  *
658  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
659  **/
__e1000_access_emi_reg_locked(struct e1000_hw * hw,u16 address,u16 * data,bool read)660 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
661 					 u16 *data, bool read)
662 {
663 	s32 ret_val;
664 
665 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
666 	if (ret_val)
667 		return ret_val;
668 
669 	if (read)
670 		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
671 	else
672 		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
673 
674 	return ret_val;
675 }
676 
677 /**
678  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
679  *  @hw: pointer to the HW structure
680  *  @addr: EMI address to program
681  *  @data: value to be read from the EMI address
682  *
683  *  Assumes the SW/FW/HW Semaphore is already acquired.
684  **/
e1000_read_emi_reg_locked(struct e1000_hw * hw,u16 addr,u16 * data)685 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
686 {
687 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
688 }
689 
690 /**
691  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
692  *  @hw: pointer to the HW structure
693  *  @addr: EMI address to program
694  *  @data: value to be written to the EMI address
695  *
696  *  Assumes the SW/FW/HW Semaphore is already acquired.
697  **/
e1000_write_emi_reg_locked(struct e1000_hw * hw,u16 addr,u16 data)698 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
699 {
700 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
701 }
702 
703 /**
704  *  e1000_set_eee_pchlan - Enable/disable EEE support
705  *  @hw: pointer to the HW structure
706  *
707  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
708  *  the link and the EEE capabilities of the link partner.  The LPI Control
709  *  register bits will remain set only if/when link is up.
710  **/
e1000_set_eee_pchlan(struct e1000_hw * hw)711 static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
712 {
713 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
714 	s32 ret_val;
715 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
716 
717 	switch (hw->phy.type) {
718 	case e1000_phy_82579:
719 		lpa = I82579_EEE_LP_ABILITY;
720 		pcs_status = I82579_EEE_PCS_STATUS;
721 		adv_addr = I82579_EEE_ADVERTISEMENT;
722 		break;
723 	case e1000_phy_i217:
724 		lpa = I217_EEE_LP_ABILITY;
725 		pcs_status = I217_EEE_PCS_STATUS;
726 		adv_addr = I217_EEE_ADVERTISEMENT;
727 		break;
728 	default:
729 		return 0;
730 	}
731 
732 	ret_val = hw->phy.ops.acquire(hw);
733 	if (ret_val)
734 		return ret_val;
735 
736 	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
737 	if (ret_val)
738 		goto release;
739 
740 	/* Clear bits that enable EEE in various speeds */
741 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
742 
743 	/* Enable EEE if not disabled by user */
744 	if (!dev_spec->eee_disable) {
745 		/* Save off link partner's EEE ability */
746 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
747 						    &dev_spec->eee_lp_ability);
748 		if (ret_val)
749 			goto release;
750 
751 		/* Read EEE advertisement */
752 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
753 		if (ret_val)
754 			goto release;
755 
756 		/* Enable EEE only for speeds in which the link partner is
757 		 * EEE capable and for which we advertise EEE.
758 		 */
759 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
760 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
761 
762 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
763 			e1e_rphy_locked(hw, MII_LPA, &data);
764 			if (data & LPA_100FULL)
765 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
766 			else
767 				/* EEE is not supported in 100Half, so ignore
768 				 * partner's EEE in 100 ability if full-duplex
769 				 * is not advertised.
770 				 */
771 				dev_spec->eee_lp_ability &=
772 				    ~I82579_EEE_100_SUPPORTED;
773 		}
774 	}
775 
776 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
777 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
778 	if (ret_val)
779 		goto release;
780 
781 	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
782 release:
783 	hw->phy.ops.release(hw);
784 
785 	return ret_val;
786 }
787 
788 /**
789  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
790  *  @hw:   pointer to the HW structure
791  *  @link: link up bool flag
792  *
793  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
794  *  preventing further DMA write requests.  Workaround the issue by disabling
795  *  the de-assertion of the clock request when in 1Gpbs mode.
796  **/
e1000_k1_workaround_lpt_lp(struct e1000_hw * hw,bool link)797 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
798 {
799 	u32 fextnvm6 = er32(FEXTNVM6);
800 	s32 ret_val = 0;
801 
802 	if (link && (er32(STATUS) & E1000_STATUS_SPEED_1000)) {
803 		u16 kmrn_reg;
804 
805 		ret_val = hw->phy.ops.acquire(hw);
806 		if (ret_val)
807 			return ret_val;
808 
809 		ret_val =
810 		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
811 						&kmrn_reg);
812 		if (ret_val)
813 			goto release;
814 
815 		ret_val =
816 		    e1000e_write_kmrn_reg_locked(hw,
817 						 E1000_KMRNCTRLSTA_K1_CONFIG,
818 						 kmrn_reg &
819 						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
820 		if (ret_val)
821 			goto release;
822 
823 		usleep_range(10, 20);
824 
825 		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
826 
827 		ret_val =
828 		    e1000e_write_kmrn_reg_locked(hw,
829 						 E1000_KMRNCTRLSTA_K1_CONFIG,
830 						 kmrn_reg);
831 release:
832 		hw->phy.ops.release(hw);
833 	} else {
834 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
835 		ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
836 	}
837 
838 	return ret_val;
839 }
840 
841 /**
842  *  e1000_platform_pm_pch_lpt - Set platform power management values
843  *  @hw: pointer to the HW structure
844  *  @link: bool indicating link status
845  *
846  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
847  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
848  *  when link is up (which must not exceed the maximum latency supported
849  *  by the platform), otherwise specify there is no LTR requirement.
850  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
851  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
852  *  Capability register set, on this device LTR is set by writing the
853  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
854  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
855  *  message to the PMC.
856  **/
e1000_platform_pm_pch_lpt(struct e1000_hw * hw,bool link)857 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
858 {
859 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
860 	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
861 	u16 lat_enc = 0;	/* latency encoded */
862 
863 	if (link) {
864 		u16 speed, duplex, scale = 0;
865 		u16 max_snoop, max_nosnoop;
866 		u16 max_ltr_enc;	/* max LTR latency encoded */
867 		s64 lat_ns;	/* latency (ns) */
868 		s64 value;
869 		u32 rxa;
870 
871 		if (!hw->adapter->max_frame_size) {
872 			e_dbg("max_frame_size not set.\n");
873 			return -E1000_ERR_CONFIG;
874 		}
875 
876 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
877 		if (!speed) {
878 			e_dbg("Speed not set.\n");
879 			return -E1000_ERR_CONFIG;
880 		}
881 
882 		/* Rx Packet Buffer Allocation size (KB) */
883 		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
884 
885 		/* Determine the maximum latency tolerated by the device.
886 		 *
887 		 * Per the PCIe spec, the tolerated latencies are encoded as
888 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
889 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
890 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
891 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
892 		 */
893 		lat_ns = ((s64)rxa * 1024 -
894 			  (2 * (s64)hw->adapter->max_frame_size)) * 8 * 1000;
895 		if (lat_ns < 0)
896 			lat_ns = 0;
897 		else
898 			do_div(lat_ns, speed);
899 
900 		value = lat_ns;
901 		while (value > PCI_LTR_VALUE_MASK) {
902 			scale++;
903 			value = DIV_ROUND_UP(value, (1 << 5));
904 		}
905 		if (scale > E1000_LTRV_SCALE_MAX) {
906 			e_dbg("Invalid LTR latency scale %d\n", scale);
907 			return -E1000_ERR_CONFIG;
908 		}
909 		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
910 
911 		/* Determine the maximum latency tolerated by the platform */
912 		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
913 				     &max_snoop);
914 		pci_read_config_word(hw->adapter->pdev,
915 				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
916 		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
917 
918 		if (lat_enc > max_ltr_enc)
919 			lat_enc = max_ltr_enc;
920 	}
921 
922 	/* Set Snoop and No-Snoop latencies the same */
923 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
924 	ew32(LTRV, reg);
925 
926 	return 0;
927 }
928 
929 /**
930  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
931  *  @hw: pointer to the HW structure
932  *
933  *  Checks to see of the link status of the hardware has changed.  If a
934  *  change in link status has been detected, then we read the PHY registers
935  *  to get the current speed/duplex if link exists.
936  **/
e1000_check_for_copper_link_ich8lan(struct e1000_hw * hw)937 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
938 {
939 	struct e1000_mac_info *mac = &hw->mac;
940 	s32 ret_val;
941 	bool link;
942 	u16 phy_reg;
943 
944 	/* We only want to go out to the PHY registers to see if Auto-Neg
945 	 * has completed and/or if our link status has changed.  The
946 	 * get_link_status flag is set upon receiving a Link Status
947 	 * Change or Rx Sequence Error interrupt.
948 	 */
949 	if (!mac->get_link_status)
950 		return 0;
951 
952 	/* First we want to see if the MII Status Register reports
953 	 * link.  If so, then we want to get the current speed/duplex
954 	 * of the PHY.
955 	 */
956 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
957 	if (ret_val)
958 		return ret_val;
959 
960 	if (hw->mac.type == e1000_pchlan) {
961 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
962 		if (ret_val)
963 			return ret_val;
964 	}
965 
966 	/* When connected at 10Mbps half-duplex, 82579 parts are excessively
967 	 * aggressive resulting in many collisions. To avoid this, increase
968 	 * the IPG and reduce Rx latency in the PHY.
969 	 */
970 	if ((hw->mac.type == e1000_pch2lan) && link) {
971 		u32 reg;
972 		reg = er32(STATUS);
973 		if (!(reg & (E1000_STATUS_FD | E1000_STATUS_SPEED_MASK))) {
974 			reg = er32(TIPG);
975 			reg &= ~E1000_TIPG_IPGT_MASK;
976 			reg |= 0xFF;
977 			ew32(TIPG, reg);
978 
979 			/* Reduce Rx latency in analog PHY */
980 			ret_val = hw->phy.ops.acquire(hw);
981 			if (ret_val)
982 				return ret_val;
983 
984 			ret_val =
985 			    e1000_write_emi_reg_locked(hw, I82579_RX_CONFIG, 0);
986 
987 			hw->phy.ops.release(hw);
988 
989 			if (ret_val)
990 				return ret_val;
991 		}
992 	}
993 
994 	/* Work-around I218 hang issue */
995 	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
996 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V)) {
997 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
998 		if (ret_val)
999 			return ret_val;
1000 	}
1001 
1002 	if (hw->mac.type == e1000_pch_lpt) {
1003 		/* Set platform power management values for
1004 		 * Latency Tolerance Reporting (LTR)
1005 		 */
1006 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1007 		if (ret_val)
1008 			return ret_val;
1009 	}
1010 
1011 	/* Clear link partner's EEE ability */
1012 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1013 
1014 	if (!link)
1015 		return 0; /* No link detected */
1016 
1017 	mac->get_link_status = false;
1018 
1019 	switch (hw->mac.type) {
1020 	case e1000_pch2lan:
1021 		ret_val = e1000_k1_workaround_lv(hw);
1022 		if (ret_val)
1023 			return ret_val;
1024 		/* fall-thru */
1025 	case e1000_pchlan:
1026 		if (hw->phy.type == e1000_phy_82578) {
1027 			ret_val = e1000_link_stall_workaround_hv(hw);
1028 			if (ret_val)
1029 				return ret_val;
1030 		}
1031 
1032 		/* Workaround for PCHx parts in half-duplex:
1033 		 * Set the number of preambles removed from the packet
1034 		 * when it is passed from the PHY to the MAC to prevent
1035 		 * the MAC from misinterpreting the packet type.
1036 		 */
1037 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1038 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1039 
1040 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1041 			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1042 
1043 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1044 		break;
1045 	default:
1046 		break;
1047 	}
1048 
1049 	/* Check if there was DownShift, must be checked
1050 	 * immediately after link-up
1051 	 */
1052 	e1000e_check_downshift(hw);
1053 
1054 	/* Enable/Disable EEE after link up */
1055 	ret_val = e1000_set_eee_pchlan(hw);
1056 	if (ret_val)
1057 		return ret_val;
1058 
1059 	/* If we are forcing speed/duplex, then we simply return since
1060 	 * we have already determined whether we have link or not.
1061 	 */
1062 	if (!mac->autoneg)
1063 		return -E1000_ERR_CONFIG;
1064 
1065 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1066 	 * of MAC speed/duplex configuration.  So we only need to
1067 	 * configure Collision Distance in the MAC.
1068 	 */
1069 	mac->ops.config_collision_dist(hw);
1070 
1071 	/* Configure Flow Control now that Auto-Neg has completed.
1072 	 * First, we need to restore the desired flow control
1073 	 * settings because we may have had to re-autoneg with a
1074 	 * different link partner.
1075 	 */
1076 	ret_val = e1000e_config_fc_after_link_up(hw);
1077 	if (ret_val)
1078 		e_dbg("Error configuring flow control\n");
1079 
1080 	return ret_val;
1081 }
1082 
e1000_get_variants_ich8lan(struct e1000_adapter * adapter)1083 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1084 {
1085 	struct e1000_hw *hw = &adapter->hw;
1086 	s32 rc;
1087 
1088 	rc = e1000_init_mac_params_ich8lan(hw);
1089 	if (rc)
1090 		return rc;
1091 
1092 	rc = e1000_init_nvm_params_ich8lan(hw);
1093 	if (rc)
1094 		return rc;
1095 
1096 	switch (hw->mac.type) {
1097 	case e1000_ich8lan:
1098 	case e1000_ich9lan:
1099 	case e1000_ich10lan:
1100 		rc = e1000_init_phy_params_ich8lan(hw);
1101 		break;
1102 	case e1000_pchlan:
1103 	case e1000_pch2lan:
1104 	case e1000_pch_lpt:
1105 		rc = e1000_init_phy_params_pchlan(hw);
1106 		break;
1107 	default:
1108 		break;
1109 	}
1110 	if (rc)
1111 		return rc;
1112 
1113 	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1114 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1115 	 */
1116 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1117 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1118 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1119 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1120 		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
1121 
1122 		hw->mac.ops.blink_led = NULL;
1123 	}
1124 
1125 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1126 	    (adapter->hw.phy.type != e1000_phy_ife))
1127 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1128 
1129 	/* Enable workaround for 82579 w/ ME enabled */
1130 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1131 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1132 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1133 
1134 	return 0;
1135 }
1136 
1137 static DEFINE_MUTEX(nvm_mutex);
1138 
1139 /**
1140  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1141  *  @hw: pointer to the HW structure
1142  *
1143  *  Acquires the mutex for performing NVM operations.
1144  **/
e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused * hw)1145 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1146 {
1147 	mutex_lock(&nvm_mutex);
1148 
1149 	return 0;
1150 }
1151 
1152 /**
1153  *  e1000_release_nvm_ich8lan - Release NVM mutex
1154  *  @hw: pointer to the HW structure
1155  *
1156  *  Releases the mutex used while performing NVM operations.
1157  **/
e1000_release_nvm_ich8lan(struct e1000_hw __always_unused * hw)1158 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1159 {
1160 	mutex_unlock(&nvm_mutex);
1161 }
1162 
1163 /**
1164  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1165  *  @hw: pointer to the HW structure
1166  *
1167  *  Acquires the software control flag for performing PHY and select
1168  *  MAC CSR accesses.
1169  **/
e1000_acquire_swflag_ich8lan(struct e1000_hw * hw)1170 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1171 {
1172 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1173 	s32 ret_val = 0;
1174 
1175 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1176 			     &hw->adapter->state)) {
1177 		e_dbg("contention for Phy access\n");
1178 		return -E1000_ERR_PHY;
1179 	}
1180 
1181 	while (timeout) {
1182 		extcnf_ctrl = er32(EXTCNF_CTRL);
1183 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1184 			break;
1185 
1186 		mdelay(1);
1187 		timeout--;
1188 	}
1189 
1190 	if (!timeout) {
1191 		e_dbg("SW has already locked the resource.\n");
1192 		ret_val = -E1000_ERR_CONFIG;
1193 		goto out;
1194 	}
1195 
1196 	timeout = SW_FLAG_TIMEOUT;
1197 
1198 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1199 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1200 
1201 	while (timeout) {
1202 		extcnf_ctrl = er32(EXTCNF_CTRL);
1203 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1204 			break;
1205 
1206 		mdelay(1);
1207 		timeout--;
1208 	}
1209 
1210 	if (!timeout) {
1211 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1212 		      er32(FWSM), extcnf_ctrl);
1213 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1214 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1215 		ret_val = -E1000_ERR_CONFIG;
1216 		goto out;
1217 	}
1218 
1219 out:
1220 	if (ret_val)
1221 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1222 
1223 	return ret_val;
1224 }
1225 
1226 /**
1227  *  e1000_release_swflag_ich8lan - Release software control flag
1228  *  @hw: pointer to the HW structure
1229  *
1230  *  Releases the software control flag for performing PHY and select
1231  *  MAC CSR accesses.
1232  **/
e1000_release_swflag_ich8lan(struct e1000_hw * hw)1233 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1234 {
1235 	u32 extcnf_ctrl;
1236 
1237 	extcnf_ctrl = er32(EXTCNF_CTRL);
1238 
1239 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1240 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1241 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1242 	} else {
1243 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1244 	}
1245 
1246 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1247 }
1248 
1249 /**
1250  *  e1000_check_mng_mode_ich8lan - Checks management mode
1251  *  @hw: pointer to the HW structure
1252  *
1253  *  This checks if the adapter has any manageability enabled.
1254  *  This is a function pointer entry point only called by read/write
1255  *  routines for the PHY and NVM parts.
1256  **/
e1000_check_mng_mode_ich8lan(struct e1000_hw * hw)1257 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1258 {
1259 	u32 fwsm;
1260 
1261 	fwsm = er32(FWSM);
1262 	return ((fwsm & E1000_ICH_FWSM_FW_VALID) &&
1263 		((fwsm & E1000_FWSM_MODE_MASK) ==
1264 		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)));
1265 }
1266 
1267 /**
1268  *  e1000_check_mng_mode_pchlan - Checks management mode
1269  *  @hw: pointer to the HW structure
1270  *
1271  *  This checks if the adapter has iAMT enabled.
1272  *  This is a function pointer entry point only called by read/write
1273  *  routines for the PHY and NVM parts.
1274  **/
e1000_check_mng_mode_pchlan(struct e1000_hw * hw)1275 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1276 {
1277 	u32 fwsm;
1278 
1279 	fwsm = er32(FWSM);
1280 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1281 	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1282 }
1283 
1284 /**
1285  *  e1000_rar_set_pch2lan - Set receive address register
1286  *  @hw: pointer to the HW structure
1287  *  @addr: pointer to the receive address
1288  *  @index: receive address array register
1289  *
1290  *  Sets the receive address array register at index to the address passed
1291  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1292  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1293  *  Use SHRA[0-3] in place of those reserved for ME.
1294  **/
e1000_rar_set_pch2lan(struct e1000_hw * hw,u8 * addr,u32 index)1295 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1296 {
1297 	u32 rar_low, rar_high;
1298 
1299 	/* HW expects these in little endian so we reverse the byte order
1300 	 * from network order (big endian) to little endian
1301 	 */
1302 	rar_low = ((u32)addr[0] |
1303 		   ((u32)addr[1] << 8) |
1304 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1305 
1306 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1307 
1308 	/* If MAC address zero, no need to set the AV bit */
1309 	if (rar_low || rar_high)
1310 		rar_high |= E1000_RAH_AV;
1311 
1312 	if (index == 0) {
1313 		ew32(RAL(index), rar_low);
1314 		e1e_flush();
1315 		ew32(RAH(index), rar_high);
1316 		e1e_flush();
1317 		return;
1318 	}
1319 
1320 	if (index < hw->mac.rar_entry_count) {
1321 		s32 ret_val;
1322 
1323 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1324 		if (ret_val)
1325 			goto out;
1326 
1327 		ew32(SHRAL(index - 1), rar_low);
1328 		e1e_flush();
1329 		ew32(SHRAH(index - 1), rar_high);
1330 		e1e_flush();
1331 
1332 		e1000_release_swflag_ich8lan(hw);
1333 
1334 		/* verify the register updates */
1335 		if ((er32(SHRAL(index - 1)) == rar_low) &&
1336 		    (er32(SHRAH(index - 1)) == rar_high))
1337 			return;
1338 
1339 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1340 		      (index - 1), er32(FWSM));
1341 	}
1342 
1343 out:
1344 	e_dbg("Failed to write receive address at index %d\n", index);
1345 }
1346 
1347 /**
1348  *  e1000_rar_set_pch_lpt - Set receive address registers
1349  *  @hw: pointer to the HW structure
1350  *  @addr: pointer to the receive address
1351  *  @index: receive address array register
1352  *
1353  *  Sets the receive address register array at index to the address passed
1354  *  in by addr. For LPT, RAR[0] is the base address register that is to
1355  *  contain the MAC address. SHRA[0-10] are the shared receive address
1356  *  registers that are shared between the Host and manageability engine (ME).
1357  **/
e1000_rar_set_pch_lpt(struct e1000_hw * hw,u8 * addr,u32 index)1358 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1359 {
1360 	u32 rar_low, rar_high;
1361 	u32 wlock_mac;
1362 
1363 	/* HW expects these in little endian so we reverse the byte order
1364 	 * from network order (big endian) to little endian
1365 	 */
1366 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1367 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1368 
1369 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1370 
1371 	/* If MAC address zero, no need to set the AV bit */
1372 	if (rar_low || rar_high)
1373 		rar_high |= E1000_RAH_AV;
1374 
1375 	if (index == 0) {
1376 		ew32(RAL(index), rar_low);
1377 		e1e_flush();
1378 		ew32(RAH(index), rar_high);
1379 		e1e_flush();
1380 		return;
1381 	}
1382 
1383 	/* The manageability engine (ME) can lock certain SHRAR registers that
1384 	 * it is using - those registers are unavailable for use.
1385 	 */
1386 	if (index < hw->mac.rar_entry_count) {
1387 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1388 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1389 
1390 		/* Check if all SHRAR registers are locked */
1391 		if (wlock_mac == 1)
1392 			goto out;
1393 
1394 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1395 			s32 ret_val;
1396 
1397 			ret_val = e1000_acquire_swflag_ich8lan(hw);
1398 
1399 			if (ret_val)
1400 				goto out;
1401 
1402 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1403 			e1e_flush();
1404 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1405 			e1e_flush();
1406 
1407 			e1000_release_swflag_ich8lan(hw);
1408 
1409 			/* verify the register updates */
1410 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1411 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1412 				return;
1413 		}
1414 	}
1415 
1416 out:
1417 	e_dbg("Failed to write receive address at index %d\n", index);
1418 }
1419 
1420 /**
1421  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1422  *  @hw: pointer to the HW structure
1423  *
1424  *  Checks if firmware is blocking the reset of the PHY.
1425  *  This is a function pointer entry point only called by
1426  *  reset routines.
1427  **/
e1000_check_reset_block_ich8lan(struct e1000_hw * hw)1428 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1429 {
1430 	u32 fwsm;
1431 
1432 	fwsm = er32(FWSM);
1433 
1434 	return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
1435 }
1436 
1437 /**
1438  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
1439  *  @hw: pointer to the HW structure
1440  *
1441  *  Assumes semaphore already acquired.
1442  *
1443  **/
e1000_write_smbus_addr(struct e1000_hw * hw)1444 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1445 {
1446 	u16 phy_data;
1447 	u32 strap = er32(STRAP);
1448 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
1449 	    E1000_STRAP_SMT_FREQ_SHIFT;
1450 	s32 ret_val;
1451 
1452 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1453 
1454 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1455 	if (ret_val)
1456 		return ret_val;
1457 
1458 	phy_data &= ~HV_SMB_ADDR_MASK;
1459 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1460 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1461 
1462 	if (hw->phy.type == e1000_phy_i217) {
1463 		/* Restore SMBus frequency */
1464 		if (freq--) {
1465 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
1466 			phy_data |= (freq & (1 << 0)) <<
1467 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
1468 			phy_data |= (freq & (1 << 1)) <<
1469 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
1470 		} else {
1471 			e_dbg("Unsupported SMB frequency in PHY\n");
1472 		}
1473 	}
1474 
1475 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1476 }
1477 
1478 /**
1479  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1480  *  @hw:   pointer to the HW structure
1481  *
1482  *  SW should configure the LCD from the NVM extended configuration region
1483  *  as a workaround for certain parts.
1484  **/
e1000_sw_lcd_config_ich8lan(struct e1000_hw * hw)1485 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1486 {
1487 	struct e1000_phy_info *phy = &hw->phy;
1488 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1489 	s32 ret_val = 0;
1490 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
1491 
1492 	/* Initialize the PHY from the NVM on ICH platforms.  This
1493 	 * is needed due to an issue where the NVM configuration is
1494 	 * not properly autoloaded after power transitions.
1495 	 * Therefore, after each PHY reset, we will load the
1496 	 * configuration data out of the NVM manually.
1497 	 */
1498 	switch (hw->mac.type) {
1499 	case e1000_ich8lan:
1500 		if (phy->type != e1000_phy_igp_3)
1501 			return ret_val;
1502 
1503 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1504 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1505 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1506 			break;
1507 		}
1508 		/* Fall-thru */
1509 	case e1000_pchlan:
1510 	case e1000_pch2lan:
1511 	case e1000_pch_lpt:
1512 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1513 		break;
1514 	default:
1515 		return ret_val;
1516 	}
1517 
1518 	ret_val = hw->phy.ops.acquire(hw);
1519 	if (ret_val)
1520 		return ret_val;
1521 
1522 	data = er32(FEXTNVM);
1523 	if (!(data & sw_cfg_mask))
1524 		goto release;
1525 
1526 	/* Make sure HW does not configure LCD from PHY
1527 	 * extended configuration before SW configuration
1528 	 */
1529 	data = er32(EXTCNF_CTRL);
1530 	if ((hw->mac.type < e1000_pch2lan) &&
1531 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
1532 		goto release;
1533 
1534 	cnf_size = er32(EXTCNF_SIZE);
1535 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1536 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1537 	if (!cnf_size)
1538 		goto release;
1539 
1540 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1541 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1542 
1543 	if (((hw->mac.type == e1000_pchlan) &&
1544 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
1545 	    (hw->mac.type > e1000_pchlan)) {
1546 		/* HW configures the SMBus address and LEDs when the
1547 		 * OEM and LCD Write Enable bits are set in the NVM.
1548 		 * When both NVM bits are cleared, SW will configure
1549 		 * them instead.
1550 		 */
1551 		ret_val = e1000_write_smbus_addr(hw);
1552 		if (ret_val)
1553 			goto release;
1554 
1555 		data = er32(LEDCTL);
1556 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1557 							(u16)data);
1558 		if (ret_val)
1559 			goto release;
1560 	}
1561 
1562 	/* Configure LCD from extended configuration region. */
1563 
1564 	/* cnf_base_addr is in DWORD */
1565 	word_addr = (u16)(cnf_base_addr << 1);
1566 
1567 	for (i = 0; i < cnf_size; i++) {
1568 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
1569 		if (ret_val)
1570 			goto release;
1571 
1572 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1573 					 1, &reg_addr);
1574 		if (ret_val)
1575 			goto release;
1576 
1577 		/* Save off the PHY page for future writes. */
1578 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1579 			phy_page = reg_data;
1580 			continue;
1581 		}
1582 
1583 		reg_addr &= PHY_REG_MASK;
1584 		reg_addr |= phy_page;
1585 
1586 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
1587 		if (ret_val)
1588 			goto release;
1589 	}
1590 
1591 release:
1592 	hw->phy.ops.release(hw);
1593 	return ret_val;
1594 }
1595 
1596 /**
1597  *  e1000_k1_gig_workaround_hv - K1 Si workaround
1598  *  @hw:   pointer to the HW structure
1599  *  @link: link up bool flag
1600  *
1601  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1602  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
1603  *  If link is down, the function will restore the default K1 setting located
1604  *  in the NVM.
1605  **/
e1000_k1_gig_workaround_hv(struct e1000_hw * hw,bool link)1606 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1607 {
1608 	s32 ret_val = 0;
1609 	u16 status_reg = 0;
1610 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1611 
1612 	if (hw->mac.type != e1000_pchlan)
1613 		return 0;
1614 
1615 	/* Wrap the whole flow with the sw flag */
1616 	ret_val = hw->phy.ops.acquire(hw);
1617 	if (ret_val)
1618 		return ret_val;
1619 
1620 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1621 	if (link) {
1622 		if (hw->phy.type == e1000_phy_82578) {
1623 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
1624 						  &status_reg);
1625 			if (ret_val)
1626 				goto release;
1627 
1628 			status_reg &= (BM_CS_STATUS_LINK_UP |
1629 				       BM_CS_STATUS_RESOLVED |
1630 				       BM_CS_STATUS_SPEED_MASK);
1631 
1632 			if (status_reg == (BM_CS_STATUS_LINK_UP |
1633 					   BM_CS_STATUS_RESOLVED |
1634 					   BM_CS_STATUS_SPEED_1000))
1635 				k1_enable = false;
1636 		}
1637 
1638 		if (hw->phy.type == e1000_phy_82577) {
1639 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
1640 			if (ret_val)
1641 				goto release;
1642 
1643 			status_reg &= (HV_M_STATUS_LINK_UP |
1644 				       HV_M_STATUS_AUTONEG_COMPLETE |
1645 				       HV_M_STATUS_SPEED_MASK);
1646 
1647 			if (status_reg == (HV_M_STATUS_LINK_UP |
1648 					   HV_M_STATUS_AUTONEG_COMPLETE |
1649 					   HV_M_STATUS_SPEED_1000))
1650 				k1_enable = false;
1651 		}
1652 
1653 		/* Link stall fix for link up */
1654 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
1655 		if (ret_val)
1656 			goto release;
1657 
1658 	} else {
1659 		/* Link stall fix for link down */
1660 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
1661 		if (ret_val)
1662 			goto release;
1663 	}
1664 
1665 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1666 
1667 release:
1668 	hw->phy.ops.release(hw);
1669 
1670 	return ret_val;
1671 }
1672 
1673 /**
1674  *  e1000_configure_k1_ich8lan - Configure K1 power state
1675  *  @hw: pointer to the HW structure
1676  *  @enable: K1 state to configure
1677  *
1678  *  Configure the K1 power state based on the provided parameter.
1679  *  Assumes semaphore already acquired.
1680  *
1681  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1682  **/
e1000_configure_k1_ich8lan(struct e1000_hw * hw,bool k1_enable)1683 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1684 {
1685 	s32 ret_val;
1686 	u32 ctrl_reg = 0;
1687 	u32 ctrl_ext = 0;
1688 	u32 reg = 0;
1689 	u16 kmrn_reg = 0;
1690 
1691 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1692 					      &kmrn_reg);
1693 	if (ret_val)
1694 		return ret_val;
1695 
1696 	if (k1_enable)
1697 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1698 	else
1699 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1700 
1701 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1702 					       kmrn_reg);
1703 	if (ret_val)
1704 		return ret_val;
1705 
1706 	usleep_range(20, 40);
1707 	ctrl_ext = er32(CTRL_EXT);
1708 	ctrl_reg = er32(CTRL);
1709 
1710 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1711 	reg |= E1000_CTRL_FRCSPD;
1712 	ew32(CTRL, reg);
1713 
1714 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1715 	e1e_flush();
1716 	usleep_range(20, 40);
1717 	ew32(CTRL, ctrl_reg);
1718 	ew32(CTRL_EXT, ctrl_ext);
1719 	e1e_flush();
1720 	usleep_range(20, 40);
1721 
1722 	return 0;
1723 }
1724 
1725 /**
1726  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1727  *  @hw:       pointer to the HW structure
1728  *  @d0_state: boolean if entering d0 or d3 device state
1729  *
1730  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1731  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
1732  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
1733  **/
e1000_oem_bits_config_ich8lan(struct e1000_hw * hw,bool d0_state)1734 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1735 {
1736 	s32 ret_val = 0;
1737 	u32 mac_reg;
1738 	u16 oem_reg;
1739 
1740 	if (hw->mac.type < e1000_pchlan)
1741 		return ret_val;
1742 
1743 	ret_val = hw->phy.ops.acquire(hw);
1744 	if (ret_val)
1745 		return ret_val;
1746 
1747 	if (hw->mac.type == e1000_pchlan) {
1748 		mac_reg = er32(EXTCNF_CTRL);
1749 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1750 			goto release;
1751 	}
1752 
1753 	mac_reg = er32(FEXTNVM);
1754 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1755 		goto release;
1756 
1757 	mac_reg = er32(PHY_CTRL);
1758 
1759 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
1760 	if (ret_val)
1761 		goto release;
1762 
1763 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1764 
1765 	if (d0_state) {
1766 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1767 			oem_reg |= HV_OEM_BITS_GBE_DIS;
1768 
1769 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1770 			oem_reg |= HV_OEM_BITS_LPLU;
1771 	} else {
1772 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
1773 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
1774 			oem_reg |= HV_OEM_BITS_GBE_DIS;
1775 
1776 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
1777 			       E1000_PHY_CTRL_NOND0A_LPLU))
1778 			oem_reg |= HV_OEM_BITS_LPLU;
1779 	}
1780 
1781 	/* Set Restart auto-neg to activate the bits */
1782 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
1783 	    !hw->phy.ops.check_reset_block(hw))
1784 		oem_reg |= HV_OEM_BITS_RESTART_AN;
1785 
1786 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
1787 
1788 release:
1789 	hw->phy.ops.release(hw);
1790 
1791 	return ret_val;
1792 }
1793 
1794 /**
1795  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1796  *  @hw:   pointer to the HW structure
1797  **/
e1000_set_mdio_slow_mode_hv(struct e1000_hw * hw)1798 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1799 {
1800 	s32 ret_val;
1801 	u16 data;
1802 
1803 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1804 	if (ret_val)
1805 		return ret_val;
1806 
1807 	data |= HV_KMRN_MDIO_SLOW;
1808 
1809 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1810 
1811 	return ret_val;
1812 }
1813 
1814 /**
1815  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1816  *  done after every PHY reset.
1817  **/
e1000_hv_phy_workarounds_ich8lan(struct e1000_hw * hw)1818 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1819 {
1820 	s32 ret_val = 0;
1821 	u16 phy_data;
1822 
1823 	if (hw->mac.type != e1000_pchlan)
1824 		return 0;
1825 
1826 	/* Set MDIO slow mode before any other MDIO access */
1827 	if (hw->phy.type == e1000_phy_82577) {
1828 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
1829 		if (ret_val)
1830 			return ret_val;
1831 	}
1832 
1833 	if (((hw->phy.type == e1000_phy_82577) &&
1834 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1835 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1836 		/* Disable generation of early preamble */
1837 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1838 		if (ret_val)
1839 			return ret_val;
1840 
1841 		/* Preamble tuning for SSC */
1842 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
1843 		if (ret_val)
1844 			return ret_val;
1845 	}
1846 
1847 	if (hw->phy.type == e1000_phy_82578) {
1848 		/* Return registers to default by doing a soft reset then
1849 		 * writing 0x3140 to the control register.
1850 		 */
1851 		if (hw->phy.revision < 2) {
1852 			e1000e_phy_sw_reset(hw);
1853 			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
1854 		}
1855 	}
1856 
1857 	/* Select page 0 */
1858 	ret_val = hw->phy.ops.acquire(hw);
1859 	if (ret_val)
1860 		return ret_val;
1861 
1862 	hw->phy.addr = 1;
1863 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1864 	hw->phy.ops.release(hw);
1865 	if (ret_val)
1866 		return ret_val;
1867 
1868 	/* Configure the K1 Si workaround during phy reset assuming there is
1869 	 * link so that it disables K1 if link is in 1Gbps.
1870 	 */
1871 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
1872 	if (ret_val)
1873 		return ret_val;
1874 
1875 	/* Workaround for link disconnects on a busy hub in half duplex */
1876 	ret_val = hw->phy.ops.acquire(hw);
1877 	if (ret_val)
1878 		return ret_val;
1879 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1880 	if (ret_val)
1881 		goto release;
1882 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
1883 	if (ret_val)
1884 		goto release;
1885 
1886 	/* set MSE higher to enable link to stay up when noise is high */
1887 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
1888 release:
1889 	hw->phy.ops.release(hw);
1890 
1891 	return ret_val;
1892 }
1893 
1894 /**
1895  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1896  *  @hw:   pointer to the HW structure
1897  **/
e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw * hw)1898 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1899 {
1900 	u32 mac_reg;
1901 	u16 i, phy_reg = 0;
1902 	s32 ret_val;
1903 
1904 	ret_val = hw->phy.ops.acquire(hw);
1905 	if (ret_val)
1906 		return;
1907 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1908 	if (ret_val)
1909 		goto release;
1910 
1911 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1912 	for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1913 		mac_reg = er32(RAL(i));
1914 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
1915 					   (u16)(mac_reg & 0xFFFF));
1916 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
1917 					   (u16)((mac_reg >> 16) & 0xFFFF));
1918 
1919 		mac_reg = er32(RAH(i));
1920 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
1921 					   (u16)(mac_reg & 0xFFFF));
1922 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
1923 					   (u16)((mac_reg & E1000_RAH_AV)
1924 						 >> 16));
1925 	}
1926 
1927 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1928 
1929 release:
1930 	hw->phy.ops.release(hw);
1931 }
1932 
1933 /**
1934  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1935  *  with 82579 PHY
1936  *  @hw: pointer to the HW structure
1937  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
1938  **/
e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw * hw,bool enable)1939 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1940 {
1941 	s32 ret_val = 0;
1942 	u16 phy_reg, data;
1943 	u32 mac_reg;
1944 	u16 i;
1945 
1946 	if (hw->mac.type < e1000_pch2lan)
1947 		return 0;
1948 
1949 	/* disable Rx path while enabling/disabling workaround */
1950 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1951 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1952 	if (ret_val)
1953 		return ret_val;
1954 
1955 	if (enable) {
1956 		/* Write Rx addresses (rar_entry_count for RAL/H, +4 for
1957 		 * SHRAL/H) and initial CRC values to the MAC
1958 		 */
1959 		for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1960 			u8 mac_addr[ETH_ALEN] = { 0 };
1961 			u32 addr_high, addr_low;
1962 
1963 			addr_high = er32(RAH(i));
1964 			if (!(addr_high & E1000_RAH_AV))
1965 				continue;
1966 			addr_low = er32(RAL(i));
1967 			mac_addr[0] = (addr_low & 0xFF);
1968 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
1969 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
1970 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
1971 			mac_addr[4] = (addr_high & 0xFF);
1972 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
1973 
1974 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1975 		}
1976 
1977 		/* Write Rx addresses to the PHY */
1978 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1979 
1980 		/* Enable jumbo frame workaround in the MAC */
1981 		mac_reg = er32(FFLT_DBG);
1982 		mac_reg &= ~(1 << 14);
1983 		mac_reg |= (7 << 15);
1984 		ew32(FFLT_DBG, mac_reg);
1985 
1986 		mac_reg = er32(RCTL);
1987 		mac_reg |= E1000_RCTL_SECRC;
1988 		ew32(RCTL, mac_reg);
1989 
1990 		ret_val = e1000e_read_kmrn_reg(hw,
1991 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
1992 					       &data);
1993 		if (ret_val)
1994 			return ret_val;
1995 		ret_val = e1000e_write_kmrn_reg(hw,
1996 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1997 						data | (1 << 0));
1998 		if (ret_val)
1999 			return ret_val;
2000 		ret_val = e1000e_read_kmrn_reg(hw,
2001 					       E1000_KMRNCTRLSTA_HD_CTRL,
2002 					       &data);
2003 		if (ret_val)
2004 			return ret_val;
2005 		data &= ~(0xF << 8);
2006 		data |= (0xB << 8);
2007 		ret_val = e1000e_write_kmrn_reg(hw,
2008 						E1000_KMRNCTRLSTA_HD_CTRL,
2009 						data);
2010 		if (ret_val)
2011 			return ret_val;
2012 
2013 		/* Enable jumbo frame workaround in the PHY */
2014 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2015 		data &= ~(0x7F << 5);
2016 		data |= (0x37 << 5);
2017 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2018 		if (ret_val)
2019 			return ret_val;
2020 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2021 		data &= ~(1 << 13);
2022 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2023 		if (ret_val)
2024 			return ret_val;
2025 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2026 		data &= ~(0x3FF << 2);
2027 		data |= (0x1A << 2);
2028 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2029 		if (ret_val)
2030 			return ret_val;
2031 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2032 		if (ret_val)
2033 			return ret_val;
2034 		e1e_rphy(hw, HV_PM_CTRL, &data);
2035 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
2036 		if (ret_val)
2037 			return ret_val;
2038 	} else {
2039 		/* Write MAC register values back to h/w defaults */
2040 		mac_reg = er32(FFLT_DBG);
2041 		mac_reg &= ~(0xF << 14);
2042 		ew32(FFLT_DBG, mac_reg);
2043 
2044 		mac_reg = er32(RCTL);
2045 		mac_reg &= ~E1000_RCTL_SECRC;
2046 		ew32(RCTL, mac_reg);
2047 
2048 		ret_val = e1000e_read_kmrn_reg(hw,
2049 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2050 					       &data);
2051 		if (ret_val)
2052 			return ret_val;
2053 		ret_val = e1000e_write_kmrn_reg(hw,
2054 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2055 						data & ~(1 << 0));
2056 		if (ret_val)
2057 			return ret_val;
2058 		ret_val = e1000e_read_kmrn_reg(hw,
2059 					       E1000_KMRNCTRLSTA_HD_CTRL,
2060 					       &data);
2061 		if (ret_val)
2062 			return ret_val;
2063 		data &= ~(0xF << 8);
2064 		data |= (0xB << 8);
2065 		ret_val = e1000e_write_kmrn_reg(hw,
2066 						E1000_KMRNCTRLSTA_HD_CTRL,
2067 						data);
2068 		if (ret_val)
2069 			return ret_val;
2070 
2071 		/* Write PHY register values back to h/w defaults */
2072 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2073 		data &= ~(0x7F << 5);
2074 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2075 		if (ret_val)
2076 			return ret_val;
2077 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2078 		data |= (1 << 13);
2079 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2080 		if (ret_val)
2081 			return ret_val;
2082 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2083 		data &= ~(0x3FF << 2);
2084 		data |= (0x8 << 2);
2085 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2086 		if (ret_val)
2087 			return ret_val;
2088 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2089 		if (ret_val)
2090 			return ret_val;
2091 		e1e_rphy(hw, HV_PM_CTRL, &data);
2092 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
2093 		if (ret_val)
2094 			return ret_val;
2095 	}
2096 
2097 	/* re-enable Rx path after enabling/disabling workaround */
2098 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
2099 }
2100 
2101 /**
2102  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2103  *  done after every PHY reset.
2104  **/
e1000_lv_phy_workarounds_ich8lan(struct e1000_hw * hw)2105 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2106 {
2107 	s32 ret_val = 0;
2108 
2109 	if (hw->mac.type != e1000_pch2lan)
2110 		return 0;
2111 
2112 	/* Set MDIO slow mode before any other MDIO access */
2113 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2114 	if (ret_val)
2115 		return ret_val;
2116 
2117 	ret_val = hw->phy.ops.acquire(hw);
2118 	if (ret_val)
2119 		return ret_val;
2120 	/* set MSE higher to enable link to stay up when noise is high */
2121 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2122 	if (ret_val)
2123 		goto release;
2124 	/* drop link after 5 times MSE threshold was reached */
2125 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2126 release:
2127 	hw->phy.ops.release(hw);
2128 
2129 	return ret_val;
2130 }
2131 
2132 /**
2133  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2134  *  @hw:   pointer to the HW structure
2135  *
2136  *  Workaround to set the K1 beacon duration for 82579 parts
2137  **/
e1000_k1_workaround_lv(struct e1000_hw * hw)2138 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2139 {
2140 	s32 ret_val = 0;
2141 	u16 status_reg = 0;
2142 	u32 mac_reg;
2143 	u16 phy_reg;
2144 
2145 	if (hw->mac.type != e1000_pch2lan)
2146 		return 0;
2147 
2148 	/* Set K1 beacon duration based on 1Gbps speed or otherwise */
2149 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2150 	if (ret_val)
2151 		return ret_val;
2152 
2153 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2154 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2155 		mac_reg = er32(FEXTNVM4);
2156 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2157 
2158 		ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
2159 		if (ret_val)
2160 			return ret_val;
2161 
2162 		if (status_reg & HV_M_STATUS_SPEED_1000) {
2163 			u16 pm_phy_reg;
2164 
2165 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
2166 			phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
2167 			/* LV 1G Packet drop issue wa  */
2168 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2169 			if (ret_val)
2170 				return ret_val;
2171 			pm_phy_reg &= ~HV_PM_CTRL_PLL_STOP_IN_K1_GIGA;
2172 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2173 			if (ret_val)
2174 				return ret_val;
2175 		} else {
2176 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2177 			phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
2178 		}
2179 		ew32(FEXTNVM4, mac_reg);
2180 		ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
2181 	}
2182 
2183 	return ret_val;
2184 }
2185 
2186 /**
2187  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2188  *  @hw:   pointer to the HW structure
2189  *  @gate: boolean set to true to gate, false to ungate
2190  *
2191  *  Gate/ungate the automatic PHY configuration via hardware; perform
2192  *  the configuration via software instead.
2193  **/
e1000_gate_hw_phy_config_ich8lan(struct e1000_hw * hw,bool gate)2194 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2195 {
2196 	u32 extcnf_ctrl;
2197 
2198 	if (hw->mac.type < e1000_pch2lan)
2199 		return;
2200 
2201 	extcnf_ctrl = er32(EXTCNF_CTRL);
2202 
2203 	if (gate)
2204 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2205 	else
2206 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2207 
2208 	ew32(EXTCNF_CTRL, extcnf_ctrl);
2209 }
2210 
2211 /**
2212  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2213  *  @hw: pointer to the HW structure
2214  *
2215  *  Check the appropriate indication the MAC has finished configuring the
2216  *  PHY after a software reset.
2217  **/
e1000_lan_init_done_ich8lan(struct e1000_hw * hw)2218 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2219 {
2220 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2221 
2222 	/* Wait for basic configuration completes before proceeding */
2223 	do {
2224 		data = er32(STATUS);
2225 		data &= E1000_STATUS_LAN_INIT_DONE;
2226 		usleep_range(100, 200);
2227 	} while ((!data) && --loop);
2228 
2229 	/* If basic configuration is incomplete before the above loop
2230 	 * count reaches 0, loading the configuration from NVM will
2231 	 * leave the PHY in a bad state possibly resulting in no link.
2232 	 */
2233 	if (loop == 0)
2234 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2235 
2236 	/* Clear the Init Done bit for the next init event */
2237 	data = er32(STATUS);
2238 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2239 	ew32(STATUS, data);
2240 }
2241 
2242 /**
2243  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2244  *  @hw: pointer to the HW structure
2245  **/
e1000_post_phy_reset_ich8lan(struct e1000_hw * hw)2246 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2247 {
2248 	s32 ret_val = 0;
2249 	u16 reg;
2250 
2251 	if (hw->phy.ops.check_reset_block(hw))
2252 		return 0;
2253 
2254 	/* Allow time for h/w to get to quiescent state after reset */
2255 	usleep_range(10000, 20000);
2256 
2257 	/* Perform any necessary post-reset workarounds */
2258 	switch (hw->mac.type) {
2259 	case e1000_pchlan:
2260 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2261 		if (ret_val)
2262 			return ret_val;
2263 		break;
2264 	case e1000_pch2lan:
2265 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2266 		if (ret_val)
2267 			return ret_val;
2268 		break;
2269 	default:
2270 		break;
2271 	}
2272 
2273 	/* Clear the host wakeup bit after lcd reset */
2274 	if (hw->mac.type >= e1000_pchlan) {
2275 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2276 		reg &= ~BM_WUC_HOST_WU_BIT;
2277 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2278 	}
2279 
2280 	/* Configure the LCD with the extended configuration region in NVM */
2281 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2282 	if (ret_val)
2283 		return ret_val;
2284 
2285 	/* Configure the LCD with the OEM bits in NVM */
2286 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2287 
2288 	if (hw->mac.type == e1000_pch2lan) {
2289 		/* Ungate automatic PHY configuration on non-managed 82579 */
2290 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2291 			usleep_range(10000, 20000);
2292 			e1000_gate_hw_phy_config_ich8lan(hw, false);
2293 		}
2294 
2295 		/* Set EEE LPI Update Timer to 200usec */
2296 		ret_val = hw->phy.ops.acquire(hw);
2297 		if (ret_val)
2298 			return ret_val;
2299 		ret_val = e1000_write_emi_reg_locked(hw,
2300 						     I82579_LPI_UPDATE_TIMER,
2301 						     0x1387);
2302 		hw->phy.ops.release(hw);
2303 	}
2304 
2305 	return ret_val;
2306 }
2307 
2308 /**
2309  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2310  *  @hw: pointer to the HW structure
2311  *
2312  *  Resets the PHY
2313  *  This is a function pointer entry point called by drivers
2314  *  or other shared routines.
2315  **/
e1000_phy_hw_reset_ich8lan(struct e1000_hw * hw)2316 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2317 {
2318 	s32 ret_val = 0;
2319 
2320 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2321 	if ((hw->mac.type == e1000_pch2lan) &&
2322 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2323 		e1000_gate_hw_phy_config_ich8lan(hw, true);
2324 
2325 	ret_val = e1000e_phy_hw_reset_generic(hw);
2326 	if (ret_val)
2327 		return ret_val;
2328 
2329 	return e1000_post_phy_reset_ich8lan(hw);
2330 }
2331 
2332 /**
2333  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2334  *  @hw: pointer to the HW structure
2335  *  @active: true to enable LPLU, false to disable
2336  *
2337  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2338  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2339  *  the phy speed. This function will manually set the LPLU bit and restart
2340  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2341  *  since it configures the same bit.
2342  **/
e1000_set_lplu_state_pchlan(struct e1000_hw * hw,bool active)2343 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2344 {
2345 	s32 ret_val;
2346 	u16 oem_reg;
2347 
2348 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2349 	if (ret_val)
2350 		return ret_val;
2351 
2352 	if (active)
2353 		oem_reg |= HV_OEM_BITS_LPLU;
2354 	else
2355 		oem_reg &= ~HV_OEM_BITS_LPLU;
2356 
2357 	if (!hw->phy.ops.check_reset_block(hw))
2358 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2359 
2360 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2361 }
2362 
2363 /**
2364  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2365  *  @hw: pointer to the HW structure
2366  *  @active: true to enable LPLU, false to disable
2367  *
2368  *  Sets the LPLU D0 state according to the active flag.  When
2369  *  activating LPLU this function also disables smart speed
2370  *  and vice versa.  LPLU will not be activated unless the
2371  *  device autonegotiation advertisement meets standards of
2372  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2373  *  This is a function pointer entry point only called by
2374  *  PHY setup routines.
2375  **/
e1000_set_d0_lplu_state_ich8lan(struct e1000_hw * hw,bool active)2376 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2377 {
2378 	struct e1000_phy_info *phy = &hw->phy;
2379 	u32 phy_ctrl;
2380 	s32 ret_val = 0;
2381 	u16 data;
2382 
2383 	if (phy->type == e1000_phy_ife)
2384 		return 0;
2385 
2386 	phy_ctrl = er32(PHY_CTRL);
2387 
2388 	if (active) {
2389 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2390 		ew32(PHY_CTRL, phy_ctrl);
2391 
2392 		if (phy->type != e1000_phy_igp_3)
2393 			return 0;
2394 
2395 		/* Call gig speed drop workaround on LPLU before accessing
2396 		 * any PHY registers
2397 		 */
2398 		if (hw->mac.type == e1000_ich8lan)
2399 			e1000e_gig_downshift_workaround_ich8lan(hw);
2400 
2401 		/* When LPLU is enabled, we should disable SmartSpeed */
2402 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2403 		if (ret_val)
2404 			return ret_val;
2405 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2406 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2407 		if (ret_val)
2408 			return ret_val;
2409 	} else {
2410 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2411 		ew32(PHY_CTRL, phy_ctrl);
2412 
2413 		if (phy->type != e1000_phy_igp_3)
2414 			return 0;
2415 
2416 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2417 		 * during Dx states where the power conservation is most
2418 		 * important.  During driver activity we should enable
2419 		 * SmartSpeed, so performance is maintained.
2420 		 */
2421 		if (phy->smart_speed == e1000_smart_speed_on) {
2422 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2423 					   &data);
2424 			if (ret_val)
2425 				return ret_val;
2426 
2427 			data |= IGP01E1000_PSCFR_SMART_SPEED;
2428 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2429 					   data);
2430 			if (ret_val)
2431 				return ret_val;
2432 		} else if (phy->smart_speed == e1000_smart_speed_off) {
2433 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2434 					   &data);
2435 			if (ret_val)
2436 				return ret_val;
2437 
2438 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2439 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2440 					   data);
2441 			if (ret_val)
2442 				return ret_val;
2443 		}
2444 	}
2445 
2446 	return 0;
2447 }
2448 
2449 /**
2450  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
2451  *  @hw: pointer to the HW structure
2452  *  @active: true to enable LPLU, false to disable
2453  *
2454  *  Sets the LPLU D3 state according to the active flag.  When
2455  *  activating LPLU this function also disables smart speed
2456  *  and vice versa.  LPLU will not be activated unless the
2457  *  device autonegotiation advertisement meets standards of
2458  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2459  *  This is a function pointer entry point only called by
2460  *  PHY setup routines.
2461  **/
e1000_set_d3_lplu_state_ich8lan(struct e1000_hw * hw,bool active)2462 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2463 {
2464 	struct e1000_phy_info *phy = &hw->phy;
2465 	u32 phy_ctrl;
2466 	s32 ret_val = 0;
2467 	u16 data;
2468 
2469 	phy_ctrl = er32(PHY_CTRL);
2470 
2471 	if (!active) {
2472 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2473 		ew32(PHY_CTRL, phy_ctrl);
2474 
2475 		if (phy->type != e1000_phy_igp_3)
2476 			return 0;
2477 
2478 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2479 		 * during Dx states where the power conservation is most
2480 		 * important.  During driver activity we should enable
2481 		 * SmartSpeed, so performance is maintained.
2482 		 */
2483 		if (phy->smart_speed == e1000_smart_speed_on) {
2484 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2485 					   &data);
2486 			if (ret_val)
2487 				return ret_val;
2488 
2489 			data |= IGP01E1000_PSCFR_SMART_SPEED;
2490 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2491 					   data);
2492 			if (ret_val)
2493 				return ret_val;
2494 		} else if (phy->smart_speed == e1000_smart_speed_off) {
2495 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2496 					   &data);
2497 			if (ret_val)
2498 				return ret_val;
2499 
2500 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2501 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2502 					   data);
2503 			if (ret_val)
2504 				return ret_val;
2505 		}
2506 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2507 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2508 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2509 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2510 		ew32(PHY_CTRL, phy_ctrl);
2511 
2512 		if (phy->type != e1000_phy_igp_3)
2513 			return 0;
2514 
2515 		/* Call gig speed drop workaround on LPLU before accessing
2516 		 * any PHY registers
2517 		 */
2518 		if (hw->mac.type == e1000_ich8lan)
2519 			e1000e_gig_downshift_workaround_ich8lan(hw);
2520 
2521 		/* When LPLU is enabled, we should disable SmartSpeed */
2522 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2523 		if (ret_val)
2524 			return ret_val;
2525 
2526 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2527 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2528 	}
2529 
2530 	return ret_val;
2531 }
2532 
2533 /**
2534  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2535  *  @hw: pointer to the HW structure
2536  *  @bank:  pointer to the variable that returns the active bank
2537  *
2538  *  Reads signature byte from the NVM using the flash access registers.
2539  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2540  **/
e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw * hw,u32 * bank)2541 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2542 {
2543 	u32 eecd;
2544 	struct e1000_nvm_info *nvm = &hw->nvm;
2545 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2546 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2547 	u8 sig_byte = 0;
2548 	s32 ret_val;
2549 
2550 	switch (hw->mac.type) {
2551 	case e1000_ich8lan:
2552 	case e1000_ich9lan:
2553 		eecd = er32(EECD);
2554 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2555 		    E1000_EECD_SEC1VAL_VALID_MASK) {
2556 			if (eecd & E1000_EECD_SEC1VAL)
2557 				*bank = 1;
2558 			else
2559 				*bank = 0;
2560 
2561 			return 0;
2562 		}
2563 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
2564 		/* fall-thru */
2565 	default:
2566 		/* set bank to 0 in case flash read fails */
2567 		*bank = 0;
2568 
2569 		/* Check bank 0 */
2570 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2571 							&sig_byte);
2572 		if (ret_val)
2573 			return ret_val;
2574 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2575 		    E1000_ICH_NVM_SIG_VALUE) {
2576 			*bank = 0;
2577 			return 0;
2578 		}
2579 
2580 		/* Check bank 1 */
2581 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2582 							bank1_offset,
2583 							&sig_byte);
2584 		if (ret_val)
2585 			return ret_val;
2586 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2587 		    E1000_ICH_NVM_SIG_VALUE) {
2588 			*bank = 1;
2589 			return 0;
2590 		}
2591 
2592 		e_dbg("ERROR: No valid NVM bank present\n");
2593 		return -E1000_ERR_NVM;
2594 	}
2595 }
2596 
2597 /**
2598  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
2599  *  @hw: pointer to the HW structure
2600  *  @offset: The offset (in bytes) of the word(s) to read.
2601  *  @words: Size of data to read in words
2602  *  @data: Pointer to the word(s) to read at offset.
2603  *
2604  *  Reads a word(s) from the NVM using the flash access registers.
2605  **/
e1000_read_nvm_ich8lan(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)2606 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2607 				  u16 *data)
2608 {
2609 	struct e1000_nvm_info *nvm = &hw->nvm;
2610 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2611 	u32 act_offset;
2612 	s32 ret_val = 0;
2613 	u32 bank = 0;
2614 	u16 i, word;
2615 
2616 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2617 	    (words == 0)) {
2618 		e_dbg("nvm parameter(s) out of bounds\n");
2619 		ret_val = -E1000_ERR_NVM;
2620 		goto out;
2621 	}
2622 
2623 	nvm->ops.acquire(hw);
2624 
2625 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2626 	if (ret_val) {
2627 		e_dbg("Could not detect valid bank, assuming bank 0\n");
2628 		bank = 0;
2629 	}
2630 
2631 	act_offset = (bank) ? nvm->flash_bank_size : 0;
2632 	act_offset += offset;
2633 
2634 	ret_val = 0;
2635 	for (i = 0; i < words; i++) {
2636 		if (dev_spec->shadow_ram[offset + i].modified) {
2637 			data[i] = dev_spec->shadow_ram[offset + i].value;
2638 		} else {
2639 			ret_val = e1000_read_flash_word_ich8lan(hw,
2640 								act_offset + i,
2641 								&word);
2642 			if (ret_val)
2643 				break;
2644 			data[i] = word;
2645 		}
2646 	}
2647 
2648 	nvm->ops.release(hw);
2649 
2650 out:
2651 	if (ret_val)
2652 		e_dbg("NVM read error: %d\n", ret_val);
2653 
2654 	return ret_val;
2655 }
2656 
2657 /**
2658  *  e1000_flash_cycle_init_ich8lan - Initialize flash
2659  *  @hw: pointer to the HW structure
2660  *
2661  *  This function does initial flash setup so that a new read/write/erase cycle
2662  *  can be started.
2663  **/
e1000_flash_cycle_init_ich8lan(struct e1000_hw * hw)2664 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2665 {
2666 	union ich8_hws_flash_status hsfsts;
2667 	s32 ret_val = -E1000_ERR_NVM;
2668 
2669 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2670 
2671 	/* Check if the flash descriptor is valid */
2672 	if (!hsfsts.hsf_status.fldesvalid) {
2673 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
2674 		return -E1000_ERR_NVM;
2675 	}
2676 
2677 	/* Clear FCERR and DAEL in hw status by writing 1 */
2678 	hsfsts.hsf_status.flcerr = 1;
2679 	hsfsts.hsf_status.dael = 1;
2680 
2681 	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2682 
2683 	/* Either we should have a hardware SPI cycle in progress
2684 	 * bit to check against, in order to start a new cycle or
2685 	 * FDONE bit should be changed in the hardware so that it
2686 	 * is 1 after hardware reset, which can then be used as an
2687 	 * indication whether a cycle is in progress or has been
2688 	 * completed.
2689 	 */
2690 
2691 	if (!hsfsts.hsf_status.flcinprog) {
2692 		/* There is no cycle running at present,
2693 		 * so we can start a cycle.
2694 		 * Begin by setting Flash Cycle Done.
2695 		 */
2696 		hsfsts.hsf_status.flcdone = 1;
2697 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2698 		ret_val = 0;
2699 	} else {
2700 		s32 i;
2701 
2702 		/* Otherwise poll for sometime so the current
2703 		 * cycle has a chance to end before giving up.
2704 		 */
2705 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2706 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2707 			if (!hsfsts.hsf_status.flcinprog) {
2708 				ret_val = 0;
2709 				break;
2710 			}
2711 			udelay(1);
2712 		}
2713 		if (!ret_val) {
2714 			/* Successful in waiting for previous cycle to timeout,
2715 			 * now set the Flash Cycle Done.
2716 			 */
2717 			hsfsts.hsf_status.flcdone = 1;
2718 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2719 		} else {
2720 			e_dbg("Flash controller busy, cannot get access\n");
2721 		}
2722 	}
2723 
2724 	return ret_val;
2725 }
2726 
2727 /**
2728  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2729  *  @hw: pointer to the HW structure
2730  *  @timeout: maximum time to wait for completion
2731  *
2732  *  This function starts a flash cycle and waits for its completion.
2733  **/
e1000_flash_cycle_ich8lan(struct e1000_hw * hw,u32 timeout)2734 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2735 {
2736 	union ich8_hws_flash_ctrl hsflctl;
2737 	union ich8_hws_flash_status hsfsts;
2738 	u32 i = 0;
2739 
2740 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2741 	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2742 	hsflctl.hsf_ctrl.flcgo = 1;
2743 	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2744 
2745 	/* wait till FDONE bit is set to 1 */
2746 	do {
2747 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2748 		if (hsfsts.hsf_status.flcdone)
2749 			break;
2750 		udelay(1);
2751 	} while (i++ < timeout);
2752 
2753 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
2754 		return 0;
2755 
2756 	return -E1000_ERR_NVM;
2757 }
2758 
2759 /**
2760  *  e1000_read_flash_word_ich8lan - Read word from flash
2761  *  @hw: pointer to the HW structure
2762  *  @offset: offset to data location
2763  *  @data: pointer to the location for storing the data
2764  *
2765  *  Reads the flash word at offset into data.  Offset is converted
2766  *  to bytes before read.
2767  **/
e1000_read_flash_word_ich8lan(struct e1000_hw * hw,u32 offset,u16 * data)2768 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2769 					 u16 *data)
2770 {
2771 	/* Must convert offset into bytes. */
2772 	offset <<= 1;
2773 
2774 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2775 }
2776 
2777 /**
2778  *  e1000_read_flash_byte_ich8lan - Read byte from flash
2779  *  @hw: pointer to the HW structure
2780  *  @offset: The offset of the byte to read.
2781  *  @data: Pointer to a byte to store the value read.
2782  *
2783  *  Reads a single byte from the NVM using the flash access registers.
2784  **/
e1000_read_flash_byte_ich8lan(struct e1000_hw * hw,u32 offset,u8 * data)2785 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2786 					 u8 *data)
2787 {
2788 	s32 ret_val;
2789 	u16 word = 0;
2790 
2791 	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2792 	if (ret_val)
2793 		return ret_val;
2794 
2795 	*data = (u8)word;
2796 
2797 	return 0;
2798 }
2799 
2800 /**
2801  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
2802  *  @hw: pointer to the HW structure
2803  *  @offset: The offset (in bytes) of the byte or word to read.
2804  *  @size: Size of data to read, 1=byte 2=word
2805  *  @data: Pointer to the word to store the value read.
2806  *
2807  *  Reads a byte or word from the NVM using the flash access registers.
2808  **/
e1000_read_flash_data_ich8lan(struct e1000_hw * hw,u32 offset,u8 size,u16 * data)2809 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2810 					 u8 size, u16 *data)
2811 {
2812 	union ich8_hws_flash_status hsfsts;
2813 	union ich8_hws_flash_ctrl hsflctl;
2814 	u32 flash_linear_addr;
2815 	u32 flash_data = 0;
2816 	s32 ret_val = -E1000_ERR_NVM;
2817 	u8 count = 0;
2818 
2819 	if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2820 		return -E1000_ERR_NVM;
2821 
2822 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2823 			     hw->nvm.flash_base_addr);
2824 
2825 	do {
2826 		udelay(1);
2827 		/* Steps */
2828 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
2829 		if (ret_val)
2830 			break;
2831 
2832 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2833 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2834 		hsflctl.hsf_ctrl.fldbcount = size - 1;
2835 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2836 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2837 
2838 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2839 
2840 		ret_val =
2841 		    e1000_flash_cycle_ich8lan(hw,
2842 					      ICH_FLASH_READ_COMMAND_TIMEOUT);
2843 
2844 		/* Check if FCERR is set to 1, if set to 1, clear it
2845 		 * and try the whole sequence a few more times, else
2846 		 * read in (shift in) the Flash Data0, the order is
2847 		 * least significant byte first msb to lsb
2848 		 */
2849 		if (!ret_val) {
2850 			flash_data = er32flash(ICH_FLASH_FDATA0);
2851 			if (size == 1)
2852 				*data = (u8)(flash_data & 0x000000FF);
2853 			else if (size == 2)
2854 				*data = (u16)(flash_data & 0x0000FFFF);
2855 			break;
2856 		} else {
2857 			/* If we've gotten here, then things are probably
2858 			 * completely hosed, but if the error condition is
2859 			 * detected, it won't hurt to give it another try...
2860 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2861 			 */
2862 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2863 			if (hsfsts.hsf_status.flcerr) {
2864 				/* Repeat for some time before giving up. */
2865 				continue;
2866 			} else if (!hsfsts.hsf_status.flcdone) {
2867 				e_dbg("Timeout error - flash cycle did not complete.\n");
2868 				break;
2869 			}
2870 		}
2871 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2872 
2873 	return ret_val;
2874 }
2875 
2876 /**
2877  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
2878  *  @hw: pointer to the HW structure
2879  *  @offset: The offset (in bytes) of the word(s) to write.
2880  *  @words: Size of data to write in words
2881  *  @data: Pointer to the word(s) to write at offset.
2882  *
2883  *  Writes a byte or word to the NVM using the flash access registers.
2884  **/
e1000_write_nvm_ich8lan(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)2885 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2886 				   u16 *data)
2887 {
2888 	struct e1000_nvm_info *nvm = &hw->nvm;
2889 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2890 	u16 i;
2891 
2892 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2893 	    (words == 0)) {
2894 		e_dbg("nvm parameter(s) out of bounds\n");
2895 		return -E1000_ERR_NVM;
2896 	}
2897 
2898 	nvm->ops.acquire(hw);
2899 
2900 	for (i = 0; i < words; i++) {
2901 		dev_spec->shadow_ram[offset + i].modified = true;
2902 		dev_spec->shadow_ram[offset + i].value = data[i];
2903 	}
2904 
2905 	nvm->ops.release(hw);
2906 
2907 	return 0;
2908 }
2909 
2910 /**
2911  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2912  *  @hw: pointer to the HW structure
2913  *
2914  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
2915  *  which writes the checksum to the shadow ram.  The changes in the shadow
2916  *  ram are then committed to the EEPROM by processing each bank at a time
2917  *  checking for the modified bit and writing only the pending changes.
2918  *  After a successful commit, the shadow ram is cleared and is ready for
2919  *  future writes.
2920  **/
e1000_update_nvm_checksum_ich8lan(struct e1000_hw * hw)2921 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2922 {
2923 	struct e1000_nvm_info *nvm = &hw->nvm;
2924 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2925 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2926 	s32 ret_val;
2927 	u16 data;
2928 
2929 	ret_val = e1000e_update_nvm_checksum_generic(hw);
2930 	if (ret_val)
2931 		goto out;
2932 
2933 	if (nvm->type != e1000_nvm_flash_sw)
2934 		goto out;
2935 
2936 	nvm->ops.acquire(hw);
2937 
2938 	/* We're writing to the opposite bank so if we're on bank 1,
2939 	 * write to bank 0 etc.  We also need to erase the segment that
2940 	 * is going to be written
2941 	 */
2942 	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2943 	if (ret_val) {
2944 		e_dbg("Could not detect valid bank, assuming bank 0\n");
2945 		bank = 0;
2946 	}
2947 
2948 	if (bank == 0) {
2949 		new_bank_offset = nvm->flash_bank_size;
2950 		old_bank_offset = 0;
2951 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2952 		if (ret_val)
2953 			goto release;
2954 	} else {
2955 		old_bank_offset = nvm->flash_bank_size;
2956 		new_bank_offset = 0;
2957 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2958 		if (ret_val)
2959 			goto release;
2960 	}
2961 
2962 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2963 		/* Determine whether to write the value stored
2964 		 * in the other NVM bank or a modified value stored
2965 		 * in the shadow RAM
2966 		 */
2967 		if (dev_spec->shadow_ram[i].modified) {
2968 			data = dev_spec->shadow_ram[i].value;
2969 		} else {
2970 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
2971 								old_bank_offset,
2972 								&data);
2973 			if (ret_val)
2974 				break;
2975 		}
2976 
2977 		/* If the word is 0x13, then make sure the signature bits
2978 		 * (15:14) are 11b until the commit has completed.
2979 		 * This will allow us to write 10b which indicates the
2980 		 * signature is valid.  We want to do this after the write
2981 		 * has completed so that we don't mark the segment valid
2982 		 * while the write is still in progress
2983 		 */
2984 		if (i == E1000_ICH_NVM_SIG_WORD)
2985 			data |= E1000_ICH_NVM_SIG_MASK;
2986 
2987 		/* Convert offset to bytes. */
2988 		act_offset = (i + new_bank_offset) << 1;
2989 
2990 		usleep_range(100, 200);
2991 		/* Write the bytes to the new bank. */
2992 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2993 							       act_offset,
2994 							       (u8)data);
2995 		if (ret_val)
2996 			break;
2997 
2998 		usleep_range(100, 200);
2999 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3000 							       act_offset + 1,
3001 							       (u8)(data >> 8));
3002 		if (ret_val)
3003 			break;
3004 	}
3005 
3006 	/* Don't bother writing the segment valid bits if sector
3007 	 * programming failed.
3008 	 */
3009 	if (ret_val) {
3010 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3011 		e_dbg("Flash commit failed.\n");
3012 		goto release;
3013 	}
3014 
3015 	/* Finally validate the new segment by setting bit 15:14
3016 	 * to 10b in word 0x13 , this can be done without an
3017 	 * erase as well since these bits are 11 to start with
3018 	 * and we need to change bit 14 to 0b
3019 	 */
3020 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3021 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
3022 	if (ret_val)
3023 		goto release;
3024 
3025 	data &= 0xBFFF;
3026 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3027 						       act_offset * 2 + 1,
3028 						       (u8)(data >> 8));
3029 	if (ret_val)
3030 		goto release;
3031 
3032 	/* And invalidate the previously valid segment by setting
3033 	 * its signature word (0x13) high_byte to 0b. This can be
3034 	 * done without an erase because flash erase sets all bits
3035 	 * to 1's. We can write 1's to 0's without an erase
3036 	 */
3037 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3038 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
3039 	if (ret_val)
3040 		goto release;
3041 
3042 	/* Great!  Everything worked, we can now clear the cached entries. */
3043 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3044 		dev_spec->shadow_ram[i].modified = false;
3045 		dev_spec->shadow_ram[i].value = 0xFFFF;
3046 	}
3047 
3048 release:
3049 	nvm->ops.release(hw);
3050 
3051 	/* Reload the EEPROM, or else modifications will not appear
3052 	 * until after the next adapter reset.
3053 	 */
3054 	if (!ret_val) {
3055 		nvm->ops.reload(hw);
3056 		usleep_range(10000, 20000);
3057 	}
3058 
3059 out:
3060 	if (ret_val)
3061 		e_dbg("NVM update error: %d\n", ret_val);
3062 
3063 	return ret_val;
3064 }
3065 
3066 /**
3067  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
3068  *  @hw: pointer to the HW structure
3069  *
3070  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
3071  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
3072  *  calculated, in which case we need to calculate the checksum and set bit 6.
3073  **/
e1000_validate_nvm_checksum_ich8lan(struct e1000_hw * hw)3074 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
3075 {
3076 	s32 ret_val;
3077 	u16 data;
3078 	u16 word;
3079 	u16 valid_csum_mask;
3080 
3081 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
3082 	 * the checksum needs to be fixed.  This bit is an indication that
3083 	 * the NVM was prepared by OEM software and did not calculate
3084 	 * the checksum...a likely scenario.
3085 	 */
3086 	switch (hw->mac.type) {
3087 	case e1000_pch_lpt:
3088 		word = NVM_COMPAT;
3089 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
3090 		break;
3091 	default:
3092 		word = NVM_FUTURE_INIT_WORD1;
3093 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
3094 		break;
3095 	}
3096 
3097 	ret_val = e1000_read_nvm(hw, word, 1, &data);
3098 	if (ret_val)
3099 		return ret_val;
3100 
3101 	if (!(data & valid_csum_mask)) {
3102 		data |= valid_csum_mask;
3103 		ret_val = e1000_write_nvm(hw, word, 1, &data);
3104 		if (ret_val)
3105 			return ret_val;
3106 		ret_val = e1000e_update_nvm_checksum(hw);
3107 		if (ret_val)
3108 			return ret_val;
3109 	}
3110 
3111 	return e1000e_validate_nvm_checksum_generic(hw);
3112 }
3113 
3114 /**
3115  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
3116  *  @hw: pointer to the HW structure
3117  *
3118  *  To prevent malicious write/erase of the NVM, set it to be read-only
3119  *  so that the hardware ignores all write/erase cycles of the NVM via
3120  *  the flash control registers.  The shadow-ram copy of the NVM will
3121  *  still be updated, however any updates to this copy will not stick
3122  *  across driver reloads.
3123  **/
e1000e_write_protect_nvm_ich8lan(struct e1000_hw * hw)3124 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
3125 {
3126 	struct e1000_nvm_info *nvm = &hw->nvm;
3127 	union ich8_flash_protected_range pr0;
3128 	union ich8_hws_flash_status hsfsts;
3129 	u32 gfpreg;
3130 
3131 	nvm->ops.acquire(hw);
3132 
3133 	gfpreg = er32flash(ICH_FLASH_GFPREG);
3134 
3135 	/* Write-protect GbE Sector of NVM */
3136 	pr0.regval = er32flash(ICH_FLASH_PR0);
3137 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
3138 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
3139 	pr0.range.wpe = true;
3140 	ew32flash(ICH_FLASH_PR0, pr0.regval);
3141 
3142 	/* Lock down a subset of GbE Flash Control Registers, e.g.
3143 	 * PR0 to prevent the write-protection from being lifted.
3144 	 * Once FLOCKDN is set, the registers protected by it cannot
3145 	 * be written until FLOCKDN is cleared by a hardware reset.
3146 	 */
3147 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3148 	hsfsts.hsf_status.flockdn = true;
3149 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3150 
3151 	nvm->ops.release(hw);
3152 }
3153 
3154 /**
3155  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
3156  *  @hw: pointer to the HW structure
3157  *  @offset: The offset (in bytes) of the byte/word to read.
3158  *  @size: Size of data to read, 1=byte 2=word
3159  *  @data: The byte(s) to write to the NVM.
3160  *
3161  *  Writes one/two bytes to the NVM using the flash access registers.
3162  **/
e1000_write_flash_data_ich8lan(struct e1000_hw * hw,u32 offset,u8 size,u16 data)3163 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3164 					  u8 size, u16 data)
3165 {
3166 	union ich8_hws_flash_status hsfsts;
3167 	union ich8_hws_flash_ctrl hsflctl;
3168 	u32 flash_linear_addr;
3169 	u32 flash_data = 0;
3170 	s32 ret_val;
3171 	u8 count = 0;
3172 
3173 	if (size < 1 || size > 2 || data > size * 0xff ||
3174 	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
3175 		return -E1000_ERR_NVM;
3176 
3177 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3178 			     hw->nvm.flash_base_addr);
3179 
3180 	do {
3181 		udelay(1);
3182 		/* Steps */
3183 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3184 		if (ret_val)
3185 			break;
3186 
3187 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3188 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3189 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3190 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3191 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3192 
3193 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3194 
3195 		if (size == 1)
3196 			flash_data = (u32)data & 0x00FF;
3197 		else
3198 			flash_data = (u32)data;
3199 
3200 		ew32flash(ICH_FLASH_FDATA0, flash_data);
3201 
3202 		/* check if FCERR is set to 1 , if set to 1, clear it
3203 		 * and try the whole sequence a few more times else done
3204 		 */
3205 		ret_val =
3206 		    e1000_flash_cycle_ich8lan(hw,
3207 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
3208 		if (!ret_val)
3209 			break;
3210 
3211 		/* If we're here, then things are most likely
3212 		 * completely hosed, but if the error condition
3213 		 * is detected, it won't hurt to give it another
3214 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3215 		 */
3216 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3217 		if (hsfsts.hsf_status.flcerr)
3218 			/* Repeat for some time before giving up. */
3219 			continue;
3220 		if (!hsfsts.hsf_status.flcdone) {
3221 			e_dbg("Timeout error - flash cycle did not complete.\n");
3222 			break;
3223 		}
3224 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3225 
3226 	return ret_val;
3227 }
3228 
3229 /**
3230  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
3231  *  @hw: pointer to the HW structure
3232  *  @offset: The index of the byte to read.
3233  *  @data: The byte to write to the NVM.
3234  *
3235  *  Writes a single byte to the NVM using the flash access registers.
3236  **/
e1000_write_flash_byte_ich8lan(struct e1000_hw * hw,u32 offset,u8 data)3237 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3238 					  u8 data)
3239 {
3240 	u16 word = (u16)data;
3241 
3242 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3243 }
3244 
3245 /**
3246  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
3247  *  @hw: pointer to the HW structure
3248  *  @offset: The offset of the byte to write.
3249  *  @byte: The byte to write to the NVM.
3250  *
3251  *  Writes a single byte to the NVM using the flash access registers.
3252  *  Goes through a retry algorithm before giving up.
3253  **/
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw * hw,u32 offset,u8 byte)3254 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3255 						u32 offset, u8 byte)
3256 {
3257 	s32 ret_val;
3258 	u16 program_retries;
3259 
3260 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3261 	if (!ret_val)
3262 		return ret_val;
3263 
3264 	for (program_retries = 0; program_retries < 100; program_retries++) {
3265 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
3266 		usleep_range(100, 200);
3267 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3268 		if (!ret_val)
3269 			break;
3270 	}
3271 	if (program_retries == 100)
3272 		return -E1000_ERR_NVM;
3273 
3274 	return 0;
3275 }
3276 
3277 /**
3278  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
3279  *  @hw: pointer to the HW structure
3280  *  @bank: 0 for first bank, 1 for second bank, etc.
3281  *
3282  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
3283  *  bank N is 4096 * N + flash_reg_addr.
3284  **/
e1000_erase_flash_bank_ich8lan(struct e1000_hw * hw,u32 bank)3285 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3286 {
3287 	struct e1000_nvm_info *nvm = &hw->nvm;
3288 	union ich8_hws_flash_status hsfsts;
3289 	union ich8_hws_flash_ctrl hsflctl;
3290 	u32 flash_linear_addr;
3291 	/* bank size is in 16bit words - adjust to bytes */
3292 	u32 flash_bank_size = nvm->flash_bank_size * 2;
3293 	s32 ret_val;
3294 	s32 count = 0;
3295 	s32 j, iteration, sector_size;
3296 
3297 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3298 
3299 	/* Determine HW Sector size: Read BERASE bits of hw flash status
3300 	 * register
3301 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
3302 	 *     consecutive sectors.  The start index for the nth Hw sector
3303 	 *     can be calculated as = bank * 4096 + n * 256
3304 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3305 	 *     The start index for the nth Hw sector can be calculated
3306 	 *     as = bank * 4096
3307 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3308 	 *     (ich9 only, otherwise error condition)
3309 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3310 	 */
3311 	switch (hsfsts.hsf_status.berasesz) {
3312 	case 0:
3313 		/* Hw sector size 256 */
3314 		sector_size = ICH_FLASH_SEG_SIZE_256;
3315 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3316 		break;
3317 	case 1:
3318 		sector_size = ICH_FLASH_SEG_SIZE_4K;
3319 		iteration = 1;
3320 		break;
3321 	case 2:
3322 		sector_size = ICH_FLASH_SEG_SIZE_8K;
3323 		iteration = 1;
3324 		break;
3325 	case 3:
3326 		sector_size = ICH_FLASH_SEG_SIZE_64K;
3327 		iteration = 1;
3328 		break;
3329 	default:
3330 		return -E1000_ERR_NVM;
3331 	}
3332 
3333 	/* Start with the base address, then add the sector offset. */
3334 	flash_linear_addr = hw->nvm.flash_base_addr;
3335 	flash_linear_addr += (bank) ? flash_bank_size : 0;
3336 
3337 	for (j = 0; j < iteration; j++) {
3338 		do {
3339 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
3340 
3341 			/* Steps */
3342 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
3343 			if (ret_val)
3344 				return ret_val;
3345 
3346 			/* Write a value 11 (block Erase) in Flash
3347 			 * Cycle field in hw flash control
3348 			 */
3349 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3350 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
3351 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3352 
3353 			/* Write the last 24 bits of an index within the
3354 			 * block into Flash Linear address field in Flash
3355 			 * Address.
3356 			 */
3357 			flash_linear_addr += (j * sector_size);
3358 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3359 
3360 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
3361 			if (!ret_val)
3362 				break;
3363 
3364 			/* Check if FCERR is set to 1.  If 1,
3365 			 * clear it and try the whole sequence
3366 			 * a few more times else Done
3367 			 */
3368 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3369 			if (hsfsts.hsf_status.flcerr)
3370 				/* repeat for some time before giving up */
3371 				continue;
3372 			else if (!hsfsts.hsf_status.flcdone)
3373 				return ret_val;
3374 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
3375 	}
3376 
3377 	return 0;
3378 }
3379 
3380 /**
3381  *  e1000_valid_led_default_ich8lan - Set the default LED settings
3382  *  @hw: pointer to the HW structure
3383  *  @data: Pointer to the LED settings
3384  *
3385  *  Reads the LED default settings from the NVM to data.  If the NVM LED
3386  *  settings is all 0's or F's, set the LED default to a valid LED default
3387  *  setting.
3388  **/
e1000_valid_led_default_ich8lan(struct e1000_hw * hw,u16 * data)3389 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
3390 {
3391 	s32 ret_val;
3392 
3393 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
3394 	if (ret_val) {
3395 		e_dbg("NVM Read Error\n");
3396 		return ret_val;
3397 	}
3398 
3399 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
3400 		*data = ID_LED_DEFAULT_ICH8LAN;
3401 
3402 	return 0;
3403 }
3404 
3405 /**
3406  *  e1000_id_led_init_pchlan - store LED configurations
3407  *  @hw: pointer to the HW structure
3408  *
3409  *  PCH does not control LEDs via the LEDCTL register, rather it uses
3410  *  the PHY LED configuration register.
3411  *
3412  *  PCH also does not have an "always on" or "always off" mode which
3413  *  complicates the ID feature.  Instead of using the "on" mode to indicate
3414  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
3415  *  use "link_up" mode.  The LEDs will still ID on request if there is no
3416  *  link based on logic in e1000_led_[on|off]_pchlan().
3417  **/
e1000_id_led_init_pchlan(struct e1000_hw * hw)3418 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
3419 {
3420 	struct e1000_mac_info *mac = &hw->mac;
3421 	s32 ret_val;
3422 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
3423 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
3424 	u16 data, i, temp, shift;
3425 
3426 	/* Get default ID LED modes */
3427 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
3428 	if (ret_val)
3429 		return ret_val;
3430 
3431 	mac->ledctl_default = er32(LEDCTL);
3432 	mac->ledctl_mode1 = mac->ledctl_default;
3433 	mac->ledctl_mode2 = mac->ledctl_default;
3434 
3435 	for (i = 0; i < 4; i++) {
3436 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
3437 		shift = (i * 5);
3438 		switch (temp) {
3439 		case ID_LED_ON1_DEF2:
3440 		case ID_LED_ON1_ON2:
3441 		case ID_LED_ON1_OFF2:
3442 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3443 			mac->ledctl_mode1 |= (ledctl_on << shift);
3444 			break;
3445 		case ID_LED_OFF1_DEF2:
3446 		case ID_LED_OFF1_ON2:
3447 		case ID_LED_OFF1_OFF2:
3448 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3449 			mac->ledctl_mode1 |= (ledctl_off << shift);
3450 			break;
3451 		default:
3452 			/* Do nothing */
3453 			break;
3454 		}
3455 		switch (temp) {
3456 		case ID_LED_DEF1_ON2:
3457 		case ID_LED_ON1_ON2:
3458 		case ID_LED_OFF1_ON2:
3459 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3460 			mac->ledctl_mode2 |= (ledctl_on << shift);
3461 			break;
3462 		case ID_LED_DEF1_OFF2:
3463 		case ID_LED_ON1_OFF2:
3464 		case ID_LED_OFF1_OFF2:
3465 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3466 			mac->ledctl_mode2 |= (ledctl_off << shift);
3467 			break;
3468 		default:
3469 			/* Do nothing */
3470 			break;
3471 		}
3472 	}
3473 
3474 	return 0;
3475 }
3476 
3477 /**
3478  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3479  *  @hw: pointer to the HW structure
3480  *
3481  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3482  *  register, so the the bus width is hard coded.
3483  **/
e1000_get_bus_info_ich8lan(struct e1000_hw * hw)3484 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3485 {
3486 	struct e1000_bus_info *bus = &hw->bus;
3487 	s32 ret_val;
3488 
3489 	ret_val = e1000e_get_bus_info_pcie(hw);
3490 
3491 	/* ICH devices are "PCI Express"-ish.  They have
3492 	 * a configuration space, but do not contain
3493 	 * PCI Express Capability registers, so bus width
3494 	 * must be hardcoded.
3495 	 */
3496 	if (bus->width == e1000_bus_width_unknown)
3497 		bus->width = e1000_bus_width_pcie_x1;
3498 
3499 	return ret_val;
3500 }
3501 
3502 /**
3503  *  e1000_reset_hw_ich8lan - Reset the hardware
3504  *  @hw: pointer to the HW structure
3505  *
3506  *  Does a full reset of the hardware which includes a reset of the PHY and
3507  *  MAC.
3508  **/
e1000_reset_hw_ich8lan(struct e1000_hw * hw)3509 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3510 {
3511 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3512 	u16 kum_cfg;
3513 	u32 ctrl, reg;
3514 	s32 ret_val;
3515 
3516 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
3517 	 * on the last TLP read/write transaction when MAC is reset.
3518 	 */
3519 	ret_val = e1000e_disable_pcie_master(hw);
3520 	if (ret_val)
3521 		e_dbg("PCI-E Master disable polling has failed.\n");
3522 
3523 	e_dbg("Masking off all interrupts\n");
3524 	ew32(IMC, 0xffffffff);
3525 
3526 	/* Disable the Transmit and Receive units.  Then delay to allow
3527 	 * any pending transactions to complete before we hit the MAC
3528 	 * with the global reset.
3529 	 */
3530 	ew32(RCTL, 0);
3531 	ew32(TCTL, E1000_TCTL_PSP);
3532 	e1e_flush();
3533 
3534 	usleep_range(10000, 20000);
3535 
3536 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
3537 	if (hw->mac.type == e1000_ich8lan) {
3538 		/* Set Tx and Rx buffer allocation to 8k apiece. */
3539 		ew32(PBA, E1000_PBA_8K);
3540 		/* Set Packet Buffer Size to 16k. */
3541 		ew32(PBS, E1000_PBS_16K);
3542 	}
3543 
3544 	if (hw->mac.type == e1000_pchlan) {
3545 		/* Save the NVM K1 bit setting */
3546 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
3547 		if (ret_val)
3548 			return ret_val;
3549 
3550 		if (kum_cfg & E1000_NVM_K1_ENABLE)
3551 			dev_spec->nvm_k1_enabled = true;
3552 		else
3553 			dev_spec->nvm_k1_enabled = false;
3554 	}
3555 
3556 	ctrl = er32(CTRL);
3557 
3558 	if (!hw->phy.ops.check_reset_block(hw)) {
3559 		/* Full-chip reset requires MAC and PHY reset at the same
3560 		 * time to make sure the interface between MAC and the
3561 		 * external PHY is reset.
3562 		 */
3563 		ctrl |= E1000_CTRL_PHY_RST;
3564 
3565 		/* Gate automatic PHY configuration by hardware on
3566 		 * non-managed 82579
3567 		 */
3568 		if ((hw->mac.type == e1000_pch2lan) &&
3569 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3570 			e1000_gate_hw_phy_config_ich8lan(hw, true);
3571 	}
3572 	ret_val = e1000_acquire_swflag_ich8lan(hw);
3573 	e_dbg("Issuing a global reset to ich8lan\n");
3574 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
3575 	/* cannot issue a flush here because it hangs the hardware */
3576 	msleep(20);
3577 
3578 	/* Set Phy Config Counter to 50msec */
3579 	if (hw->mac.type == e1000_pch2lan) {
3580 		reg = er32(FEXTNVM3);
3581 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
3582 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
3583 		ew32(FEXTNVM3, reg);
3584 	}
3585 
3586 	if (!ret_val)
3587 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
3588 
3589 	if (ctrl & E1000_CTRL_PHY_RST) {
3590 		ret_val = hw->phy.ops.get_cfg_done(hw);
3591 		if (ret_val)
3592 			return ret_val;
3593 
3594 		ret_val = e1000_post_phy_reset_ich8lan(hw);
3595 		if (ret_val)
3596 			return ret_val;
3597 	}
3598 
3599 	/* For PCH, this write will make sure that any noise
3600 	 * will be detected as a CRC error and be dropped rather than show up
3601 	 * as a bad packet to the DMA engine.
3602 	 */
3603 	if (hw->mac.type == e1000_pchlan)
3604 		ew32(CRC_OFFSET, 0x65656565);
3605 
3606 	ew32(IMC, 0xffffffff);
3607 	er32(ICR);
3608 
3609 	reg = er32(KABGTXD);
3610 	reg |= E1000_KABGTXD_BGSQLBIAS;
3611 	ew32(KABGTXD, reg);
3612 
3613 	return 0;
3614 }
3615 
3616 /**
3617  *  e1000_init_hw_ich8lan - Initialize the hardware
3618  *  @hw: pointer to the HW structure
3619  *
3620  *  Prepares the hardware for transmit and receive by doing the following:
3621  *   - initialize hardware bits
3622  *   - initialize LED identification
3623  *   - setup receive address registers
3624  *   - setup flow control
3625  *   - setup transmit descriptors
3626  *   - clear statistics
3627  **/
e1000_init_hw_ich8lan(struct e1000_hw * hw)3628 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3629 {
3630 	struct e1000_mac_info *mac = &hw->mac;
3631 	u32 ctrl_ext, txdctl, snoop;
3632 	s32 ret_val;
3633 	u16 i;
3634 
3635 	e1000_initialize_hw_bits_ich8lan(hw);
3636 
3637 	/* Initialize identification LED */
3638 	ret_val = mac->ops.id_led_init(hw);
3639 	/* An error is not fatal and we should not stop init due to this */
3640 	if (ret_val)
3641 		e_dbg("Error initializing identification LED\n");
3642 
3643 	/* Setup the receive address. */
3644 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3645 
3646 	/* Zero out the Multicast HASH table */
3647 	e_dbg("Zeroing the MTA\n");
3648 	for (i = 0; i < mac->mta_reg_count; i++)
3649 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3650 
3651 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
3652 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
3653 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
3654 	 */
3655 	if (hw->phy.type == e1000_phy_82578) {
3656 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
3657 		i &= ~BM_WUC_HOST_WU_BIT;
3658 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3659 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
3660 		if (ret_val)
3661 			return ret_val;
3662 	}
3663 
3664 	/* Setup link and flow control */
3665 	ret_val = mac->ops.setup_link(hw);
3666 
3667 	/* Set the transmit descriptor write-back policy for both queues */
3668 	txdctl = er32(TXDCTL(0));
3669 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
3670 		  E1000_TXDCTL_FULL_TX_DESC_WB);
3671 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
3672 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
3673 	ew32(TXDCTL(0), txdctl);
3674 	txdctl = er32(TXDCTL(1));
3675 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
3676 		  E1000_TXDCTL_FULL_TX_DESC_WB);
3677 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
3678 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
3679 	ew32(TXDCTL(1), txdctl);
3680 
3681 	/* ICH8 has opposite polarity of no_snoop bits.
3682 	 * By default, we should use snoop behavior.
3683 	 */
3684 	if (mac->type == e1000_ich8lan)
3685 		snoop = PCIE_ICH8_SNOOP_ALL;
3686 	else
3687 		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
3688 	e1000e_set_pcie_no_snoop(hw, snoop);
3689 
3690 	ctrl_ext = er32(CTRL_EXT);
3691 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3692 	ew32(CTRL_EXT, ctrl_ext);
3693 
3694 	/* Clear all of the statistics registers (clear on read).  It is
3695 	 * important that we do this after we have tried to establish link
3696 	 * because the symbol error count will increment wildly if there
3697 	 * is no link.
3698 	 */
3699 	e1000_clear_hw_cntrs_ich8lan(hw);
3700 
3701 	return ret_val;
3702 }
3703 
3704 /**
3705  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3706  *  @hw: pointer to the HW structure
3707  *
3708  *  Sets/Clears required hardware bits necessary for correctly setting up the
3709  *  hardware for transmit and receive.
3710  **/
e1000_initialize_hw_bits_ich8lan(struct e1000_hw * hw)3711 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3712 {
3713 	u32 reg;
3714 
3715 	/* Extended Device Control */
3716 	reg = er32(CTRL_EXT);
3717 	reg |= (1 << 22);
3718 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
3719 	if (hw->mac.type >= e1000_pchlan)
3720 		reg |= E1000_CTRL_EXT_PHYPDEN;
3721 	ew32(CTRL_EXT, reg);
3722 
3723 	/* Transmit Descriptor Control 0 */
3724 	reg = er32(TXDCTL(0));
3725 	reg |= (1 << 22);
3726 	ew32(TXDCTL(0), reg);
3727 
3728 	/* Transmit Descriptor Control 1 */
3729 	reg = er32(TXDCTL(1));
3730 	reg |= (1 << 22);
3731 	ew32(TXDCTL(1), reg);
3732 
3733 	/* Transmit Arbitration Control 0 */
3734 	reg = er32(TARC(0));
3735 	if (hw->mac.type == e1000_ich8lan)
3736 		reg |= (1 << 28) | (1 << 29);
3737 	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3738 	ew32(TARC(0), reg);
3739 
3740 	/* Transmit Arbitration Control 1 */
3741 	reg = er32(TARC(1));
3742 	if (er32(TCTL) & E1000_TCTL_MULR)
3743 		reg &= ~(1 << 28);
3744 	else
3745 		reg |= (1 << 28);
3746 	reg |= (1 << 24) | (1 << 26) | (1 << 30);
3747 	ew32(TARC(1), reg);
3748 
3749 	/* Device Status */
3750 	if (hw->mac.type == e1000_ich8lan) {
3751 		reg = er32(STATUS);
3752 		reg &= ~(1 << 31);
3753 		ew32(STATUS, reg);
3754 	}
3755 
3756 	/* work-around descriptor data corruption issue during nfs v2 udp
3757 	 * traffic, just disable the nfs filtering capability
3758 	 */
3759 	reg = er32(RFCTL);
3760 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3761 
3762 	/* Disable IPv6 extension header parsing because some malformed
3763 	 * IPv6 headers can hang the Rx.
3764 	 */
3765 	if (hw->mac.type == e1000_ich8lan)
3766 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
3767 	ew32(RFCTL, reg);
3768 
3769 	/* Enable ECC on Lynxpoint */
3770 	if (hw->mac.type == e1000_pch_lpt) {
3771 		reg = er32(PBECCSTS);
3772 		reg |= E1000_PBECCSTS_ECC_ENABLE;
3773 		ew32(PBECCSTS, reg);
3774 
3775 		reg = er32(CTRL);
3776 		reg |= E1000_CTRL_MEHE;
3777 		ew32(CTRL, reg);
3778 	}
3779 }
3780 
3781 /**
3782  *  e1000_setup_link_ich8lan - Setup flow control and link settings
3783  *  @hw: pointer to the HW structure
3784  *
3785  *  Determines which flow control settings to use, then configures flow
3786  *  control.  Calls the appropriate media-specific link configuration
3787  *  function.  Assuming the adapter has a valid link partner, a valid link
3788  *  should be established.  Assumes the hardware has previously been reset
3789  *  and the transmitter and receiver are not enabled.
3790  **/
e1000_setup_link_ich8lan(struct e1000_hw * hw)3791 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3792 {
3793 	s32 ret_val;
3794 
3795 	if (hw->phy.ops.check_reset_block(hw))
3796 		return 0;
3797 
3798 	/* ICH parts do not have a word in the NVM to determine
3799 	 * the default flow control setting, so we explicitly
3800 	 * set it to full.
3801 	 */
3802 	if (hw->fc.requested_mode == e1000_fc_default) {
3803 		/* Workaround h/w hang when Tx flow control enabled */
3804 		if (hw->mac.type == e1000_pchlan)
3805 			hw->fc.requested_mode = e1000_fc_rx_pause;
3806 		else
3807 			hw->fc.requested_mode = e1000_fc_full;
3808 	}
3809 
3810 	/* Save off the requested flow control mode for use later.  Depending
3811 	 * on the link partner's capabilities, we may or may not use this mode.
3812 	 */
3813 	hw->fc.current_mode = hw->fc.requested_mode;
3814 
3815 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
3816 
3817 	/* Continue to configure the copper link. */
3818 	ret_val = hw->mac.ops.setup_physical_interface(hw);
3819 	if (ret_val)
3820 		return ret_val;
3821 
3822 	ew32(FCTTV, hw->fc.pause_time);
3823 	if ((hw->phy.type == e1000_phy_82578) ||
3824 	    (hw->phy.type == e1000_phy_82579) ||
3825 	    (hw->phy.type == e1000_phy_i217) ||
3826 	    (hw->phy.type == e1000_phy_82577)) {
3827 		ew32(FCRTV_PCH, hw->fc.refresh_time);
3828 
3829 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3830 				   hw->fc.pause_time);
3831 		if (ret_val)
3832 			return ret_val;
3833 	}
3834 
3835 	return e1000e_set_fc_watermarks(hw);
3836 }
3837 
3838 /**
3839  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3840  *  @hw: pointer to the HW structure
3841  *
3842  *  Configures the kumeran interface to the PHY to wait the appropriate time
3843  *  when polling the PHY, then call the generic setup_copper_link to finish
3844  *  configuring the copper link.
3845  **/
e1000_setup_copper_link_ich8lan(struct e1000_hw * hw)3846 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3847 {
3848 	u32 ctrl;
3849 	s32 ret_val;
3850 	u16 reg_data;
3851 
3852 	ctrl = er32(CTRL);
3853 	ctrl |= E1000_CTRL_SLU;
3854 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3855 	ew32(CTRL, ctrl);
3856 
3857 	/* Set the mac to wait the maximum time between each iteration
3858 	 * and increase the max iterations when polling the phy;
3859 	 * this fixes erroneous timeouts at 10Mbps.
3860 	 */
3861 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3862 	if (ret_val)
3863 		return ret_val;
3864 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3865 				       &reg_data);
3866 	if (ret_val)
3867 		return ret_val;
3868 	reg_data |= 0x3F;
3869 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3870 					reg_data);
3871 	if (ret_val)
3872 		return ret_val;
3873 
3874 	switch (hw->phy.type) {
3875 	case e1000_phy_igp_3:
3876 		ret_val = e1000e_copper_link_setup_igp(hw);
3877 		if (ret_val)
3878 			return ret_val;
3879 		break;
3880 	case e1000_phy_bm:
3881 	case e1000_phy_82578:
3882 		ret_val = e1000e_copper_link_setup_m88(hw);
3883 		if (ret_val)
3884 			return ret_val;
3885 		break;
3886 	case e1000_phy_82577:
3887 	case e1000_phy_82579:
3888 		ret_val = e1000_copper_link_setup_82577(hw);
3889 		if (ret_val)
3890 			return ret_val;
3891 		break;
3892 	case e1000_phy_ife:
3893 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3894 		if (ret_val)
3895 			return ret_val;
3896 
3897 		reg_data &= ~IFE_PMC_AUTO_MDIX;
3898 
3899 		switch (hw->phy.mdix) {
3900 		case 1:
3901 			reg_data &= ~IFE_PMC_FORCE_MDIX;
3902 			break;
3903 		case 2:
3904 			reg_data |= IFE_PMC_FORCE_MDIX;
3905 			break;
3906 		case 0:
3907 		default:
3908 			reg_data |= IFE_PMC_AUTO_MDIX;
3909 			break;
3910 		}
3911 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3912 		if (ret_val)
3913 			return ret_val;
3914 		break;
3915 	default:
3916 		break;
3917 	}
3918 
3919 	return e1000e_setup_copper_link(hw);
3920 }
3921 
3922 /**
3923  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
3924  *  @hw: pointer to the HW structure
3925  *
3926  *  Calls the PHY specific link setup function and then calls the
3927  *  generic setup_copper_link to finish configuring the link for
3928  *  Lynxpoint PCH devices
3929  **/
e1000_setup_copper_link_pch_lpt(struct e1000_hw * hw)3930 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
3931 {
3932 	u32 ctrl;
3933 	s32 ret_val;
3934 
3935 	ctrl = er32(CTRL);
3936 	ctrl |= E1000_CTRL_SLU;
3937 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3938 	ew32(CTRL, ctrl);
3939 
3940 	ret_val = e1000_copper_link_setup_82577(hw);
3941 	if (ret_val)
3942 		return ret_val;
3943 
3944 	return e1000e_setup_copper_link(hw);
3945 }
3946 
3947 /**
3948  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3949  *  @hw: pointer to the HW structure
3950  *  @speed: pointer to store current link speed
3951  *  @duplex: pointer to store the current link duplex
3952  *
3953  *  Calls the generic get_speed_and_duplex to retrieve the current link
3954  *  information and then calls the Kumeran lock loss workaround for links at
3955  *  gigabit speeds.
3956  **/
e1000_get_link_up_info_ich8lan(struct e1000_hw * hw,u16 * speed,u16 * duplex)3957 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3958 					  u16 *duplex)
3959 {
3960 	s32 ret_val;
3961 
3962 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3963 	if (ret_val)
3964 		return ret_val;
3965 
3966 	if ((hw->mac.type == e1000_ich8lan) &&
3967 	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
3968 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3969 	}
3970 
3971 	return ret_val;
3972 }
3973 
3974 /**
3975  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3976  *  @hw: pointer to the HW structure
3977  *
3978  *  Work-around for 82566 Kumeran PCS lock loss:
3979  *  On link status change (i.e. PCI reset, speed change) and link is up and
3980  *  speed is gigabit-
3981  *    0) if workaround is optionally disabled do nothing
3982  *    1) wait 1ms for Kumeran link to come up
3983  *    2) check Kumeran Diagnostic register PCS lock loss bit
3984  *    3) if not set the link is locked (all is good), otherwise...
3985  *    4) reset the PHY
3986  *    5) repeat up to 10 times
3987  *  Note: this is only called for IGP3 copper when speed is 1gb.
3988  **/
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw * hw)3989 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3990 {
3991 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3992 	u32 phy_ctrl;
3993 	s32 ret_val;
3994 	u16 i, data;
3995 	bool link;
3996 
3997 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3998 		return 0;
3999 
4000 	/* Make sure link is up before proceeding.  If not just return.
4001 	 * Attempting this while link is negotiating fouled up link
4002 	 * stability
4003 	 */
4004 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
4005 	if (!link)
4006 		return 0;
4007 
4008 	for (i = 0; i < 10; i++) {
4009 		/* read once to clear */
4010 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
4011 		if (ret_val)
4012 			return ret_val;
4013 		/* and again to get new status */
4014 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
4015 		if (ret_val)
4016 			return ret_val;
4017 
4018 		/* check for PCS lock */
4019 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
4020 			return 0;
4021 
4022 		/* Issue PHY reset */
4023 		e1000_phy_hw_reset(hw);
4024 		mdelay(5);
4025 	}
4026 	/* Disable GigE link negotiation */
4027 	phy_ctrl = er32(PHY_CTRL);
4028 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
4029 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4030 	ew32(PHY_CTRL, phy_ctrl);
4031 
4032 	/* Call gig speed drop workaround on Gig disable before accessing
4033 	 * any PHY registers
4034 	 */
4035 	e1000e_gig_downshift_workaround_ich8lan(hw);
4036 
4037 	/* unable to acquire PCS lock */
4038 	return -E1000_ERR_PHY;
4039 }
4040 
4041 /**
4042  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
4043  *  @hw: pointer to the HW structure
4044  *  @state: boolean value used to set the current Kumeran workaround state
4045  *
4046  *  If ICH8, set the current Kumeran workaround state (enabled - true
4047  *  /disabled - false).
4048  **/
e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw * hw,bool state)4049 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
4050 						  bool state)
4051 {
4052 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4053 
4054 	if (hw->mac.type != e1000_ich8lan) {
4055 		e_dbg("Workaround applies to ICH8 only.\n");
4056 		return;
4057 	}
4058 
4059 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
4060 }
4061 
4062 /**
4063  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
4064  *  @hw: pointer to the HW structure
4065  *
4066  *  Workaround for 82566 power-down on D3 entry:
4067  *    1) disable gigabit link
4068  *    2) write VR power-down enable
4069  *    3) read it back
4070  *  Continue if successful, else issue LCD reset and repeat
4071  **/
e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw * hw)4072 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
4073 {
4074 	u32 reg;
4075 	u16 data;
4076 	u8  retry = 0;
4077 
4078 	if (hw->phy.type != e1000_phy_igp_3)
4079 		return;
4080 
4081 	/* Try the workaround twice (if needed) */
4082 	do {
4083 		/* Disable link */
4084 		reg = er32(PHY_CTRL);
4085 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
4086 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4087 		ew32(PHY_CTRL, reg);
4088 
4089 		/* Call gig speed drop workaround on Gig disable before
4090 		 * accessing any PHY registers
4091 		 */
4092 		if (hw->mac.type == e1000_ich8lan)
4093 			e1000e_gig_downshift_workaround_ich8lan(hw);
4094 
4095 		/* Write VR power-down enable */
4096 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
4097 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4098 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
4099 
4100 		/* Read it back and test */
4101 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
4102 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4103 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
4104 			break;
4105 
4106 		/* Issue PHY reset and repeat at most one more time */
4107 		reg = er32(CTRL);
4108 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
4109 		retry++;
4110 	} while (retry);
4111 }
4112 
4113 /**
4114  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
4115  *  @hw: pointer to the HW structure
4116  *
4117  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
4118  *  LPLU, Gig disable, MDIC PHY reset):
4119  *    1) Set Kumeran Near-end loopback
4120  *    2) Clear Kumeran Near-end loopback
4121  *  Should only be called for ICH8[m] devices with any 1G Phy.
4122  **/
e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw * hw)4123 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
4124 {
4125 	s32 ret_val;
4126 	u16 reg_data;
4127 
4128 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
4129 		return;
4130 
4131 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4132 				       &reg_data);
4133 	if (ret_val)
4134 		return;
4135 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
4136 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4137 					reg_data);
4138 	if (ret_val)
4139 		return;
4140 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
4141 	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
4142 }
4143 
4144 /**
4145  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
4146  *  @hw: pointer to the HW structure
4147  *
4148  *  During S0 to Sx transition, it is possible the link remains at gig
4149  *  instead of negotiating to a lower speed.  Before going to Sx, set
4150  *  'Gig Disable' to force link speed negotiation to a lower speed based on
4151  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
4152  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
4153  *  needs to be written.
4154  *  Parts that support (and are linked to a partner which support) EEE in
4155  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
4156  *  than 10Mbps w/o EEE.
4157  **/
e1000_suspend_workarounds_ich8lan(struct e1000_hw * hw)4158 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
4159 {
4160 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4161 	u32 phy_ctrl;
4162 	s32 ret_val;
4163 
4164 	phy_ctrl = er32(PHY_CTRL);
4165 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
4166 
4167 	if (hw->phy.type == e1000_phy_i217) {
4168 		u16 phy_reg, device_id = hw->adapter->pdev->device;
4169 
4170 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
4171 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V)) {
4172 			u32 fextnvm6 = er32(FEXTNVM6);
4173 
4174 			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
4175 		}
4176 
4177 		ret_val = hw->phy.ops.acquire(hw);
4178 		if (ret_val)
4179 			goto out;
4180 
4181 		if (!dev_spec->eee_disable) {
4182 			u16 eee_advert;
4183 
4184 			ret_val =
4185 			    e1000_read_emi_reg_locked(hw,
4186 						      I217_EEE_ADVERTISEMENT,
4187 						      &eee_advert);
4188 			if (ret_val)
4189 				goto release;
4190 
4191 			/* Disable LPLU if both link partners support 100BaseT
4192 			 * EEE and 100Full is advertised on both ends of the
4193 			 * link.
4194 			 */
4195 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
4196 			    (dev_spec->eee_lp_ability &
4197 			     I82579_EEE_100_SUPPORTED) &&
4198 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL))
4199 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
4200 					      E1000_PHY_CTRL_NOND0A_LPLU);
4201 		}
4202 
4203 		/* For i217 Intel Rapid Start Technology support,
4204 		 * when the system is going into Sx and no manageability engine
4205 		 * is present, the driver must configure proxy to reset only on
4206 		 * power good.  LPI (Low Power Idle) state must also reset only
4207 		 * on power good, as well as the MTA (Multicast table array).
4208 		 * The SMBus release must also be disabled on LCD reset.
4209 		 */
4210 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4211 			/* Enable proxy to reset only on power good. */
4212 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
4213 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
4214 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
4215 
4216 			/* Set bit enable LPI (EEE) to reset only on
4217 			 * power good.
4218 			 */
4219 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
4220 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
4221 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
4222 
4223 			/* Disable the SMB release on LCD reset. */
4224 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4225 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
4226 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4227 		}
4228 
4229 		/* Enable MTA to reset for Intel Rapid Start Technology
4230 		 * Support
4231 		 */
4232 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4233 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
4234 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4235 
4236 release:
4237 		hw->phy.ops.release(hw);
4238 	}
4239 out:
4240 	ew32(PHY_CTRL, phy_ctrl);
4241 
4242 	if (hw->mac.type == e1000_ich8lan)
4243 		e1000e_gig_downshift_workaround_ich8lan(hw);
4244 
4245 	if (hw->mac.type >= e1000_pchlan) {
4246 		e1000_oem_bits_config_ich8lan(hw, false);
4247 
4248 		/* Reset PHY to activate OEM bits on 82577/8 */
4249 		if (hw->mac.type == e1000_pchlan)
4250 			e1000e_phy_hw_reset_generic(hw);
4251 
4252 		ret_val = hw->phy.ops.acquire(hw);
4253 		if (ret_val)
4254 			return;
4255 		e1000_write_smbus_addr(hw);
4256 		hw->phy.ops.release(hw);
4257 	}
4258 }
4259 
4260 /**
4261  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
4262  *  @hw: pointer to the HW structure
4263  *
4264  *  During Sx to S0 transitions on non-managed devices or managed devices
4265  *  on which PHY resets are not blocked, if the PHY registers cannot be
4266  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
4267  *  the PHY.
4268  *  On i217, setup Intel Rapid Start Technology.
4269  **/
e1000_resume_workarounds_pchlan(struct e1000_hw * hw)4270 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
4271 {
4272 	s32 ret_val;
4273 
4274 	if (hw->mac.type < e1000_pch2lan)
4275 		return;
4276 
4277 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
4278 	if (ret_val) {
4279 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
4280 		return;
4281 	}
4282 
4283 	/* For i217 Intel Rapid Start Technology support when the system
4284 	 * is transitioning from Sx and no manageability engine is present
4285 	 * configure SMBus to restore on reset, disable proxy, and enable
4286 	 * the reset on MTA (Multicast table array).
4287 	 */
4288 	if (hw->phy.type == e1000_phy_i217) {
4289 		u16 phy_reg;
4290 
4291 		ret_val = hw->phy.ops.acquire(hw);
4292 		if (ret_val) {
4293 			e_dbg("Failed to setup iRST\n");
4294 			return;
4295 		}
4296 
4297 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4298 			/* Restore clear on SMB if no manageability engine
4299 			 * is present
4300 			 */
4301 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4302 			if (ret_val)
4303 				goto release;
4304 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
4305 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4306 
4307 			/* Disable Proxy */
4308 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
4309 		}
4310 		/* Enable reset on MTA */
4311 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4312 		if (ret_val)
4313 			goto release;
4314 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
4315 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4316 release:
4317 		if (ret_val)
4318 			e_dbg("Error %d in resume workarounds\n", ret_val);
4319 		hw->phy.ops.release(hw);
4320 	}
4321 }
4322 
4323 /**
4324  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
4325  *  @hw: pointer to the HW structure
4326  *
4327  *  Return the LED back to the default configuration.
4328  **/
e1000_cleanup_led_ich8lan(struct e1000_hw * hw)4329 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
4330 {
4331 	if (hw->phy.type == e1000_phy_ife)
4332 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
4333 
4334 	ew32(LEDCTL, hw->mac.ledctl_default);
4335 	return 0;
4336 }
4337 
4338 /**
4339  *  e1000_led_on_ich8lan - Turn LEDs on
4340  *  @hw: pointer to the HW structure
4341  *
4342  *  Turn on the LEDs.
4343  **/
e1000_led_on_ich8lan(struct e1000_hw * hw)4344 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
4345 {
4346 	if (hw->phy.type == e1000_phy_ife)
4347 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4348 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
4349 
4350 	ew32(LEDCTL, hw->mac.ledctl_mode2);
4351 	return 0;
4352 }
4353 
4354 /**
4355  *  e1000_led_off_ich8lan - Turn LEDs off
4356  *  @hw: pointer to the HW structure
4357  *
4358  *  Turn off the LEDs.
4359  **/
e1000_led_off_ich8lan(struct e1000_hw * hw)4360 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
4361 {
4362 	if (hw->phy.type == e1000_phy_ife)
4363 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4364 				(IFE_PSCL_PROBE_MODE |
4365 				 IFE_PSCL_PROBE_LEDS_OFF));
4366 
4367 	ew32(LEDCTL, hw->mac.ledctl_mode1);
4368 	return 0;
4369 }
4370 
4371 /**
4372  *  e1000_setup_led_pchlan - Configures SW controllable LED
4373  *  @hw: pointer to the HW structure
4374  *
4375  *  This prepares the SW controllable LED for use.
4376  **/
e1000_setup_led_pchlan(struct e1000_hw * hw)4377 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
4378 {
4379 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
4380 }
4381 
4382 /**
4383  *  e1000_cleanup_led_pchlan - Restore the default LED operation
4384  *  @hw: pointer to the HW structure
4385  *
4386  *  Return the LED back to the default configuration.
4387  **/
e1000_cleanup_led_pchlan(struct e1000_hw * hw)4388 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
4389 {
4390 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
4391 }
4392 
4393 /**
4394  *  e1000_led_on_pchlan - Turn LEDs on
4395  *  @hw: pointer to the HW structure
4396  *
4397  *  Turn on the LEDs.
4398  **/
e1000_led_on_pchlan(struct e1000_hw * hw)4399 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
4400 {
4401 	u16 data = (u16)hw->mac.ledctl_mode2;
4402 	u32 i, led;
4403 
4404 	/* If no link, then turn LED on by setting the invert bit
4405 	 * for each LED that's mode is "link_up" in ledctl_mode2.
4406 	 */
4407 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
4408 		for (i = 0; i < 3; i++) {
4409 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4410 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
4411 			    E1000_LEDCTL_MODE_LINK_UP)
4412 				continue;
4413 			if (led & E1000_PHY_LED0_IVRT)
4414 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4415 			else
4416 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
4417 		}
4418 	}
4419 
4420 	return e1e_wphy(hw, HV_LED_CONFIG, data);
4421 }
4422 
4423 /**
4424  *  e1000_led_off_pchlan - Turn LEDs off
4425  *  @hw: pointer to the HW structure
4426  *
4427  *  Turn off the LEDs.
4428  **/
e1000_led_off_pchlan(struct e1000_hw * hw)4429 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
4430 {
4431 	u16 data = (u16)hw->mac.ledctl_mode1;
4432 	u32 i, led;
4433 
4434 	/* If no link, then turn LED off by clearing the invert bit
4435 	 * for each LED that's mode is "link_up" in ledctl_mode1.
4436 	 */
4437 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
4438 		for (i = 0; i < 3; i++) {
4439 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4440 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
4441 			    E1000_LEDCTL_MODE_LINK_UP)
4442 				continue;
4443 			if (led & E1000_PHY_LED0_IVRT)
4444 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4445 			else
4446 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
4447 		}
4448 	}
4449 
4450 	return e1e_wphy(hw, HV_LED_CONFIG, data);
4451 }
4452 
4453 /**
4454  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
4455  *  @hw: pointer to the HW structure
4456  *
4457  *  Read appropriate register for the config done bit for completion status
4458  *  and configure the PHY through s/w for EEPROM-less parts.
4459  *
4460  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
4461  *  config done bit, so only an error is logged and continues.  If we were
4462  *  to return with error, EEPROM-less silicon would not be able to be reset
4463  *  or change link.
4464  **/
e1000_get_cfg_done_ich8lan(struct e1000_hw * hw)4465 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
4466 {
4467 	s32 ret_val = 0;
4468 	u32 bank = 0;
4469 	u32 status;
4470 
4471 	e1000e_get_cfg_done_generic(hw);
4472 
4473 	/* Wait for indication from h/w that it has completed basic config */
4474 	if (hw->mac.type >= e1000_ich10lan) {
4475 		e1000_lan_init_done_ich8lan(hw);
4476 	} else {
4477 		ret_val = e1000e_get_auto_rd_done(hw);
4478 		if (ret_val) {
4479 			/* When auto config read does not complete, do not
4480 			 * return with an error. This can happen in situations
4481 			 * where there is no eeprom and prevents getting link.
4482 			 */
4483 			e_dbg("Auto Read Done did not complete\n");
4484 			ret_val = 0;
4485 		}
4486 	}
4487 
4488 	/* Clear PHY Reset Asserted bit */
4489 	status = er32(STATUS);
4490 	if (status & E1000_STATUS_PHYRA)
4491 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
4492 	else
4493 		e_dbg("PHY Reset Asserted not set - needs delay\n");
4494 
4495 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
4496 	if (hw->mac.type <= e1000_ich9lan) {
4497 		if (!(er32(EECD) & E1000_EECD_PRES) &&
4498 		    (hw->phy.type == e1000_phy_igp_3)) {
4499 			e1000e_phy_init_script_igp3(hw);
4500 		}
4501 	} else {
4502 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
4503 			/* Maybe we should do a basic PHY config */
4504 			e_dbg("EEPROM not present\n");
4505 			ret_val = -E1000_ERR_CONFIG;
4506 		}
4507 	}
4508 
4509 	return ret_val;
4510 }
4511 
4512 /**
4513  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
4514  * @hw: pointer to the HW structure
4515  *
4516  * In the case of a PHY power down to save power, or to turn off link during a
4517  * driver unload, or wake on lan is not enabled, remove the link.
4518  **/
e1000_power_down_phy_copper_ich8lan(struct e1000_hw * hw)4519 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
4520 {
4521 	/* If the management interface is not enabled, then power down */
4522 	if (!(hw->mac.ops.check_mng_mode(hw) ||
4523 	      hw->phy.ops.check_reset_block(hw)))
4524 		e1000_power_down_phy_copper(hw);
4525 }
4526 
4527 /**
4528  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
4529  *  @hw: pointer to the HW structure
4530  *
4531  *  Clears hardware counters specific to the silicon family and calls
4532  *  clear_hw_cntrs_generic to clear all general purpose counters.
4533  **/
e1000_clear_hw_cntrs_ich8lan(struct e1000_hw * hw)4534 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
4535 {
4536 	u16 phy_data;
4537 	s32 ret_val;
4538 
4539 	e1000e_clear_hw_cntrs_base(hw);
4540 
4541 	er32(ALGNERRC);
4542 	er32(RXERRC);
4543 	er32(TNCRS);
4544 	er32(CEXTERR);
4545 	er32(TSCTC);
4546 	er32(TSCTFC);
4547 
4548 	er32(MGTPRC);
4549 	er32(MGTPDC);
4550 	er32(MGTPTC);
4551 
4552 	er32(IAC);
4553 	er32(ICRXOC);
4554 
4555 	/* Clear PHY statistics registers */
4556 	if ((hw->phy.type == e1000_phy_82578) ||
4557 	    (hw->phy.type == e1000_phy_82579) ||
4558 	    (hw->phy.type == e1000_phy_i217) ||
4559 	    (hw->phy.type == e1000_phy_82577)) {
4560 		ret_val = hw->phy.ops.acquire(hw);
4561 		if (ret_val)
4562 			return;
4563 		ret_val = hw->phy.ops.set_page(hw,
4564 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4565 		if (ret_val)
4566 			goto release;
4567 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4568 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4569 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4570 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4571 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4572 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4573 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4574 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4575 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4576 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4577 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4578 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4579 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4580 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4581 release:
4582 		hw->phy.ops.release(hw);
4583 	}
4584 }
4585 
4586 static const struct e1000_mac_operations ich8_mac_ops = {
4587 	/* check_mng_mode dependent on mac type */
4588 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
4589 	/* cleanup_led dependent on mac type */
4590 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
4591 	.get_bus_info		= e1000_get_bus_info_ich8lan,
4592 	.set_lan_id		= e1000_set_lan_id_single_port,
4593 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
4594 	/* led_on dependent on mac type */
4595 	/* led_off dependent on mac type */
4596 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
4597 	.reset_hw		= e1000_reset_hw_ich8lan,
4598 	.init_hw		= e1000_init_hw_ich8lan,
4599 	.setup_link		= e1000_setup_link_ich8lan,
4600 	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
4601 	/* id_led_init dependent on mac type */
4602 	.config_collision_dist	= e1000e_config_collision_dist_generic,
4603 	.rar_set		= e1000e_rar_set_generic,
4604 };
4605 
4606 static const struct e1000_phy_operations ich8_phy_ops = {
4607 	.acquire		= e1000_acquire_swflag_ich8lan,
4608 	.check_reset_block	= e1000_check_reset_block_ich8lan,
4609 	.commit			= NULL,
4610 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
4611 	.get_cable_length	= e1000e_get_cable_length_igp_2,
4612 	.read_reg		= e1000e_read_phy_reg_igp,
4613 	.release		= e1000_release_swflag_ich8lan,
4614 	.reset			= e1000_phy_hw_reset_ich8lan,
4615 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
4616 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
4617 	.write_reg		= e1000e_write_phy_reg_igp,
4618 };
4619 
4620 static const struct e1000_nvm_operations ich8_nvm_ops = {
4621 	.acquire		= e1000_acquire_nvm_ich8lan,
4622 	.read			= e1000_read_nvm_ich8lan,
4623 	.release		= e1000_release_nvm_ich8lan,
4624 	.reload			= e1000e_reload_nvm_generic,
4625 	.update			= e1000_update_nvm_checksum_ich8lan,
4626 	.valid_led_default	= e1000_valid_led_default_ich8lan,
4627 	.validate		= e1000_validate_nvm_checksum_ich8lan,
4628 	.write			= e1000_write_nvm_ich8lan,
4629 };
4630 
4631 const struct e1000_info e1000_ich8_info = {
4632 	.mac			= e1000_ich8lan,
4633 	.flags			= FLAG_HAS_WOL
4634 				  | FLAG_IS_ICH
4635 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4636 				  | FLAG_HAS_AMT
4637 				  | FLAG_HAS_FLASH
4638 				  | FLAG_APME_IN_WUC,
4639 	.pba			= 8,
4640 	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
4641 	.get_variants		= e1000_get_variants_ich8lan,
4642 	.mac_ops		= &ich8_mac_ops,
4643 	.phy_ops		= &ich8_phy_ops,
4644 	.nvm_ops		= &ich8_nvm_ops,
4645 };
4646 
4647 const struct e1000_info e1000_ich9_info = {
4648 	.mac			= e1000_ich9lan,
4649 	.flags			= FLAG_HAS_JUMBO_FRAMES
4650 				  | FLAG_IS_ICH
4651 				  | FLAG_HAS_WOL
4652 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4653 				  | FLAG_HAS_AMT
4654 				  | FLAG_HAS_FLASH
4655 				  | FLAG_APME_IN_WUC,
4656 	.pba			= 18,
4657 	.max_hw_frame_size	= DEFAULT_JUMBO,
4658 	.get_variants		= e1000_get_variants_ich8lan,
4659 	.mac_ops		= &ich8_mac_ops,
4660 	.phy_ops		= &ich8_phy_ops,
4661 	.nvm_ops		= &ich8_nvm_ops,
4662 };
4663 
4664 const struct e1000_info e1000_ich10_info = {
4665 	.mac			= e1000_ich10lan,
4666 	.flags			= FLAG_HAS_JUMBO_FRAMES
4667 				  | FLAG_IS_ICH
4668 				  | FLAG_HAS_WOL
4669 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4670 				  | FLAG_HAS_AMT
4671 				  | FLAG_HAS_FLASH
4672 				  | FLAG_APME_IN_WUC,
4673 	.pba			= 18,
4674 	.max_hw_frame_size	= DEFAULT_JUMBO,
4675 	.get_variants		= e1000_get_variants_ich8lan,
4676 	.mac_ops		= &ich8_mac_ops,
4677 	.phy_ops		= &ich8_phy_ops,
4678 	.nvm_ops		= &ich8_nvm_ops,
4679 };
4680 
4681 const struct e1000_info e1000_pch_info = {
4682 	.mac			= e1000_pchlan,
4683 	.flags			= FLAG_IS_ICH
4684 				  | FLAG_HAS_WOL
4685 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4686 				  | FLAG_HAS_AMT
4687 				  | FLAG_HAS_FLASH
4688 				  | FLAG_HAS_JUMBO_FRAMES
4689 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4690 				  | FLAG_APME_IN_WUC,
4691 	.flags2			= FLAG2_HAS_PHY_STATS,
4692 	.pba			= 26,
4693 	.max_hw_frame_size	= 4096,
4694 	.get_variants		= e1000_get_variants_ich8lan,
4695 	.mac_ops		= &ich8_mac_ops,
4696 	.phy_ops		= &ich8_phy_ops,
4697 	.nvm_ops		= &ich8_nvm_ops,
4698 };
4699 
4700 const struct e1000_info e1000_pch2_info = {
4701 	.mac			= e1000_pch2lan,
4702 	.flags			= FLAG_IS_ICH
4703 				  | FLAG_HAS_WOL
4704 				  | FLAG_HAS_HW_TIMESTAMP
4705 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4706 				  | FLAG_HAS_AMT
4707 				  | FLAG_HAS_FLASH
4708 				  | FLAG_HAS_JUMBO_FRAMES
4709 				  | FLAG_APME_IN_WUC,
4710 	.flags2			= FLAG2_HAS_PHY_STATS
4711 				  | FLAG2_HAS_EEE,
4712 	.pba			= 26,
4713 	.max_hw_frame_size	= 9018,
4714 	.get_variants		= e1000_get_variants_ich8lan,
4715 	.mac_ops		= &ich8_mac_ops,
4716 	.phy_ops		= &ich8_phy_ops,
4717 	.nvm_ops		= &ich8_nvm_ops,
4718 };
4719 
4720 const struct e1000_info e1000_pch_lpt_info = {
4721 	.mac			= e1000_pch_lpt,
4722 	.flags			= FLAG_IS_ICH
4723 				  | FLAG_HAS_WOL
4724 				  | FLAG_HAS_HW_TIMESTAMP
4725 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4726 				  | FLAG_HAS_AMT
4727 				  | FLAG_HAS_FLASH
4728 				  | FLAG_HAS_JUMBO_FRAMES
4729 				  | FLAG_APME_IN_WUC,
4730 	.flags2			= FLAG2_HAS_PHY_STATS
4731 				  | FLAG2_HAS_EEE,
4732 	.pba			= 26,
4733 	.max_hw_frame_size	= 9018,
4734 	.get_variants		= e1000_get_variants_ich8lan,
4735 	.mac_ops		= &ich8_mac_ops,
4736 	.phy_ops		= &ich8_phy_ops,
4737 	.nvm_ops		= &ich8_nvm_ops,
4738 };
4739