1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2013 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30
31 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
32 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
33 u16 *data, bool read, bool page_set);
34 static u32 e1000_get_phy_addr_for_hv_page(u32 page);
35 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
36 u16 *data, bool read);
37
38 /* Cable length tables */
39 static const u16 e1000_m88_cable_length_table[] = {
40 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
41 };
42
43 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
44 ARRAY_SIZE(e1000_m88_cable_length_table)
45
46 static const u16 e1000_igp_2_cable_length_table[] = {
47 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
48 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
49 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
50 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
51 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
52 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
53 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
54 124
55 };
56
57 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
58 ARRAY_SIZE(e1000_igp_2_cable_length_table)
59
60 /**
61 * e1000e_check_reset_block_generic - Check if PHY reset is blocked
62 * @hw: pointer to the HW structure
63 *
64 * Read the PHY management control register and check whether a PHY reset
65 * is blocked. If a reset is not blocked return 0, otherwise
66 * return E1000_BLK_PHY_RESET (12).
67 **/
e1000e_check_reset_block_generic(struct e1000_hw * hw)68 s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
69 {
70 u32 manc;
71
72 manc = er32(MANC);
73
74 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
75 }
76
77 /**
78 * e1000e_get_phy_id - Retrieve the PHY ID and revision
79 * @hw: pointer to the HW structure
80 *
81 * Reads the PHY registers and stores the PHY ID and possibly the PHY
82 * revision in the hardware structure.
83 **/
e1000e_get_phy_id(struct e1000_hw * hw)84 s32 e1000e_get_phy_id(struct e1000_hw *hw)
85 {
86 struct e1000_phy_info *phy = &hw->phy;
87 s32 ret_val = 0;
88 u16 phy_id;
89 u16 retry_count = 0;
90
91 if (!phy->ops.read_reg)
92 return 0;
93
94 while (retry_count < 2) {
95 ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
96 if (ret_val)
97 return ret_val;
98
99 phy->id = (u32)(phy_id << 16);
100 usleep_range(20, 40);
101 ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
102 if (ret_val)
103 return ret_val;
104
105 phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
106 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
107
108 if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
109 return 0;
110
111 retry_count++;
112 }
113
114 return 0;
115 }
116
117 /**
118 * e1000e_phy_reset_dsp - Reset PHY DSP
119 * @hw: pointer to the HW structure
120 *
121 * Reset the digital signal processor.
122 **/
e1000e_phy_reset_dsp(struct e1000_hw * hw)123 s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
124 {
125 s32 ret_val;
126
127 ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
128 if (ret_val)
129 return ret_val;
130
131 return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
132 }
133
134 /**
135 * e1000e_read_phy_reg_mdic - Read MDI control register
136 * @hw: pointer to the HW structure
137 * @offset: register offset to be read
138 * @data: pointer to the read data
139 *
140 * Reads the MDI control register in the PHY at offset and stores the
141 * information read to data.
142 **/
e1000e_read_phy_reg_mdic(struct e1000_hw * hw,u32 offset,u16 * data)143 s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
144 {
145 struct e1000_phy_info *phy = &hw->phy;
146 u32 i, mdic = 0;
147
148 if (offset > MAX_PHY_REG_ADDRESS) {
149 e_dbg("PHY Address %d is out of range\n", offset);
150 return -E1000_ERR_PARAM;
151 }
152
153 /* Set up Op-code, Phy Address, and register offset in the MDI
154 * Control register. The MAC will take care of interfacing with the
155 * PHY to retrieve the desired data.
156 */
157 mdic = ((offset << E1000_MDIC_REG_SHIFT) |
158 (phy->addr << E1000_MDIC_PHY_SHIFT) |
159 (E1000_MDIC_OP_READ));
160
161 ew32(MDIC, mdic);
162
163 /* Poll the ready bit to see if the MDI read completed
164 * Increasing the time out as testing showed failures with
165 * the lower time out
166 */
167 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
168 udelay(50);
169 mdic = er32(MDIC);
170 if (mdic & E1000_MDIC_READY)
171 break;
172 }
173 if (!(mdic & E1000_MDIC_READY)) {
174 e_dbg("MDI Read did not complete\n");
175 return -E1000_ERR_PHY;
176 }
177 if (mdic & E1000_MDIC_ERROR) {
178 e_dbg("MDI Error\n");
179 return -E1000_ERR_PHY;
180 }
181 if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
182 e_dbg("MDI Read offset error - requested %d, returned %d\n",
183 offset,
184 (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
185 return -E1000_ERR_PHY;
186 }
187 *data = (u16)mdic;
188
189 /* Allow some time after each MDIC transaction to avoid
190 * reading duplicate data in the next MDIC transaction.
191 */
192 if (hw->mac.type == e1000_pch2lan)
193 udelay(100);
194
195 return 0;
196 }
197
198 /**
199 * e1000e_write_phy_reg_mdic - Write MDI control register
200 * @hw: pointer to the HW structure
201 * @offset: register offset to write to
202 * @data: data to write to register at offset
203 *
204 * Writes data to MDI control register in the PHY at offset.
205 **/
e1000e_write_phy_reg_mdic(struct e1000_hw * hw,u32 offset,u16 data)206 s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
207 {
208 struct e1000_phy_info *phy = &hw->phy;
209 u32 i, mdic = 0;
210
211 if (offset > MAX_PHY_REG_ADDRESS) {
212 e_dbg("PHY Address %d is out of range\n", offset);
213 return -E1000_ERR_PARAM;
214 }
215
216 /* Set up Op-code, Phy Address, and register offset in the MDI
217 * Control register. The MAC will take care of interfacing with the
218 * PHY to retrieve the desired data.
219 */
220 mdic = (((u32)data) |
221 (offset << E1000_MDIC_REG_SHIFT) |
222 (phy->addr << E1000_MDIC_PHY_SHIFT) |
223 (E1000_MDIC_OP_WRITE));
224
225 ew32(MDIC, mdic);
226
227 /* Poll the ready bit to see if the MDI read completed
228 * Increasing the time out as testing showed failures with
229 * the lower time out
230 */
231 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
232 udelay(50);
233 mdic = er32(MDIC);
234 if (mdic & E1000_MDIC_READY)
235 break;
236 }
237 if (!(mdic & E1000_MDIC_READY)) {
238 e_dbg("MDI Write did not complete\n");
239 return -E1000_ERR_PHY;
240 }
241 if (mdic & E1000_MDIC_ERROR) {
242 e_dbg("MDI Error\n");
243 return -E1000_ERR_PHY;
244 }
245 if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
246 e_dbg("MDI Write offset error - requested %d, returned %d\n",
247 offset,
248 (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
249 return -E1000_ERR_PHY;
250 }
251
252 /* Allow some time after each MDIC transaction to avoid
253 * reading duplicate data in the next MDIC transaction.
254 */
255 if (hw->mac.type == e1000_pch2lan)
256 udelay(100);
257
258 return 0;
259 }
260
261 /**
262 * e1000e_read_phy_reg_m88 - Read m88 PHY register
263 * @hw: pointer to the HW structure
264 * @offset: register offset to be read
265 * @data: pointer to the read data
266 *
267 * Acquires semaphore, if necessary, then reads the PHY register at offset
268 * and storing the retrieved information in data. Release any acquired
269 * semaphores before exiting.
270 **/
e1000e_read_phy_reg_m88(struct e1000_hw * hw,u32 offset,u16 * data)271 s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
272 {
273 s32 ret_val;
274
275 ret_val = hw->phy.ops.acquire(hw);
276 if (ret_val)
277 return ret_val;
278
279 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
280 data);
281
282 hw->phy.ops.release(hw);
283
284 return ret_val;
285 }
286
287 /**
288 * e1000e_write_phy_reg_m88 - Write m88 PHY register
289 * @hw: pointer to the HW structure
290 * @offset: register offset to write to
291 * @data: data to write at register offset
292 *
293 * Acquires semaphore, if necessary, then writes the data to PHY register
294 * at the offset. Release any acquired semaphores before exiting.
295 **/
e1000e_write_phy_reg_m88(struct e1000_hw * hw,u32 offset,u16 data)296 s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
297 {
298 s32 ret_val;
299
300 ret_val = hw->phy.ops.acquire(hw);
301 if (ret_val)
302 return ret_val;
303
304 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
305 data);
306
307 hw->phy.ops.release(hw);
308
309 return ret_val;
310 }
311
312 /**
313 * e1000_set_page_igp - Set page as on IGP-like PHY(s)
314 * @hw: pointer to the HW structure
315 * @page: page to set (shifted left when necessary)
316 *
317 * Sets PHY page required for PHY register access. Assumes semaphore is
318 * already acquired. Note, this function sets phy.addr to 1 so the caller
319 * must set it appropriately (if necessary) after this function returns.
320 **/
e1000_set_page_igp(struct e1000_hw * hw,u16 page)321 s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
322 {
323 e_dbg("Setting page 0x%x\n", page);
324
325 hw->phy.addr = 1;
326
327 return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
328 }
329
330 /**
331 * __e1000e_read_phy_reg_igp - Read igp PHY register
332 * @hw: pointer to the HW structure
333 * @offset: register offset to be read
334 * @data: pointer to the read data
335 * @locked: semaphore has already been acquired or not
336 *
337 * Acquires semaphore, if necessary, then reads the PHY register at offset
338 * and stores the retrieved information in data. Release any acquired
339 * semaphores before exiting.
340 **/
__e1000e_read_phy_reg_igp(struct e1000_hw * hw,u32 offset,u16 * data,bool locked)341 static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
342 bool locked)
343 {
344 s32 ret_val = 0;
345
346 if (!locked) {
347 if (!hw->phy.ops.acquire)
348 return 0;
349
350 ret_val = hw->phy.ops.acquire(hw);
351 if (ret_val)
352 return ret_val;
353 }
354
355 if (offset > MAX_PHY_MULTI_PAGE_REG)
356 ret_val = e1000e_write_phy_reg_mdic(hw,
357 IGP01E1000_PHY_PAGE_SELECT,
358 (u16)offset);
359 if (!ret_val)
360 ret_val = e1000e_read_phy_reg_mdic(hw,
361 MAX_PHY_REG_ADDRESS & offset,
362 data);
363 if (!locked)
364 hw->phy.ops.release(hw);
365
366 return ret_val;
367 }
368
369 /**
370 * e1000e_read_phy_reg_igp - Read igp PHY register
371 * @hw: pointer to the HW structure
372 * @offset: register offset to be read
373 * @data: pointer to the read data
374 *
375 * Acquires semaphore then reads the PHY register at offset and stores the
376 * retrieved information in data.
377 * Release the acquired semaphore before exiting.
378 **/
e1000e_read_phy_reg_igp(struct e1000_hw * hw,u32 offset,u16 * data)379 s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
380 {
381 return __e1000e_read_phy_reg_igp(hw, offset, data, false);
382 }
383
384 /**
385 * e1000e_read_phy_reg_igp_locked - Read igp PHY register
386 * @hw: pointer to the HW structure
387 * @offset: register offset to be read
388 * @data: pointer to the read data
389 *
390 * Reads the PHY register at offset and stores the retrieved information
391 * in data. Assumes semaphore already acquired.
392 **/
e1000e_read_phy_reg_igp_locked(struct e1000_hw * hw,u32 offset,u16 * data)393 s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
394 {
395 return __e1000e_read_phy_reg_igp(hw, offset, data, true);
396 }
397
398 /**
399 * e1000e_write_phy_reg_igp - Write igp PHY register
400 * @hw: pointer to the HW structure
401 * @offset: register offset to write to
402 * @data: data to write at register offset
403 * @locked: semaphore has already been acquired or not
404 *
405 * Acquires semaphore, if necessary, then writes the data to PHY register
406 * at the offset. Release any acquired semaphores before exiting.
407 **/
__e1000e_write_phy_reg_igp(struct e1000_hw * hw,u32 offset,u16 data,bool locked)408 static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
409 bool locked)
410 {
411 s32 ret_val = 0;
412
413 if (!locked) {
414 if (!hw->phy.ops.acquire)
415 return 0;
416
417 ret_val = hw->phy.ops.acquire(hw);
418 if (ret_val)
419 return ret_val;
420 }
421
422 if (offset > MAX_PHY_MULTI_PAGE_REG)
423 ret_val = e1000e_write_phy_reg_mdic(hw,
424 IGP01E1000_PHY_PAGE_SELECT,
425 (u16)offset);
426 if (!ret_val)
427 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
428 offset, data);
429 if (!locked)
430 hw->phy.ops.release(hw);
431
432 return ret_val;
433 }
434
435 /**
436 * e1000e_write_phy_reg_igp - Write igp PHY register
437 * @hw: pointer to the HW structure
438 * @offset: register offset to write to
439 * @data: data to write at register offset
440 *
441 * Acquires semaphore then writes the data to PHY register
442 * at the offset. Release any acquired semaphores before exiting.
443 **/
e1000e_write_phy_reg_igp(struct e1000_hw * hw,u32 offset,u16 data)444 s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
445 {
446 return __e1000e_write_phy_reg_igp(hw, offset, data, false);
447 }
448
449 /**
450 * e1000e_write_phy_reg_igp_locked - Write igp PHY register
451 * @hw: pointer to the HW structure
452 * @offset: register offset to write to
453 * @data: data to write at register offset
454 *
455 * Writes the data to PHY register at the offset.
456 * Assumes semaphore already acquired.
457 **/
e1000e_write_phy_reg_igp_locked(struct e1000_hw * hw,u32 offset,u16 data)458 s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
459 {
460 return __e1000e_write_phy_reg_igp(hw, offset, data, true);
461 }
462
463 /**
464 * __e1000_read_kmrn_reg - Read kumeran register
465 * @hw: pointer to the HW structure
466 * @offset: register offset to be read
467 * @data: pointer to the read data
468 * @locked: semaphore has already been acquired or not
469 *
470 * Acquires semaphore, if necessary. Then reads the PHY register at offset
471 * using the kumeran interface. The information retrieved is stored in data.
472 * Release any acquired semaphores before exiting.
473 **/
__e1000_read_kmrn_reg(struct e1000_hw * hw,u32 offset,u16 * data,bool locked)474 static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
475 bool locked)
476 {
477 u32 kmrnctrlsta;
478
479 if (!locked) {
480 s32 ret_val = 0;
481
482 if (!hw->phy.ops.acquire)
483 return 0;
484
485 ret_val = hw->phy.ops.acquire(hw);
486 if (ret_val)
487 return ret_val;
488 }
489
490 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
491 E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
492 ew32(KMRNCTRLSTA, kmrnctrlsta);
493 e1e_flush();
494
495 udelay(2);
496
497 kmrnctrlsta = er32(KMRNCTRLSTA);
498 *data = (u16)kmrnctrlsta;
499
500 if (!locked)
501 hw->phy.ops.release(hw);
502
503 return 0;
504 }
505
506 /**
507 * e1000e_read_kmrn_reg - Read kumeran register
508 * @hw: pointer to the HW structure
509 * @offset: register offset to be read
510 * @data: pointer to the read data
511 *
512 * Acquires semaphore then reads the PHY register at offset using the
513 * kumeran interface. The information retrieved is stored in data.
514 * Release the acquired semaphore before exiting.
515 **/
e1000e_read_kmrn_reg(struct e1000_hw * hw,u32 offset,u16 * data)516 s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
517 {
518 return __e1000_read_kmrn_reg(hw, offset, data, false);
519 }
520
521 /**
522 * e1000e_read_kmrn_reg_locked - Read kumeran register
523 * @hw: pointer to the HW structure
524 * @offset: register offset to be read
525 * @data: pointer to the read data
526 *
527 * Reads the PHY register at offset using the kumeran interface. The
528 * information retrieved is stored in data.
529 * Assumes semaphore already acquired.
530 **/
e1000e_read_kmrn_reg_locked(struct e1000_hw * hw,u32 offset,u16 * data)531 s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
532 {
533 return __e1000_read_kmrn_reg(hw, offset, data, true);
534 }
535
536 /**
537 * __e1000_write_kmrn_reg - Write kumeran register
538 * @hw: pointer to the HW structure
539 * @offset: register offset to write to
540 * @data: data to write at register offset
541 * @locked: semaphore has already been acquired or not
542 *
543 * Acquires semaphore, if necessary. Then write the data to PHY register
544 * at the offset using the kumeran interface. Release any acquired semaphores
545 * before exiting.
546 **/
__e1000_write_kmrn_reg(struct e1000_hw * hw,u32 offset,u16 data,bool locked)547 static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
548 bool locked)
549 {
550 u32 kmrnctrlsta;
551
552 if (!locked) {
553 s32 ret_val = 0;
554
555 if (!hw->phy.ops.acquire)
556 return 0;
557
558 ret_val = hw->phy.ops.acquire(hw);
559 if (ret_val)
560 return ret_val;
561 }
562
563 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
564 E1000_KMRNCTRLSTA_OFFSET) | data;
565 ew32(KMRNCTRLSTA, kmrnctrlsta);
566 e1e_flush();
567
568 udelay(2);
569
570 if (!locked)
571 hw->phy.ops.release(hw);
572
573 return 0;
574 }
575
576 /**
577 * e1000e_write_kmrn_reg - Write kumeran register
578 * @hw: pointer to the HW structure
579 * @offset: register offset to write to
580 * @data: data to write at register offset
581 *
582 * Acquires semaphore then writes the data to the PHY register at the offset
583 * using the kumeran interface. Release the acquired semaphore before exiting.
584 **/
e1000e_write_kmrn_reg(struct e1000_hw * hw,u32 offset,u16 data)585 s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
586 {
587 return __e1000_write_kmrn_reg(hw, offset, data, false);
588 }
589
590 /**
591 * e1000e_write_kmrn_reg_locked - Write kumeran register
592 * @hw: pointer to the HW structure
593 * @offset: register offset to write to
594 * @data: data to write at register offset
595 *
596 * Write the data to PHY register at the offset using the kumeran interface.
597 * Assumes semaphore already acquired.
598 **/
e1000e_write_kmrn_reg_locked(struct e1000_hw * hw,u32 offset,u16 data)599 s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
600 {
601 return __e1000_write_kmrn_reg(hw, offset, data, true);
602 }
603
604 /**
605 * e1000_set_master_slave_mode - Setup PHY for Master/slave mode
606 * @hw: pointer to the HW structure
607 *
608 * Sets up Master/slave mode
609 **/
e1000_set_master_slave_mode(struct e1000_hw * hw)610 static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
611 {
612 s32 ret_val;
613 u16 phy_data;
614
615 /* Resolve Master/Slave mode */
616 ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data);
617 if (ret_val)
618 return ret_val;
619
620 /* load defaults for future use */
621 hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ?
622 ((phy_data & CTL1000_AS_MASTER) ?
623 e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
624
625 switch (hw->phy.ms_type) {
626 case e1000_ms_force_master:
627 phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
628 break;
629 case e1000_ms_force_slave:
630 phy_data |= CTL1000_ENABLE_MASTER;
631 phy_data &= ~(CTL1000_AS_MASTER);
632 break;
633 case e1000_ms_auto:
634 phy_data &= ~CTL1000_ENABLE_MASTER;
635 /* fall-through */
636 default:
637 break;
638 }
639
640 return e1e_wphy(hw, MII_CTRL1000, phy_data);
641 }
642
643 /**
644 * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
645 * @hw: pointer to the HW structure
646 *
647 * Sets up Carrier-sense on Transmit and downshift values.
648 **/
e1000_copper_link_setup_82577(struct e1000_hw * hw)649 s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
650 {
651 s32 ret_val;
652 u16 phy_data;
653
654 /* Enable CRS on Tx. This must be set for half-duplex operation. */
655 ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
656 if (ret_val)
657 return ret_val;
658
659 phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
660
661 /* Enable downshift */
662 phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
663
664 ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
665 if (ret_val)
666 return ret_val;
667
668 /* Set MDI/MDIX mode */
669 ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data);
670 if (ret_val)
671 return ret_val;
672 phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
673 /* Options:
674 * 0 - Auto (default)
675 * 1 - MDI mode
676 * 2 - MDI-X mode
677 */
678 switch (hw->phy.mdix) {
679 case 1:
680 break;
681 case 2:
682 phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
683 break;
684 case 0:
685 default:
686 phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
687 break;
688 }
689 ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data);
690 if (ret_val)
691 return ret_val;
692
693 return e1000_set_master_slave_mode(hw);
694 }
695
696 /**
697 * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
698 * @hw: pointer to the HW structure
699 *
700 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
701 * and downshift values are set also.
702 **/
e1000e_copper_link_setup_m88(struct e1000_hw * hw)703 s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
704 {
705 struct e1000_phy_info *phy = &hw->phy;
706 s32 ret_val;
707 u16 phy_data;
708
709 /* Enable CRS on Tx. This must be set for half-duplex operation. */
710 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
711 if (ret_val)
712 return ret_val;
713
714 /* For BM PHY this bit is downshift enable */
715 if (phy->type != e1000_phy_bm)
716 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
717
718 /* Options:
719 * MDI/MDI-X = 0 (default)
720 * 0 - Auto for all speeds
721 * 1 - MDI mode
722 * 2 - MDI-X mode
723 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
724 */
725 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
726
727 switch (phy->mdix) {
728 case 1:
729 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
730 break;
731 case 2:
732 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
733 break;
734 case 3:
735 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
736 break;
737 case 0:
738 default:
739 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
740 break;
741 }
742
743 /* Options:
744 * disable_polarity_correction = 0 (default)
745 * Automatic Correction for Reversed Cable Polarity
746 * 0 - Disabled
747 * 1 - Enabled
748 */
749 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
750 if (phy->disable_polarity_correction)
751 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
752
753 /* Enable downshift on BM (disabled by default) */
754 if (phy->type == e1000_phy_bm) {
755 /* For 82574/82583, first disable then enable downshift */
756 if (phy->id == BME1000_E_PHY_ID_R2) {
757 phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
758 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
759 phy_data);
760 if (ret_val)
761 return ret_val;
762 /* Commit the changes. */
763 ret_val = phy->ops.commit(hw);
764 if (ret_val) {
765 e_dbg("Error committing the PHY changes\n");
766 return ret_val;
767 }
768 }
769
770 phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
771 }
772
773 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
774 if (ret_val)
775 return ret_val;
776
777 if ((phy->type == e1000_phy_m88) &&
778 (phy->revision < E1000_REVISION_4) &&
779 (phy->id != BME1000_E_PHY_ID_R2)) {
780 /* Force TX_CLK in the Extended PHY Specific Control Register
781 * to 25MHz clock.
782 */
783 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
784 if (ret_val)
785 return ret_val;
786
787 phy_data |= M88E1000_EPSCR_TX_CLK_25;
788
789 if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) {
790 /* 82573L PHY - set the downshift counter to 5x. */
791 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
792 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
793 } else {
794 /* Configure Master and Slave downshift values */
795 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
796 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
797 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
798 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
799 }
800 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
801 if (ret_val)
802 return ret_val;
803 }
804
805 if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
806 /* Set PHY page 0, register 29 to 0x0003 */
807 ret_val = e1e_wphy(hw, 29, 0x0003);
808 if (ret_val)
809 return ret_val;
810
811 /* Set PHY page 0, register 30 to 0x0000 */
812 ret_val = e1e_wphy(hw, 30, 0x0000);
813 if (ret_val)
814 return ret_val;
815 }
816
817 /* Commit the changes. */
818 if (phy->ops.commit) {
819 ret_val = phy->ops.commit(hw);
820 if (ret_val) {
821 e_dbg("Error committing the PHY changes\n");
822 return ret_val;
823 }
824 }
825
826 if (phy->type == e1000_phy_82578) {
827 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
828 if (ret_val)
829 return ret_val;
830
831 /* 82578 PHY - set the downshift count to 1x. */
832 phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
833 phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
834 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
835 if (ret_val)
836 return ret_val;
837 }
838
839 return 0;
840 }
841
842 /**
843 * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
844 * @hw: pointer to the HW structure
845 *
846 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
847 * igp PHY's.
848 **/
e1000e_copper_link_setup_igp(struct e1000_hw * hw)849 s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
850 {
851 struct e1000_phy_info *phy = &hw->phy;
852 s32 ret_val;
853 u16 data;
854
855 ret_val = e1000_phy_hw_reset(hw);
856 if (ret_val) {
857 e_dbg("Error resetting the PHY.\n");
858 return ret_val;
859 }
860
861 /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
862 * timeout issues when LFS is enabled.
863 */
864 msleep(100);
865
866 /* disable lplu d0 during driver init */
867 if (hw->phy.ops.set_d0_lplu_state) {
868 ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
869 if (ret_val) {
870 e_dbg("Error Disabling LPLU D0\n");
871 return ret_val;
872 }
873 }
874 /* Configure mdi-mdix settings */
875 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
876 if (ret_val)
877 return ret_val;
878
879 data &= ~IGP01E1000_PSCR_AUTO_MDIX;
880
881 switch (phy->mdix) {
882 case 1:
883 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
884 break;
885 case 2:
886 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
887 break;
888 case 0:
889 default:
890 data |= IGP01E1000_PSCR_AUTO_MDIX;
891 break;
892 }
893 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
894 if (ret_val)
895 return ret_val;
896
897 /* set auto-master slave resolution settings */
898 if (hw->mac.autoneg) {
899 /* when autonegotiation advertisement is only 1000Mbps then we
900 * should disable SmartSpeed and enable Auto MasterSlave
901 * resolution as hardware default.
902 */
903 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
904 /* Disable SmartSpeed */
905 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
906 &data);
907 if (ret_val)
908 return ret_val;
909
910 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
911 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
912 data);
913 if (ret_val)
914 return ret_val;
915
916 /* Set auto Master/Slave resolution process */
917 ret_val = e1e_rphy(hw, MII_CTRL1000, &data);
918 if (ret_val)
919 return ret_val;
920
921 data &= ~CTL1000_ENABLE_MASTER;
922 ret_val = e1e_wphy(hw, MII_CTRL1000, data);
923 if (ret_val)
924 return ret_val;
925 }
926
927 ret_val = e1000_set_master_slave_mode(hw);
928 }
929
930 return ret_val;
931 }
932
933 /**
934 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
935 * @hw: pointer to the HW structure
936 *
937 * Reads the MII auto-neg advertisement register and/or the 1000T control
938 * register and if the PHY is already setup for auto-negotiation, then
939 * return successful. Otherwise, setup advertisement and flow control to
940 * the appropriate values for the wanted auto-negotiation.
941 **/
e1000_phy_setup_autoneg(struct e1000_hw * hw)942 static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
943 {
944 struct e1000_phy_info *phy = &hw->phy;
945 s32 ret_val;
946 u16 mii_autoneg_adv_reg;
947 u16 mii_1000t_ctrl_reg = 0;
948
949 phy->autoneg_advertised &= phy->autoneg_mask;
950
951 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
952 ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg);
953 if (ret_val)
954 return ret_val;
955
956 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
957 /* Read the MII 1000Base-T Control Register (Address 9). */
958 ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg);
959 if (ret_val)
960 return ret_val;
961 }
962
963 /* Need to parse both autoneg_advertised and fc and set up
964 * the appropriate PHY registers. First we will parse for
965 * autoneg_advertised software override. Since we can advertise
966 * a plethora of combinations, we need to check each bit
967 * individually.
968 */
969
970 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
971 * Advertisement Register (Address 4) and the 1000 mb speed bits in
972 * the 1000Base-T Control Register (Address 9).
973 */
974 mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL |
975 ADVERTISE_100HALF |
976 ADVERTISE_10FULL | ADVERTISE_10HALF);
977 mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
978
979 e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
980
981 /* Do we want to advertise 10 Mb Half Duplex? */
982 if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
983 e_dbg("Advertise 10mb Half duplex\n");
984 mii_autoneg_adv_reg |= ADVERTISE_10HALF;
985 }
986
987 /* Do we want to advertise 10 Mb Full Duplex? */
988 if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
989 e_dbg("Advertise 10mb Full duplex\n");
990 mii_autoneg_adv_reg |= ADVERTISE_10FULL;
991 }
992
993 /* Do we want to advertise 100 Mb Half Duplex? */
994 if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
995 e_dbg("Advertise 100mb Half duplex\n");
996 mii_autoneg_adv_reg |= ADVERTISE_100HALF;
997 }
998
999 /* Do we want to advertise 100 Mb Full Duplex? */
1000 if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
1001 e_dbg("Advertise 100mb Full duplex\n");
1002 mii_autoneg_adv_reg |= ADVERTISE_100FULL;
1003 }
1004
1005 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1006 if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1007 e_dbg("Advertise 1000mb Half duplex request denied!\n");
1008
1009 /* Do we want to advertise 1000 Mb Full Duplex? */
1010 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1011 e_dbg("Advertise 1000mb Full duplex\n");
1012 mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
1013 }
1014
1015 /* Check for a software override of the flow control settings, and
1016 * setup the PHY advertisement registers accordingly. If
1017 * auto-negotiation is enabled, then software will have to set the
1018 * "PAUSE" bits to the correct value in the Auto-Negotiation
1019 * Advertisement Register (MII_ADVERTISE) and re-start auto-
1020 * negotiation.
1021 *
1022 * The possible values of the "fc" parameter are:
1023 * 0: Flow control is completely disabled
1024 * 1: Rx flow control is enabled (we can receive pause frames
1025 * but not send pause frames).
1026 * 2: Tx flow control is enabled (we can send pause frames
1027 * but we do not support receiving pause frames).
1028 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1029 * other: No software override. The flow control configuration
1030 * in the EEPROM is used.
1031 */
1032 switch (hw->fc.current_mode) {
1033 case e1000_fc_none:
1034 /* Flow control (Rx & Tx) is completely disabled by a
1035 * software over-ride.
1036 */
1037 mii_autoneg_adv_reg &=
1038 ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1039 break;
1040 case e1000_fc_rx_pause:
1041 /* Rx Flow control is enabled, and Tx Flow control is
1042 * disabled, by a software over-ride.
1043 *
1044 * Since there really isn't a way to advertise that we are
1045 * capable of Rx Pause ONLY, we will advertise that we
1046 * support both symmetric and asymmetric Rx PAUSE. Later
1047 * (in e1000e_config_fc_after_link_up) we will disable the
1048 * hw's ability to send PAUSE frames.
1049 */
1050 mii_autoneg_adv_reg |=
1051 (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1052 break;
1053 case e1000_fc_tx_pause:
1054 /* Tx Flow control is enabled, and Rx Flow control is
1055 * disabled, by a software over-ride.
1056 */
1057 mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM;
1058 mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP;
1059 break;
1060 case e1000_fc_full:
1061 /* Flow control (both Rx and Tx) is enabled by a software
1062 * over-ride.
1063 */
1064 mii_autoneg_adv_reg |=
1065 (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1066 break;
1067 default:
1068 e_dbg("Flow control param set incorrectly\n");
1069 return -E1000_ERR_CONFIG;
1070 }
1071
1072 ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
1073 if (ret_val)
1074 return ret_val;
1075
1076 e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1077
1078 if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1079 ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg);
1080
1081 return ret_val;
1082 }
1083
1084 /**
1085 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1086 * @hw: pointer to the HW structure
1087 *
1088 * Performs initial bounds checking on autoneg advertisement parameter, then
1089 * configure to advertise the full capability. Setup the PHY to autoneg
1090 * and restart the negotiation process between the link partner. If
1091 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1092 **/
e1000_copper_link_autoneg(struct e1000_hw * hw)1093 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1094 {
1095 struct e1000_phy_info *phy = &hw->phy;
1096 s32 ret_val;
1097 u16 phy_ctrl;
1098
1099 /* Perform some bounds checking on the autoneg advertisement
1100 * parameter.
1101 */
1102 phy->autoneg_advertised &= phy->autoneg_mask;
1103
1104 /* If autoneg_advertised is zero, we assume it was not defaulted
1105 * by the calling code so we set to advertise full capability.
1106 */
1107 if (!phy->autoneg_advertised)
1108 phy->autoneg_advertised = phy->autoneg_mask;
1109
1110 e_dbg("Reconfiguring auto-neg advertisement params\n");
1111 ret_val = e1000_phy_setup_autoneg(hw);
1112 if (ret_val) {
1113 e_dbg("Error Setting up Auto-Negotiation\n");
1114 return ret_val;
1115 }
1116 e_dbg("Restarting Auto-Neg\n");
1117
1118 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1119 * the Auto Neg Restart bit in the PHY control register.
1120 */
1121 ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
1122 if (ret_val)
1123 return ret_val;
1124
1125 phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART);
1126 ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
1127 if (ret_val)
1128 return ret_val;
1129
1130 /* Does the user want to wait for Auto-Neg to complete here, or
1131 * check at a later time (for example, callback routine).
1132 */
1133 if (phy->autoneg_wait_to_complete) {
1134 ret_val = e1000_wait_autoneg(hw);
1135 if (ret_val) {
1136 e_dbg("Error while waiting for autoneg to complete\n");
1137 return ret_val;
1138 }
1139 }
1140
1141 hw->mac.get_link_status = true;
1142
1143 return ret_val;
1144 }
1145
1146 /**
1147 * e1000e_setup_copper_link - Configure copper link settings
1148 * @hw: pointer to the HW structure
1149 *
1150 * Calls the appropriate function to configure the link for auto-neg or forced
1151 * speed and duplex. Then we check for link, once link is established calls
1152 * to configure collision distance and flow control are called. If link is
1153 * not established, we return -E1000_ERR_PHY (-2).
1154 **/
e1000e_setup_copper_link(struct e1000_hw * hw)1155 s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1156 {
1157 s32 ret_val;
1158 bool link;
1159
1160 if (hw->mac.autoneg) {
1161 /* Setup autoneg and flow control advertisement and perform
1162 * autonegotiation.
1163 */
1164 ret_val = e1000_copper_link_autoneg(hw);
1165 if (ret_val)
1166 return ret_val;
1167 } else {
1168 /* PHY will be set to 10H, 10F, 100H or 100F
1169 * depending on user settings.
1170 */
1171 e_dbg("Forcing Speed and Duplex\n");
1172 ret_val = hw->phy.ops.force_speed_duplex(hw);
1173 if (ret_val) {
1174 e_dbg("Error Forcing Speed and Duplex\n");
1175 return ret_val;
1176 }
1177 }
1178
1179 /* Check link status. Wait up to 100 microseconds for link to become
1180 * valid.
1181 */
1182 ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1183 &link);
1184 if (ret_val)
1185 return ret_val;
1186
1187 if (link) {
1188 e_dbg("Valid link established!!!\n");
1189 hw->mac.ops.config_collision_dist(hw);
1190 ret_val = e1000e_config_fc_after_link_up(hw);
1191 } else {
1192 e_dbg("Unable to establish link!!!\n");
1193 }
1194
1195 return ret_val;
1196 }
1197
1198 /**
1199 * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1200 * @hw: pointer to the HW structure
1201 *
1202 * Calls the PHY setup function to force speed and duplex. Clears the
1203 * auto-crossover to force MDI manually. Waits for link and returns
1204 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1205 **/
e1000e_phy_force_speed_duplex_igp(struct e1000_hw * hw)1206 s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1207 {
1208 struct e1000_phy_info *phy = &hw->phy;
1209 s32 ret_val;
1210 u16 phy_data;
1211 bool link;
1212
1213 ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1214 if (ret_val)
1215 return ret_val;
1216
1217 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1218
1219 ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1220 if (ret_val)
1221 return ret_val;
1222
1223 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
1224 * forced whenever speed and duplex are forced.
1225 */
1226 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1227 if (ret_val)
1228 return ret_val;
1229
1230 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1231 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1232
1233 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1234 if (ret_val)
1235 return ret_val;
1236
1237 e_dbg("IGP PSCR: %X\n", phy_data);
1238
1239 udelay(1);
1240
1241 if (phy->autoneg_wait_to_complete) {
1242 e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1243
1244 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1245 100000, &link);
1246 if (ret_val)
1247 return ret_val;
1248
1249 if (!link)
1250 e_dbg("Link taking longer than expected.\n");
1251
1252 /* Try once more */
1253 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1254 100000, &link);
1255 }
1256
1257 return ret_val;
1258 }
1259
1260 /**
1261 * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1262 * @hw: pointer to the HW structure
1263 *
1264 * Calls the PHY setup function to force speed and duplex. Clears the
1265 * auto-crossover to force MDI manually. Resets the PHY to commit the
1266 * changes. If time expires while waiting for link up, we reset the DSP.
1267 * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
1268 * successful completion, else return corresponding error code.
1269 **/
e1000e_phy_force_speed_duplex_m88(struct e1000_hw * hw)1270 s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1271 {
1272 struct e1000_phy_info *phy = &hw->phy;
1273 s32 ret_val;
1274 u16 phy_data;
1275 bool link;
1276
1277 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1278 * forced whenever speed and duplex are forced.
1279 */
1280 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1281 if (ret_val)
1282 return ret_val;
1283
1284 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1285 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1286 if (ret_val)
1287 return ret_val;
1288
1289 e_dbg("M88E1000 PSCR: %X\n", phy_data);
1290
1291 ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1292 if (ret_val)
1293 return ret_val;
1294
1295 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1296
1297 ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1298 if (ret_val)
1299 return ret_val;
1300
1301 /* Reset the phy to commit changes. */
1302 if (hw->phy.ops.commit) {
1303 ret_val = hw->phy.ops.commit(hw);
1304 if (ret_val)
1305 return ret_val;
1306 }
1307
1308 if (phy->autoneg_wait_to_complete) {
1309 e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1310
1311 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1312 100000, &link);
1313 if (ret_val)
1314 return ret_val;
1315
1316 if (!link) {
1317 if (hw->phy.type != e1000_phy_m88) {
1318 e_dbg("Link taking longer than expected.\n");
1319 } else {
1320 /* We didn't get link.
1321 * Reset the DSP and cross our fingers.
1322 */
1323 ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1324 0x001d);
1325 if (ret_val)
1326 return ret_val;
1327 ret_val = e1000e_phy_reset_dsp(hw);
1328 if (ret_val)
1329 return ret_val;
1330 }
1331 }
1332
1333 /* Try once more */
1334 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1335 100000, &link);
1336 if (ret_val)
1337 return ret_val;
1338 }
1339
1340 if (hw->phy.type != e1000_phy_m88)
1341 return 0;
1342
1343 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1344 if (ret_val)
1345 return ret_val;
1346
1347 /* Resetting the phy means we need to re-force TX_CLK in the
1348 * Extended PHY Specific Control Register to 25MHz clock from
1349 * the reset value of 2.5MHz.
1350 */
1351 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1352 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1353 if (ret_val)
1354 return ret_val;
1355
1356 /* In addition, we must re-enable CRS on Tx for both half and full
1357 * duplex.
1358 */
1359 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1360 if (ret_val)
1361 return ret_val;
1362
1363 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1364 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1365
1366 return ret_val;
1367 }
1368
1369 /**
1370 * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1371 * @hw: pointer to the HW structure
1372 *
1373 * Forces the speed and duplex settings of the PHY.
1374 * This is a function pointer entry point only called by
1375 * PHY setup routines.
1376 **/
e1000_phy_force_speed_duplex_ife(struct e1000_hw * hw)1377 s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1378 {
1379 struct e1000_phy_info *phy = &hw->phy;
1380 s32 ret_val;
1381 u16 data;
1382 bool link;
1383
1384 ret_val = e1e_rphy(hw, MII_BMCR, &data);
1385 if (ret_val)
1386 return ret_val;
1387
1388 e1000e_phy_force_speed_duplex_setup(hw, &data);
1389
1390 ret_val = e1e_wphy(hw, MII_BMCR, data);
1391 if (ret_val)
1392 return ret_val;
1393
1394 /* Disable MDI-X support for 10/100 */
1395 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1396 if (ret_val)
1397 return ret_val;
1398
1399 data &= ~IFE_PMC_AUTO_MDIX;
1400 data &= ~IFE_PMC_FORCE_MDIX;
1401
1402 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1403 if (ret_val)
1404 return ret_val;
1405
1406 e_dbg("IFE PMC: %X\n", data);
1407
1408 udelay(1);
1409
1410 if (phy->autoneg_wait_to_complete) {
1411 e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1412
1413 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1414 100000, &link);
1415 if (ret_val)
1416 return ret_val;
1417
1418 if (!link)
1419 e_dbg("Link taking longer than expected.\n");
1420
1421 /* Try once more */
1422 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1423 100000, &link);
1424 if (ret_val)
1425 return ret_val;
1426 }
1427
1428 return 0;
1429 }
1430
1431 /**
1432 * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1433 * @hw: pointer to the HW structure
1434 * @phy_ctrl: pointer to current value of MII_BMCR
1435 *
1436 * Forces speed and duplex on the PHY by doing the following: disable flow
1437 * control, force speed/duplex on the MAC, disable auto speed detection,
1438 * disable auto-negotiation, configure duplex, configure speed, configure
1439 * the collision distance, write configuration to CTRL register. The
1440 * caller must write to the MII_BMCR register for these settings to
1441 * take affect.
1442 **/
e1000e_phy_force_speed_duplex_setup(struct e1000_hw * hw,u16 * phy_ctrl)1443 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1444 {
1445 struct e1000_mac_info *mac = &hw->mac;
1446 u32 ctrl;
1447
1448 /* Turn off flow control when forcing speed/duplex */
1449 hw->fc.current_mode = e1000_fc_none;
1450
1451 /* Force speed/duplex on the mac */
1452 ctrl = er32(CTRL);
1453 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1454 ctrl &= ~E1000_CTRL_SPD_SEL;
1455
1456 /* Disable Auto Speed Detection */
1457 ctrl &= ~E1000_CTRL_ASDE;
1458
1459 /* Disable autoneg on the phy */
1460 *phy_ctrl &= ~BMCR_ANENABLE;
1461
1462 /* Forcing Full or Half Duplex? */
1463 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1464 ctrl &= ~E1000_CTRL_FD;
1465 *phy_ctrl &= ~BMCR_FULLDPLX;
1466 e_dbg("Half Duplex\n");
1467 } else {
1468 ctrl |= E1000_CTRL_FD;
1469 *phy_ctrl |= BMCR_FULLDPLX;
1470 e_dbg("Full Duplex\n");
1471 }
1472
1473 /* Forcing 10mb or 100mb? */
1474 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1475 ctrl |= E1000_CTRL_SPD_100;
1476 *phy_ctrl |= BMCR_SPEED100;
1477 *phy_ctrl &= ~BMCR_SPEED1000;
1478 e_dbg("Forcing 100mb\n");
1479 } else {
1480 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1481 *phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100);
1482 e_dbg("Forcing 10mb\n");
1483 }
1484
1485 hw->mac.ops.config_collision_dist(hw);
1486
1487 ew32(CTRL, ctrl);
1488 }
1489
1490 /**
1491 * e1000e_set_d3_lplu_state - Sets low power link up state for D3
1492 * @hw: pointer to the HW structure
1493 * @active: boolean used to enable/disable lplu
1494 *
1495 * Success returns 0, Failure returns 1
1496 *
1497 * The low power link up (lplu) state is set to the power management level D3
1498 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1499 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1500 * is used during Dx states where the power conservation is most important.
1501 * During driver activity, SmartSpeed should be enabled so performance is
1502 * maintained.
1503 **/
e1000e_set_d3_lplu_state(struct e1000_hw * hw,bool active)1504 s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1505 {
1506 struct e1000_phy_info *phy = &hw->phy;
1507 s32 ret_val;
1508 u16 data;
1509
1510 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1511 if (ret_val)
1512 return ret_val;
1513
1514 if (!active) {
1515 data &= ~IGP02E1000_PM_D3_LPLU;
1516 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1517 if (ret_val)
1518 return ret_val;
1519 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
1520 * during Dx states where the power conservation is most
1521 * important. During driver activity we should enable
1522 * SmartSpeed, so performance is maintained.
1523 */
1524 if (phy->smart_speed == e1000_smart_speed_on) {
1525 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1526 &data);
1527 if (ret_val)
1528 return ret_val;
1529
1530 data |= IGP01E1000_PSCFR_SMART_SPEED;
1531 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1532 data);
1533 if (ret_val)
1534 return ret_val;
1535 } else if (phy->smart_speed == e1000_smart_speed_off) {
1536 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1537 &data);
1538 if (ret_val)
1539 return ret_val;
1540
1541 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1542 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1543 data);
1544 if (ret_val)
1545 return ret_val;
1546 }
1547 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1548 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1549 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1550 data |= IGP02E1000_PM_D3_LPLU;
1551 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1552 if (ret_val)
1553 return ret_val;
1554
1555 /* When LPLU is enabled, we should disable SmartSpeed */
1556 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1557 if (ret_val)
1558 return ret_val;
1559
1560 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1561 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1562 }
1563
1564 return ret_val;
1565 }
1566
1567 /**
1568 * e1000e_check_downshift - Checks whether a downshift in speed occurred
1569 * @hw: pointer to the HW structure
1570 *
1571 * Success returns 0, Failure returns 1
1572 *
1573 * A downshift is detected by querying the PHY link health.
1574 **/
e1000e_check_downshift(struct e1000_hw * hw)1575 s32 e1000e_check_downshift(struct e1000_hw *hw)
1576 {
1577 struct e1000_phy_info *phy = &hw->phy;
1578 s32 ret_val;
1579 u16 phy_data, offset, mask;
1580
1581 switch (phy->type) {
1582 case e1000_phy_m88:
1583 case e1000_phy_gg82563:
1584 case e1000_phy_bm:
1585 case e1000_phy_82578:
1586 offset = M88E1000_PHY_SPEC_STATUS;
1587 mask = M88E1000_PSSR_DOWNSHIFT;
1588 break;
1589 case e1000_phy_igp_2:
1590 case e1000_phy_igp_3:
1591 offset = IGP01E1000_PHY_LINK_HEALTH;
1592 mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1593 break;
1594 default:
1595 /* speed downshift not supported */
1596 phy->speed_downgraded = false;
1597 return 0;
1598 }
1599
1600 ret_val = e1e_rphy(hw, offset, &phy_data);
1601
1602 if (!ret_val)
1603 phy->speed_downgraded = !!(phy_data & mask);
1604
1605 return ret_val;
1606 }
1607
1608 /**
1609 * e1000_check_polarity_m88 - Checks the polarity.
1610 * @hw: pointer to the HW structure
1611 *
1612 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1613 *
1614 * Polarity is determined based on the PHY specific status register.
1615 **/
e1000_check_polarity_m88(struct e1000_hw * hw)1616 s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1617 {
1618 struct e1000_phy_info *phy = &hw->phy;
1619 s32 ret_val;
1620 u16 data;
1621
1622 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1623
1624 if (!ret_val)
1625 phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
1626 ? e1000_rev_polarity_reversed
1627 : e1000_rev_polarity_normal);
1628
1629 return ret_val;
1630 }
1631
1632 /**
1633 * e1000_check_polarity_igp - Checks the polarity.
1634 * @hw: pointer to the HW structure
1635 *
1636 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1637 *
1638 * Polarity is determined based on the PHY port status register, and the
1639 * current speed (since there is no polarity at 100Mbps).
1640 **/
e1000_check_polarity_igp(struct e1000_hw * hw)1641 s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1642 {
1643 struct e1000_phy_info *phy = &hw->phy;
1644 s32 ret_val;
1645 u16 data, offset, mask;
1646
1647 /* Polarity is determined based on the speed of
1648 * our connection.
1649 */
1650 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1651 if (ret_val)
1652 return ret_val;
1653
1654 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1655 IGP01E1000_PSSR_SPEED_1000MBPS) {
1656 offset = IGP01E1000_PHY_PCS_INIT_REG;
1657 mask = IGP01E1000_PHY_POLARITY_MASK;
1658 } else {
1659 /* This really only applies to 10Mbps since
1660 * there is no polarity for 100Mbps (always 0).
1661 */
1662 offset = IGP01E1000_PHY_PORT_STATUS;
1663 mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1664 }
1665
1666 ret_val = e1e_rphy(hw, offset, &data);
1667
1668 if (!ret_val)
1669 phy->cable_polarity = ((data & mask)
1670 ? e1000_rev_polarity_reversed
1671 : e1000_rev_polarity_normal);
1672
1673 return ret_val;
1674 }
1675
1676 /**
1677 * e1000_check_polarity_ife - Check cable polarity for IFE PHY
1678 * @hw: pointer to the HW structure
1679 *
1680 * Polarity is determined on the polarity reversal feature being enabled.
1681 **/
e1000_check_polarity_ife(struct e1000_hw * hw)1682 s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1683 {
1684 struct e1000_phy_info *phy = &hw->phy;
1685 s32 ret_val;
1686 u16 phy_data, offset, mask;
1687
1688 /* Polarity is determined based on the reversal feature being enabled.
1689 */
1690 if (phy->polarity_correction) {
1691 offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1692 mask = IFE_PESC_POLARITY_REVERSED;
1693 } else {
1694 offset = IFE_PHY_SPECIAL_CONTROL;
1695 mask = IFE_PSC_FORCE_POLARITY;
1696 }
1697
1698 ret_val = e1e_rphy(hw, offset, &phy_data);
1699
1700 if (!ret_val)
1701 phy->cable_polarity = ((phy_data & mask)
1702 ? e1000_rev_polarity_reversed
1703 : e1000_rev_polarity_normal);
1704
1705 return ret_val;
1706 }
1707
1708 /**
1709 * e1000_wait_autoneg - Wait for auto-neg completion
1710 * @hw: pointer to the HW structure
1711 *
1712 * Waits for auto-negotiation to complete or for the auto-negotiation time
1713 * limit to expire, which ever happens first.
1714 **/
e1000_wait_autoneg(struct e1000_hw * hw)1715 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1716 {
1717 s32 ret_val = 0;
1718 u16 i, phy_status;
1719
1720 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1721 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1722 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1723 if (ret_val)
1724 break;
1725 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1726 if (ret_val)
1727 break;
1728 if (phy_status & BMSR_ANEGCOMPLETE)
1729 break;
1730 msleep(100);
1731 }
1732
1733 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1734 * has completed.
1735 */
1736 return ret_val;
1737 }
1738
1739 /**
1740 * e1000e_phy_has_link_generic - Polls PHY for link
1741 * @hw: pointer to the HW structure
1742 * @iterations: number of times to poll for link
1743 * @usec_interval: delay between polling attempts
1744 * @success: pointer to whether polling was successful or not
1745 *
1746 * Polls the PHY status register for link, 'iterations' number of times.
1747 **/
e1000e_phy_has_link_generic(struct e1000_hw * hw,u32 iterations,u32 usec_interval,bool * success)1748 s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1749 u32 usec_interval, bool *success)
1750 {
1751 s32 ret_val = 0;
1752 u16 i, phy_status;
1753
1754 for (i = 0; i < iterations; i++) {
1755 /* Some PHYs require the MII_BMSR register to be read
1756 * twice due to the link bit being sticky. No harm doing
1757 * it across the board.
1758 */
1759 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1760 if (ret_val)
1761 /* If the first read fails, another entity may have
1762 * ownership of the resources, wait and try again to
1763 * see if they have relinquished the resources yet.
1764 */
1765 udelay(usec_interval);
1766 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1767 if (ret_val)
1768 break;
1769 if (phy_status & BMSR_LSTATUS)
1770 break;
1771 if (usec_interval >= 1000)
1772 mdelay(usec_interval / 1000);
1773 else
1774 udelay(usec_interval);
1775 }
1776
1777 *success = (i < iterations);
1778
1779 return ret_val;
1780 }
1781
1782 /**
1783 * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1784 * @hw: pointer to the HW structure
1785 *
1786 * Reads the PHY specific status register to retrieve the cable length
1787 * information. The cable length is determined by averaging the minimum and
1788 * maximum values to get the "average" cable length. The m88 PHY has four
1789 * possible cable length values, which are:
1790 * Register Value Cable Length
1791 * 0 < 50 meters
1792 * 1 50 - 80 meters
1793 * 2 80 - 110 meters
1794 * 3 110 - 140 meters
1795 * 4 > 140 meters
1796 **/
e1000e_get_cable_length_m88(struct e1000_hw * hw)1797 s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1798 {
1799 struct e1000_phy_info *phy = &hw->phy;
1800 s32 ret_val;
1801 u16 phy_data, index;
1802
1803 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1804 if (ret_val)
1805 return ret_val;
1806
1807 index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1808 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
1809
1810 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1811 return -E1000_ERR_PHY;
1812
1813 phy->min_cable_length = e1000_m88_cable_length_table[index];
1814 phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1815
1816 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1817
1818 return 0;
1819 }
1820
1821 /**
1822 * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1823 * @hw: pointer to the HW structure
1824 *
1825 * The automatic gain control (agc) normalizes the amplitude of the
1826 * received signal, adjusting for the attenuation produced by the
1827 * cable. By reading the AGC registers, which represent the
1828 * combination of coarse and fine gain value, the value can be put
1829 * into a lookup table to obtain the approximate cable length
1830 * for each channel.
1831 **/
e1000e_get_cable_length_igp_2(struct e1000_hw * hw)1832 s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1833 {
1834 struct e1000_phy_info *phy = &hw->phy;
1835 s32 ret_val;
1836 u16 phy_data, i, agc_value = 0;
1837 u16 cur_agc_index, max_agc_index = 0;
1838 u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1839 static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1840 IGP02E1000_PHY_AGC_A,
1841 IGP02E1000_PHY_AGC_B,
1842 IGP02E1000_PHY_AGC_C,
1843 IGP02E1000_PHY_AGC_D
1844 };
1845
1846 /* Read the AGC registers for all channels */
1847 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1848 ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1849 if (ret_val)
1850 return ret_val;
1851
1852 /* Getting bits 15:9, which represent the combination of
1853 * coarse and fine gain values. The result is a number
1854 * that can be put into the lookup table to obtain the
1855 * approximate cable length.
1856 */
1857 cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1858 IGP02E1000_AGC_LENGTH_MASK);
1859
1860 /* Array index bound check. */
1861 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1862 (cur_agc_index == 0))
1863 return -E1000_ERR_PHY;
1864
1865 /* Remove min & max AGC values from calculation. */
1866 if (e1000_igp_2_cable_length_table[min_agc_index] >
1867 e1000_igp_2_cable_length_table[cur_agc_index])
1868 min_agc_index = cur_agc_index;
1869 if (e1000_igp_2_cable_length_table[max_agc_index] <
1870 e1000_igp_2_cable_length_table[cur_agc_index])
1871 max_agc_index = cur_agc_index;
1872
1873 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1874 }
1875
1876 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1877 e1000_igp_2_cable_length_table[max_agc_index]);
1878 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1879
1880 /* Calculate cable length with the error range of +/- 10 meters. */
1881 phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1882 (agc_value - IGP02E1000_AGC_RANGE) : 0);
1883 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1884
1885 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1886
1887 return 0;
1888 }
1889
1890 /**
1891 * e1000e_get_phy_info_m88 - Retrieve PHY information
1892 * @hw: pointer to the HW structure
1893 *
1894 * Valid for only copper links. Read the PHY status register (sticky read)
1895 * to verify that link is up. Read the PHY special control register to
1896 * determine the polarity and 10base-T extended distance. Read the PHY
1897 * special status register to determine MDI/MDIx and current speed. If
1898 * speed is 1000, then determine cable length, local and remote receiver.
1899 **/
e1000e_get_phy_info_m88(struct e1000_hw * hw)1900 s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1901 {
1902 struct e1000_phy_info *phy = &hw->phy;
1903 s32 ret_val;
1904 u16 phy_data;
1905 bool link;
1906
1907 if (phy->media_type != e1000_media_type_copper) {
1908 e_dbg("Phy info is only valid for copper media\n");
1909 return -E1000_ERR_CONFIG;
1910 }
1911
1912 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1913 if (ret_val)
1914 return ret_val;
1915
1916 if (!link) {
1917 e_dbg("Phy info is only valid if link is up\n");
1918 return -E1000_ERR_CONFIG;
1919 }
1920
1921 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1922 if (ret_val)
1923 return ret_val;
1924
1925 phy->polarity_correction = !!(phy_data &
1926 M88E1000_PSCR_POLARITY_REVERSAL);
1927
1928 ret_val = e1000_check_polarity_m88(hw);
1929 if (ret_val)
1930 return ret_val;
1931
1932 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1933 if (ret_val)
1934 return ret_val;
1935
1936 phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
1937
1938 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1939 ret_val = hw->phy.ops.get_cable_length(hw);
1940 if (ret_val)
1941 return ret_val;
1942
1943 ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data);
1944 if (ret_val)
1945 return ret_val;
1946
1947 phy->local_rx = (phy_data & LPA_1000LOCALRXOK)
1948 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1949
1950 phy->remote_rx = (phy_data & LPA_1000REMRXOK)
1951 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1952 } else {
1953 /* Set values to "undefined" */
1954 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1955 phy->local_rx = e1000_1000t_rx_status_undefined;
1956 phy->remote_rx = e1000_1000t_rx_status_undefined;
1957 }
1958
1959 return ret_val;
1960 }
1961
1962 /**
1963 * e1000e_get_phy_info_igp - Retrieve igp PHY information
1964 * @hw: pointer to the HW structure
1965 *
1966 * Read PHY status to determine if link is up. If link is up, then
1967 * set/determine 10base-T extended distance and polarity correction. Read
1968 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1969 * determine on the cable length, local and remote receiver.
1970 **/
e1000e_get_phy_info_igp(struct e1000_hw * hw)1971 s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
1972 {
1973 struct e1000_phy_info *phy = &hw->phy;
1974 s32 ret_val;
1975 u16 data;
1976 bool link;
1977
1978 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1979 if (ret_val)
1980 return ret_val;
1981
1982 if (!link) {
1983 e_dbg("Phy info is only valid if link is up\n");
1984 return -E1000_ERR_CONFIG;
1985 }
1986
1987 phy->polarity_correction = true;
1988
1989 ret_val = e1000_check_polarity_igp(hw);
1990 if (ret_val)
1991 return ret_val;
1992
1993 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1994 if (ret_val)
1995 return ret_val;
1996
1997 phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
1998
1999 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2000 IGP01E1000_PSSR_SPEED_1000MBPS) {
2001 ret_val = phy->ops.get_cable_length(hw);
2002 if (ret_val)
2003 return ret_val;
2004
2005 ret_val = e1e_rphy(hw, MII_STAT1000, &data);
2006 if (ret_val)
2007 return ret_val;
2008
2009 phy->local_rx = (data & LPA_1000LOCALRXOK)
2010 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
2011
2012 phy->remote_rx = (data & LPA_1000REMRXOK)
2013 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
2014 } else {
2015 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2016 phy->local_rx = e1000_1000t_rx_status_undefined;
2017 phy->remote_rx = e1000_1000t_rx_status_undefined;
2018 }
2019
2020 return ret_val;
2021 }
2022
2023 /**
2024 * e1000_get_phy_info_ife - Retrieves various IFE PHY states
2025 * @hw: pointer to the HW structure
2026 *
2027 * Populates "phy" structure with various feature states.
2028 **/
e1000_get_phy_info_ife(struct e1000_hw * hw)2029 s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2030 {
2031 struct e1000_phy_info *phy = &hw->phy;
2032 s32 ret_val;
2033 u16 data;
2034 bool link;
2035
2036 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2037 if (ret_val)
2038 return ret_val;
2039
2040 if (!link) {
2041 e_dbg("Phy info is only valid if link is up\n");
2042 return -E1000_ERR_CONFIG;
2043 }
2044
2045 ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2046 if (ret_val)
2047 return ret_val;
2048 phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2049
2050 if (phy->polarity_correction) {
2051 ret_val = e1000_check_polarity_ife(hw);
2052 if (ret_val)
2053 return ret_val;
2054 } else {
2055 /* Polarity is forced */
2056 phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
2057 ? e1000_rev_polarity_reversed
2058 : e1000_rev_polarity_normal);
2059 }
2060
2061 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2062 if (ret_val)
2063 return ret_val;
2064
2065 phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2066
2067 /* The following parameters are undefined for 10/100 operation. */
2068 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2069 phy->local_rx = e1000_1000t_rx_status_undefined;
2070 phy->remote_rx = e1000_1000t_rx_status_undefined;
2071
2072 return 0;
2073 }
2074
2075 /**
2076 * e1000e_phy_sw_reset - PHY software reset
2077 * @hw: pointer to the HW structure
2078 *
2079 * Does a software reset of the PHY by reading the PHY control register and
2080 * setting/write the control register reset bit to the PHY.
2081 **/
e1000e_phy_sw_reset(struct e1000_hw * hw)2082 s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2083 {
2084 s32 ret_val;
2085 u16 phy_ctrl;
2086
2087 ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
2088 if (ret_val)
2089 return ret_val;
2090
2091 phy_ctrl |= BMCR_RESET;
2092 ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
2093 if (ret_val)
2094 return ret_val;
2095
2096 udelay(1);
2097
2098 return ret_val;
2099 }
2100
2101 /**
2102 * e1000e_phy_hw_reset_generic - PHY hardware reset
2103 * @hw: pointer to the HW structure
2104 *
2105 * Verify the reset block is not blocking us from resetting. Acquire
2106 * semaphore (if necessary) and read/set/write the device control reset
2107 * bit in the PHY. Wait the appropriate delay time for the device to
2108 * reset and release the semaphore (if necessary).
2109 **/
e1000e_phy_hw_reset_generic(struct e1000_hw * hw)2110 s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2111 {
2112 struct e1000_phy_info *phy = &hw->phy;
2113 s32 ret_val;
2114 u32 ctrl;
2115
2116 if (phy->ops.check_reset_block) {
2117 ret_val = phy->ops.check_reset_block(hw);
2118 if (ret_val)
2119 return 0;
2120 }
2121
2122 ret_val = phy->ops.acquire(hw);
2123 if (ret_val)
2124 return ret_val;
2125
2126 ctrl = er32(CTRL);
2127 ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2128 e1e_flush();
2129
2130 udelay(phy->reset_delay_us);
2131
2132 ew32(CTRL, ctrl);
2133 e1e_flush();
2134
2135 usleep_range(150, 300);
2136
2137 phy->ops.release(hw);
2138
2139 return phy->ops.get_cfg_done(hw);
2140 }
2141
2142 /**
2143 * e1000e_get_cfg_done_generic - Generic configuration done
2144 * @hw: pointer to the HW structure
2145 *
2146 * Generic function to wait 10 milli-seconds for configuration to complete
2147 * and return success.
2148 **/
e1000e_get_cfg_done_generic(struct e1000_hw __always_unused * hw)2149 s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw)
2150 {
2151 mdelay(10);
2152
2153 return 0;
2154 }
2155
2156 /**
2157 * e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2158 * @hw: pointer to the HW structure
2159 *
2160 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2161 **/
e1000e_phy_init_script_igp3(struct e1000_hw * hw)2162 s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2163 {
2164 e_dbg("Running IGP 3 PHY init script\n");
2165
2166 /* PHY init IGP 3 */
2167 /* Enable rise/fall, 10-mode work in class-A */
2168 e1e_wphy(hw, 0x2F5B, 0x9018);
2169 /* Remove all caps from Replica path filter */
2170 e1e_wphy(hw, 0x2F52, 0x0000);
2171 /* Bias trimming for ADC, AFE and Driver (Default) */
2172 e1e_wphy(hw, 0x2FB1, 0x8B24);
2173 /* Increase Hybrid poly bias */
2174 e1e_wphy(hw, 0x2FB2, 0xF8F0);
2175 /* Add 4% to Tx amplitude in Gig mode */
2176 e1e_wphy(hw, 0x2010, 0x10B0);
2177 /* Disable trimming (TTT) */
2178 e1e_wphy(hw, 0x2011, 0x0000);
2179 /* Poly DC correction to 94.6% + 2% for all channels */
2180 e1e_wphy(hw, 0x20DD, 0x249A);
2181 /* ABS DC correction to 95.9% */
2182 e1e_wphy(hw, 0x20DE, 0x00D3);
2183 /* BG temp curve trim */
2184 e1e_wphy(hw, 0x28B4, 0x04CE);
2185 /* Increasing ADC OPAMP stage 1 currents to max */
2186 e1e_wphy(hw, 0x2F70, 0x29E4);
2187 /* Force 1000 ( required for enabling PHY regs configuration) */
2188 e1e_wphy(hw, 0x0000, 0x0140);
2189 /* Set upd_freq to 6 */
2190 e1e_wphy(hw, 0x1F30, 0x1606);
2191 /* Disable NPDFE */
2192 e1e_wphy(hw, 0x1F31, 0xB814);
2193 /* Disable adaptive fixed FFE (Default) */
2194 e1e_wphy(hw, 0x1F35, 0x002A);
2195 /* Enable FFE hysteresis */
2196 e1e_wphy(hw, 0x1F3E, 0x0067);
2197 /* Fixed FFE for short cable lengths */
2198 e1e_wphy(hw, 0x1F54, 0x0065);
2199 /* Fixed FFE for medium cable lengths */
2200 e1e_wphy(hw, 0x1F55, 0x002A);
2201 /* Fixed FFE for long cable lengths */
2202 e1e_wphy(hw, 0x1F56, 0x002A);
2203 /* Enable Adaptive Clip Threshold */
2204 e1e_wphy(hw, 0x1F72, 0x3FB0);
2205 /* AHT reset limit to 1 */
2206 e1e_wphy(hw, 0x1F76, 0xC0FF);
2207 /* Set AHT master delay to 127 msec */
2208 e1e_wphy(hw, 0x1F77, 0x1DEC);
2209 /* Set scan bits for AHT */
2210 e1e_wphy(hw, 0x1F78, 0xF9EF);
2211 /* Set AHT Preset bits */
2212 e1e_wphy(hw, 0x1F79, 0x0210);
2213 /* Change integ_factor of channel A to 3 */
2214 e1e_wphy(hw, 0x1895, 0x0003);
2215 /* Change prop_factor of channels BCD to 8 */
2216 e1e_wphy(hw, 0x1796, 0x0008);
2217 /* Change cg_icount + enable integbp for channels BCD */
2218 e1e_wphy(hw, 0x1798, 0xD008);
2219 /* Change cg_icount + enable integbp + change prop_factor_master
2220 * to 8 for channel A
2221 */
2222 e1e_wphy(hw, 0x1898, 0xD918);
2223 /* Disable AHT in Slave mode on channel A */
2224 e1e_wphy(hw, 0x187A, 0x0800);
2225 /* Enable LPLU and disable AN to 1000 in non-D0a states,
2226 * Enable SPD+B2B
2227 */
2228 e1e_wphy(hw, 0x0019, 0x008D);
2229 /* Enable restart AN on an1000_dis change */
2230 e1e_wphy(hw, 0x001B, 0x2080);
2231 /* Enable wh_fifo read clock in 10/100 modes */
2232 e1e_wphy(hw, 0x0014, 0x0045);
2233 /* Restart AN, Speed selection is 1000 */
2234 e1e_wphy(hw, 0x0000, 0x1340);
2235
2236 return 0;
2237 }
2238
2239 /**
2240 * e1000e_get_phy_type_from_id - Get PHY type from id
2241 * @phy_id: phy_id read from the phy
2242 *
2243 * Returns the phy type from the id.
2244 **/
e1000e_get_phy_type_from_id(u32 phy_id)2245 enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2246 {
2247 enum e1000_phy_type phy_type = e1000_phy_unknown;
2248
2249 switch (phy_id) {
2250 case M88E1000_I_PHY_ID:
2251 case M88E1000_E_PHY_ID:
2252 case M88E1111_I_PHY_ID:
2253 case M88E1011_I_PHY_ID:
2254 phy_type = e1000_phy_m88;
2255 break;
2256 case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
2257 phy_type = e1000_phy_igp_2;
2258 break;
2259 case GG82563_E_PHY_ID:
2260 phy_type = e1000_phy_gg82563;
2261 break;
2262 case IGP03E1000_E_PHY_ID:
2263 phy_type = e1000_phy_igp_3;
2264 break;
2265 case IFE_E_PHY_ID:
2266 case IFE_PLUS_E_PHY_ID:
2267 case IFE_C_E_PHY_ID:
2268 phy_type = e1000_phy_ife;
2269 break;
2270 case BME1000_E_PHY_ID:
2271 case BME1000_E_PHY_ID_R2:
2272 phy_type = e1000_phy_bm;
2273 break;
2274 case I82578_E_PHY_ID:
2275 phy_type = e1000_phy_82578;
2276 break;
2277 case I82577_E_PHY_ID:
2278 phy_type = e1000_phy_82577;
2279 break;
2280 case I82579_E_PHY_ID:
2281 phy_type = e1000_phy_82579;
2282 break;
2283 case I217_E_PHY_ID:
2284 phy_type = e1000_phy_i217;
2285 break;
2286 default:
2287 phy_type = e1000_phy_unknown;
2288 break;
2289 }
2290 return phy_type;
2291 }
2292
2293 /**
2294 * e1000e_determine_phy_address - Determines PHY address.
2295 * @hw: pointer to the HW structure
2296 *
2297 * This uses a trial and error method to loop through possible PHY
2298 * addresses. It tests each by reading the PHY ID registers and
2299 * checking for a match.
2300 **/
e1000e_determine_phy_address(struct e1000_hw * hw)2301 s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2302 {
2303 u32 phy_addr = 0;
2304 u32 i;
2305 enum e1000_phy_type phy_type = e1000_phy_unknown;
2306
2307 hw->phy.id = phy_type;
2308
2309 for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2310 hw->phy.addr = phy_addr;
2311 i = 0;
2312
2313 do {
2314 e1000e_get_phy_id(hw);
2315 phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2316
2317 /* If phy_type is valid, break - we found our
2318 * PHY address
2319 */
2320 if (phy_type != e1000_phy_unknown)
2321 return 0;
2322
2323 usleep_range(1000, 2000);
2324 i++;
2325 } while (i < 10);
2326 }
2327
2328 return -E1000_ERR_PHY_TYPE;
2329 }
2330
2331 /**
2332 * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2333 * @page: page to access
2334 *
2335 * Returns the phy address for the page requested.
2336 **/
e1000_get_phy_addr_for_bm_page(u32 page,u32 reg)2337 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2338 {
2339 u32 phy_addr = 2;
2340
2341 if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2342 phy_addr = 1;
2343
2344 return phy_addr;
2345 }
2346
2347 /**
2348 * e1000e_write_phy_reg_bm - Write BM PHY register
2349 * @hw: pointer to the HW structure
2350 * @offset: register offset to write to
2351 * @data: data to write at register offset
2352 *
2353 * Acquires semaphore, if necessary, then writes the data to PHY register
2354 * at the offset. Release any acquired semaphores before exiting.
2355 **/
e1000e_write_phy_reg_bm(struct e1000_hw * hw,u32 offset,u16 data)2356 s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2357 {
2358 s32 ret_val;
2359 u32 page = offset >> IGP_PAGE_SHIFT;
2360
2361 ret_val = hw->phy.ops.acquire(hw);
2362 if (ret_val)
2363 return ret_val;
2364
2365 /* Page 800 works differently than the rest so it has its own func */
2366 if (page == BM_WUC_PAGE) {
2367 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2368 false, false);
2369 goto release;
2370 }
2371
2372 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2373
2374 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2375 u32 page_shift, page_select;
2376
2377 /* Page select is register 31 for phy address 1 and 22 for
2378 * phy address 2 and 3. Page select is shifted only for
2379 * phy address 1.
2380 */
2381 if (hw->phy.addr == 1) {
2382 page_shift = IGP_PAGE_SHIFT;
2383 page_select = IGP01E1000_PHY_PAGE_SELECT;
2384 } else {
2385 page_shift = 0;
2386 page_select = BM_PHY_PAGE_SELECT;
2387 }
2388
2389 /* Page is shifted left, PHY expects (page x 32) */
2390 ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2391 (page << page_shift));
2392 if (ret_val)
2393 goto release;
2394 }
2395
2396 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2397 data);
2398
2399 release:
2400 hw->phy.ops.release(hw);
2401 return ret_val;
2402 }
2403
2404 /**
2405 * e1000e_read_phy_reg_bm - Read BM PHY register
2406 * @hw: pointer to the HW structure
2407 * @offset: register offset to be read
2408 * @data: pointer to the read data
2409 *
2410 * Acquires semaphore, if necessary, then reads the PHY register at offset
2411 * and storing the retrieved information in data. Release any acquired
2412 * semaphores before exiting.
2413 **/
e1000e_read_phy_reg_bm(struct e1000_hw * hw,u32 offset,u16 * data)2414 s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2415 {
2416 s32 ret_val;
2417 u32 page = offset >> IGP_PAGE_SHIFT;
2418
2419 ret_val = hw->phy.ops.acquire(hw);
2420 if (ret_val)
2421 return ret_val;
2422
2423 /* Page 800 works differently than the rest so it has its own func */
2424 if (page == BM_WUC_PAGE) {
2425 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2426 true, false);
2427 goto release;
2428 }
2429
2430 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2431
2432 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2433 u32 page_shift, page_select;
2434
2435 /* Page select is register 31 for phy address 1 and 22 for
2436 * phy address 2 and 3. Page select is shifted only for
2437 * phy address 1.
2438 */
2439 if (hw->phy.addr == 1) {
2440 page_shift = IGP_PAGE_SHIFT;
2441 page_select = IGP01E1000_PHY_PAGE_SELECT;
2442 } else {
2443 page_shift = 0;
2444 page_select = BM_PHY_PAGE_SELECT;
2445 }
2446
2447 /* Page is shifted left, PHY expects (page x 32) */
2448 ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2449 (page << page_shift));
2450 if (ret_val)
2451 goto release;
2452 }
2453
2454 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2455 data);
2456 release:
2457 hw->phy.ops.release(hw);
2458 return ret_val;
2459 }
2460
2461 /**
2462 * e1000e_read_phy_reg_bm2 - Read BM PHY register
2463 * @hw: pointer to the HW structure
2464 * @offset: register offset to be read
2465 * @data: pointer to the read data
2466 *
2467 * Acquires semaphore, if necessary, then reads the PHY register at offset
2468 * and storing the retrieved information in data. Release any acquired
2469 * semaphores before exiting.
2470 **/
e1000e_read_phy_reg_bm2(struct e1000_hw * hw,u32 offset,u16 * data)2471 s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2472 {
2473 s32 ret_val;
2474 u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2475
2476 ret_val = hw->phy.ops.acquire(hw);
2477 if (ret_val)
2478 return ret_val;
2479
2480 /* Page 800 works differently than the rest so it has its own func */
2481 if (page == BM_WUC_PAGE) {
2482 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2483 true, false);
2484 goto release;
2485 }
2486
2487 hw->phy.addr = 1;
2488
2489 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2490 /* Page is shifted left, PHY expects (page x 32) */
2491 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2492 page);
2493
2494 if (ret_val)
2495 goto release;
2496 }
2497
2498 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2499 data);
2500 release:
2501 hw->phy.ops.release(hw);
2502 return ret_val;
2503 }
2504
2505 /**
2506 * e1000e_write_phy_reg_bm2 - Write BM PHY register
2507 * @hw: pointer to the HW structure
2508 * @offset: register offset to write to
2509 * @data: data to write at register offset
2510 *
2511 * Acquires semaphore, if necessary, then writes the data to PHY register
2512 * at the offset. Release any acquired semaphores before exiting.
2513 **/
e1000e_write_phy_reg_bm2(struct e1000_hw * hw,u32 offset,u16 data)2514 s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2515 {
2516 s32 ret_val;
2517 u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2518
2519 ret_val = hw->phy.ops.acquire(hw);
2520 if (ret_val)
2521 return ret_val;
2522
2523 /* Page 800 works differently than the rest so it has its own func */
2524 if (page == BM_WUC_PAGE) {
2525 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2526 false, false);
2527 goto release;
2528 }
2529
2530 hw->phy.addr = 1;
2531
2532 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2533 /* Page is shifted left, PHY expects (page x 32) */
2534 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2535 page);
2536
2537 if (ret_val)
2538 goto release;
2539 }
2540
2541 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2542 data);
2543
2544 release:
2545 hw->phy.ops.release(hw);
2546 return ret_val;
2547 }
2548
2549 /**
2550 * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2551 * @hw: pointer to the HW structure
2552 * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2553 *
2554 * Assumes semaphore already acquired and phy_reg points to a valid memory
2555 * address to store contents of the BM_WUC_ENABLE_REG register.
2556 **/
e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw * hw,u16 * phy_reg)2557 s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2558 {
2559 s32 ret_val;
2560 u16 temp;
2561
2562 /* All page select, port ctrl and wakeup registers use phy address 1 */
2563 hw->phy.addr = 1;
2564
2565 /* Select Port Control Registers page */
2566 ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2567 if (ret_val) {
2568 e_dbg("Could not set Port Control page\n");
2569 return ret_val;
2570 }
2571
2572 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2573 if (ret_val) {
2574 e_dbg("Could not read PHY register %d.%d\n",
2575 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2576 return ret_val;
2577 }
2578
2579 /* Enable both PHY wakeup mode and Wakeup register page writes.
2580 * Prevent a power state change by disabling ME and Host PHY wakeup.
2581 */
2582 temp = *phy_reg;
2583 temp |= BM_WUC_ENABLE_BIT;
2584 temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2585
2586 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2587 if (ret_val) {
2588 e_dbg("Could not write PHY register %d.%d\n",
2589 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2590 return ret_val;
2591 }
2592
2593 /* Select Host Wakeup Registers page - caller now able to write
2594 * registers on the Wakeup registers page
2595 */
2596 return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2597 }
2598
2599 /**
2600 * e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2601 * @hw: pointer to the HW structure
2602 * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2603 *
2604 * Restore BM_WUC_ENABLE_REG to its original value.
2605 *
2606 * Assumes semaphore already acquired and *phy_reg is the contents of the
2607 * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2608 * caller.
2609 **/
e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw * hw,u16 * phy_reg)2610 s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2611 {
2612 s32 ret_val;
2613
2614 /* Select Port Control Registers page */
2615 ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2616 if (ret_val) {
2617 e_dbg("Could not set Port Control page\n");
2618 return ret_val;
2619 }
2620
2621 /* Restore 769.17 to its original value */
2622 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2623 if (ret_val)
2624 e_dbg("Could not restore PHY register %d.%d\n",
2625 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2626
2627 return ret_val;
2628 }
2629
2630 /**
2631 * e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2632 * @hw: pointer to the HW structure
2633 * @offset: register offset to be read or written
2634 * @data: pointer to the data to read or write
2635 * @read: determines if operation is read or write
2636 * @page_set: BM_WUC_PAGE already set and access enabled
2637 *
2638 * Read the PHY register at offset and store the retrieved information in
2639 * data, or write data to PHY register at offset. Note the procedure to
2640 * access the PHY wakeup registers is different than reading the other PHY
2641 * registers. It works as such:
2642 * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2643 * 2) Set page to 800 for host (801 if we were manageability)
2644 * 3) Write the address using the address opcode (0x11)
2645 * 4) Read or write the data using the data opcode (0x12)
2646 * 5) Restore 769.17.2 to its original value
2647 *
2648 * Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2649 * step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2650 *
2651 * Assumes semaphore is already acquired. When page_set==true, assumes
2652 * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2653 * is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2654 **/
e1000_access_phy_wakeup_reg_bm(struct e1000_hw * hw,u32 offset,u16 * data,bool read,bool page_set)2655 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2656 u16 *data, bool read, bool page_set)
2657 {
2658 s32 ret_val;
2659 u16 reg = BM_PHY_REG_NUM(offset);
2660 u16 page = BM_PHY_REG_PAGE(offset);
2661 u16 phy_reg = 0;
2662
2663 /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2664 if ((hw->mac.type == e1000_pchlan) &&
2665 (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2666 e_dbg("Attempting to access page %d while gig enabled.\n",
2667 page);
2668
2669 if (!page_set) {
2670 /* Enable access to PHY wakeup registers */
2671 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2672 if (ret_val) {
2673 e_dbg("Could not enable PHY wakeup reg access\n");
2674 return ret_val;
2675 }
2676 }
2677
2678 e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2679
2680 /* Write the Wakeup register page offset value using opcode 0x11 */
2681 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2682 if (ret_val) {
2683 e_dbg("Could not write address opcode to page %d\n", page);
2684 return ret_val;
2685 }
2686
2687 if (read) {
2688 /* Read the Wakeup register page value using opcode 0x12 */
2689 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2690 data);
2691 } else {
2692 /* Write the Wakeup register page value using opcode 0x12 */
2693 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2694 *data);
2695 }
2696
2697 if (ret_val) {
2698 e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2699 return ret_val;
2700 }
2701
2702 if (!page_set)
2703 ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2704
2705 return ret_val;
2706 }
2707
2708 /**
2709 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2710 * @hw: pointer to the HW structure
2711 *
2712 * In the case of a PHY power down to save power, or to turn off link during a
2713 * driver unload, or wake on lan is not enabled, restore the link to previous
2714 * settings.
2715 **/
e1000_power_up_phy_copper(struct e1000_hw * hw)2716 void e1000_power_up_phy_copper(struct e1000_hw *hw)
2717 {
2718 u16 mii_reg = 0;
2719
2720 /* The PHY will retain its settings across a power down/up cycle */
2721 e1e_rphy(hw, MII_BMCR, &mii_reg);
2722 mii_reg &= ~BMCR_PDOWN;
2723 e1e_wphy(hw, MII_BMCR, mii_reg);
2724 }
2725
2726 /**
2727 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2728 * @hw: pointer to the HW structure
2729 *
2730 * In the case of a PHY power down to save power, or to turn off link during a
2731 * driver unload, or wake on lan is not enabled, restore the link to previous
2732 * settings.
2733 **/
e1000_power_down_phy_copper(struct e1000_hw * hw)2734 void e1000_power_down_phy_copper(struct e1000_hw *hw)
2735 {
2736 u16 mii_reg = 0;
2737
2738 /* The PHY will retain its settings across a power down/up cycle */
2739 e1e_rphy(hw, MII_BMCR, &mii_reg);
2740 mii_reg |= BMCR_PDOWN;
2741 e1e_wphy(hw, MII_BMCR, mii_reg);
2742 usleep_range(1000, 2000);
2743 }
2744
2745 /**
2746 * __e1000_read_phy_reg_hv - Read HV PHY register
2747 * @hw: pointer to the HW structure
2748 * @offset: register offset to be read
2749 * @data: pointer to the read data
2750 * @locked: semaphore has already been acquired or not
2751 *
2752 * Acquires semaphore, if necessary, then reads the PHY register at offset
2753 * and stores the retrieved information in data. Release any acquired
2754 * semaphore before exiting.
2755 **/
__e1000_read_phy_reg_hv(struct e1000_hw * hw,u32 offset,u16 * data,bool locked,bool page_set)2756 static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2757 bool locked, bool page_set)
2758 {
2759 s32 ret_val;
2760 u16 page = BM_PHY_REG_PAGE(offset);
2761 u16 reg = BM_PHY_REG_NUM(offset);
2762 u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2763
2764 if (!locked) {
2765 ret_val = hw->phy.ops.acquire(hw);
2766 if (ret_val)
2767 return ret_val;
2768 }
2769
2770 /* Page 800 works differently than the rest so it has its own func */
2771 if (page == BM_WUC_PAGE) {
2772 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2773 true, page_set);
2774 goto out;
2775 }
2776
2777 if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2778 ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2779 data, true);
2780 goto out;
2781 }
2782
2783 if (!page_set) {
2784 if (page == HV_INTC_FC_PAGE_START)
2785 page = 0;
2786
2787 if (reg > MAX_PHY_MULTI_PAGE_REG) {
2788 /* Page is shifted left, PHY expects (page x 32) */
2789 ret_val = e1000_set_page_igp(hw,
2790 (page << IGP_PAGE_SHIFT));
2791
2792 hw->phy.addr = phy_addr;
2793
2794 if (ret_val)
2795 goto out;
2796 }
2797 }
2798
2799 e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2800 page << IGP_PAGE_SHIFT, reg);
2801
2802 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data);
2803 out:
2804 if (!locked)
2805 hw->phy.ops.release(hw);
2806
2807 return ret_val;
2808 }
2809
2810 /**
2811 * e1000_read_phy_reg_hv - Read HV PHY register
2812 * @hw: pointer to the HW structure
2813 * @offset: register offset to be read
2814 * @data: pointer to the read data
2815 *
2816 * Acquires semaphore then reads the PHY register at offset and stores
2817 * the retrieved information in data. Release the acquired semaphore
2818 * before exiting.
2819 **/
e1000_read_phy_reg_hv(struct e1000_hw * hw,u32 offset,u16 * data)2820 s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2821 {
2822 return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2823 }
2824
2825 /**
2826 * e1000_read_phy_reg_hv_locked - Read HV PHY register
2827 * @hw: pointer to the HW structure
2828 * @offset: register offset to be read
2829 * @data: pointer to the read data
2830 *
2831 * Reads the PHY register at offset and stores the retrieved information
2832 * in data. Assumes semaphore already acquired.
2833 **/
e1000_read_phy_reg_hv_locked(struct e1000_hw * hw,u32 offset,u16 * data)2834 s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2835 {
2836 return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2837 }
2838
2839 /**
2840 * e1000_read_phy_reg_page_hv - Read HV PHY register
2841 * @hw: pointer to the HW structure
2842 * @offset: register offset to write to
2843 * @data: data to write at register offset
2844 *
2845 * Reads the PHY register at offset and stores the retrieved information
2846 * in data. Assumes semaphore already acquired and page already set.
2847 **/
e1000_read_phy_reg_page_hv(struct e1000_hw * hw,u32 offset,u16 * data)2848 s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2849 {
2850 return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2851 }
2852
2853 /**
2854 * __e1000_write_phy_reg_hv - Write HV PHY register
2855 * @hw: pointer to the HW structure
2856 * @offset: register offset to write to
2857 * @data: data to write at register offset
2858 * @locked: semaphore has already been acquired or not
2859 *
2860 * Acquires semaphore, if necessary, then writes the data to PHY register
2861 * at the offset. Release any acquired semaphores before exiting.
2862 **/
__e1000_write_phy_reg_hv(struct e1000_hw * hw,u32 offset,u16 data,bool locked,bool page_set)2863 static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2864 bool locked, bool page_set)
2865 {
2866 s32 ret_val;
2867 u16 page = BM_PHY_REG_PAGE(offset);
2868 u16 reg = BM_PHY_REG_NUM(offset);
2869 u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2870
2871 if (!locked) {
2872 ret_val = hw->phy.ops.acquire(hw);
2873 if (ret_val)
2874 return ret_val;
2875 }
2876
2877 /* Page 800 works differently than the rest so it has its own func */
2878 if (page == BM_WUC_PAGE) {
2879 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2880 false, page_set);
2881 goto out;
2882 }
2883
2884 if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2885 ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2886 &data, false);
2887 goto out;
2888 }
2889
2890 if (!page_set) {
2891 if (page == HV_INTC_FC_PAGE_START)
2892 page = 0;
2893
2894 /* Workaround MDIO accesses being disabled after entering IEEE
2895 * Power Down (when bit 11 of the PHY Control register is set)
2896 */
2897 if ((hw->phy.type == e1000_phy_82578) &&
2898 (hw->phy.revision >= 1) &&
2899 (hw->phy.addr == 2) &&
2900 !(MAX_PHY_REG_ADDRESS & reg) && (data & (1 << 11))) {
2901 u16 data2 = 0x7EFF;
2902 ret_val = e1000_access_phy_debug_regs_hv(hw,
2903 (1 << 6) | 0x3,
2904 &data2, false);
2905 if (ret_val)
2906 goto out;
2907 }
2908
2909 if (reg > MAX_PHY_MULTI_PAGE_REG) {
2910 /* Page is shifted left, PHY expects (page x 32) */
2911 ret_val = e1000_set_page_igp(hw,
2912 (page << IGP_PAGE_SHIFT));
2913
2914 hw->phy.addr = phy_addr;
2915
2916 if (ret_val)
2917 goto out;
2918 }
2919 }
2920
2921 e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2922 page << IGP_PAGE_SHIFT, reg);
2923
2924 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2925 data);
2926
2927 out:
2928 if (!locked)
2929 hw->phy.ops.release(hw);
2930
2931 return ret_val;
2932 }
2933
2934 /**
2935 * e1000_write_phy_reg_hv - Write HV PHY register
2936 * @hw: pointer to the HW structure
2937 * @offset: register offset to write to
2938 * @data: data to write at register offset
2939 *
2940 * Acquires semaphore then writes the data to PHY register at the offset.
2941 * Release the acquired semaphores before exiting.
2942 **/
e1000_write_phy_reg_hv(struct e1000_hw * hw,u32 offset,u16 data)2943 s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
2944 {
2945 return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
2946 }
2947
2948 /**
2949 * e1000_write_phy_reg_hv_locked - Write HV PHY register
2950 * @hw: pointer to the HW structure
2951 * @offset: register offset to write to
2952 * @data: data to write at register offset
2953 *
2954 * Writes the data to PHY register at the offset. Assumes semaphore
2955 * already acquired.
2956 **/
e1000_write_phy_reg_hv_locked(struct e1000_hw * hw,u32 offset,u16 data)2957 s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
2958 {
2959 return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
2960 }
2961
2962 /**
2963 * e1000_write_phy_reg_page_hv - Write HV PHY register
2964 * @hw: pointer to the HW structure
2965 * @offset: register offset to write to
2966 * @data: data to write at register offset
2967 *
2968 * Writes the data to PHY register at the offset. Assumes semaphore
2969 * already acquired and page already set.
2970 **/
e1000_write_phy_reg_page_hv(struct e1000_hw * hw,u32 offset,u16 data)2971 s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
2972 {
2973 return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
2974 }
2975
2976 /**
2977 * e1000_get_phy_addr_for_hv_page - Get PHY address based on page
2978 * @page: page to be accessed
2979 **/
e1000_get_phy_addr_for_hv_page(u32 page)2980 static u32 e1000_get_phy_addr_for_hv_page(u32 page)
2981 {
2982 u32 phy_addr = 2;
2983
2984 if (page >= HV_INTC_FC_PAGE_START)
2985 phy_addr = 1;
2986
2987 return phy_addr;
2988 }
2989
2990 /**
2991 * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
2992 * @hw: pointer to the HW structure
2993 * @offset: register offset to be read or written
2994 * @data: pointer to the data to be read or written
2995 * @read: determines if operation is read or write
2996 *
2997 * Reads the PHY register at offset and stores the retreived information
2998 * in data. Assumes semaphore already acquired. Note that the procedure
2999 * to access these regs uses the address port and data port to read/write.
3000 * These accesses done with PHY address 2 and without using pages.
3001 **/
e1000_access_phy_debug_regs_hv(struct e1000_hw * hw,u32 offset,u16 * data,bool read)3002 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3003 u16 *data, bool read)
3004 {
3005 s32 ret_val;
3006 u32 addr_reg;
3007 u32 data_reg;
3008
3009 /* This takes care of the difference with desktop vs mobile phy */
3010 addr_reg = ((hw->phy.type == e1000_phy_82578) ?
3011 I82578_ADDR_REG : I82577_ADDR_REG);
3012 data_reg = addr_reg + 1;
3013
3014 /* All operations in this function are phy address 2 */
3015 hw->phy.addr = 2;
3016
3017 /* masking with 0x3F to remove the page from offset */
3018 ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3019 if (ret_val) {
3020 e_dbg("Could not write the Address Offset port register\n");
3021 return ret_val;
3022 }
3023
3024 /* Read or write the data value next */
3025 if (read)
3026 ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3027 else
3028 ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3029
3030 if (ret_val)
3031 e_dbg("Could not access the Data port register\n");
3032
3033 return ret_val;
3034 }
3035
3036 /**
3037 * e1000_link_stall_workaround_hv - Si workaround
3038 * @hw: pointer to the HW structure
3039 *
3040 * This function works around a Si bug where the link partner can get
3041 * a link up indication before the PHY does. If small packets are sent
3042 * by the link partner they can be placed in the packet buffer without
3043 * being properly accounted for by the PHY and will stall preventing
3044 * further packets from being received. The workaround is to clear the
3045 * packet buffer after the PHY detects link up.
3046 **/
e1000_link_stall_workaround_hv(struct e1000_hw * hw)3047 s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3048 {
3049 s32 ret_val = 0;
3050 u16 data;
3051
3052 if (hw->phy.type != e1000_phy_82578)
3053 return 0;
3054
3055 /* Do not apply workaround if in PHY loopback bit 14 set */
3056 e1e_rphy(hw, MII_BMCR, &data);
3057 if (data & BMCR_LOOPBACK)
3058 return 0;
3059
3060 /* check if link is up and at 1Gbps */
3061 ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3062 if (ret_val)
3063 return ret_val;
3064
3065 data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3066 BM_CS_STATUS_SPEED_MASK);
3067
3068 if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3069 BM_CS_STATUS_SPEED_1000))
3070 return 0;
3071
3072 msleep(200);
3073
3074 /* flush the packets in the fifo buffer */
3075 ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL,
3076 (HV_MUX_DATA_CTRL_GEN_TO_MAC |
3077 HV_MUX_DATA_CTRL_FORCE_SPEED));
3078 if (ret_val)
3079 return ret_val;
3080
3081 return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3082 }
3083
3084 /**
3085 * e1000_check_polarity_82577 - Checks the polarity.
3086 * @hw: pointer to the HW structure
3087 *
3088 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3089 *
3090 * Polarity is determined based on the PHY specific status register.
3091 **/
e1000_check_polarity_82577(struct e1000_hw * hw)3092 s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3093 {
3094 struct e1000_phy_info *phy = &hw->phy;
3095 s32 ret_val;
3096 u16 data;
3097
3098 ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3099
3100 if (!ret_val)
3101 phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
3102 ? e1000_rev_polarity_reversed
3103 : e1000_rev_polarity_normal);
3104
3105 return ret_val;
3106 }
3107
3108 /**
3109 * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3110 * @hw: pointer to the HW structure
3111 *
3112 * Calls the PHY setup function to force speed and duplex.
3113 **/
e1000_phy_force_speed_duplex_82577(struct e1000_hw * hw)3114 s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3115 {
3116 struct e1000_phy_info *phy = &hw->phy;
3117 s32 ret_val;
3118 u16 phy_data;
3119 bool link;
3120
3121 ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
3122 if (ret_val)
3123 return ret_val;
3124
3125 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3126
3127 ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
3128 if (ret_val)
3129 return ret_val;
3130
3131 udelay(1);
3132
3133 if (phy->autoneg_wait_to_complete) {
3134 e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3135
3136 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3137 100000, &link);
3138 if (ret_val)
3139 return ret_val;
3140
3141 if (!link)
3142 e_dbg("Link taking longer than expected.\n");
3143
3144 /* Try once more */
3145 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3146 100000, &link);
3147 }
3148
3149 return ret_val;
3150 }
3151
3152 /**
3153 * e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3154 * @hw: pointer to the HW structure
3155 *
3156 * Read PHY status to determine if link is up. If link is up, then
3157 * set/determine 10base-T extended distance and polarity correction. Read
3158 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
3159 * determine on the cable length, local and remote receiver.
3160 **/
e1000_get_phy_info_82577(struct e1000_hw * hw)3161 s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3162 {
3163 struct e1000_phy_info *phy = &hw->phy;
3164 s32 ret_val;
3165 u16 data;
3166 bool link;
3167
3168 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3169 if (ret_val)
3170 return ret_val;
3171
3172 if (!link) {
3173 e_dbg("Phy info is only valid if link is up\n");
3174 return -E1000_ERR_CONFIG;
3175 }
3176
3177 phy->polarity_correction = true;
3178
3179 ret_val = e1000_check_polarity_82577(hw);
3180 if (ret_val)
3181 return ret_val;
3182
3183 ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3184 if (ret_val)
3185 return ret_val;
3186
3187 phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3188
3189 if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3190 I82577_PHY_STATUS2_SPEED_1000MBPS) {
3191 ret_val = hw->phy.ops.get_cable_length(hw);
3192 if (ret_val)
3193 return ret_val;
3194
3195 ret_val = e1e_rphy(hw, MII_STAT1000, &data);
3196 if (ret_val)
3197 return ret_val;
3198
3199 phy->local_rx = (data & LPA_1000LOCALRXOK)
3200 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3201
3202 phy->remote_rx = (data & LPA_1000REMRXOK)
3203 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3204 } else {
3205 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3206 phy->local_rx = e1000_1000t_rx_status_undefined;
3207 phy->remote_rx = e1000_1000t_rx_status_undefined;
3208 }
3209
3210 return 0;
3211 }
3212
3213 /**
3214 * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3215 * @hw: pointer to the HW structure
3216 *
3217 * Reads the diagnostic status register and verifies result is valid before
3218 * placing it in the phy_cable_length field.
3219 **/
e1000_get_cable_length_82577(struct e1000_hw * hw)3220 s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3221 {
3222 struct e1000_phy_info *phy = &hw->phy;
3223 s32 ret_val;
3224 u16 phy_data, length;
3225
3226 ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3227 if (ret_val)
3228 return ret_val;
3229
3230 length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3231 I82577_DSTATUS_CABLE_LENGTH_SHIFT);
3232
3233 if (length == E1000_CABLE_LENGTH_UNDEFINED)
3234 return -E1000_ERR_PHY;
3235
3236 phy->cable_length = length;
3237
3238 return 0;
3239 }
3240