1 /*
2 * Extensible Firmware Interface
3 *
4 * Based on Extensible Firmware Interface Specification version 0.9
5 * April 30, 1999
6 *
7 * Copyright (C) 1999 VA Linux Systems
8 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
9 * Copyright (C) 1999-2003 Hewlett-Packard Co.
10 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * Stephane Eranian <eranian@hpl.hp.com>
12 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
13 * Bjorn Helgaas <bjorn.helgaas@hp.com>
14 *
15 * All EFI Runtime Services are not implemented yet as EFI only
16 * supports physical mode addressing on SoftSDV. This is to be fixed
17 * in a future version. --drummond 1999-07-20
18 *
19 * Implemented EFI runtime services and virtual mode calls. --davidm
20 *
21 * Goutham Rao: <goutham.rao@intel.com>
22 * Skip non-WB memory and ignore empty memory ranges.
23 */
24 #include <linux/module.h>
25 #include <linux/bootmem.h>
26 #include <linux/crash_dump.h>
27 #include <linux/kernel.h>
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/time.h>
32 #include <linux/efi.h>
33 #include <linux/kexec.h>
34 #include <linux/mm.h>
35
36 #include <asm/io.h>
37 #include <asm/kregs.h>
38 #include <asm/meminit.h>
39 #include <asm/pgtable.h>
40 #include <asm/processor.h>
41 #include <asm/mca.h>
42 #include <asm/setup.h>
43 #include <asm/tlbflush.h>
44
45 #define EFI_DEBUG 0
46
47 extern efi_status_t efi_call_phys (void *, ...);
48
49 struct efi efi;
50 EXPORT_SYMBOL(efi);
51 static efi_runtime_services_t *runtime;
52 static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
53
54 #define efi_call_virt(f, args...) (*(f))(args)
55
56 #define STUB_GET_TIME(prefix, adjust_arg) \
57 static efi_status_t \
58 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
59 { \
60 struct ia64_fpreg fr[6]; \
61 efi_time_cap_t *atc = NULL; \
62 efi_status_t ret; \
63 \
64 if (tc) \
65 atc = adjust_arg(tc); \
66 ia64_save_scratch_fpregs(fr); \
67 ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), \
68 adjust_arg(tm), atc); \
69 ia64_load_scratch_fpregs(fr); \
70 return ret; \
71 }
72
73 #define STUB_SET_TIME(prefix, adjust_arg) \
74 static efi_status_t \
75 prefix##_set_time (efi_time_t *tm) \
76 { \
77 struct ia64_fpreg fr[6]; \
78 efi_status_t ret; \
79 \
80 ia64_save_scratch_fpregs(fr); \
81 ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), \
82 adjust_arg(tm)); \
83 ia64_load_scratch_fpregs(fr); \
84 return ret; \
85 }
86
87 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
88 static efi_status_t \
89 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, \
90 efi_time_t *tm) \
91 { \
92 struct ia64_fpreg fr[6]; \
93 efi_status_t ret; \
94 \
95 ia64_save_scratch_fpregs(fr); \
96 ret = efi_call_##prefix( \
97 (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
98 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
99 ia64_load_scratch_fpregs(fr); \
100 return ret; \
101 }
102
103 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
104 static efi_status_t \
105 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
106 { \
107 struct ia64_fpreg fr[6]; \
108 efi_time_t *atm = NULL; \
109 efi_status_t ret; \
110 \
111 if (tm) \
112 atm = adjust_arg(tm); \
113 ia64_save_scratch_fpregs(fr); \
114 ret = efi_call_##prefix( \
115 (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
116 enabled, atm); \
117 ia64_load_scratch_fpregs(fr); \
118 return ret; \
119 }
120
121 #define STUB_GET_VARIABLE(prefix, adjust_arg) \
122 static efi_status_t \
123 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
124 unsigned long *data_size, void *data) \
125 { \
126 struct ia64_fpreg fr[6]; \
127 u32 *aattr = NULL; \
128 efi_status_t ret; \
129 \
130 if (attr) \
131 aattr = adjust_arg(attr); \
132 ia64_save_scratch_fpregs(fr); \
133 ret = efi_call_##prefix( \
134 (efi_get_variable_t *) __va(runtime->get_variable), \
135 adjust_arg(name), adjust_arg(vendor), aattr, \
136 adjust_arg(data_size), adjust_arg(data)); \
137 ia64_load_scratch_fpregs(fr); \
138 return ret; \
139 }
140
141 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
142 static efi_status_t \
143 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, \
144 efi_guid_t *vendor) \
145 { \
146 struct ia64_fpreg fr[6]; \
147 efi_status_t ret; \
148 \
149 ia64_save_scratch_fpregs(fr); \
150 ret = efi_call_##prefix( \
151 (efi_get_next_variable_t *) __va(runtime->get_next_variable), \
152 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
153 ia64_load_scratch_fpregs(fr); \
154 return ret; \
155 }
156
157 #define STUB_SET_VARIABLE(prefix, adjust_arg) \
158 static efi_status_t \
159 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, \
160 u32 attr, unsigned long data_size, \
161 void *data) \
162 { \
163 struct ia64_fpreg fr[6]; \
164 efi_status_t ret; \
165 \
166 ia64_save_scratch_fpregs(fr); \
167 ret = efi_call_##prefix( \
168 (efi_set_variable_t *) __va(runtime->set_variable), \
169 adjust_arg(name), adjust_arg(vendor), attr, data_size, \
170 adjust_arg(data)); \
171 ia64_load_scratch_fpregs(fr); \
172 return ret; \
173 }
174
175 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
176 static efi_status_t \
177 prefix##_get_next_high_mono_count (u32 *count) \
178 { \
179 struct ia64_fpreg fr[6]; \
180 efi_status_t ret; \
181 \
182 ia64_save_scratch_fpregs(fr); \
183 ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
184 __va(runtime->get_next_high_mono_count), \
185 adjust_arg(count)); \
186 ia64_load_scratch_fpregs(fr); \
187 return ret; \
188 }
189
190 #define STUB_RESET_SYSTEM(prefix, adjust_arg) \
191 static void \
192 prefix##_reset_system (int reset_type, efi_status_t status, \
193 unsigned long data_size, efi_char16_t *data) \
194 { \
195 struct ia64_fpreg fr[6]; \
196 efi_char16_t *adata = NULL; \
197 \
198 if (data) \
199 adata = adjust_arg(data); \
200 \
201 ia64_save_scratch_fpregs(fr); \
202 efi_call_##prefix( \
203 (efi_reset_system_t *) __va(runtime->reset_system), \
204 reset_type, status, data_size, adata); \
205 /* should not return, but just in case... */ \
206 ia64_load_scratch_fpregs(fr); \
207 }
208
209 #define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
210
STUB_GET_TIME(phys,phys_ptr)211 STUB_GET_TIME(phys, phys_ptr)
212 STUB_SET_TIME(phys, phys_ptr)
213 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
214 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
215 STUB_GET_VARIABLE(phys, phys_ptr)
216 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
217 STUB_SET_VARIABLE(phys, phys_ptr)
218 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
219 STUB_RESET_SYSTEM(phys, phys_ptr)
220
221 #define id(arg) arg
222
223 STUB_GET_TIME(virt, id)
224 STUB_SET_TIME(virt, id)
225 STUB_GET_WAKEUP_TIME(virt, id)
226 STUB_SET_WAKEUP_TIME(virt, id)
227 STUB_GET_VARIABLE(virt, id)
228 STUB_GET_NEXT_VARIABLE(virt, id)
229 STUB_SET_VARIABLE(virt, id)
230 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
231 STUB_RESET_SYSTEM(virt, id)
232
233 void
234 efi_gettimeofday (struct timespec *ts)
235 {
236 efi_time_t tm;
237
238 if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
239 memset(ts, 0, sizeof(*ts));
240 return;
241 }
242
243 ts->tv_sec = mktime(tm.year, tm.month, tm.day,
244 tm.hour, tm.minute, tm.second);
245 ts->tv_nsec = tm.nanosecond;
246 }
247
248 static int
is_memory_available(efi_memory_desc_t * md)249 is_memory_available (efi_memory_desc_t *md)
250 {
251 if (!(md->attribute & EFI_MEMORY_WB))
252 return 0;
253
254 switch (md->type) {
255 case EFI_LOADER_CODE:
256 case EFI_LOADER_DATA:
257 case EFI_BOOT_SERVICES_CODE:
258 case EFI_BOOT_SERVICES_DATA:
259 case EFI_CONVENTIONAL_MEMORY:
260 return 1;
261 }
262 return 0;
263 }
264
265 typedef struct kern_memdesc {
266 u64 attribute;
267 u64 start;
268 u64 num_pages;
269 } kern_memdesc_t;
270
271 static kern_memdesc_t *kern_memmap;
272
273 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
274
275 static inline u64
kmd_end(kern_memdesc_t * kmd)276 kmd_end(kern_memdesc_t *kmd)
277 {
278 return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
279 }
280
281 static inline u64
efi_md_end(efi_memory_desc_t * md)282 efi_md_end(efi_memory_desc_t *md)
283 {
284 return (md->phys_addr + efi_md_size(md));
285 }
286
287 static inline int
efi_wb(efi_memory_desc_t * md)288 efi_wb(efi_memory_desc_t *md)
289 {
290 return (md->attribute & EFI_MEMORY_WB);
291 }
292
293 static inline int
efi_uc(efi_memory_desc_t * md)294 efi_uc(efi_memory_desc_t *md)
295 {
296 return (md->attribute & EFI_MEMORY_UC);
297 }
298
299 static void
walk(efi_freemem_callback_t callback,void * arg,u64 attr)300 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
301 {
302 kern_memdesc_t *k;
303 u64 start, end, voff;
304
305 voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
306 for (k = kern_memmap; k->start != ~0UL; k++) {
307 if (k->attribute != attr)
308 continue;
309 start = PAGE_ALIGN(k->start);
310 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
311 if (start < end)
312 if ((*callback)(start + voff, end + voff, arg) < 0)
313 return;
314 }
315 }
316
317 /*
318 * Walk the EFI memory map and call CALLBACK once for each EFI memory
319 * descriptor that has memory that is available for OS use.
320 */
321 void
efi_memmap_walk(efi_freemem_callback_t callback,void * arg)322 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
323 {
324 walk(callback, arg, EFI_MEMORY_WB);
325 }
326
327 /*
328 * Walk the EFI memory map and call CALLBACK once for each EFI memory
329 * descriptor that has memory that is available for uncached allocator.
330 */
331 void
efi_memmap_walk_uc(efi_freemem_callback_t callback,void * arg)332 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
333 {
334 walk(callback, arg, EFI_MEMORY_UC);
335 }
336
337 /*
338 * Look for the PAL_CODE region reported by EFI and map it using an
339 * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
340 * Abstraction Layer chapter 11 in ADAG
341 */
342 void *
efi_get_pal_addr(void)343 efi_get_pal_addr (void)
344 {
345 void *efi_map_start, *efi_map_end, *p;
346 efi_memory_desc_t *md;
347 u64 efi_desc_size;
348 int pal_code_count = 0;
349 u64 vaddr, mask;
350
351 efi_map_start = __va(ia64_boot_param->efi_memmap);
352 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
353 efi_desc_size = ia64_boot_param->efi_memdesc_size;
354
355 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
356 md = p;
357 if (md->type != EFI_PAL_CODE)
358 continue;
359
360 if (++pal_code_count > 1) {
361 printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
362 "dropped @ %llx\n", md->phys_addr);
363 continue;
364 }
365 /*
366 * The only ITLB entry in region 7 that is used is the one
367 * installed by __start(). That entry covers a 64MB range.
368 */
369 mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
370 vaddr = PAGE_OFFSET + md->phys_addr;
371
372 /*
373 * We must check that the PAL mapping won't overlap with the
374 * kernel mapping.
375 *
376 * PAL code is guaranteed to be aligned on a power of 2 between
377 * 4k and 256KB and that only one ITR is needed to map it. This
378 * implies that the PAL code is always aligned on its size,
379 * i.e., the closest matching page size supported by the TLB.
380 * Therefore PAL code is guaranteed never to cross a 64MB unless
381 * it is bigger than 64MB (very unlikely!). So for now the
382 * following test is enough to determine whether or not we need
383 * a dedicated ITR for the PAL code.
384 */
385 if ((vaddr & mask) == (KERNEL_START & mask)) {
386 printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
387 __func__);
388 continue;
389 }
390
391 if (efi_md_size(md) > IA64_GRANULE_SIZE)
392 panic("Whoa! PAL code size bigger than a granule!");
393
394 #if EFI_DEBUG
395 mask = ~((1 << IA64_GRANULE_SHIFT) - 1);
396
397 printk(KERN_INFO "CPU %d: mapping PAL code "
398 "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
399 smp_processor_id(), md->phys_addr,
400 md->phys_addr + efi_md_size(md),
401 vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
402 #endif
403 return __va(md->phys_addr);
404 }
405 printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
406 __func__);
407 return NULL;
408 }
409
410
palo_checksum(u8 * buffer,u32 length)411 static u8 __init palo_checksum(u8 *buffer, u32 length)
412 {
413 u8 sum = 0;
414 u8 *end = buffer + length;
415
416 while (buffer < end)
417 sum = (u8) (sum + *(buffer++));
418
419 return sum;
420 }
421
422 /*
423 * Parse and handle PALO table which is published at:
424 * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
425 */
handle_palo(unsigned long palo_phys)426 static void __init handle_palo(unsigned long palo_phys)
427 {
428 struct palo_table *palo = __va(palo_phys);
429 u8 checksum;
430
431 if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
432 printk(KERN_INFO "PALO signature incorrect.\n");
433 return;
434 }
435
436 checksum = palo_checksum((u8 *)palo, palo->length);
437 if (checksum) {
438 printk(KERN_INFO "PALO checksum incorrect.\n");
439 return;
440 }
441
442 setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
443 }
444
445 void
efi_map_pal_code(void)446 efi_map_pal_code (void)
447 {
448 void *pal_vaddr = efi_get_pal_addr ();
449 u64 psr;
450
451 if (!pal_vaddr)
452 return;
453
454 /*
455 * Cannot write to CRx with PSR.ic=1
456 */
457 psr = ia64_clear_ic();
458 ia64_itr(0x1, IA64_TR_PALCODE,
459 GRANULEROUNDDOWN((unsigned long) pal_vaddr),
460 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
461 IA64_GRANULE_SHIFT);
462 paravirt_dv_serialize_data();
463 ia64_set_psr(psr); /* restore psr */
464 }
465
466 void __init
efi_init(void)467 efi_init (void)
468 {
469 void *efi_map_start, *efi_map_end;
470 efi_config_table_t *config_tables;
471 efi_char16_t *c16;
472 u64 efi_desc_size;
473 char *cp, vendor[100] = "unknown";
474 int i;
475 unsigned long palo_phys;
476
477 /*
478 * It's too early to be able to use the standard kernel command line
479 * support...
480 */
481 for (cp = boot_command_line; *cp; ) {
482 if (memcmp(cp, "mem=", 4) == 0) {
483 mem_limit = memparse(cp + 4, &cp);
484 } else if (memcmp(cp, "max_addr=", 9) == 0) {
485 max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
486 } else if (memcmp(cp, "min_addr=", 9) == 0) {
487 min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
488 } else {
489 while (*cp != ' ' && *cp)
490 ++cp;
491 while (*cp == ' ')
492 ++cp;
493 }
494 }
495 if (min_addr != 0UL)
496 printk(KERN_INFO "Ignoring memory below %lluMB\n",
497 min_addr >> 20);
498 if (max_addr != ~0UL)
499 printk(KERN_INFO "Ignoring memory above %lluMB\n",
500 max_addr >> 20);
501
502 efi.systab = __va(ia64_boot_param->efi_systab);
503
504 /*
505 * Verify the EFI Table
506 */
507 if (efi.systab == NULL)
508 panic("Whoa! Can't find EFI system table.\n");
509 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
510 panic("Whoa! EFI system table signature incorrect\n");
511 if ((efi.systab->hdr.revision >> 16) == 0)
512 printk(KERN_WARNING "Warning: EFI system table version "
513 "%d.%02d, expected 1.00 or greater\n",
514 efi.systab->hdr.revision >> 16,
515 efi.systab->hdr.revision & 0xffff);
516
517 config_tables = __va(efi.systab->tables);
518
519 /* Show what we know for posterity */
520 c16 = __va(efi.systab->fw_vendor);
521 if (c16) {
522 for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
523 vendor[i] = *c16++;
524 vendor[i] = '\0';
525 }
526
527 printk(KERN_INFO "EFI v%u.%.02u by %s:",
528 efi.systab->hdr.revision >> 16,
529 efi.systab->hdr.revision & 0xffff, vendor);
530
531 efi.mps = EFI_INVALID_TABLE_ADDR;
532 efi.acpi = EFI_INVALID_TABLE_ADDR;
533 efi.acpi20 = EFI_INVALID_TABLE_ADDR;
534 efi.smbios = EFI_INVALID_TABLE_ADDR;
535 efi.sal_systab = EFI_INVALID_TABLE_ADDR;
536 efi.boot_info = EFI_INVALID_TABLE_ADDR;
537 efi.hcdp = EFI_INVALID_TABLE_ADDR;
538 efi.uga = EFI_INVALID_TABLE_ADDR;
539
540 palo_phys = EFI_INVALID_TABLE_ADDR;
541
542 for (i = 0; i < (int) efi.systab->nr_tables; i++) {
543 if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
544 efi.mps = config_tables[i].table;
545 printk(" MPS=0x%lx", config_tables[i].table);
546 } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
547 efi.acpi20 = config_tables[i].table;
548 printk(" ACPI 2.0=0x%lx", config_tables[i].table);
549 } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
550 efi.acpi = config_tables[i].table;
551 printk(" ACPI=0x%lx", config_tables[i].table);
552 } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
553 efi.smbios = config_tables[i].table;
554 printk(" SMBIOS=0x%lx", config_tables[i].table);
555 } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
556 efi.sal_systab = config_tables[i].table;
557 printk(" SALsystab=0x%lx", config_tables[i].table);
558 } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
559 efi.hcdp = config_tables[i].table;
560 printk(" HCDP=0x%lx", config_tables[i].table);
561 } else if (efi_guidcmp(config_tables[i].guid,
562 PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID) == 0) {
563 palo_phys = config_tables[i].table;
564 printk(" PALO=0x%lx", config_tables[i].table);
565 }
566 }
567 printk("\n");
568
569 if (palo_phys != EFI_INVALID_TABLE_ADDR)
570 handle_palo(palo_phys);
571
572 runtime = __va(efi.systab->runtime);
573 efi.get_time = phys_get_time;
574 efi.set_time = phys_set_time;
575 efi.get_wakeup_time = phys_get_wakeup_time;
576 efi.set_wakeup_time = phys_set_wakeup_time;
577 efi.get_variable = phys_get_variable;
578 efi.get_next_variable = phys_get_next_variable;
579 efi.set_variable = phys_set_variable;
580 efi.get_next_high_mono_count = phys_get_next_high_mono_count;
581 efi.reset_system = phys_reset_system;
582
583 efi_map_start = __va(ia64_boot_param->efi_memmap);
584 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
585 efi_desc_size = ia64_boot_param->efi_memdesc_size;
586
587 #if EFI_DEBUG
588 /* print EFI memory map: */
589 {
590 efi_memory_desc_t *md;
591 void *p;
592
593 for (i = 0, p = efi_map_start; p < efi_map_end;
594 ++i, p += efi_desc_size)
595 {
596 const char *unit;
597 unsigned long size;
598
599 md = p;
600 size = md->num_pages << EFI_PAGE_SHIFT;
601
602 if ((size >> 40) > 0) {
603 size >>= 40;
604 unit = "TB";
605 } else if ((size >> 30) > 0) {
606 size >>= 30;
607 unit = "GB";
608 } else if ((size >> 20) > 0) {
609 size >>= 20;
610 unit = "MB";
611 } else {
612 size >>= 10;
613 unit = "KB";
614 }
615
616 printk("mem%02d: type=%2u, attr=0x%016lx, "
617 "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
618 i, md->type, md->attribute, md->phys_addr,
619 md->phys_addr + efi_md_size(md), size, unit);
620 }
621 }
622 #endif
623
624 efi_map_pal_code();
625 efi_enter_virtual_mode();
626 }
627
628 void
efi_enter_virtual_mode(void)629 efi_enter_virtual_mode (void)
630 {
631 void *efi_map_start, *efi_map_end, *p;
632 efi_memory_desc_t *md;
633 efi_status_t status;
634 u64 efi_desc_size;
635
636 efi_map_start = __va(ia64_boot_param->efi_memmap);
637 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
638 efi_desc_size = ia64_boot_param->efi_memdesc_size;
639
640 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
641 md = p;
642 if (md->attribute & EFI_MEMORY_RUNTIME) {
643 /*
644 * Some descriptors have multiple bits set, so the
645 * order of the tests is relevant.
646 */
647 if (md->attribute & EFI_MEMORY_WB) {
648 md->virt_addr = (u64) __va(md->phys_addr);
649 } else if (md->attribute & EFI_MEMORY_UC) {
650 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
651 } else if (md->attribute & EFI_MEMORY_WC) {
652 #if 0
653 md->virt_addr = ia64_remap(md->phys_addr,
654 (_PAGE_A |
655 _PAGE_P |
656 _PAGE_D |
657 _PAGE_MA_WC |
658 _PAGE_PL_0 |
659 _PAGE_AR_RW));
660 #else
661 printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
662 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
663 #endif
664 } else if (md->attribute & EFI_MEMORY_WT) {
665 #if 0
666 md->virt_addr = ia64_remap(md->phys_addr,
667 (_PAGE_A |
668 _PAGE_P |
669 _PAGE_D |
670 _PAGE_MA_WT |
671 _PAGE_PL_0 |
672 _PAGE_AR_RW));
673 #else
674 printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
675 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
676 #endif
677 }
678 }
679 }
680
681 status = efi_call_phys(__va(runtime->set_virtual_address_map),
682 ia64_boot_param->efi_memmap_size,
683 efi_desc_size,
684 ia64_boot_param->efi_memdesc_version,
685 ia64_boot_param->efi_memmap);
686 if (status != EFI_SUCCESS) {
687 printk(KERN_WARNING "warning: unable to switch EFI into "
688 "virtual mode (status=%lu)\n", status);
689 return;
690 }
691
692 /*
693 * Now that EFI is in virtual mode, we call the EFI functions more
694 * efficiently:
695 */
696 efi.get_time = virt_get_time;
697 efi.set_time = virt_set_time;
698 efi.get_wakeup_time = virt_get_wakeup_time;
699 efi.set_wakeup_time = virt_set_wakeup_time;
700 efi.get_variable = virt_get_variable;
701 efi.get_next_variable = virt_get_next_variable;
702 efi.set_variable = virt_set_variable;
703 efi.get_next_high_mono_count = virt_get_next_high_mono_count;
704 efi.reset_system = virt_reset_system;
705 }
706
707 /*
708 * Walk the EFI memory map looking for the I/O port range. There can only be
709 * one entry of this type, other I/O port ranges should be described via ACPI.
710 */
711 u64
efi_get_iobase(void)712 efi_get_iobase (void)
713 {
714 void *efi_map_start, *efi_map_end, *p;
715 efi_memory_desc_t *md;
716 u64 efi_desc_size;
717
718 efi_map_start = __va(ia64_boot_param->efi_memmap);
719 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
720 efi_desc_size = ia64_boot_param->efi_memdesc_size;
721
722 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
723 md = p;
724 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
725 if (md->attribute & EFI_MEMORY_UC)
726 return md->phys_addr;
727 }
728 }
729 return 0;
730 }
731
732 static struct kern_memdesc *
kern_memory_descriptor(unsigned long phys_addr)733 kern_memory_descriptor (unsigned long phys_addr)
734 {
735 struct kern_memdesc *md;
736
737 for (md = kern_memmap; md->start != ~0UL; md++) {
738 if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
739 return md;
740 }
741 return NULL;
742 }
743
744 static efi_memory_desc_t *
efi_memory_descriptor(unsigned long phys_addr)745 efi_memory_descriptor (unsigned long phys_addr)
746 {
747 void *efi_map_start, *efi_map_end, *p;
748 efi_memory_desc_t *md;
749 u64 efi_desc_size;
750
751 efi_map_start = __va(ia64_boot_param->efi_memmap);
752 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
753 efi_desc_size = ia64_boot_param->efi_memdesc_size;
754
755 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
756 md = p;
757
758 if (phys_addr - md->phys_addr < efi_md_size(md))
759 return md;
760 }
761 return NULL;
762 }
763
764 static int
efi_memmap_intersects(unsigned long phys_addr,unsigned long size)765 efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
766 {
767 void *efi_map_start, *efi_map_end, *p;
768 efi_memory_desc_t *md;
769 u64 efi_desc_size;
770 unsigned long end;
771
772 efi_map_start = __va(ia64_boot_param->efi_memmap);
773 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
774 efi_desc_size = ia64_boot_param->efi_memdesc_size;
775
776 end = phys_addr + size;
777
778 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
779 md = p;
780 if (md->phys_addr < end && efi_md_end(md) > phys_addr)
781 return 1;
782 }
783 return 0;
784 }
785
786 u32
efi_mem_type(unsigned long phys_addr)787 efi_mem_type (unsigned long phys_addr)
788 {
789 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
790
791 if (md)
792 return md->type;
793 return 0;
794 }
795
796 u64
efi_mem_attributes(unsigned long phys_addr)797 efi_mem_attributes (unsigned long phys_addr)
798 {
799 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
800
801 if (md)
802 return md->attribute;
803 return 0;
804 }
805 EXPORT_SYMBOL(efi_mem_attributes);
806
807 u64
efi_mem_attribute(unsigned long phys_addr,unsigned long size)808 efi_mem_attribute (unsigned long phys_addr, unsigned long size)
809 {
810 unsigned long end = phys_addr + size;
811 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
812 u64 attr;
813
814 if (!md)
815 return 0;
816
817 /*
818 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
819 * the kernel that firmware needs this region mapped.
820 */
821 attr = md->attribute & ~EFI_MEMORY_RUNTIME;
822 do {
823 unsigned long md_end = efi_md_end(md);
824
825 if (end <= md_end)
826 return attr;
827
828 md = efi_memory_descriptor(md_end);
829 if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
830 return 0;
831 } while (md);
832 return 0; /* never reached */
833 }
834
835 u64
kern_mem_attribute(unsigned long phys_addr,unsigned long size)836 kern_mem_attribute (unsigned long phys_addr, unsigned long size)
837 {
838 unsigned long end = phys_addr + size;
839 struct kern_memdesc *md;
840 u64 attr;
841
842 /*
843 * This is a hack for ioremap calls before we set up kern_memmap.
844 * Maybe we should do efi_memmap_init() earlier instead.
845 */
846 if (!kern_memmap) {
847 attr = efi_mem_attribute(phys_addr, size);
848 if (attr & EFI_MEMORY_WB)
849 return EFI_MEMORY_WB;
850 return 0;
851 }
852
853 md = kern_memory_descriptor(phys_addr);
854 if (!md)
855 return 0;
856
857 attr = md->attribute;
858 do {
859 unsigned long md_end = kmd_end(md);
860
861 if (end <= md_end)
862 return attr;
863
864 md = kern_memory_descriptor(md_end);
865 if (!md || md->attribute != attr)
866 return 0;
867 } while (md);
868 return 0; /* never reached */
869 }
870 EXPORT_SYMBOL(kern_mem_attribute);
871
872 int
valid_phys_addr_range(phys_addr_t phys_addr,unsigned long size)873 valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
874 {
875 u64 attr;
876
877 /*
878 * /dev/mem reads and writes use copy_to_user(), which implicitly
879 * uses a granule-sized kernel identity mapping. It's really
880 * only safe to do this for regions in kern_memmap. For more
881 * details, see Documentation/ia64/aliasing.txt.
882 */
883 attr = kern_mem_attribute(phys_addr, size);
884 if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
885 return 1;
886 return 0;
887 }
888
889 int
valid_mmap_phys_addr_range(unsigned long pfn,unsigned long size)890 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
891 {
892 unsigned long phys_addr = pfn << PAGE_SHIFT;
893 u64 attr;
894
895 attr = efi_mem_attribute(phys_addr, size);
896
897 /*
898 * /dev/mem mmap uses normal user pages, so we don't need the entire
899 * granule, but the entire region we're mapping must support the same
900 * attribute.
901 */
902 if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
903 return 1;
904
905 /*
906 * Intel firmware doesn't tell us about all the MMIO regions, so
907 * in general we have to allow mmap requests. But if EFI *does*
908 * tell us about anything inside this region, we should deny it.
909 * The user can always map a smaller region to avoid the overlap.
910 */
911 if (efi_memmap_intersects(phys_addr, size))
912 return 0;
913
914 return 1;
915 }
916
917 pgprot_t
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)918 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
919 pgprot_t vma_prot)
920 {
921 unsigned long phys_addr = pfn << PAGE_SHIFT;
922 u64 attr;
923
924 /*
925 * For /dev/mem mmap, we use user mappings, but if the region is
926 * in kern_memmap (and hence may be covered by a kernel mapping),
927 * we must use the same attribute as the kernel mapping.
928 */
929 attr = kern_mem_attribute(phys_addr, size);
930 if (attr & EFI_MEMORY_WB)
931 return pgprot_cacheable(vma_prot);
932 else if (attr & EFI_MEMORY_UC)
933 return pgprot_noncached(vma_prot);
934
935 /*
936 * Some chipsets don't support UC access to memory. If
937 * WB is supported, we prefer that.
938 */
939 if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
940 return pgprot_cacheable(vma_prot);
941
942 return pgprot_noncached(vma_prot);
943 }
944
945 int __init
efi_uart_console_only(void)946 efi_uart_console_only(void)
947 {
948 efi_status_t status;
949 char *s, name[] = "ConOut";
950 efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
951 efi_char16_t *utf16, name_utf16[32];
952 unsigned char data[1024];
953 unsigned long size = sizeof(data);
954 struct efi_generic_dev_path *hdr, *end_addr;
955 int uart = 0;
956
957 /* Convert to UTF-16 */
958 utf16 = name_utf16;
959 s = name;
960 while (*s)
961 *utf16++ = *s++ & 0x7f;
962 *utf16 = 0;
963
964 status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
965 if (status != EFI_SUCCESS) {
966 printk(KERN_ERR "No EFI %s variable?\n", name);
967 return 0;
968 }
969
970 hdr = (struct efi_generic_dev_path *) data;
971 end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
972 while (hdr < end_addr) {
973 if (hdr->type == EFI_DEV_MSG &&
974 hdr->sub_type == EFI_DEV_MSG_UART)
975 uart = 1;
976 else if (hdr->type == EFI_DEV_END_PATH ||
977 hdr->type == EFI_DEV_END_PATH2) {
978 if (!uart)
979 return 0;
980 if (hdr->sub_type == EFI_DEV_END_ENTIRE)
981 return 1;
982 uart = 0;
983 }
984 hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
985 }
986 printk(KERN_ERR "Malformed %s value\n", name);
987 return 0;
988 }
989
990 /*
991 * Look for the first granule aligned memory descriptor memory
992 * that is big enough to hold EFI memory map. Make sure this
993 * descriptor is atleast granule sized so it does not get trimmed
994 */
995 struct kern_memdesc *
find_memmap_space(void)996 find_memmap_space (void)
997 {
998 u64 contig_low=0, contig_high=0;
999 u64 as = 0, ae;
1000 void *efi_map_start, *efi_map_end, *p, *q;
1001 efi_memory_desc_t *md, *pmd = NULL, *check_md;
1002 u64 space_needed, efi_desc_size;
1003 unsigned long total_mem = 0;
1004
1005 efi_map_start = __va(ia64_boot_param->efi_memmap);
1006 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1007 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1008
1009 /*
1010 * Worst case: we need 3 kernel descriptors for each efi descriptor
1011 * (if every entry has a WB part in the middle, and UC head and tail),
1012 * plus one for the end marker.
1013 */
1014 space_needed = sizeof(kern_memdesc_t) *
1015 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
1016
1017 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1018 md = p;
1019 if (!efi_wb(md)) {
1020 continue;
1021 }
1022 if (pmd == NULL || !efi_wb(pmd) ||
1023 efi_md_end(pmd) != md->phys_addr) {
1024 contig_low = GRANULEROUNDUP(md->phys_addr);
1025 contig_high = efi_md_end(md);
1026 for (q = p + efi_desc_size; q < efi_map_end;
1027 q += efi_desc_size) {
1028 check_md = q;
1029 if (!efi_wb(check_md))
1030 break;
1031 if (contig_high != check_md->phys_addr)
1032 break;
1033 contig_high = efi_md_end(check_md);
1034 }
1035 contig_high = GRANULEROUNDDOWN(contig_high);
1036 }
1037 if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1038 continue;
1039
1040 /* Round ends inward to granule boundaries */
1041 as = max(contig_low, md->phys_addr);
1042 ae = min(contig_high, efi_md_end(md));
1043
1044 /* keep within max_addr= and min_addr= command line arg */
1045 as = max(as, min_addr);
1046 ae = min(ae, max_addr);
1047 if (ae <= as)
1048 continue;
1049
1050 /* avoid going over mem= command line arg */
1051 if (total_mem + (ae - as) > mem_limit)
1052 ae -= total_mem + (ae - as) - mem_limit;
1053
1054 if (ae <= as)
1055 continue;
1056
1057 if (ae - as > space_needed)
1058 break;
1059 }
1060 if (p >= efi_map_end)
1061 panic("Can't allocate space for kernel memory descriptors");
1062
1063 return __va(as);
1064 }
1065
1066 /*
1067 * Walk the EFI memory map and gather all memory available for kernel
1068 * to use. We can allocate partial granules only if the unavailable
1069 * parts exist, and are WB.
1070 */
1071 unsigned long
efi_memmap_init(u64 * s,u64 * e)1072 efi_memmap_init(u64 *s, u64 *e)
1073 {
1074 struct kern_memdesc *k, *prev = NULL;
1075 u64 contig_low=0, contig_high=0;
1076 u64 as, ae, lim;
1077 void *efi_map_start, *efi_map_end, *p, *q;
1078 efi_memory_desc_t *md, *pmd = NULL, *check_md;
1079 u64 efi_desc_size;
1080 unsigned long total_mem = 0;
1081
1082 k = kern_memmap = find_memmap_space();
1083
1084 efi_map_start = __va(ia64_boot_param->efi_memmap);
1085 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1086 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1087
1088 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1089 md = p;
1090 if (!efi_wb(md)) {
1091 if (efi_uc(md) &&
1092 (md->type == EFI_CONVENTIONAL_MEMORY ||
1093 md->type == EFI_BOOT_SERVICES_DATA)) {
1094 k->attribute = EFI_MEMORY_UC;
1095 k->start = md->phys_addr;
1096 k->num_pages = md->num_pages;
1097 k++;
1098 }
1099 continue;
1100 }
1101 if (pmd == NULL || !efi_wb(pmd) ||
1102 efi_md_end(pmd) != md->phys_addr) {
1103 contig_low = GRANULEROUNDUP(md->phys_addr);
1104 contig_high = efi_md_end(md);
1105 for (q = p + efi_desc_size; q < efi_map_end;
1106 q += efi_desc_size) {
1107 check_md = q;
1108 if (!efi_wb(check_md))
1109 break;
1110 if (contig_high != check_md->phys_addr)
1111 break;
1112 contig_high = efi_md_end(check_md);
1113 }
1114 contig_high = GRANULEROUNDDOWN(contig_high);
1115 }
1116 if (!is_memory_available(md))
1117 continue;
1118
1119 #ifdef CONFIG_CRASH_DUMP
1120 /* saved_max_pfn should ignore max_addr= command line arg */
1121 if (saved_max_pfn < (efi_md_end(md) >> PAGE_SHIFT))
1122 saved_max_pfn = (efi_md_end(md) >> PAGE_SHIFT);
1123 #endif
1124 /*
1125 * Round ends inward to granule boundaries
1126 * Give trimmings to uncached allocator
1127 */
1128 if (md->phys_addr < contig_low) {
1129 lim = min(efi_md_end(md), contig_low);
1130 if (efi_uc(md)) {
1131 if (k > kern_memmap &&
1132 (k-1)->attribute == EFI_MEMORY_UC &&
1133 kmd_end(k-1) == md->phys_addr) {
1134 (k-1)->num_pages +=
1135 (lim - md->phys_addr)
1136 >> EFI_PAGE_SHIFT;
1137 } else {
1138 k->attribute = EFI_MEMORY_UC;
1139 k->start = md->phys_addr;
1140 k->num_pages = (lim - md->phys_addr)
1141 >> EFI_PAGE_SHIFT;
1142 k++;
1143 }
1144 }
1145 as = contig_low;
1146 } else
1147 as = md->phys_addr;
1148
1149 if (efi_md_end(md) > contig_high) {
1150 lim = max(md->phys_addr, contig_high);
1151 if (efi_uc(md)) {
1152 if (lim == md->phys_addr && k > kern_memmap &&
1153 (k-1)->attribute == EFI_MEMORY_UC &&
1154 kmd_end(k-1) == md->phys_addr) {
1155 (k-1)->num_pages += md->num_pages;
1156 } else {
1157 k->attribute = EFI_MEMORY_UC;
1158 k->start = lim;
1159 k->num_pages = (efi_md_end(md) - lim)
1160 >> EFI_PAGE_SHIFT;
1161 k++;
1162 }
1163 }
1164 ae = contig_high;
1165 } else
1166 ae = efi_md_end(md);
1167
1168 /* keep within max_addr= and min_addr= command line arg */
1169 as = max(as, min_addr);
1170 ae = min(ae, max_addr);
1171 if (ae <= as)
1172 continue;
1173
1174 /* avoid going over mem= command line arg */
1175 if (total_mem + (ae - as) > mem_limit)
1176 ae -= total_mem + (ae - as) - mem_limit;
1177
1178 if (ae <= as)
1179 continue;
1180 if (prev && kmd_end(prev) == md->phys_addr) {
1181 prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1182 total_mem += ae - as;
1183 continue;
1184 }
1185 k->attribute = EFI_MEMORY_WB;
1186 k->start = as;
1187 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1188 total_mem += ae - as;
1189 prev = k++;
1190 }
1191 k->start = ~0L; /* end-marker */
1192
1193 /* reserve the memory we are using for kern_memmap */
1194 *s = (u64)kern_memmap;
1195 *e = (u64)++k;
1196
1197 return total_mem;
1198 }
1199
1200 void
efi_initialize_iomem_resources(struct resource * code_resource,struct resource * data_resource,struct resource * bss_resource)1201 efi_initialize_iomem_resources(struct resource *code_resource,
1202 struct resource *data_resource,
1203 struct resource *bss_resource)
1204 {
1205 struct resource *res;
1206 void *efi_map_start, *efi_map_end, *p;
1207 efi_memory_desc_t *md;
1208 u64 efi_desc_size;
1209 char *name;
1210 unsigned long flags;
1211
1212 efi_map_start = __va(ia64_boot_param->efi_memmap);
1213 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1214 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1215
1216 res = NULL;
1217
1218 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1219 md = p;
1220
1221 if (md->num_pages == 0) /* should not happen */
1222 continue;
1223
1224 flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1225 switch (md->type) {
1226
1227 case EFI_MEMORY_MAPPED_IO:
1228 case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1229 continue;
1230
1231 case EFI_LOADER_CODE:
1232 case EFI_LOADER_DATA:
1233 case EFI_BOOT_SERVICES_DATA:
1234 case EFI_BOOT_SERVICES_CODE:
1235 case EFI_CONVENTIONAL_MEMORY:
1236 if (md->attribute & EFI_MEMORY_WP) {
1237 name = "System ROM";
1238 flags |= IORESOURCE_READONLY;
1239 } else if (md->attribute == EFI_MEMORY_UC)
1240 name = "Uncached RAM";
1241 else
1242 name = "System RAM";
1243 break;
1244
1245 case EFI_ACPI_MEMORY_NVS:
1246 name = "ACPI Non-volatile Storage";
1247 break;
1248
1249 case EFI_UNUSABLE_MEMORY:
1250 name = "reserved";
1251 flags |= IORESOURCE_DISABLED;
1252 break;
1253
1254 case EFI_RESERVED_TYPE:
1255 case EFI_RUNTIME_SERVICES_CODE:
1256 case EFI_RUNTIME_SERVICES_DATA:
1257 case EFI_ACPI_RECLAIM_MEMORY:
1258 default:
1259 name = "reserved";
1260 break;
1261 }
1262
1263 if ((res = kzalloc(sizeof(struct resource),
1264 GFP_KERNEL)) == NULL) {
1265 printk(KERN_ERR
1266 "failed to allocate resource for iomem\n");
1267 return;
1268 }
1269
1270 res->name = name;
1271 res->start = md->phys_addr;
1272 res->end = md->phys_addr + efi_md_size(md) - 1;
1273 res->flags = flags;
1274
1275 if (insert_resource(&iomem_resource, res) < 0)
1276 kfree(res);
1277 else {
1278 /*
1279 * We don't know which region contains
1280 * kernel data so we try it repeatedly and
1281 * let the resource manager test it.
1282 */
1283 insert_resource(res, code_resource);
1284 insert_resource(res, data_resource);
1285 insert_resource(res, bss_resource);
1286 #ifdef CONFIG_KEXEC
1287 insert_resource(res, &efi_memmap_res);
1288 insert_resource(res, &boot_param_res);
1289 if (crashk_res.end > crashk_res.start)
1290 insert_resource(res, &crashk_res);
1291 #endif
1292 }
1293 }
1294 }
1295
1296 #ifdef CONFIG_KEXEC
1297 /* find a block of memory aligned to 64M exclude reserved regions
1298 rsvd_regions are sorted
1299 */
1300 unsigned long __init
kdump_find_rsvd_region(unsigned long size,struct rsvd_region * r,int n)1301 kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1302 {
1303 int i;
1304 u64 start, end;
1305 u64 alignment = 1UL << _PAGE_SIZE_64M;
1306 void *efi_map_start, *efi_map_end, *p;
1307 efi_memory_desc_t *md;
1308 u64 efi_desc_size;
1309
1310 efi_map_start = __va(ia64_boot_param->efi_memmap);
1311 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1312 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1313
1314 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1315 md = p;
1316 if (!efi_wb(md))
1317 continue;
1318 start = ALIGN(md->phys_addr, alignment);
1319 end = efi_md_end(md);
1320 for (i = 0; i < n; i++) {
1321 if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1322 if (__pa(r[i].start) > start + size)
1323 return start;
1324 start = ALIGN(__pa(r[i].end), alignment);
1325 if (i < n-1 &&
1326 __pa(r[i+1].start) < start + size)
1327 continue;
1328 else
1329 break;
1330 }
1331 }
1332 if (end > start + size)
1333 return start;
1334 }
1335
1336 printk(KERN_WARNING
1337 "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1338 return ~0UL;
1339 }
1340 #endif
1341
1342 #ifdef CONFIG_CRASH_DUMP
1343 /* locate the size find a the descriptor at a certain address */
1344 unsigned long __init
vmcore_find_descriptor_size(unsigned long address)1345 vmcore_find_descriptor_size (unsigned long address)
1346 {
1347 void *efi_map_start, *efi_map_end, *p;
1348 efi_memory_desc_t *md;
1349 u64 efi_desc_size;
1350 unsigned long ret = 0;
1351
1352 efi_map_start = __va(ia64_boot_param->efi_memmap);
1353 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1354 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1355
1356 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1357 md = p;
1358 if (efi_wb(md) && md->type == EFI_LOADER_DATA
1359 && md->phys_addr == address) {
1360 ret = efi_md_size(md);
1361 break;
1362 }
1363 }
1364
1365 if (ret == 0)
1366 printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1367
1368 return ret;
1369 }
1370 #endif
1371