1 /**
2 * eCryptfs: Linux filesystem encryption layer
3 *
4 * Copyright (C) 2004-2008 International Business Machines Corp.
5 * Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
6 * Tyler Hicks <tyhicks@ou.edu>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License version
10 * 2 as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
20 * 02111-1307, USA.
21 */
22 #include <linux/sched.h>
23 #include <linux/slab.h>
24 #include <linux/user_namespace.h>
25 #include <linux/nsproxy.h>
26 #include "ecryptfs_kernel.h"
27
28 static LIST_HEAD(ecryptfs_msg_ctx_free_list);
29 static LIST_HEAD(ecryptfs_msg_ctx_alloc_list);
30 static struct mutex ecryptfs_msg_ctx_lists_mux;
31
32 static struct hlist_head *ecryptfs_daemon_hash;
33 struct mutex ecryptfs_daemon_hash_mux;
34 static int ecryptfs_hash_bits;
35 #define ecryptfs_current_euid_hash(uid) \
36 hash_long((unsigned long)from_kuid(&init_user_ns, current_euid()), ecryptfs_hash_bits)
37
38 static u32 ecryptfs_msg_counter;
39 static struct ecryptfs_msg_ctx *ecryptfs_msg_ctx_arr;
40
41 /**
42 * ecryptfs_acquire_free_msg_ctx
43 * @msg_ctx: The context that was acquired from the free list
44 *
45 * Acquires a context element from the free list and locks the mutex
46 * on the context. Sets the msg_ctx task to current. Returns zero on
47 * success; non-zero on error or upon failure to acquire a free
48 * context element. Must be called with ecryptfs_msg_ctx_lists_mux
49 * held.
50 */
ecryptfs_acquire_free_msg_ctx(struct ecryptfs_msg_ctx ** msg_ctx)51 static int ecryptfs_acquire_free_msg_ctx(struct ecryptfs_msg_ctx **msg_ctx)
52 {
53 struct list_head *p;
54 int rc;
55
56 if (list_empty(&ecryptfs_msg_ctx_free_list)) {
57 printk(KERN_WARNING "%s: The eCryptfs free "
58 "context list is empty. It may be helpful to "
59 "specify the ecryptfs_message_buf_len "
60 "parameter to be greater than the current "
61 "value of [%d]\n", __func__, ecryptfs_message_buf_len);
62 rc = -ENOMEM;
63 goto out;
64 }
65 list_for_each(p, &ecryptfs_msg_ctx_free_list) {
66 *msg_ctx = list_entry(p, struct ecryptfs_msg_ctx, node);
67 if (mutex_trylock(&(*msg_ctx)->mux)) {
68 (*msg_ctx)->task = current;
69 rc = 0;
70 goto out;
71 }
72 }
73 rc = -ENOMEM;
74 out:
75 return rc;
76 }
77
78 /**
79 * ecryptfs_msg_ctx_free_to_alloc
80 * @msg_ctx: The context to move from the free list to the alloc list
81 *
82 * Must be called with ecryptfs_msg_ctx_lists_mux held.
83 */
ecryptfs_msg_ctx_free_to_alloc(struct ecryptfs_msg_ctx * msg_ctx)84 static void ecryptfs_msg_ctx_free_to_alloc(struct ecryptfs_msg_ctx *msg_ctx)
85 {
86 list_move(&msg_ctx->node, &ecryptfs_msg_ctx_alloc_list);
87 msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_PENDING;
88 msg_ctx->counter = ++ecryptfs_msg_counter;
89 }
90
91 /**
92 * ecryptfs_msg_ctx_alloc_to_free
93 * @msg_ctx: The context to move from the alloc list to the free list
94 *
95 * Must be called with ecryptfs_msg_ctx_lists_mux held.
96 */
ecryptfs_msg_ctx_alloc_to_free(struct ecryptfs_msg_ctx * msg_ctx)97 void ecryptfs_msg_ctx_alloc_to_free(struct ecryptfs_msg_ctx *msg_ctx)
98 {
99 list_move(&(msg_ctx->node), &ecryptfs_msg_ctx_free_list);
100 kfree(msg_ctx->msg);
101 msg_ctx->msg = NULL;
102 msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_FREE;
103 }
104
105 /**
106 * ecryptfs_find_daemon_by_euid
107 * @daemon: If return value is zero, points to the desired daemon pointer
108 *
109 * Must be called with ecryptfs_daemon_hash_mux held.
110 *
111 * Search the hash list for the current effective user id.
112 *
113 * Returns zero if the user id exists in the list; non-zero otherwise.
114 */
ecryptfs_find_daemon_by_euid(struct ecryptfs_daemon ** daemon)115 int ecryptfs_find_daemon_by_euid(struct ecryptfs_daemon **daemon)
116 {
117 int rc;
118
119 hlist_for_each_entry(*daemon,
120 &ecryptfs_daemon_hash[ecryptfs_current_euid_hash()],
121 euid_chain) {
122 if (uid_eq((*daemon)->file->f_cred->euid, current_euid())) {
123 rc = 0;
124 goto out;
125 }
126 }
127 rc = -EINVAL;
128 out:
129 return rc;
130 }
131
132 /**
133 * ecryptfs_spawn_daemon - Create and initialize a new daemon struct
134 * @daemon: Pointer to set to newly allocated daemon struct
135 * @file: File used when opening /dev/ecryptfs
136 *
137 * Must be called ceremoniously while in possession of
138 * ecryptfs_sacred_daemon_hash_mux
139 *
140 * Returns zero on success; non-zero otherwise
141 */
142 int
ecryptfs_spawn_daemon(struct ecryptfs_daemon ** daemon,struct file * file)143 ecryptfs_spawn_daemon(struct ecryptfs_daemon **daemon, struct file *file)
144 {
145 int rc = 0;
146
147 (*daemon) = kzalloc(sizeof(**daemon), GFP_KERNEL);
148 if (!(*daemon)) {
149 rc = -ENOMEM;
150 printk(KERN_ERR "%s: Failed to allocate [%zd] bytes of "
151 "GFP_KERNEL memory\n", __func__, sizeof(**daemon));
152 goto out;
153 }
154 (*daemon)->file = file;
155 mutex_init(&(*daemon)->mux);
156 INIT_LIST_HEAD(&(*daemon)->msg_ctx_out_queue);
157 init_waitqueue_head(&(*daemon)->wait);
158 (*daemon)->num_queued_msg_ctx = 0;
159 hlist_add_head(&(*daemon)->euid_chain,
160 &ecryptfs_daemon_hash[ecryptfs_current_euid_hash()]);
161 out:
162 return rc;
163 }
164
165 /**
166 * ecryptfs_exorcise_daemon - Destroy the daemon struct
167 *
168 * Must be called ceremoniously while in possession of
169 * ecryptfs_daemon_hash_mux and the daemon's own mux.
170 */
ecryptfs_exorcise_daemon(struct ecryptfs_daemon * daemon)171 int ecryptfs_exorcise_daemon(struct ecryptfs_daemon *daemon)
172 {
173 struct ecryptfs_msg_ctx *msg_ctx, *msg_ctx_tmp;
174 int rc = 0;
175
176 mutex_lock(&daemon->mux);
177 if ((daemon->flags & ECRYPTFS_DAEMON_IN_READ)
178 || (daemon->flags & ECRYPTFS_DAEMON_IN_POLL)) {
179 rc = -EBUSY;
180 mutex_unlock(&daemon->mux);
181 goto out;
182 }
183 list_for_each_entry_safe(msg_ctx, msg_ctx_tmp,
184 &daemon->msg_ctx_out_queue, daemon_out_list) {
185 list_del(&msg_ctx->daemon_out_list);
186 daemon->num_queued_msg_ctx--;
187 printk(KERN_WARNING "%s: Warning: dropping message that is in "
188 "the out queue of a dying daemon\n", __func__);
189 ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
190 }
191 hlist_del(&daemon->euid_chain);
192 mutex_unlock(&daemon->mux);
193 kzfree(daemon);
194 out:
195 return rc;
196 }
197
198 /**
199 * ecryptfs_process_reponse
200 * @msg: The ecryptfs message received; the caller should sanity check
201 * msg->data_len and free the memory
202 * @seq: The sequence number of the message; must match the sequence
203 * number for the existing message context waiting for this
204 * response
205 *
206 * Processes a response message after sending an operation request to
207 * userspace. Some other process is awaiting this response. Before
208 * sending out its first communications, the other process allocated a
209 * msg_ctx from the ecryptfs_msg_ctx_arr at a particular index. The
210 * response message contains this index so that we can copy over the
211 * response message into the msg_ctx that the process holds a
212 * reference to. The other process is going to wake up, check to see
213 * that msg_ctx->state == ECRYPTFS_MSG_CTX_STATE_DONE, and then
214 * proceed to read off and process the response message. Returns zero
215 * upon delivery to desired context element; non-zero upon delivery
216 * failure or error.
217 *
218 * Returns zero on success; non-zero otherwise
219 */
ecryptfs_process_response(struct ecryptfs_daemon * daemon,struct ecryptfs_message * msg,u32 seq)220 int ecryptfs_process_response(struct ecryptfs_daemon *daemon,
221 struct ecryptfs_message *msg, u32 seq)
222 {
223 struct ecryptfs_msg_ctx *msg_ctx;
224 size_t msg_size;
225 int rc;
226
227 if (msg->index >= ecryptfs_message_buf_len) {
228 rc = -EINVAL;
229 printk(KERN_ERR "%s: Attempt to reference "
230 "context buffer at index [%d]; maximum "
231 "allowable is [%d]\n", __func__, msg->index,
232 (ecryptfs_message_buf_len - 1));
233 goto out;
234 }
235 msg_ctx = &ecryptfs_msg_ctx_arr[msg->index];
236 mutex_lock(&msg_ctx->mux);
237 if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_PENDING) {
238 rc = -EINVAL;
239 printk(KERN_WARNING "%s: Desired context element is not "
240 "pending a response\n", __func__);
241 goto unlock;
242 } else if (msg_ctx->counter != seq) {
243 rc = -EINVAL;
244 printk(KERN_WARNING "%s: Invalid message sequence; "
245 "expected [%d]; received [%d]\n", __func__,
246 msg_ctx->counter, seq);
247 goto unlock;
248 }
249 msg_size = (sizeof(*msg) + msg->data_len);
250 msg_ctx->msg = kmalloc(msg_size, GFP_KERNEL);
251 if (!msg_ctx->msg) {
252 rc = -ENOMEM;
253 printk(KERN_ERR "%s: Failed to allocate [%zd] bytes of "
254 "GFP_KERNEL memory\n", __func__, msg_size);
255 goto unlock;
256 }
257 memcpy(msg_ctx->msg, msg, msg_size);
258 msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_DONE;
259 wake_up_process(msg_ctx->task);
260 rc = 0;
261 unlock:
262 mutex_unlock(&msg_ctx->mux);
263 out:
264 return rc;
265 }
266
267 /**
268 * ecryptfs_send_message_locked
269 * @data: The data to send
270 * @data_len: The length of data
271 * @msg_ctx: The message context allocated for the send
272 *
273 * Must be called with ecryptfs_daemon_hash_mux held.
274 *
275 * Returns zero on success; non-zero otherwise
276 */
277 static int
ecryptfs_send_message_locked(char * data,int data_len,u8 msg_type,struct ecryptfs_msg_ctx ** msg_ctx)278 ecryptfs_send_message_locked(char *data, int data_len, u8 msg_type,
279 struct ecryptfs_msg_ctx **msg_ctx)
280 {
281 struct ecryptfs_daemon *daemon;
282 int rc;
283
284 rc = ecryptfs_find_daemon_by_euid(&daemon);
285 if (rc) {
286 rc = -ENOTCONN;
287 goto out;
288 }
289 mutex_lock(&ecryptfs_msg_ctx_lists_mux);
290 rc = ecryptfs_acquire_free_msg_ctx(msg_ctx);
291 if (rc) {
292 mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
293 printk(KERN_WARNING "%s: Could not claim a free "
294 "context element\n", __func__);
295 goto out;
296 }
297 ecryptfs_msg_ctx_free_to_alloc(*msg_ctx);
298 mutex_unlock(&(*msg_ctx)->mux);
299 mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
300 rc = ecryptfs_send_miscdev(data, data_len, *msg_ctx, msg_type, 0,
301 daemon);
302 if (rc)
303 printk(KERN_ERR "%s: Error attempting to send message to "
304 "userspace daemon; rc = [%d]\n", __func__, rc);
305 out:
306 return rc;
307 }
308
309 /**
310 * ecryptfs_send_message
311 * @data: The data to send
312 * @data_len: The length of data
313 * @msg_ctx: The message context allocated for the send
314 *
315 * Grabs ecryptfs_daemon_hash_mux.
316 *
317 * Returns zero on success; non-zero otherwise
318 */
ecryptfs_send_message(char * data,int data_len,struct ecryptfs_msg_ctx ** msg_ctx)319 int ecryptfs_send_message(char *data, int data_len,
320 struct ecryptfs_msg_ctx **msg_ctx)
321 {
322 int rc;
323
324 mutex_lock(&ecryptfs_daemon_hash_mux);
325 rc = ecryptfs_send_message_locked(data, data_len, ECRYPTFS_MSG_REQUEST,
326 msg_ctx);
327 mutex_unlock(&ecryptfs_daemon_hash_mux);
328 return rc;
329 }
330
331 /**
332 * ecryptfs_wait_for_response
333 * @msg_ctx: The context that was assigned when sending a message
334 * @msg: The incoming message from userspace; not set if rc != 0
335 *
336 * Sleeps until awaken by ecryptfs_receive_message or until the amount
337 * of time exceeds ecryptfs_message_wait_timeout. If zero is
338 * returned, msg will point to a valid message from userspace; a
339 * non-zero value is returned upon failure to receive a message or an
340 * error occurs. Callee must free @msg on success.
341 */
ecryptfs_wait_for_response(struct ecryptfs_msg_ctx * msg_ctx,struct ecryptfs_message ** msg)342 int ecryptfs_wait_for_response(struct ecryptfs_msg_ctx *msg_ctx,
343 struct ecryptfs_message **msg)
344 {
345 signed long timeout = ecryptfs_message_wait_timeout * HZ;
346 int rc = 0;
347
348 sleep:
349 timeout = schedule_timeout_interruptible(timeout);
350 mutex_lock(&ecryptfs_msg_ctx_lists_mux);
351 mutex_lock(&msg_ctx->mux);
352 if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_DONE) {
353 if (timeout) {
354 mutex_unlock(&msg_ctx->mux);
355 mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
356 goto sleep;
357 }
358 rc = -ENOMSG;
359 } else {
360 *msg = msg_ctx->msg;
361 msg_ctx->msg = NULL;
362 }
363 ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
364 mutex_unlock(&msg_ctx->mux);
365 mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
366 return rc;
367 }
368
ecryptfs_init_messaging(void)369 int __init ecryptfs_init_messaging(void)
370 {
371 int i;
372 int rc = 0;
373
374 if (ecryptfs_number_of_users > ECRYPTFS_MAX_NUM_USERS) {
375 ecryptfs_number_of_users = ECRYPTFS_MAX_NUM_USERS;
376 printk(KERN_WARNING "%s: Specified number of users is "
377 "too large, defaulting to [%d] users\n", __func__,
378 ecryptfs_number_of_users);
379 }
380 mutex_init(&ecryptfs_daemon_hash_mux);
381 mutex_lock(&ecryptfs_daemon_hash_mux);
382 ecryptfs_hash_bits = 1;
383 while (ecryptfs_number_of_users >> ecryptfs_hash_bits)
384 ecryptfs_hash_bits++;
385 ecryptfs_daemon_hash = kmalloc((sizeof(struct hlist_head)
386 * (1 << ecryptfs_hash_bits)),
387 GFP_KERNEL);
388 if (!ecryptfs_daemon_hash) {
389 rc = -ENOMEM;
390 printk(KERN_ERR "%s: Failed to allocate memory\n", __func__);
391 mutex_unlock(&ecryptfs_daemon_hash_mux);
392 goto out;
393 }
394 for (i = 0; i < (1 << ecryptfs_hash_bits); i++)
395 INIT_HLIST_HEAD(&ecryptfs_daemon_hash[i]);
396 mutex_unlock(&ecryptfs_daemon_hash_mux);
397 ecryptfs_msg_ctx_arr = kmalloc((sizeof(struct ecryptfs_msg_ctx)
398 * ecryptfs_message_buf_len),
399 GFP_KERNEL);
400 if (!ecryptfs_msg_ctx_arr) {
401 rc = -ENOMEM;
402 printk(KERN_ERR "%s: Failed to allocate memory\n", __func__);
403 goto out;
404 }
405 mutex_init(&ecryptfs_msg_ctx_lists_mux);
406 mutex_lock(&ecryptfs_msg_ctx_lists_mux);
407 ecryptfs_msg_counter = 0;
408 for (i = 0; i < ecryptfs_message_buf_len; i++) {
409 INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].node);
410 INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].daemon_out_list);
411 mutex_init(&ecryptfs_msg_ctx_arr[i].mux);
412 mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
413 ecryptfs_msg_ctx_arr[i].index = i;
414 ecryptfs_msg_ctx_arr[i].state = ECRYPTFS_MSG_CTX_STATE_FREE;
415 ecryptfs_msg_ctx_arr[i].counter = 0;
416 ecryptfs_msg_ctx_arr[i].task = NULL;
417 ecryptfs_msg_ctx_arr[i].msg = NULL;
418 list_add_tail(&ecryptfs_msg_ctx_arr[i].node,
419 &ecryptfs_msg_ctx_free_list);
420 mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
421 }
422 mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
423 rc = ecryptfs_init_ecryptfs_miscdev();
424 if (rc)
425 ecryptfs_release_messaging();
426 out:
427 return rc;
428 }
429
ecryptfs_release_messaging(void)430 void ecryptfs_release_messaging(void)
431 {
432 if (ecryptfs_msg_ctx_arr) {
433 int i;
434
435 mutex_lock(&ecryptfs_msg_ctx_lists_mux);
436 for (i = 0; i < ecryptfs_message_buf_len; i++) {
437 mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
438 if (ecryptfs_msg_ctx_arr[i].msg)
439 kfree(ecryptfs_msg_ctx_arr[i].msg);
440 mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
441 }
442 kfree(ecryptfs_msg_ctx_arr);
443 mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
444 }
445 if (ecryptfs_daemon_hash) {
446 struct ecryptfs_daemon *daemon;
447 int i;
448
449 mutex_lock(&ecryptfs_daemon_hash_mux);
450 for (i = 0; i < (1 << ecryptfs_hash_bits); i++) {
451 int rc;
452
453 hlist_for_each_entry(daemon,
454 &ecryptfs_daemon_hash[i],
455 euid_chain) {
456 rc = ecryptfs_exorcise_daemon(daemon);
457 if (rc)
458 printk(KERN_ERR "%s: Error whilst "
459 "attempting to destroy daemon; "
460 "rc = [%d]. Dazed and confused, "
461 "but trying to continue.\n",
462 __func__, rc);
463 }
464 }
465 kfree(ecryptfs_daemon_hash);
466 mutex_unlock(&ecryptfs_daemon_hash_mux);
467 }
468 ecryptfs_destroy_ecryptfs_miscdev();
469 return;
470 }
471