1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2013 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30
31 /**
32 * e1000e_get_bus_info_pcie - Get PCIe bus information
33 * @hw: pointer to the HW structure
34 *
35 * Determines and stores the system bus information for a particular
36 * network interface. The following bus information is determined and stored:
37 * bus speed, bus width, type (PCIe), and PCIe function.
38 **/
e1000e_get_bus_info_pcie(struct e1000_hw * hw)39 s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
40 {
41 struct e1000_mac_info *mac = &hw->mac;
42 struct e1000_bus_info *bus = &hw->bus;
43 struct e1000_adapter *adapter = hw->adapter;
44 u16 pcie_link_status, cap_offset;
45
46 cap_offset = adapter->pdev->pcie_cap;
47 if (!cap_offset) {
48 bus->width = e1000_bus_width_unknown;
49 } else {
50 pci_read_config_word(adapter->pdev,
51 cap_offset + PCIE_LINK_STATUS,
52 &pcie_link_status);
53 bus->width = (enum e1000_bus_width)((pcie_link_status &
54 PCIE_LINK_WIDTH_MASK) >>
55 PCIE_LINK_WIDTH_SHIFT);
56 }
57
58 mac->ops.set_lan_id(hw);
59
60 return 0;
61 }
62
63 /**
64 * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
65 *
66 * @hw: pointer to the HW structure
67 *
68 * Determines the LAN function id by reading memory-mapped registers
69 * and swaps the port value if requested.
70 **/
e1000_set_lan_id_multi_port_pcie(struct e1000_hw * hw)71 void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
72 {
73 struct e1000_bus_info *bus = &hw->bus;
74 u32 reg;
75
76 /* The status register reports the correct function number
77 * for the device regardless of function swap state.
78 */
79 reg = er32(STATUS);
80 bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
81 }
82
83 /**
84 * e1000_set_lan_id_single_port - Set LAN id for a single port device
85 * @hw: pointer to the HW structure
86 *
87 * Sets the LAN function id to zero for a single port device.
88 **/
e1000_set_lan_id_single_port(struct e1000_hw * hw)89 void e1000_set_lan_id_single_port(struct e1000_hw *hw)
90 {
91 struct e1000_bus_info *bus = &hw->bus;
92
93 bus->func = 0;
94 }
95
96 /**
97 * e1000_clear_vfta_generic - Clear VLAN filter table
98 * @hw: pointer to the HW structure
99 *
100 * Clears the register array which contains the VLAN filter table by
101 * setting all the values to 0.
102 **/
e1000_clear_vfta_generic(struct e1000_hw * hw)103 void e1000_clear_vfta_generic(struct e1000_hw *hw)
104 {
105 u32 offset;
106
107 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
108 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
109 e1e_flush();
110 }
111 }
112
113 /**
114 * e1000_write_vfta_generic - Write value to VLAN filter table
115 * @hw: pointer to the HW structure
116 * @offset: register offset in VLAN filter table
117 * @value: register value written to VLAN filter table
118 *
119 * Writes value at the given offset in the register array which stores
120 * the VLAN filter table.
121 **/
e1000_write_vfta_generic(struct e1000_hw * hw,u32 offset,u32 value)122 void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
123 {
124 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
125 e1e_flush();
126 }
127
128 /**
129 * e1000e_init_rx_addrs - Initialize receive address's
130 * @hw: pointer to the HW structure
131 * @rar_count: receive address registers
132 *
133 * Setup the receive address registers by setting the base receive address
134 * register to the devices MAC address and clearing all the other receive
135 * address registers to 0.
136 **/
e1000e_init_rx_addrs(struct e1000_hw * hw,u16 rar_count)137 void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
138 {
139 u32 i;
140 u8 mac_addr[ETH_ALEN] = { 0 };
141
142 /* Setup the receive address */
143 e_dbg("Programming MAC Address into RAR[0]\n");
144
145 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
146
147 /* Zero out the other (rar_entry_count - 1) receive addresses */
148 e_dbg("Clearing RAR[1-%u]\n", rar_count - 1);
149 for (i = 1; i < rar_count; i++)
150 hw->mac.ops.rar_set(hw, mac_addr, i);
151 }
152
153 /**
154 * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
155 * @hw: pointer to the HW structure
156 *
157 * Checks the nvm for an alternate MAC address. An alternate MAC address
158 * can be setup by pre-boot software and must be treated like a permanent
159 * address and must override the actual permanent MAC address. If an
160 * alternate MAC address is found it is programmed into RAR0, replacing
161 * the permanent address that was installed into RAR0 by the Si on reset.
162 * This function will return SUCCESS unless it encounters an error while
163 * reading the EEPROM.
164 **/
e1000_check_alt_mac_addr_generic(struct e1000_hw * hw)165 s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
166 {
167 u32 i;
168 s32 ret_val;
169 u16 offset, nvm_alt_mac_addr_offset, nvm_data;
170 u8 alt_mac_addr[ETH_ALEN];
171
172 ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
173 if (ret_val)
174 return ret_val;
175
176 /* not supported on 82573 */
177 if (hw->mac.type == e1000_82573)
178 return 0;
179
180 ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
181 &nvm_alt_mac_addr_offset);
182 if (ret_val) {
183 e_dbg("NVM Read Error\n");
184 return ret_val;
185 }
186
187 if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
188 (nvm_alt_mac_addr_offset == 0x0000))
189 /* There is no Alternate MAC Address */
190 return 0;
191
192 if (hw->bus.func == E1000_FUNC_1)
193 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
194 for (i = 0; i < ETH_ALEN; i += 2) {
195 offset = nvm_alt_mac_addr_offset + (i >> 1);
196 ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
197 if (ret_val) {
198 e_dbg("NVM Read Error\n");
199 return ret_val;
200 }
201
202 alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
203 alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
204 }
205
206 /* if multicast bit is set, the alternate address will not be used */
207 if (is_multicast_ether_addr(alt_mac_addr)) {
208 e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
209 return 0;
210 }
211
212 /* We have a valid alternate MAC address, and we want to treat it the
213 * same as the normal permanent MAC address stored by the HW into the
214 * RAR. Do this by mapping this address into RAR0.
215 */
216 hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
217
218 return 0;
219 }
220
221 /**
222 * e1000e_rar_set_generic - Set receive address register
223 * @hw: pointer to the HW structure
224 * @addr: pointer to the receive address
225 * @index: receive address array register
226 *
227 * Sets the receive address array register at index to the address passed
228 * in by addr.
229 **/
e1000e_rar_set_generic(struct e1000_hw * hw,u8 * addr,u32 index)230 void e1000e_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
231 {
232 u32 rar_low, rar_high;
233
234 /* HW expects these in little endian so we reverse the byte order
235 * from network order (big endian) to little endian
236 */
237 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
238 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
239
240 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
241
242 /* If MAC address zero, no need to set the AV bit */
243 if (rar_low || rar_high)
244 rar_high |= E1000_RAH_AV;
245
246 /* Some bridges will combine consecutive 32-bit writes into
247 * a single burst write, which will malfunction on some parts.
248 * The flushes avoid this.
249 */
250 ew32(RAL(index), rar_low);
251 e1e_flush();
252 ew32(RAH(index), rar_high);
253 e1e_flush();
254 }
255
256 /**
257 * e1000_hash_mc_addr - Generate a multicast hash value
258 * @hw: pointer to the HW structure
259 * @mc_addr: pointer to a multicast address
260 *
261 * Generates a multicast address hash value which is used to determine
262 * the multicast filter table array address and new table value.
263 **/
e1000_hash_mc_addr(struct e1000_hw * hw,u8 * mc_addr)264 static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
265 {
266 u32 hash_value, hash_mask;
267 u8 bit_shift = 0;
268
269 /* Register count multiplied by bits per register */
270 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
271
272 /* For a mc_filter_type of 0, bit_shift is the number of left-shifts
273 * where 0xFF would still fall within the hash mask.
274 */
275 while (hash_mask >> bit_shift != 0xFF)
276 bit_shift++;
277
278 /* The portion of the address that is used for the hash table
279 * is determined by the mc_filter_type setting.
280 * The algorithm is such that there is a total of 8 bits of shifting.
281 * The bit_shift for a mc_filter_type of 0 represents the number of
282 * left-shifts where the MSB of mc_addr[5] would still fall within
283 * the hash_mask. Case 0 does this exactly. Since there are a total
284 * of 8 bits of shifting, then mc_addr[4] will shift right the
285 * remaining number of bits. Thus 8 - bit_shift. The rest of the
286 * cases are a variation of this algorithm...essentially raising the
287 * number of bits to shift mc_addr[5] left, while still keeping the
288 * 8-bit shifting total.
289 *
290 * For example, given the following Destination MAC Address and an
291 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
292 * we can see that the bit_shift for case 0 is 4. These are the hash
293 * values resulting from each mc_filter_type...
294 * [0] [1] [2] [3] [4] [5]
295 * 01 AA 00 12 34 56
296 * LSB MSB
297 *
298 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
299 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
300 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
301 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
302 */
303 switch (hw->mac.mc_filter_type) {
304 default:
305 case 0:
306 break;
307 case 1:
308 bit_shift += 1;
309 break;
310 case 2:
311 bit_shift += 2;
312 break;
313 case 3:
314 bit_shift += 4;
315 break;
316 }
317
318 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
319 (((u16)mc_addr[5]) << bit_shift)));
320
321 return hash_value;
322 }
323
324 /**
325 * e1000e_update_mc_addr_list_generic - Update Multicast addresses
326 * @hw: pointer to the HW structure
327 * @mc_addr_list: array of multicast addresses to program
328 * @mc_addr_count: number of multicast addresses to program
329 *
330 * Updates entire Multicast Table Array.
331 * The caller must have a packed mc_addr_list of multicast addresses.
332 **/
e1000e_update_mc_addr_list_generic(struct e1000_hw * hw,u8 * mc_addr_list,u32 mc_addr_count)333 void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
334 u8 *mc_addr_list, u32 mc_addr_count)
335 {
336 u32 hash_value, hash_bit, hash_reg;
337 int i;
338
339 /* clear mta_shadow */
340 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
341
342 /* update mta_shadow from mc_addr_list */
343 for (i = 0; (u32)i < mc_addr_count; i++) {
344 hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
345
346 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
347 hash_bit = hash_value & 0x1F;
348
349 hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
350 mc_addr_list += (ETH_ALEN);
351 }
352
353 /* replace the entire MTA table */
354 for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
355 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
356 e1e_flush();
357 }
358
359 /**
360 * e1000e_clear_hw_cntrs_base - Clear base hardware counters
361 * @hw: pointer to the HW structure
362 *
363 * Clears the base hardware counters by reading the counter registers.
364 **/
e1000e_clear_hw_cntrs_base(struct e1000_hw * hw)365 void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
366 {
367 er32(CRCERRS);
368 er32(SYMERRS);
369 er32(MPC);
370 er32(SCC);
371 er32(ECOL);
372 er32(MCC);
373 er32(LATECOL);
374 er32(COLC);
375 er32(DC);
376 er32(SEC);
377 er32(RLEC);
378 er32(XONRXC);
379 er32(XONTXC);
380 er32(XOFFRXC);
381 er32(XOFFTXC);
382 er32(FCRUC);
383 er32(GPRC);
384 er32(BPRC);
385 er32(MPRC);
386 er32(GPTC);
387 er32(GORCL);
388 er32(GORCH);
389 er32(GOTCL);
390 er32(GOTCH);
391 er32(RNBC);
392 er32(RUC);
393 er32(RFC);
394 er32(ROC);
395 er32(RJC);
396 er32(TORL);
397 er32(TORH);
398 er32(TOTL);
399 er32(TOTH);
400 er32(TPR);
401 er32(TPT);
402 er32(MPTC);
403 er32(BPTC);
404 }
405
406 /**
407 * e1000e_check_for_copper_link - Check for link (Copper)
408 * @hw: pointer to the HW structure
409 *
410 * Checks to see of the link status of the hardware has changed. If a
411 * change in link status has been detected, then we read the PHY registers
412 * to get the current speed/duplex if link exists.
413 **/
e1000e_check_for_copper_link(struct e1000_hw * hw)414 s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
415 {
416 struct e1000_mac_info *mac = &hw->mac;
417 s32 ret_val;
418 bool link;
419
420 /* We only want to go out to the PHY registers to see if Auto-Neg
421 * has completed and/or if our link status has changed. The
422 * get_link_status flag is set upon receiving a Link Status
423 * Change or Rx Sequence Error interrupt.
424 */
425 if (!mac->get_link_status)
426 return 0;
427
428 /* First we want to see if the MII Status Register reports
429 * link. If so, then we want to get the current speed/duplex
430 * of the PHY.
431 */
432 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
433 if (ret_val)
434 return ret_val;
435
436 if (!link)
437 return 0; /* No link detected */
438
439 mac->get_link_status = false;
440
441 /* Check if there was DownShift, must be checked
442 * immediately after link-up
443 */
444 e1000e_check_downshift(hw);
445
446 /* If we are forcing speed/duplex, then we simply return since
447 * we have already determined whether we have link or not.
448 */
449 if (!mac->autoneg)
450 return -E1000_ERR_CONFIG;
451
452 /* Auto-Neg is enabled. Auto Speed Detection takes care
453 * of MAC speed/duplex configuration. So we only need to
454 * configure Collision Distance in the MAC.
455 */
456 mac->ops.config_collision_dist(hw);
457
458 /* Configure Flow Control now that Auto-Neg has completed.
459 * First, we need to restore the desired flow control
460 * settings because we may have had to re-autoneg with a
461 * different link partner.
462 */
463 ret_val = e1000e_config_fc_after_link_up(hw);
464 if (ret_val)
465 e_dbg("Error configuring flow control\n");
466
467 return ret_val;
468 }
469
470 /**
471 * e1000e_check_for_fiber_link - Check for link (Fiber)
472 * @hw: pointer to the HW structure
473 *
474 * Checks for link up on the hardware. If link is not up and we have
475 * a signal, then we need to force link up.
476 **/
e1000e_check_for_fiber_link(struct e1000_hw * hw)477 s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
478 {
479 struct e1000_mac_info *mac = &hw->mac;
480 u32 rxcw;
481 u32 ctrl;
482 u32 status;
483 s32 ret_val;
484
485 ctrl = er32(CTRL);
486 status = er32(STATUS);
487 rxcw = er32(RXCW);
488
489 /* If we don't have link (auto-negotiation failed or link partner
490 * cannot auto-negotiate), the cable is plugged in (we have signal),
491 * and our link partner is not trying to auto-negotiate with us (we
492 * are receiving idles or data), we need to force link up. We also
493 * need to give auto-negotiation time to complete, in case the cable
494 * was just plugged in. The autoneg_failed flag does this.
495 */
496 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
497 if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
498 !(rxcw & E1000_RXCW_C)) {
499 if (!mac->autoneg_failed) {
500 mac->autoneg_failed = true;
501 return 0;
502 }
503 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
504
505 /* Disable auto-negotiation in the TXCW register */
506 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
507
508 /* Force link-up and also force full-duplex. */
509 ctrl = er32(CTRL);
510 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
511 ew32(CTRL, ctrl);
512
513 /* Configure Flow Control after forcing link up. */
514 ret_val = e1000e_config_fc_after_link_up(hw);
515 if (ret_val) {
516 e_dbg("Error configuring flow control\n");
517 return ret_val;
518 }
519 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
520 /* If we are forcing link and we are receiving /C/ ordered
521 * sets, re-enable auto-negotiation in the TXCW register
522 * and disable forced link in the Device Control register
523 * in an attempt to auto-negotiate with our link partner.
524 */
525 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
526 ew32(TXCW, mac->txcw);
527 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
528
529 mac->serdes_has_link = true;
530 }
531
532 return 0;
533 }
534
535 /**
536 * e1000e_check_for_serdes_link - Check for link (Serdes)
537 * @hw: pointer to the HW structure
538 *
539 * Checks for link up on the hardware. If link is not up and we have
540 * a signal, then we need to force link up.
541 **/
e1000e_check_for_serdes_link(struct e1000_hw * hw)542 s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
543 {
544 struct e1000_mac_info *mac = &hw->mac;
545 u32 rxcw;
546 u32 ctrl;
547 u32 status;
548 s32 ret_val;
549
550 ctrl = er32(CTRL);
551 status = er32(STATUS);
552 rxcw = er32(RXCW);
553
554 /* If we don't have link (auto-negotiation failed or link partner
555 * cannot auto-negotiate), and our link partner is not trying to
556 * auto-negotiate with us (we are receiving idles or data),
557 * we need to force link up. We also need to give auto-negotiation
558 * time to complete.
559 */
560 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
561 if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
562 if (!mac->autoneg_failed) {
563 mac->autoneg_failed = true;
564 return 0;
565 }
566 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
567
568 /* Disable auto-negotiation in the TXCW register */
569 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
570
571 /* Force link-up and also force full-duplex. */
572 ctrl = er32(CTRL);
573 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
574 ew32(CTRL, ctrl);
575
576 /* Configure Flow Control after forcing link up. */
577 ret_val = e1000e_config_fc_after_link_up(hw);
578 if (ret_val) {
579 e_dbg("Error configuring flow control\n");
580 return ret_val;
581 }
582 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
583 /* If we are forcing link and we are receiving /C/ ordered
584 * sets, re-enable auto-negotiation in the TXCW register
585 * and disable forced link in the Device Control register
586 * in an attempt to auto-negotiate with our link partner.
587 */
588 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
589 ew32(TXCW, mac->txcw);
590 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
591
592 mac->serdes_has_link = true;
593 } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
594 /* If we force link for non-auto-negotiation switch, check
595 * link status based on MAC synchronization for internal
596 * serdes media type.
597 */
598 /* SYNCH bit and IV bit are sticky. */
599 usleep_range(10, 20);
600 rxcw = er32(RXCW);
601 if (rxcw & E1000_RXCW_SYNCH) {
602 if (!(rxcw & E1000_RXCW_IV)) {
603 mac->serdes_has_link = true;
604 e_dbg("SERDES: Link up - forced.\n");
605 }
606 } else {
607 mac->serdes_has_link = false;
608 e_dbg("SERDES: Link down - force failed.\n");
609 }
610 }
611
612 if (E1000_TXCW_ANE & er32(TXCW)) {
613 status = er32(STATUS);
614 if (status & E1000_STATUS_LU) {
615 /* SYNCH bit and IV bit are sticky, so reread rxcw. */
616 usleep_range(10, 20);
617 rxcw = er32(RXCW);
618 if (rxcw & E1000_RXCW_SYNCH) {
619 if (!(rxcw & E1000_RXCW_IV)) {
620 mac->serdes_has_link = true;
621 e_dbg("SERDES: Link up - autoneg completed successfully.\n");
622 } else {
623 mac->serdes_has_link = false;
624 e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n");
625 }
626 } else {
627 mac->serdes_has_link = false;
628 e_dbg("SERDES: Link down - no sync.\n");
629 }
630 } else {
631 mac->serdes_has_link = false;
632 e_dbg("SERDES: Link down - autoneg failed\n");
633 }
634 }
635
636 return 0;
637 }
638
639 /**
640 * e1000_set_default_fc_generic - Set flow control default values
641 * @hw: pointer to the HW structure
642 *
643 * Read the EEPROM for the default values for flow control and store the
644 * values.
645 **/
e1000_set_default_fc_generic(struct e1000_hw * hw)646 static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
647 {
648 s32 ret_val;
649 u16 nvm_data;
650
651 /* Read and store word 0x0F of the EEPROM. This word contains bits
652 * that determine the hardware's default PAUSE (flow control) mode,
653 * a bit that determines whether the HW defaults to enabling or
654 * disabling auto-negotiation, and the direction of the
655 * SW defined pins. If there is no SW over-ride of the flow
656 * control setting, then the variable hw->fc will
657 * be initialized based on a value in the EEPROM.
658 */
659 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
660
661 if (ret_val) {
662 e_dbg("NVM Read Error\n");
663 return ret_val;
664 }
665
666 if (!(nvm_data & NVM_WORD0F_PAUSE_MASK))
667 hw->fc.requested_mode = e1000_fc_none;
668 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
669 hw->fc.requested_mode = e1000_fc_tx_pause;
670 else
671 hw->fc.requested_mode = e1000_fc_full;
672
673 return 0;
674 }
675
676 /**
677 * e1000e_setup_link_generic - Setup flow control and link settings
678 * @hw: pointer to the HW structure
679 *
680 * Determines which flow control settings to use, then configures flow
681 * control. Calls the appropriate media-specific link configuration
682 * function. Assuming the adapter has a valid link partner, a valid link
683 * should be established. Assumes the hardware has previously been reset
684 * and the transmitter and receiver are not enabled.
685 **/
e1000e_setup_link_generic(struct e1000_hw * hw)686 s32 e1000e_setup_link_generic(struct e1000_hw *hw)
687 {
688 s32 ret_val;
689
690 /* In the case of the phy reset being blocked, we already have a link.
691 * We do not need to set it up again.
692 */
693 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
694 return 0;
695
696 /* If requested flow control is set to default, set flow control
697 * based on the EEPROM flow control settings.
698 */
699 if (hw->fc.requested_mode == e1000_fc_default) {
700 ret_val = e1000_set_default_fc_generic(hw);
701 if (ret_val)
702 return ret_val;
703 }
704
705 /* Save off the requested flow control mode for use later. Depending
706 * on the link partner's capabilities, we may or may not use this mode.
707 */
708 hw->fc.current_mode = hw->fc.requested_mode;
709
710 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
711
712 /* Call the necessary media_type subroutine to configure the link. */
713 ret_val = hw->mac.ops.setup_physical_interface(hw);
714 if (ret_val)
715 return ret_val;
716
717 /* Initialize the flow control address, type, and PAUSE timer
718 * registers to their default values. This is done even if flow
719 * control is disabled, because it does not hurt anything to
720 * initialize these registers.
721 */
722 e_dbg("Initializing the Flow Control address, type and timer regs\n");
723 ew32(FCT, FLOW_CONTROL_TYPE);
724 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
725 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
726
727 ew32(FCTTV, hw->fc.pause_time);
728
729 return e1000e_set_fc_watermarks(hw);
730 }
731
732 /**
733 * e1000_commit_fc_settings_generic - Configure flow control
734 * @hw: pointer to the HW structure
735 *
736 * Write the flow control settings to the Transmit Config Word Register (TXCW)
737 * base on the flow control settings in e1000_mac_info.
738 **/
e1000_commit_fc_settings_generic(struct e1000_hw * hw)739 static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
740 {
741 struct e1000_mac_info *mac = &hw->mac;
742 u32 txcw;
743
744 /* Check for a software override of the flow control settings, and
745 * setup the device accordingly. If auto-negotiation is enabled, then
746 * software will have to set the "PAUSE" bits to the correct value in
747 * the Transmit Config Word Register (TXCW) and re-start auto-
748 * negotiation. However, if auto-negotiation is disabled, then
749 * software will have to manually configure the two flow control enable
750 * bits in the CTRL register.
751 *
752 * The possible values of the "fc" parameter are:
753 * 0: Flow control is completely disabled
754 * 1: Rx flow control is enabled (we can receive pause frames,
755 * but not send pause frames).
756 * 2: Tx flow control is enabled (we can send pause frames but we
757 * do not support receiving pause frames).
758 * 3: Both Rx and Tx flow control (symmetric) are enabled.
759 */
760 switch (hw->fc.current_mode) {
761 case e1000_fc_none:
762 /* Flow control completely disabled by a software over-ride. */
763 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
764 break;
765 case e1000_fc_rx_pause:
766 /* Rx Flow control is enabled and Tx Flow control is disabled
767 * by a software over-ride. Since there really isn't a way to
768 * advertise that we are capable of Rx Pause ONLY, we will
769 * advertise that we support both symmetric and asymmetric Rx
770 * PAUSE. Later, we will disable the adapter's ability to send
771 * PAUSE frames.
772 */
773 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
774 break;
775 case e1000_fc_tx_pause:
776 /* Tx Flow control is enabled, and Rx Flow control is disabled,
777 * by a software over-ride.
778 */
779 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
780 break;
781 case e1000_fc_full:
782 /* Flow control (both Rx and Tx) is enabled by a software
783 * over-ride.
784 */
785 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
786 break;
787 default:
788 e_dbg("Flow control param set incorrectly\n");
789 return -E1000_ERR_CONFIG;
790 break;
791 }
792
793 ew32(TXCW, txcw);
794 mac->txcw = txcw;
795
796 return 0;
797 }
798
799 /**
800 * e1000_poll_fiber_serdes_link_generic - Poll for link up
801 * @hw: pointer to the HW structure
802 *
803 * Polls for link up by reading the status register, if link fails to come
804 * up with auto-negotiation, then the link is forced if a signal is detected.
805 **/
e1000_poll_fiber_serdes_link_generic(struct e1000_hw * hw)806 static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
807 {
808 struct e1000_mac_info *mac = &hw->mac;
809 u32 i, status;
810 s32 ret_val;
811
812 /* If we have a signal (the cable is plugged in, or assumed true for
813 * serdes media) then poll for a "Link-Up" indication in the Device
814 * Status Register. Time-out if a link isn't seen in 500 milliseconds
815 * seconds (Auto-negotiation should complete in less than 500
816 * milliseconds even if the other end is doing it in SW).
817 */
818 for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
819 usleep_range(10000, 20000);
820 status = er32(STATUS);
821 if (status & E1000_STATUS_LU)
822 break;
823 }
824 if (i == FIBER_LINK_UP_LIMIT) {
825 e_dbg("Never got a valid link from auto-neg!!!\n");
826 mac->autoneg_failed = true;
827 /* AutoNeg failed to achieve a link, so we'll call
828 * mac->check_for_link. This routine will force the
829 * link up if we detect a signal. This will allow us to
830 * communicate with non-autonegotiating link partners.
831 */
832 ret_val = mac->ops.check_for_link(hw);
833 if (ret_val) {
834 e_dbg("Error while checking for link\n");
835 return ret_val;
836 }
837 mac->autoneg_failed = false;
838 } else {
839 mac->autoneg_failed = false;
840 e_dbg("Valid Link Found\n");
841 }
842
843 return 0;
844 }
845
846 /**
847 * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
848 * @hw: pointer to the HW structure
849 *
850 * Configures collision distance and flow control for fiber and serdes
851 * links. Upon successful setup, poll for link.
852 **/
e1000e_setup_fiber_serdes_link(struct e1000_hw * hw)853 s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
854 {
855 u32 ctrl;
856 s32 ret_val;
857
858 ctrl = er32(CTRL);
859
860 /* Take the link out of reset */
861 ctrl &= ~E1000_CTRL_LRST;
862
863 hw->mac.ops.config_collision_dist(hw);
864
865 ret_val = e1000_commit_fc_settings_generic(hw);
866 if (ret_val)
867 return ret_val;
868
869 /* Since auto-negotiation is enabled, take the link out of reset (the
870 * link will be in reset, because we previously reset the chip). This
871 * will restart auto-negotiation. If auto-negotiation is successful
872 * then the link-up status bit will be set and the flow control enable
873 * bits (RFCE and TFCE) will be set according to their negotiated value.
874 */
875 e_dbg("Auto-negotiation enabled\n");
876
877 ew32(CTRL, ctrl);
878 e1e_flush();
879 usleep_range(1000, 2000);
880
881 /* For these adapters, the SW definable pin 1 is set when the optics
882 * detect a signal. If we have a signal, then poll for a "Link-Up"
883 * indication.
884 */
885 if (hw->phy.media_type == e1000_media_type_internal_serdes ||
886 (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
887 ret_val = e1000_poll_fiber_serdes_link_generic(hw);
888 } else {
889 e_dbg("No signal detected\n");
890 }
891
892 return ret_val;
893 }
894
895 /**
896 * e1000e_config_collision_dist_generic - Configure collision distance
897 * @hw: pointer to the HW structure
898 *
899 * Configures the collision distance to the default value and is used
900 * during link setup.
901 **/
e1000e_config_collision_dist_generic(struct e1000_hw * hw)902 void e1000e_config_collision_dist_generic(struct e1000_hw *hw)
903 {
904 u32 tctl;
905
906 tctl = er32(TCTL);
907
908 tctl &= ~E1000_TCTL_COLD;
909 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
910
911 ew32(TCTL, tctl);
912 e1e_flush();
913 }
914
915 /**
916 * e1000e_set_fc_watermarks - Set flow control high/low watermarks
917 * @hw: pointer to the HW structure
918 *
919 * Sets the flow control high/low threshold (watermark) registers. If
920 * flow control XON frame transmission is enabled, then set XON frame
921 * transmission as well.
922 **/
e1000e_set_fc_watermarks(struct e1000_hw * hw)923 s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
924 {
925 u32 fcrtl = 0, fcrth = 0;
926
927 /* Set the flow control receive threshold registers. Normally,
928 * these registers will be set to a default threshold that may be
929 * adjusted later by the driver's runtime code. However, if the
930 * ability to transmit pause frames is not enabled, then these
931 * registers will be set to 0.
932 */
933 if (hw->fc.current_mode & e1000_fc_tx_pause) {
934 /* We need to set up the Receive Threshold high and low water
935 * marks as well as (optionally) enabling the transmission of
936 * XON frames.
937 */
938 fcrtl = hw->fc.low_water;
939 if (hw->fc.send_xon)
940 fcrtl |= E1000_FCRTL_XONE;
941
942 fcrth = hw->fc.high_water;
943 }
944 ew32(FCRTL, fcrtl);
945 ew32(FCRTH, fcrth);
946
947 return 0;
948 }
949
950 /**
951 * e1000e_force_mac_fc - Force the MAC's flow control settings
952 * @hw: pointer to the HW structure
953 *
954 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
955 * device control register to reflect the adapter settings. TFCE and RFCE
956 * need to be explicitly set by software when a copper PHY is used because
957 * autonegotiation is managed by the PHY rather than the MAC. Software must
958 * also configure these bits when link is forced on a fiber connection.
959 **/
e1000e_force_mac_fc(struct e1000_hw * hw)960 s32 e1000e_force_mac_fc(struct e1000_hw *hw)
961 {
962 u32 ctrl;
963
964 ctrl = er32(CTRL);
965
966 /* Because we didn't get link via the internal auto-negotiation
967 * mechanism (we either forced link or we got link via PHY
968 * auto-neg), we have to manually enable/disable transmit an
969 * receive flow control.
970 *
971 * The "Case" statement below enables/disable flow control
972 * according to the "hw->fc.current_mode" parameter.
973 *
974 * The possible values of the "fc" parameter are:
975 * 0: Flow control is completely disabled
976 * 1: Rx flow control is enabled (we can receive pause
977 * frames but not send pause frames).
978 * 2: Tx flow control is enabled (we can send pause frames
979 * frames but we do not receive pause frames).
980 * 3: Both Rx and Tx flow control (symmetric) is enabled.
981 * other: No other values should be possible at this point.
982 */
983 e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
984
985 switch (hw->fc.current_mode) {
986 case e1000_fc_none:
987 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
988 break;
989 case e1000_fc_rx_pause:
990 ctrl &= (~E1000_CTRL_TFCE);
991 ctrl |= E1000_CTRL_RFCE;
992 break;
993 case e1000_fc_tx_pause:
994 ctrl &= (~E1000_CTRL_RFCE);
995 ctrl |= E1000_CTRL_TFCE;
996 break;
997 case e1000_fc_full:
998 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
999 break;
1000 default:
1001 e_dbg("Flow control param set incorrectly\n");
1002 return -E1000_ERR_CONFIG;
1003 }
1004
1005 ew32(CTRL, ctrl);
1006
1007 return 0;
1008 }
1009
1010 /**
1011 * e1000e_config_fc_after_link_up - Configures flow control after link
1012 * @hw: pointer to the HW structure
1013 *
1014 * Checks the status of auto-negotiation after link up to ensure that the
1015 * speed and duplex were not forced. If the link needed to be forced, then
1016 * flow control needs to be forced also. If auto-negotiation is enabled
1017 * and did not fail, then we configure flow control based on our link
1018 * partner.
1019 **/
e1000e_config_fc_after_link_up(struct e1000_hw * hw)1020 s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
1021 {
1022 struct e1000_mac_info *mac = &hw->mac;
1023 s32 ret_val = 0;
1024 u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
1025 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1026 u16 speed, duplex;
1027
1028 /* Check for the case where we have fiber media and auto-neg failed
1029 * so we had to force link. In this case, we need to force the
1030 * configuration of the MAC to match the "fc" parameter.
1031 */
1032 if (mac->autoneg_failed) {
1033 if (hw->phy.media_type == e1000_media_type_fiber ||
1034 hw->phy.media_type == e1000_media_type_internal_serdes)
1035 ret_val = e1000e_force_mac_fc(hw);
1036 } else {
1037 if (hw->phy.media_type == e1000_media_type_copper)
1038 ret_val = e1000e_force_mac_fc(hw);
1039 }
1040
1041 if (ret_val) {
1042 e_dbg("Error forcing flow control settings\n");
1043 return ret_val;
1044 }
1045
1046 /* Check for the case where we have copper media and auto-neg is
1047 * enabled. In this case, we need to check and see if Auto-Neg
1048 * has completed, and if so, how the PHY and link partner has
1049 * flow control configured.
1050 */
1051 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1052 /* Read the MII Status Register and check to see if AutoNeg
1053 * has completed. We read this twice because this reg has
1054 * some "sticky" (latched) bits.
1055 */
1056 ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1057 if (ret_val)
1058 return ret_val;
1059 ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1060 if (ret_val)
1061 return ret_val;
1062
1063 if (!(mii_status_reg & BMSR_ANEGCOMPLETE)) {
1064 e_dbg("Copper PHY and Auto Neg has not completed.\n");
1065 return ret_val;
1066 }
1067
1068 /* The AutoNeg process has completed, so we now need to
1069 * read both the Auto Negotiation Advertisement
1070 * Register (Address 4) and the Auto_Negotiation Base
1071 * Page Ability Register (Address 5) to determine how
1072 * flow control was negotiated.
1073 */
1074 ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_nway_adv_reg);
1075 if (ret_val)
1076 return ret_val;
1077 ret_val = e1e_rphy(hw, MII_LPA, &mii_nway_lp_ability_reg);
1078 if (ret_val)
1079 return ret_val;
1080
1081 /* Two bits in the Auto Negotiation Advertisement Register
1082 * (Address 4) and two bits in the Auto Negotiation Base
1083 * Page Ability Register (Address 5) determine flow control
1084 * for both the PHY and the link partner. The following
1085 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1086 * 1999, describes these PAUSE resolution bits and how flow
1087 * control is determined based upon these settings.
1088 * NOTE: DC = Don't Care
1089 *
1090 * LOCAL DEVICE | LINK PARTNER
1091 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1092 *-------|---------|-------|---------|--------------------
1093 * 0 | 0 | DC | DC | e1000_fc_none
1094 * 0 | 1 | 0 | DC | e1000_fc_none
1095 * 0 | 1 | 1 | 0 | e1000_fc_none
1096 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1097 * 1 | 0 | 0 | DC | e1000_fc_none
1098 * 1 | DC | 1 | DC | e1000_fc_full
1099 * 1 | 1 | 0 | 0 | e1000_fc_none
1100 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1101 *
1102 * Are both PAUSE bits set to 1? If so, this implies
1103 * Symmetric Flow Control is enabled at both ends. The
1104 * ASM_DIR bits are irrelevant per the spec.
1105 *
1106 * For Symmetric Flow Control:
1107 *
1108 * LOCAL DEVICE | LINK PARTNER
1109 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1110 *-------|---------|-------|---------|--------------------
1111 * 1 | DC | 1 | DC | E1000_fc_full
1112 *
1113 */
1114 if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1115 (mii_nway_lp_ability_reg & LPA_PAUSE_CAP)) {
1116 /* Now we need to check if the user selected Rx ONLY
1117 * of pause frames. In this case, we had to advertise
1118 * FULL flow control because we could not advertise Rx
1119 * ONLY. Hence, we must now check to see if we need to
1120 * turn OFF the TRANSMISSION of PAUSE frames.
1121 */
1122 if (hw->fc.requested_mode == e1000_fc_full) {
1123 hw->fc.current_mode = e1000_fc_full;
1124 e_dbg("Flow Control = FULL.\n");
1125 } else {
1126 hw->fc.current_mode = e1000_fc_rx_pause;
1127 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1128 }
1129 }
1130 /* For receiving PAUSE frames ONLY.
1131 *
1132 * LOCAL DEVICE | LINK PARTNER
1133 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1134 *-------|---------|-------|---------|--------------------
1135 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1136 */
1137 else if (!(mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1138 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
1139 (mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
1140 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1141 hw->fc.current_mode = e1000_fc_tx_pause;
1142 e_dbg("Flow Control = Tx PAUSE frames only.\n");
1143 }
1144 /* For transmitting PAUSE frames ONLY.
1145 *
1146 * LOCAL DEVICE | LINK PARTNER
1147 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1148 *-------|---------|-------|---------|--------------------
1149 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1150 */
1151 else if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1152 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
1153 !(mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
1154 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1155 hw->fc.current_mode = e1000_fc_rx_pause;
1156 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1157 } else {
1158 /* Per the IEEE spec, at this point flow control
1159 * should be disabled.
1160 */
1161 hw->fc.current_mode = e1000_fc_none;
1162 e_dbg("Flow Control = NONE.\n");
1163 }
1164
1165 /* Now we need to do one last check... If we auto-
1166 * negotiated to HALF DUPLEX, flow control should not be
1167 * enabled per IEEE 802.3 spec.
1168 */
1169 ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1170 if (ret_val) {
1171 e_dbg("Error getting link speed and duplex\n");
1172 return ret_val;
1173 }
1174
1175 if (duplex == HALF_DUPLEX)
1176 hw->fc.current_mode = e1000_fc_none;
1177
1178 /* Now we call a subroutine to actually force the MAC
1179 * controller to use the correct flow control settings.
1180 */
1181 ret_val = e1000e_force_mac_fc(hw);
1182 if (ret_val) {
1183 e_dbg("Error forcing flow control settings\n");
1184 return ret_val;
1185 }
1186 }
1187
1188 /* Check for the case where we have SerDes media and auto-neg is
1189 * enabled. In this case, we need to check and see if Auto-Neg
1190 * has completed, and if so, how the PHY and link partner has
1191 * flow control configured.
1192 */
1193 if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
1194 mac->autoneg) {
1195 /* Read the PCS_LSTS and check to see if AutoNeg
1196 * has completed.
1197 */
1198 pcs_status_reg = er32(PCS_LSTAT);
1199
1200 if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1201 e_dbg("PCS Auto Neg has not completed.\n");
1202 return ret_val;
1203 }
1204
1205 /* The AutoNeg process has completed, so we now need to
1206 * read both the Auto Negotiation Advertisement
1207 * Register (PCS_ANADV) and the Auto_Negotiation Base
1208 * Page Ability Register (PCS_LPAB) to determine how
1209 * flow control was negotiated.
1210 */
1211 pcs_adv_reg = er32(PCS_ANADV);
1212 pcs_lp_ability_reg = er32(PCS_LPAB);
1213
1214 /* Two bits in the Auto Negotiation Advertisement Register
1215 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1216 * Page Ability Register (PCS_LPAB) determine flow control
1217 * for both the PHY and the link partner. The following
1218 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1219 * 1999, describes these PAUSE resolution bits and how flow
1220 * control is determined based upon these settings.
1221 * NOTE: DC = Don't Care
1222 *
1223 * LOCAL DEVICE | LINK PARTNER
1224 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1225 *-------|---------|-------|---------|--------------------
1226 * 0 | 0 | DC | DC | e1000_fc_none
1227 * 0 | 1 | 0 | DC | e1000_fc_none
1228 * 0 | 1 | 1 | 0 | e1000_fc_none
1229 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1230 * 1 | 0 | 0 | DC | e1000_fc_none
1231 * 1 | DC | 1 | DC | e1000_fc_full
1232 * 1 | 1 | 0 | 0 | e1000_fc_none
1233 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1234 *
1235 * Are both PAUSE bits set to 1? If so, this implies
1236 * Symmetric Flow Control is enabled at both ends. The
1237 * ASM_DIR bits are irrelevant per the spec.
1238 *
1239 * For Symmetric Flow Control:
1240 *
1241 * LOCAL DEVICE | LINK PARTNER
1242 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1243 *-------|---------|-------|---------|--------------------
1244 * 1 | DC | 1 | DC | e1000_fc_full
1245 *
1246 */
1247 if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1248 (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1249 /* Now we need to check if the user selected Rx ONLY
1250 * of pause frames. In this case, we had to advertise
1251 * FULL flow control because we could not advertise Rx
1252 * ONLY. Hence, we must now check to see if we need to
1253 * turn OFF the TRANSMISSION of PAUSE frames.
1254 */
1255 if (hw->fc.requested_mode == e1000_fc_full) {
1256 hw->fc.current_mode = e1000_fc_full;
1257 e_dbg("Flow Control = FULL.\n");
1258 } else {
1259 hw->fc.current_mode = e1000_fc_rx_pause;
1260 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1261 }
1262 }
1263 /* For receiving PAUSE frames ONLY.
1264 *
1265 * LOCAL DEVICE | LINK PARTNER
1266 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1267 *-------|---------|-------|---------|--------------------
1268 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1269 */
1270 else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1271 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1272 (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1273 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1274 hw->fc.current_mode = e1000_fc_tx_pause;
1275 e_dbg("Flow Control = Tx PAUSE frames only.\n");
1276 }
1277 /* For transmitting PAUSE frames ONLY.
1278 *
1279 * LOCAL DEVICE | LINK PARTNER
1280 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1281 *-------|---------|-------|---------|--------------------
1282 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1283 */
1284 else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1285 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1286 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1287 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1288 hw->fc.current_mode = e1000_fc_rx_pause;
1289 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1290 } else {
1291 /* Per the IEEE spec, at this point flow control
1292 * should be disabled.
1293 */
1294 hw->fc.current_mode = e1000_fc_none;
1295 e_dbg("Flow Control = NONE.\n");
1296 }
1297
1298 /* Now we call a subroutine to actually force the MAC
1299 * controller to use the correct flow control settings.
1300 */
1301 pcs_ctrl_reg = er32(PCS_LCTL);
1302 pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1303 ew32(PCS_LCTL, pcs_ctrl_reg);
1304
1305 ret_val = e1000e_force_mac_fc(hw);
1306 if (ret_val) {
1307 e_dbg("Error forcing flow control settings\n");
1308 return ret_val;
1309 }
1310 }
1311
1312 return 0;
1313 }
1314
1315 /**
1316 * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1317 * @hw: pointer to the HW structure
1318 * @speed: stores the current speed
1319 * @duplex: stores the current duplex
1320 *
1321 * Read the status register for the current speed/duplex and store the current
1322 * speed and duplex for copper connections.
1323 **/
e1000e_get_speed_and_duplex_copper(struct e1000_hw * hw,u16 * speed,u16 * duplex)1324 s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1325 u16 *duplex)
1326 {
1327 u32 status;
1328
1329 status = er32(STATUS);
1330 if (status & E1000_STATUS_SPEED_1000)
1331 *speed = SPEED_1000;
1332 else if (status & E1000_STATUS_SPEED_100)
1333 *speed = SPEED_100;
1334 else
1335 *speed = SPEED_10;
1336
1337 if (status & E1000_STATUS_FD)
1338 *duplex = FULL_DUPLEX;
1339 else
1340 *duplex = HALF_DUPLEX;
1341
1342 e_dbg("%u Mbps, %s Duplex\n",
1343 *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
1344 *duplex == FULL_DUPLEX ? "Full" : "Half");
1345
1346 return 0;
1347 }
1348
1349 /**
1350 * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1351 * @hw: pointer to the HW structure
1352 * @speed: stores the current speed
1353 * @duplex: stores the current duplex
1354 *
1355 * Sets the speed and duplex to gigabit full duplex (the only possible option)
1356 * for fiber/serdes links.
1357 **/
e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw __always_unused * hw,u16 * speed,u16 * duplex)1358 s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw __always_unused
1359 *hw, u16 *speed, u16 *duplex)
1360 {
1361 *speed = SPEED_1000;
1362 *duplex = FULL_DUPLEX;
1363
1364 return 0;
1365 }
1366
1367 /**
1368 * e1000e_get_hw_semaphore - Acquire hardware semaphore
1369 * @hw: pointer to the HW structure
1370 *
1371 * Acquire the HW semaphore to access the PHY or NVM
1372 **/
e1000e_get_hw_semaphore(struct e1000_hw * hw)1373 s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
1374 {
1375 u32 swsm;
1376 s32 timeout = hw->nvm.word_size + 1;
1377 s32 i = 0;
1378
1379 /* Get the SW semaphore */
1380 while (i < timeout) {
1381 swsm = er32(SWSM);
1382 if (!(swsm & E1000_SWSM_SMBI))
1383 break;
1384
1385 usleep_range(50, 100);
1386 i++;
1387 }
1388
1389 if (i == timeout) {
1390 e_dbg("Driver can't access device - SMBI bit is set.\n");
1391 return -E1000_ERR_NVM;
1392 }
1393
1394 /* Get the FW semaphore. */
1395 for (i = 0; i < timeout; i++) {
1396 swsm = er32(SWSM);
1397 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
1398
1399 /* Semaphore acquired if bit latched */
1400 if (er32(SWSM) & E1000_SWSM_SWESMBI)
1401 break;
1402
1403 usleep_range(50, 100);
1404 }
1405
1406 if (i == timeout) {
1407 /* Release semaphores */
1408 e1000e_put_hw_semaphore(hw);
1409 e_dbg("Driver can't access the NVM\n");
1410 return -E1000_ERR_NVM;
1411 }
1412
1413 return 0;
1414 }
1415
1416 /**
1417 * e1000e_put_hw_semaphore - Release hardware semaphore
1418 * @hw: pointer to the HW structure
1419 *
1420 * Release hardware semaphore used to access the PHY or NVM
1421 **/
e1000e_put_hw_semaphore(struct e1000_hw * hw)1422 void e1000e_put_hw_semaphore(struct e1000_hw *hw)
1423 {
1424 u32 swsm;
1425
1426 swsm = er32(SWSM);
1427 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1428 ew32(SWSM, swsm);
1429 }
1430
1431 /**
1432 * e1000e_get_auto_rd_done - Check for auto read completion
1433 * @hw: pointer to the HW structure
1434 *
1435 * Check EEPROM for Auto Read done bit.
1436 **/
e1000e_get_auto_rd_done(struct e1000_hw * hw)1437 s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
1438 {
1439 s32 i = 0;
1440
1441 while (i < AUTO_READ_DONE_TIMEOUT) {
1442 if (er32(EECD) & E1000_EECD_AUTO_RD)
1443 break;
1444 usleep_range(1000, 2000);
1445 i++;
1446 }
1447
1448 if (i == AUTO_READ_DONE_TIMEOUT) {
1449 e_dbg("Auto read by HW from NVM has not completed.\n");
1450 return -E1000_ERR_RESET;
1451 }
1452
1453 return 0;
1454 }
1455
1456 /**
1457 * e1000e_valid_led_default - Verify a valid default LED config
1458 * @hw: pointer to the HW structure
1459 * @data: pointer to the NVM (EEPROM)
1460 *
1461 * Read the EEPROM for the current default LED configuration. If the
1462 * LED configuration is not valid, set to a valid LED configuration.
1463 **/
e1000e_valid_led_default(struct e1000_hw * hw,u16 * data)1464 s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
1465 {
1466 s32 ret_val;
1467
1468 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1469 if (ret_val) {
1470 e_dbg("NVM Read Error\n");
1471 return ret_val;
1472 }
1473
1474 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1475 *data = ID_LED_DEFAULT;
1476
1477 return 0;
1478 }
1479
1480 /**
1481 * e1000e_id_led_init_generic -
1482 * @hw: pointer to the HW structure
1483 *
1484 **/
e1000e_id_led_init_generic(struct e1000_hw * hw)1485 s32 e1000e_id_led_init_generic(struct e1000_hw *hw)
1486 {
1487 struct e1000_mac_info *mac = &hw->mac;
1488 s32 ret_val;
1489 const u32 ledctl_mask = 0x000000FF;
1490 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1491 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1492 u16 data, i, temp;
1493 const u16 led_mask = 0x0F;
1494
1495 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1496 if (ret_val)
1497 return ret_val;
1498
1499 mac->ledctl_default = er32(LEDCTL);
1500 mac->ledctl_mode1 = mac->ledctl_default;
1501 mac->ledctl_mode2 = mac->ledctl_default;
1502
1503 for (i = 0; i < 4; i++) {
1504 temp = (data >> (i << 2)) & led_mask;
1505 switch (temp) {
1506 case ID_LED_ON1_DEF2:
1507 case ID_LED_ON1_ON2:
1508 case ID_LED_ON1_OFF2:
1509 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1510 mac->ledctl_mode1 |= ledctl_on << (i << 3);
1511 break;
1512 case ID_LED_OFF1_DEF2:
1513 case ID_LED_OFF1_ON2:
1514 case ID_LED_OFF1_OFF2:
1515 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1516 mac->ledctl_mode1 |= ledctl_off << (i << 3);
1517 break;
1518 default:
1519 /* Do nothing */
1520 break;
1521 }
1522 switch (temp) {
1523 case ID_LED_DEF1_ON2:
1524 case ID_LED_ON1_ON2:
1525 case ID_LED_OFF1_ON2:
1526 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1527 mac->ledctl_mode2 |= ledctl_on << (i << 3);
1528 break;
1529 case ID_LED_DEF1_OFF2:
1530 case ID_LED_ON1_OFF2:
1531 case ID_LED_OFF1_OFF2:
1532 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1533 mac->ledctl_mode2 |= ledctl_off << (i << 3);
1534 break;
1535 default:
1536 /* Do nothing */
1537 break;
1538 }
1539 }
1540
1541 return 0;
1542 }
1543
1544 /**
1545 * e1000e_setup_led_generic - Configures SW controllable LED
1546 * @hw: pointer to the HW structure
1547 *
1548 * This prepares the SW controllable LED for use and saves the current state
1549 * of the LED so it can be later restored.
1550 **/
e1000e_setup_led_generic(struct e1000_hw * hw)1551 s32 e1000e_setup_led_generic(struct e1000_hw *hw)
1552 {
1553 u32 ledctl;
1554
1555 if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
1556 return -E1000_ERR_CONFIG;
1557
1558 if (hw->phy.media_type == e1000_media_type_fiber) {
1559 ledctl = er32(LEDCTL);
1560 hw->mac.ledctl_default = ledctl;
1561 /* Turn off LED0 */
1562 ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
1563 E1000_LEDCTL_LED0_MODE_MASK);
1564 ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1565 E1000_LEDCTL_LED0_MODE_SHIFT);
1566 ew32(LEDCTL, ledctl);
1567 } else if (hw->phy.media_type == e1000_media_type_copper) {
1568 ew32(LEDCTL, hw->mac.ledctl_mode1);
1569 }
1570
1571 return 0;
1572 }
1573
1574 /**
1575 * e1000e_cleanup_led_generic - Set LED config to default operation
1576 * @hw: pointer to the HW structure
1577 *
1578 * Remove the current LED configuration and set the LED configuration
1579 * to the default value, saved from the EEPROM.
1580 **/
e1000e_cleanup_led_generic(struct e1000_hw * hw)1581 s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
1582 {
1583 ew32(LEDCTL, hw->mac.ledctl_default);
1584 return 0;
1585 }
1586
1587 /**
1588 * e1000e_blink_led_generic - Blink LED
1589 * @hw: pointer to the HW structure
1590 *
1591 * Blink the LEDs which are set to be on.
1592 **/
e1000e_blink_led_generic(struct e1000_hw * hw)1593 s32 e1000e_blink_led_generic(struct e1000_hw *hw)
1594 {
1595 u32 ledctl_blink = 0;
1596 u32 i;
1597
1598 if (hw->phy.media_type == e1000_media_type_fiber) {
1599 /* always blink LED0 for PCI-E fiber */
1600 ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1601 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1602 } else {
1603 /* Set the blink bit for each LED that's "on" (0x0E)
1604 * (or "off" if inverted) in ledctl_mode2. The blink
1605 * logic in hardware only works when mode is set to "on"
1606 * so it must be changed accordingly when the mode is
1607 * "off" and inverted.
1608 */
1609 ledctl_blink = hw->mac.ledctl_mode2;
1610 for (i = 0; i < 32; i += 8) {
1611 u32 mode = (hw->mac.ledctl_mode2 >> i) &
1612 E1000_LEDCTL_LED0_MODE_MASK;
1613 u32 led_default = hw->mac.ledctl_default >> i;
1614
1615 if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1616 (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1617 ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1618 (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1619 ledctl_blink &=
1620 ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1621 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1622 E1000_LEDCTL_MODE_LED_ON) << i;
1623 }
1624 }
1625 }
1626
1627 ew32(LEDCTL, ledctl_blink);
1628
1629 return 0;
1630 }
1631
1632 /**
1633 * e1000e_led_on_generic - Turn LED on
1634 * @hw: pointer to the HW structure
1635 *
1636 * Turn LED on.
1637 **/
e1000e_led_on_generic(struct e1000_hw * hw)1638 s32 e1000e_led_on_generic(struct e1000_hw *hw)
1639 {
1640 u32 ctrl;
1641
1642 switch (hw->phy.media_type) {
1643 case e1000_media_type_fiber:
1644 ctrl = er32(CTRL);
1645 ctrl &= ~E1000_CTRL_SWDPIN0;
1646 ctrl |= E1000_CTRL_SWDPIO0;
1647 ew32(CTRL, ctrl);
1648 break;
1649 case e1000_media_type_copper:
1650 ew32(LEDCTL, hw->mac.ledctl_mode2);
1651 break;
1652 default:
1653 break;
1654 }
1655
1656 return 0;
1657 }
1658
1659 /**
1660 * e1000e_led_off_generic - Turn LED off
1661 * @hw: pointer to the HW structure
1662 *
1663 * Turn LED off.
1664 **/
e1000e_led_off_generic(struct e1000_hw * hw)1665 s32 e1000e_led_off_generic(struct e1000_hw *hw)
1666 {
1667 u32 ctrl;
1668
1669 switch (hw->phy.media_type) {
1670 case e1000_media_type_fiber:
1671 ctrl = er32(CTRL);
1672 ctrl |= E1000_CTRL_SWDPIN0;
1673 ctrl |= E1000_CTRL_SWDPIO0;
1674 ew32(CTRL, ctrl);
1675 break;
1676 case e1000_media_type_copper:
1677 ew32(LEDCTL, hw->mac.ledctl_mode1);
1678 break;
1679 default:
1680 break;
1681 }
1682
1683 return 0;
1684 }
1685
1686 /**
1687 * e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1688 * @hw: pointer to the HW structure
1689 * @no_snoop: bitmap of snoop events
1690 *
1691 * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1692 **/
e1000e_set_pcie_no_snoop(struct e1000_hw * hw,u32 no_snoop)1693 void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
1694 {
1695 u32 gcr;
1696
1697 if (no_snoop) {
1698 gcr = er32(GCR);
1699 gcr &= ~(PCIE_NO_SNOOP_ALL);
1700 gcr |= no_snoop;
1701 ew32(GCR, gcr);
1702 }
1703 }
1704
1705 /**
1706 * e1000e_disable_pcie_master - Disables PCI-express master access
1707 * @hw: pointer to the HW structure
1708 *
1709 * Returns 0 if successful, else returns -10
1710 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1711 * the master requests to be disabled.
1712 *
1713 * Disables PCI-Express master access and verifies there are no pending
1714 * requests.
1715 **/
e1000e_disable_pcie_master(struct e1000_hw * hw)1716 s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
1717 {
1718 u32 ctrl;
1719 s32 timeout = MASTER_DISABLE_TIMEOUT;
1720
1721 ctrl = er32(CTRL);
1722 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1723 ew32(CTRL, ctrl);
1724
1725 while (timeout) {
1726 if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
1727 break;
1728 usleep_range(100, 200);
1729 timeout--;
1730 }
1731
1732 if (!timeout) {
1733 e_dbg("Master requests are pending.\n");
1734 return -E1000_ERR_MASTER_REQUESTS_PENDING;
1735 }
1736
1737 return 0;
1738 }
1739
1740 /**
1741 * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1742 * @hw: pointer to the HW structure
1743 *
1744 * Reset the Adaptive Interframe Spacing throttle to default values.
1745 **/
e1000e_reset_adaptive(struct e1000_hw * hw)1746 void e1000e_reset_adaptive(struct e1000_hw *hw)
1747 {
1748 struct e1000_mac_info *mac = &hw->mac;
1749
1750 if (!mac->adaptive_ifs) {
1751 e_dbg("Not in Adaptive IFS mode!\n");
1752 return;
1753 }
1754
1755 mac->current_ifs_val = 0;
1756 mac->ifs_min_val = IFS_MIN;
1757 mac->ifs_max_val = IFS_MAX;
1758 mac->ifs_step_size = IFS_STEP;
1759 mac->ifs_ratio = IFS_RATIO;
1760
1761 mac->in_ifs_mode = false;
1762 ew32(AIT, 0);
1763 }
1764
1765 /**
1766 * e1000e_update_adaptive - Update Adaptive Interframe Spacing
1767 * @hw: pointer to the HW structure
1768 *
1769 * Update the Adaptive Interframe Spacing Throttle value based on the
1770 * time between transmitted packets and time between collisions.
1771 **/
e1000e_update_adaptive(struct e1000_hw * hw)1772 void e1000e_update_adaptive(struct e1000_hw *hw)
1773 {
1774 struct e1000_mac_info *mac = &hw->mac;
1775
1776 if (!mac->adaptive_ifs) {
1777 e_dbg("Not in Adaptive IFS mode!\n");
1778 return;
1779 }
1780
1781 if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1782 if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1783 mac->in_ifs_mode = true;
1784 if (mac->current_ifs_val < mac->ifs_max_val) {
1785 if (!mac->current_ifs_val)
1786 mac->current_ifs_val = mac->ifs_min_val;
1787 else
1788 mac->current_ifs_val +=
1789 mac->ifs_step_size;
1790 ew32(AIT, mac->current_ifs_val);
1791 }
1792 }
1793 } else {
1794 if (mac->in_ifs_mode &&
1795 (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1796 mac->current_ifs_val = 0;
1797 mac->in_ifs_mode = false;
1798 ew32(AIT, 0);
1799 }
1800 }
1801 }
1802