1 /*
2 * Common EFI (Extensible Firmware Interface) support functions
3 * Based on Extensible Firmware Interface Specification version 1.0
4 *
5 * Copyright (C) 1999 VA Linux Systems
6 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7 * Copyright (C) 1999-2002 Hewlett-Packard Co.
8 * David Mosberger-Tang <davidm@hpl.hp.com>
9 * Stephane Eranian <eranian@hpl.hp.com>
10 * Copyright (C) 2005-2008 Intel Co.
11 * Fenghua Yu <fenghua.yu@intel.com>
12 * Bibo Mao <bibo.mao@intel.com>
13 * Chandramouli Narayanan <mouli@linux.intel.com>
14 * Huang Ying <ying.huang@intel.com>
15 *
16 * Copied from efi_32.c to eliminate the duplicated code between EFI
17 * 32/64 support code. --ying 2007-10-26
18 *
19 * All EFI Runtime Services are not implemented yet as EFI only
20 * supports physical mode addressing on SoftSDV. This is to be fixed
21 * in a future version. --drummond 1999-07-20
22 *
23 * Implemented EFI runtime services and virtual mode calls. --davidm
24 *
25 * Goutham Rao: <goutham.rao@intel.com>
26 * Skip non-WB memory and ignore empty memory ranges.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/efi.h>
34 #include <linux/efi-bgrt.h>
35 #include <linux/export.h>
36 #include <linux/bootmem.h>
37 #include <linux/slab.h>
38 #include <linux/memblock.h>
39 #include <linux/spinlock.h>
40 #include <linux/uaccess.h>
41 #include <linux/time.h>
42 #include <linux/io.h>
43 #include <linux/reboot.h>
44 #include <linux/bcd.h>
45
46 #include <asm/setup.h>
47 #include <asm/efi.h>
48 #include <asm/time.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlbflush.h>
51 #include <asm/x86_init.h>
52 #include <asm/rtc.h>
53
54 #define EFI_DEBUG 1
55
56 #define EFI_MIN_RESERVE 5120
57
58 #define EFI_DUMMY_GUID \
59 EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
60
61 static efi_char16_t efi_dummy_name[6] = { 'D', 'U', 'M', 'M', 'Y', 0 };
62
63 struct efi __read_mostly efi = {
64 .mps = EFI_INVALID_TABLE_ADDR,
65 .acpi = EFI_INVALID_TABLE_ADDR,
66 .acpi20 = EFI_INVALID_TABLE_ADDR,
67 .smbios = EFI_INVALID_TABLE_ADDR,
68 .sal_systab = EFI_INVALID_TABLE_ADDR,
69 .boot_info = EFI_INVALID_TABLE_ADDR,
70 .hcdp = EFI_INVALID_TABLE_ADDR,
71 .uga = EFI_INVALID_TABLE_ADDR,
72 .uv_systab = EFI_INVALID_TABLE_ADDR,
73 };
74 EXPORT_SYMBOL(efi);
75
76 struct efi_memory_map memmap;
77
78 static struct efi efi_phys __initdata;
79 static efi_system_table_t efi_systab __initdata;
80
81 unsigned long x86_efi_facility;
82
83 /*
84 * Returns 1 if 'facility' is enabled, 0 otherwise.
85 */
efi_enabled(int facility)86 int efi_enabled(int facility)
87 {
88 return test_bit(facility, &x86_efi_facility) != 0;
89 }
90 EXPORT_SYMBOL(efi_enabled);
91
92 static bool __initdata disable_runtime = false;
setup_noefi(char * arg)93 static int __init setup_noefi(char *arg)
94 {
95 disable_runtime = true;
96 return 0;
97 }
98 early_param("noefi", setup_noefi);
99
100 int add_efi_memmap;
101 EXPORT_SYMBOL(add_efi_memmap);
102
setup_add_efi_memmap(char * arg)103 static int __init setup_add_efi_memmap(char *arg)
104 {
105 add_efi_memmap = 1;
106 return 0;
107 }
108 early_param("add_efi_memmap", setup_add_efi_memmap);
109
110 static bool efi_no_storage_paranoia;
111
setup_storage_paranoia(char * arg)112 static int __init setup_storage_paranoia(char *arg)
113 {
114 efi_no_storage_paranoia = true;
115 return 0;
116 }
117 early_param("efi_no_storage_paranoia", setup_storage_paranoia);
118
119
virt_efi_get_time(efi_time_t * tm,efi_time_cap_t * tc)120 static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
121 {
122 unsigned long flags;
123 efi_status_t status;
124
125 spin_lock_irqsave(&rtc_lock, flags);
126 status = efi_call_virt2(get_time, tm, tc);
127 spin_unlock_irqrestore(&rtc_lock, flags);
128 return status;
129 }
130
virt_efi_set_time(efi_time_t * tm)131 static efi_status_t virt_efi_set_time(efi_time_t *tm)
132 {
133 unsigned long flags;
134 efi_status_t status;
135
136 spin_lock_irqsave(&rtc_lock, flags);
137 status = efi_call_virt1(set_time, tm);
138 spin_unlock_irqrestore(&rtc_lock, flags);
139 return status;
140 }
141
virt_efi_get_wakeup_time(efi_bool_t * enabled,efi_bool_t * pending,efi_time_t * tm)142 static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
143 efi_bool_t *pending,
144 efi_time_t *tm)
145 {
146 unsigned long flags;
147 efi_status_t status;
148
149 spin_lock_irqsave(&rtc_lock, flags);
150 status = efi_call_virt3(get_wakeup_time,
151 enabled, pending, tm);
152 spin_unlock_irqrestore(&rtc_lock, flags);
153 return status;
154 }
155
virt_efi_set_wakeup_time(efi_bool_t enabled,efi_time_t * tm)156 static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
157 {
158 unsigned long flags;
159 efi_status_t status;
160
161 spin_lock_irqsave(&rtc_lock, flags);
162 status = efi_call_virt2(set_wakeup_time,
163 enabled, tm);
164 spin_unlock_irqrestore(&rtc_lock, flags);
165 return status;
166 }
167
virt_efi_get_variable(efi_char16_t * name,efi_guid_t * vendor,u32 * attr,unsigned long * data_size,void * data)168 static efi_status_t virt_efi_get_variable(efi_char16_t *name,
169 efi_guid_t *vendor,
170 u32 *attr,
171 unsigned long *data_size,
172 void *data)
173 {
174 return efi_call_virt5(get_variable,
175 name, vendor, attr,
176 data_size, data);
177 }
178
virt_efi_get_next_variable(unsigned long * name_size,efi_char16_t * name,efi_guid_t * vendor)179 static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
180 efi_char16_t *name,
181 efi_guid_t *vendor)
182 {
183 return efi_call_virt3(get_next_variable,
184 name_size, name, vendor);
185 }
186
virt_efi_set_variable(efi_char16_t * name,efi_guid_t * vendor,u32 attr,unsigned long data_size,void * data)187 static efi_status_t virt_efi_set_variable(efi_char16_t *name,
188 efi_guid_t *vendor,
189 u32 attr,
190 unsigned long data_size,
191 void *data)
192 {
193 return efi_call_virt5(set_variable,
194 name, vendor, attr,
195 data_size, data);
196 }
197
virt_efi_query_variable_info(u32 attr,u64 * storage_space,u64 * remaining_space,u64 * max_variable_size)198 static efi_status_t virt_efi_query_variable_info(u32 attr,
199 u64 *storage_space,
200 u64 *remaining_space,
201 u64 *max_variable_size)
202 {
203 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
204 return EFI_UNSUPPORTED;
205
206 return efi_call_virt4(query_variable_info, attr, storage_space,
207 remaining_space, max_variable_size);
208 }
209
virt_efi_get_next_high_mono_count(u32 * count)210 static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
211 {
212 return efi_call_virt1(get_next_high_mono_count, count);
213 }
214
virt_efi_reset_system(int reset_type,efi_status_t status,unsigned long data_size,efi_char16_t * data)215 static void virt_efi_reset_system(int reset_type,
216 efi_status_t status,
217 unsigned long data_size,
218 efi_char16_t *data)
219 {
220 efi_call_virt4(reset_system, reset_type, status,
221 data_size, data);
222 }
223
virt_efi_update_capsule(efi_capsule_header_t ** capsules,unsigned long count,unsigned long sg_list)224 static efi_status_t virt_efi_update_capsule(efi_capsule_header_t **capsules,
225 unsigned long count,
226 unsigned long sg_list)
227 {
228 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
229 return EFI_UNSUPPORTED;
230
231 return efi_call_virt3(update_capsule, capsules, count, sg_list);
232 }
233
virt_efi_query_capsule_caps(efi_capsule_header_t ** capsules,unsigned long count,u64 * max_size,int * reset_type)234 static efi_status_t virt_efi_query_capsule_caps(efi_capsule_header_t **capsules,
235 unsigned long count,
236 u64 *max_size,
237 int *reset_type)
238 {
239 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
240 return EFI_UNSUPPORTED;
241
242 return efi_call_virt4(query_capsule_caps, capsules, count, max_size,
243 reset_type);
244 }
245
phys_efi_set_virtual_address_map(unsigned long memory_map_size,unsigned long descriptor_size,u32 descriptor_version,efi_memory_desc_t * virtual_map)246 static efi_status_t __init phys_efi_set_virtual_address_map(
247 unsigned long memory_map_size,
248 unsigned long descriptor_size,
249 u32 descriptor_version,
250 efi_memory_desc_t *virtual_map)
251 {
252 efi_status_t status;
253
254 efi_call_phys_prelog();
255 status = efi_call_phys4(efi_phys.set_virtual_address_map,
256 memory_map_size, descriptor_size,
257 descriptor_version, virtual_map);
258 efi_call_phys_epilog();
259 return status;
260 }
261
phys_efi_get_time(efi_time_t * tm,efi_time_cap_t * tc)262 static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
263 efi_time_cap_t *tc)
264 {
265 unsigned long flags;
266 efi_status_t status;
267
268 spin_lock_irqsave(&rtc_lock, flags);
269 efi_call_phys_prelog();
270 status = efi_call_phys2(efi_phys.get_time, virt_to_phys(tm),
271 virt_to_phys(tc));
272 efi_call_phys_epilog();
273 spin_unlock_irqrestore(&rtc_lock, flags);
274 return status;
275 }
276
efi_set_rtc_mmss(unsigned long nowtime)277 int efi_set_rtc_mmss(unsigned long nowtime)
278 {
279 efi_status_t status;
280 efi_time_t eft;
281 efi_time_cap_t cap;
282 struct rtc_time tm;
283
284 status = efi.get_time(&eft, &cap);
285 if (status != EFI_SUCCESS) {
286 pr_err("Oops: efitime: can't read time!\n");
287 return -1;
288 }
289
290 rtc_time_to_tm(nowtime, &tm);
291 if (!rtc_valid_tm(&tm)) {
292 eft.year = tm.tm_year + 1900;
293 eft.month = tm.tm_mon + 1;
294 eft.day = tm.tm_mday;
295 eft.minute = tm.tm_min;
296 eft.second = tm.tm_sec;
297 eft.nanosecond = 0;
298 } else {
299 printk(KERN_ERR
300 "%s: Invalid EFI RTC value: write of %lx to EFI RTC failed\n",
301 __FUNCTION__, nowtime);
302 return -1;
303 }
304
305 status = efi.set_time(&eft);
306 if (status != EFI_SUCCESS) {
307 pr_err("Oops: efitime: can't write time!\n");
308 return -1;
309 }
310 return 0;
311 }
312
efi_get_time(void)313 unsigned long efi_get_time(void)
314 {
315 efi_status_t status;
316 efi_time_t eft;
317 efi_time_cap_t cap;
318
319 status = efi.get_time(&eft, &cap);
320 if (status != EFI_SUCCESS)
321 pr_err("Oops: efitime: can't read time!\n");
322
323 return mktime(eft.year, eft.month, eft.day, eft.hour,
324 eft.minute, eft.second);
325 }
326
327 /*
328 * Tell the kernel about the EFI memory map. This might include
329 * more than the max 128 entries that can fit in the e820 legacy
330 * (zeropage) memory map.
331 */
332
do_add_efi_memmap(void)333 static void __init do_add_efi_memmap(void)
334 {
335 void *p;
336
337 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
338 efi_memory_desc_t *md = p;
339 unsigned long long start = md->phys_addr;
340 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
341 int e820_type;
342
343 switch (md->type) {
344 case EFI_LOADER_CODE:
345 case EFI_LOADER_DATA:
346 case EFI_BOOT_SERVICES_CODE:
347 case EFI_BOOT_SERVICES_DATA:
348 case EFI_CONVENTIONAL_MEMORY:
349 if (md->attribute & EFI_MEMORY_WB)
350 e820_type = E820_RAM;
351 else
352 e820_type = E820_RESERVED;
353 break;
354 case EFI_ACPI_RECLAIM_MEMORY:
355 e820_type = E820_ACPI;
356 break;
357 case EFI_ACPI_MEMORY_NVS:
358 e820_type = E820_NVS;
359 break;
360 case EFI_UNUSABLE_MEMORY:
361 e820_type = E820_UNUSABLE;
362 break;
363 default:
364 /*
365 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
366 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
367 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
368 */
369 e820_type = E820_RESERVED;
370 break;
371 }
372 e820_add_region(start, size, e820_type);
373 }
374 sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
375 }
376
efi_memblock_x86_reserve_range(void)377 int __init efi_memblock_x86_reserve_range(void)
378 {
379 struct efi_info *e = &boot_params.efi_info;
380 unsigned long pmap;
381
382 #ifdef CONFIG_X86_32
383 /* Can't handle data above 4GB at this time */
384 if (e->efi_memmap_hi) {
385 pr_err("Memory map is above 4GB, disabling EFI.\n");
386 return -EINVAL;
387 }
388 pmap = e->efi_memmap;
389 #else
390 pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
391 #endif
392 memmap.phys_map = (void *)pmap;
393 memmap.nr_map = e->efi_memmap_size /
394 e->efi_memdesc_size;
395 memmap.desc_size = e->efi_memdesc_size;
396 memmap.desc_version = e->efi_memdesc_version;
397
398 memblock_reserve(pmap, memmap.nr_map * memmap.desc_size);
399
400 return 0;
401 }
402
403 #if EFI_DEBUG
print_efi_memmap(void)404 static void __init print_efi_memmap(void)
405 {
406 efi_memory_desc_t *md;
407 void *p;
408 int i;
409
410 for (p = memmap.map, i = 0;
411 p < memmap.map_end;
412 p += memmap.desc_size, i++) {
413 md = p;
414 pr_info("mem%02u: type=%u, attr=0x%llx, "
415 "range=[0x%016llx-0x%016llx) (%lluMB)\n",
416 i, md->type, md->attribute, md->phys_addr,
417 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
418 (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
419 }
420 }
421 #endif /* EFI_DEBUG */
422
efi_reserve_boot_services(void)423 void __init efi_reserve_boot_services(void)
424 {
425 void *p;
426
427 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
428 efi_memory_desc_t *md = p;
429 u64 start = md->phys_addr;
430 u64 size = md->num_pages << EFI_PAGE_SHIFT;
431
432 if (md->type != EFI_BOOT_SERVICES_CODE &&
433 md->type != EFI_BOOT_SERVICES_DATA)
434 continue;
435 /* Only reserve where possible:
436 * - Not within any already allocated areas
437 * - Not over any memory area (really needed, if above?)
438 * - Not within any part of the kernel
439 * - Not the bios reserved area
440 */
441 if ((start+size >= __pa_symbol(_text)
442 && start <= __pa_symbol(_end)) ||
443 !e820_all_mapped(start, start+size, E820_RAM) ||
444 memblock_is_region_reserved(start, size)) {
445 /* Could not reserve, skip it */
446 md->num_pages = 0;
447 memblock_dbg("Could not reserve boot range "
448 "[0x%010llx-0x%010llx]\n",
449 start, start+size-1);
450 } else
451 memblock_reserve(start, size);
452 }
453 }
454
efi_unmap_memmap(void)455 void __init efi_unmap_memmap(void)
456 {
457 clear_bit(EFI_MEMMAP, &x86_efi_facility);
458 if (memmap.map) {
459 early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size);
460 memmap.map = NULL;
461 }
462 }
463
efi_free_boot_services(void)464 void __init efi_free_boot_services(void)
465 {
466 void *p;
467
468 if (!efi_is_native())
469 return;
470
471 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
472 efi_memory_desc_t *md = p;
473 unsigned long long start = md->phys_addr;
474 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
475
476 if (md->type != EFI_BOOT_SERVICES_CODE &&
477 md->type != EFI_BOOT_SERVICES_DATA)
478 continue;
479
480 /* Could not reserve boot area */
481 if (!size)
482 continue;
483
484 free_bootmem_late(start, size);
485 }
486
487 efi_unmap_memmap();
488 }
489
efi_systab_init(void * phys)490 static int __init efi_systab_init(void *phys)
491 {
492 if (efi_enabled(EFI_64BIT)) {
493 efi_system_table_64_t *systab64;
494 u64 tmp = 0;
495
496 systab64 = early_ioremap((unsigned long)phys,
497 sizeof(*systab64));
498 if (systab64 == NULL) {
499 pr_err("Couldn't map the system table!\n");
500 return -ENOMEM;
501 }
502
503 efi_systab.hdr = systab64->hdr;
504 efi_systab.fw_vendor = systab64->fw_vendor;
505 tmp |= systab64->fw_vendor;
506 efi_systab.fw_revision = systab64->fw_revision;
507 efi_systab.con_in_handle = systab64->con_in_handle;
508 tmp |= systab64->con_in_handle;
509 efi_systab.con_in = systab64->con_in;
510 tmp |= systab64->con_in;
511 efi_systab.con_out_handle = systab64->con_out_handle;
512 tmp |= systab64->con_out_handle;
513 efi_systab.con_out = systab64->con_out;
514 tmp |= systab64->con_out;
515 efi_systab.stderr_handle = systab64->stderr_handle;
516 tmp |= systab64->stderr_handle;
517 efi_systab.stderr = systab64->stderr;
518 tmp |= systab64->stderr;
519 efi_systab.runtime = (void *)(unsigned long)systab64->runtime;
520 tmp |= systab64->runtime;
521 efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
522 tmp |= systab64->boottime;
523 efi_systab.nr_tables = systab64->nr_tables;
524 efi_systab.tables = systab64->tables;
525 tmp |= systab64->tables;
526
527 early_iounmap(systab64, sizeof(*systab64));
528 #ifdef CONFIG_X86_32
529 if (tmp >> 32) {
530 pr_err("EFI data located above 4GB, disabling EFI.\n");
531 return -EINVAL;
532 }
533 #endif
534 } else {
535 efi_system_table_32_t *systab32;
536
537 systab32 = early_ioremap((unsigned long)phys,
538 sizeof(*systab32));
539 if (systab32 == NULL) {
540 pr_err("Couldn't map the system table!\n");
541 return -ENOMEM;
542 }
543
544 efi_systab.hdr = systab32->hdr;
545 efi_systab.fw_vendor = systab32->fw_vendor;
546 efi_systab.fw_revision = systab32->fw_revision;
547 efi_systab.con_in_handle = systab32->con_in_handle;
548 efi_systab.con_in = systab32->con_in;
549 efi_systab.con_out_handle = systab32->con_out_handle;
550 efi_systab.con_out = systab32->con_out;
551 efi_systab.stderr_handle = systab32->stderr_handle;
552 efi_systab.stderr = systab32->stderr;
553 efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
554 efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
555 efi_systab.nr_tables = systab32->nr_tables;
556 efi_systab.tables = systab32->tables;
557
558 early_iounmap(systab32, sizeof(*systab32));
559 }
560
561 efi.systab = &efi_systab;
562
563 /*
564 * Verify the EFI Table
565 */
566 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
567 pr_err("System table signature incorrect!\n");
568 return -EINVAL;
569 }
570 if ((efi.systab->hdr.revision >> 16) == 0)
571 pr_err("Warning: System table version "
572 "%d.%02d, expected 1.00 or greater!\n",
573 efi.systab->hdr.revision >> 16,
574 efi.systab->hdr.revision & 0xffff);
575
576 return 0;
577 }
578
efi_config_init(u64 tables,int nr_tables)579 static int __init efi_config_init(u64 tables, int nr_tables)
580 {
581 void *config_tables, *tablep;
582 int i, sz;
583
584 if (efi_enabled(EFI_64BIT))
585 sz = sizeof(efi_config_table_64_t);
586 else
587 sz = sizeof(efi_config_table_32_t);
588
589 /*
590 * Let's see what config tables the firmware passed to us.
591 */
592 config_tables = early_ioremap(tables, nr_tables * sz);
593 if (config_tables == NULL) {
594 pr_err("Could not map Configuration table!\n");
595 return -ENOMEM;
596 }
597
598 tablep = config_tables;
599 pr_info("");
600 for (i = 0; i < efi.systab->nr_tables; i++) {
601 efi_guid_t guid;
602 unsigned long table;
603
604 if (efi_enabled(EFI_64BIT)) {
605 u64 table64;
606 guid = ((efi_config_table_64_t *)tablep)->guid;
607 table64 = ((efi_config_table_64_t *)tablep)->table;
608 table = table64;
609 #ifdef CONFIG_X86_32
610 if (table64 >> 32) {
611 pr_cont("\n");
612 pr_err("Table located above 4GB, disabling EFI.\n");
613 early_iounmap(config_tables,
614 efi.systab->nr_tables * sz);
615 return -EINVAL;
616 }
617 #endif
618 } else {
619 guid = ((efi_config_table_32_t *)tablep)->guid;
620 table = ((efi_config_table_32_t *)tablep)->table;
621 }
622 if (!efi_guidcmp(guid, MPS_TABLE_GUID)) {
623 efi.mps = table;
624 pr_cont(" MPS=0x%lx ", table);
625 } else if (!efi_guidcmp(guid, ACPI_20_TABLE_GUID)) {
626 efi.acpi20 = table;
627 pr_cont(" ACPI 2.0=0x%lx ", table);
628 } else if (!efi_guidcmp(guid, ACPI_TABLE_GUID)) {
629 efi.acpi = table;
630 pr_cont(" ACPI=0x%lx ", table);
631 } else if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID)) {
632 efi.smbios = table;
633 pr_cont(" SMBIOS=0x%lx ", table);
634 #ifdef CONFIG_X86_UV
635 } else if (!efi_guidcmp(guid, UV_SYSTEM_TABLE_GUID)) {
636 efi.uv_systab = table;
637 pr_cont(" UVsystab=0x%lx ", table);
638 #endif
639 } else if (!efi_guidcmp(guid, HCDP_TABLE_GUID)) {
640 efi.hcdp = table;
641 pr_cont(" HCDP=0x%lx ", table);
642 } else if (!efi_guidcmp(guid, UGA_IO_PROTOCOL_GUID)) {
643 efi.uga = table;
644 pr_cont(" UGA=0x%lx ", table);
645 }
646 tablep += sz;
647 }
648 pr_cont("\n");
649 early_iounmap(config_tables, efi.systab->nr_tables * sz);
650 return 0;
651 }
652
efi_runtime_init(void)653 static int __init efi_runtime_init(void)
654 {
655 efi_runtime_services_t *runtime;
656
657 /*
658 * Check out the runtime services table. We need to map
659 * the runtime services table so that we can grab the physical
660 * address of several of the EFI runtime functions, needed to
661 * set the firmware into virtual mode.
662 */
663 runtime = early_ioremap((unsigned long)efi.systab->runtime,
664 sizeof(efi_runtime_services_t));
665 if (!runtime) {
666 pr_err("Could not map the runtime service table!\n");
667 return -ENOMEM;
668 }
669 /*
670 * We will only need *early* access to the following
671 * two EFI runtime services before set_virtual_address_map
672 * is invoked.
673 */
674 efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
675 efi_phys.set_virtual_address_map =
676 (efi_set_virtual_address_map_t *)
677 runtime->set_virtual_address_map;
678 /*
679 * Make efi_get_time can be called before entering
680 * virtual mode.
681 */
682 efi.get_time = phys_efi_get_time;
683 early_iounmap(runtime, sizeof(efi_runtime_services_t));
684
685 return 0;
686 }
687
efi_memmap_init(void)688 static int __init efi_memmap_init(void)
689 {
690 /* Map the EFI memory map */
691 memmap.map = early_ioremap((unsigned long)memmap.phys_map,
692 memmap.nr_map * memmap.desc_size);
693 if (memmap.map == NULL) {
694 pr_err("Could not map the memory map!\n");
695 return -ENOMEM;
696 }
697 memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
698
699 if (add_efi_memmap)
700 do_add_efi_memmap();
701
702 return 0;
703 }
704
efi_init(void)705 void __init efi_init(void)
706 {
707 efi_char16_t *c16;
708 char vendor[100] = "unknown";
709 int i = 0;
710 void *tmp;
711
712 #ifdef CONFIG_X86_32
713 if (boot_params.efi_info.efi_systab_hi ||
714 boot_params.efi_info.efi_memmap_hi) {
715 pr_info("Table located above 4GB, disabling EFI.\n");
716 return;
717 }
718 efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
719 #else
720 efi_phys.systab = (efi_system_table_t *)
721 (boot_params.efi_info.efi_systab |
722 ((__u64)boot_params.efi_info.efi_systab_hi<<32));
723 #endif
724
725 if (efi_systab_init(efi_phys.systab))
726 return;
727
728 set_bit(EFI_SYSTEM_TABLES, &x86_efi_facility);
729
730 /*
731 * Show what we know for posterity
732 */
733 c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
734 if (c16) {
735 for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
736 vendor[i] = *c16++;
737 vendor[i] = '\0';
738 } else
739 pr_err("Could not map the firmware vendor!\n");
740 early_iounmap(tmp, 2);
741
742 pr_info("EFI v%u.%.02u by %s\n",
743 efi.systab->hdr.revision >> 16,
744 efi.systab->hdr.revision & 0xffff, vendor);
745
746 if (efi_config_init(efi.systab->tables, efi.systab->nr_tables))
747 return;
748
749 set_bit(EFI_CONFIG_TABLES, &x86_efi_facility);
750
751 /*
752 * Note: We currently don't support runtime services on an EFI
753 * that doesn't match the kernel 32/64-bit mode.
754 */
755
756 if (!efi_is_native())
757 pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
758 else {
759 if (disable_runtime || efi_runtime_init())
760 return;
761 set_bit(EFI_RUNTIME_SERVICES, &x86_efi_facility);
762 }
763
764 if (efi_memmap_init())
765 return;
766
767 set_bit(EFI_MEMMAP, &x86_efi_facility);
768
769 #ifdef CONFIG_X86_32
770 if (efi_is_native()) {
771 x86_platform.get_wallclock = efi_get_time;
772 x86_platform.set_wallclock = efi_set_rtc_mmss;
773 }
774 #endif
775
776 #if EFI_DEBUG
777 print_efi_memmap();
778 #endif
779 }
780
efi_late_init(void)781 void __init efi_late_init(void)
782 {
783 efi_bgrt_init();
784 }
785
efi_set_executable(efi_memory_desc_t * md,bool executable)786 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
787 {
788 u64 addr, npages;
789
790 addr = md->virt_addr;
791 npages = md->num_pages;
792
793 memrange_efi_to_native(&addr, &npages);
794
795 if (executable)
796 set_memory_x(addr, npages);
797 else
798 set_memory_nx(addr, npages);
799 }
800
runtime_code_page_mkexec(void)801 static void __init runtime_code_page_mkexec(void)
802 {
803 efi_memory_desc_t *md;
804 void *p;
805
806 /* Make EFI runtime service code area executable */
807 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
808 md = p;
809
810 if (md->type != EFI_RUNTIME_SERVICES_CODE)
811 continue;
812
813 efi_set_executable(md, true);
814 }
815 }
816
817 /*
818 * We can't ioremap data in EFI boot services RAM, because we've already mapped
819 * it as RAM. So, look it up in the existing EFI memory map instead. Only
820 * callable after efi_enter_virtual_mode and before efi_free_boot_services.
821 */
efi_lookup_mapped_addr(u64 phys_addr)822 void __iomem *efi_lookup_mapped_addr(u64 phys_addr)
823 {
824 void *p;
825 if (WARN_ON(!memmap.map))
826 return NULL;
827 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
828 efi_memory_desc_t *md = p;
829 u64 size = md->num_pages << EFI_PAGE_SHIFT;
830 u64 end = md->phys_addr + size;
831 if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
832 md->type != EFI_BOOT_SERVICES_CODE &&
833 md->type != EFI_BOOT_SERVICES_DATA)
834 continue;
835 if (!md->virt_addr)
836 continue;
837 if (phys_addr >= md->phys_addr && phys_addr < end) {
838 phys_addr += md->virt_addr - md->phys_addr;
839 return (__force void __iomem *)(unsigned long)phys_addr;
840 }
841 }
842 return NULL;
843 }
844
efi_memory_uc(u64 addr,unsigned long size)845 void efi_memory_uc(u64 addr, unsigned long size)
846 {
847 unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
848 u64 npages;
849
850 npages = round_up(size, page_shift) / page_shift;
851 memrange_efi_to_native(&addr, &npages);
852 set_memory_uc(addr, npages);
853 }
854
855 /*
856 * This function will switch the EFI runtime services to virtual mode.
857 * Essentially, look through the EFI memmap and map every region that
858 * has the runtime attribute bit set in its memory descriptor and update
859 * that memory descriptor with the virtual address obtained from ioremap().
860 * This enables the runtime services to be called without having to
861 * thunk back into physical mode for every invocation.
862 */
efi_enter_virtual_mode(void)863 void __init efi_enter_virtual_mode(void)
864 {
865 efi_memory_desc_t *md, *prev_md = NULL;
866 efi_status_t status;
867 unsigned long size;
868 u64 end, systab, start_pfn, end_pfn;
869 void *p, *va, *new_memmap = NULL;
870 int count = 0;
871
872 efi.systab = NULL;
873
874 /*
875 * We don't do virtual mode, since we don't do runtime services, on
876 * non-native EFI
877 */
878
879 if (!efi_is_native()) {
880 efi_unmap_memmap();
881 return;
882 }
883
884 /* Merge contiguous regions of the same type and attribute */
885 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
886 u64 prev_size;
887 md = p;
888
889 if (!prev_md) {
890 prev_md = md;
891 continue;
892 }
893
894 if (prev_md->type != md->type ||
895 prev_md->attribute != md->attribute) {
896 prev_md = md;
897 continue;
898 }
899
900 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
901
902 if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
903 prev_md->num_pages += md->num_pages;
904 md->type = EFI_RESERVED_TYPE;
905 md->attribute = 0;
906 continue;
907 }
908 prev_md = md;
909 }
910
911 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
912 md = p;
913 if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
914 md->type != EFI_BOOT_SERVICES_CODE &&
915 md->type != EFI_BOOT_SERVICES_DATA)
916 continue;
917
918 size = md->num_pages << EFI_PAGE_SHIFT;
919 end = md->phys_addr + size;
920
921 start_pfn = PFN_DOWN(md->phys_addr);
922 end_pfn = PFN_UP(end);
923 if (pfn_range_is_mapped(start_pfn, end_pfn)) {
924 va = __va(md->phys_addr);
925
926 if (!(md->attribute & EFI_MEMORY_WB))
927 efi_memory_uc((u64)(unsigned long)va, size);
928 } else
929 va = efi_ioremap(md->phys_addr, size,
930 md->type, md->attribute);
931
932 md->virt_addr = (u64) (unsigned long) va;
933
934 if (!va) {
935 pr_err("ioremap of 0x%llX failed!\n",
936 (unsigned long long)md->phys_addr);
937 continue;
938 }
939
940 systab = (u64) (unsigned long) efi_phys.systab;
941 if (md->phys_addr <= systab && systab < end) {
942 systab += md->virt_addr - md->phys_addr;
943 efi.systab = (efi_system_table_t *) (unsigned long) systab;
944 }
945 new_memmap = krealloc(new_memmap,
946 (count + 1) * memmap.desc_size,
947 GFP_KERNEL);
948 memcpy(new_memmap + (count * memmap.desc_size), md,
949 memmap.desc_size);
950 count++;
951 }
952
953 BUG_ON(!efi.systab);
954
955 status = phys_efi_set_virtual_address_map(
956 memmap.desc_size * count,
957 memmap.desc_size,
958 memmap.desc_version,
959 (efi_memory_desc_t *)__pa(new_memmap));
960
961 if (status != EFI_SUCCESS) {
962 pr_alert("Unable to switch EFI into virtual mode "
963 "(status=%lx)!\n", status);
964 panic("EFI call to SetVirtualAddressMap() failed!");
965 }
966
967 /*
968 * Now that EFI is in virtual mode, update the function
969 * pointers in the runtime service table to the new virtual addresses.
970 *
971 * Call EFI services through wrapper functions.
972 */
973 efi.runtime_version = efi_systab.hdr.revision;
974 efi.get_time = virt_efi_get_time;
975 efi.set_time = virt_efi_set_time;
976 efi.get_wakeup_time = virt_efi_get_wakeup_time;
977 efi.set_wakeup_time = virt_efi_set_wakeup_time;
978 efi.get_variable = virt_efi_get_variable;
979 efi.get_next_variable = virt_efi_get_next_variable;
980 efi.set_variable = virt_efi_set_variable;
981 efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
982 efi.reset_system = virt_efi_reset_system;
983 efi.set_virtual_address_map = NULL;
984 efi.query_variable_info = virt_efi_query_variable_info;
985 efi.update_capsule = virt_efi_update_capsule;
986 efi.query_capsule_caps = virt_efi_query_capsule_caps;
987 if (__supported_pte_mask & _PAGE_NX)
988 runtime_code_page_mkexec();
989
990 kfree(new_memmap);
991
992 /* clean DUMMY object */
993 efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
994 EFI_VARIABLE_NON_VOLATILE |
995 EFI_VARIABLE_BOOTSERVICE_ACCESS |
996 EFI_VARIABLE_RUNTIME_ACCESS,
997 0, NULL);
998 }
999
1000 /*
1001 * Convenience functions to obtain memory types and attributes
1002 */
efi_mem_type(unsigned long phys_addr)1003 u32 efi_mem_type(unsigned long phys_addr)
1004 {
1005 efi_memory_desc_t *md;
1006 void *p;
1007
1008 if (!efi_enabled(EFI_MEMMAP))
1009 return 0;
1010
1011 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
1012 md = p;
1013 if ((md->phys_addr <= phys_addr) &&
1014 (phys_addr < (md->phys_addr +
1015 (md->num_pages << EFI_PAGE_SHIFT))))
1016 return md->type;
1017 }
1018 return 0;
1019 }
1020
efi_mem_attributes(unsigned long phys_addr)1021 u64 efi_mem_attributes(unsigned long phys_addr)
1022 {
1023 efi_memory_desc_t *md;
1024 void *p;
1025
1026 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
1027 md = p;
1028 if ((md->phys_addr <= phys_addr) &&
1029 (phys_addr < (md->phys_addr +
1030 (md->num_pages << EFI_PAGE_SHIFT))))
1031 return md->attribute;
1032 }
1033 return 0;
1034 }
1035
1036 /*
1037 * Some firmware has serious problems when using more than 50% of the EFI
1038 * variable store, i.e. it triggers bugs that can brick machines. Ensure that
1039 * we never use more than this safe limit.
1040 *
1041 * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
1042 * store.
1043 */
efi_query_variable_store(u32 attributes,unsigned long size)1044 efi_status_t efi_query_variable_store(u32 attributes, unsigned long size)
1045 {
1046 efi_status_t status;
1047 u64 storage_size, remaining_size, max_size;
1048
1049 if (!(attributes & EFI_VARIABLE_NON_VOLATILE))
1050 return 0;
1051
1052 status = efi.query_variable_info(attributes, &storage_size,
1053 &remaining_size, &max_size);
1054 if (status != EFI_SUCCESS)
1055 return status;
1056
1057 /*
1058 * Some firmware implementations refuse to boot if there's insufficient
1059 * space in the variable store. We account for that by refusing the
1060 * write if permitting it would reduce the available space to under
1061 * 5KB. This figure was provided by Samsung, so should be safe.
1062 */
1063 if ((remaining_size - size < EFI_MIN_RESERVE) &&
1064 !efi_no_storage_paranoia) {
1065
1066 /*
1067 * Triggering garbage collection may require that the firmware
1068 * generate a real EFI_OUT_OF_RESOURCES error. We can force
1069 * that by attempting to use more space than is available.
1070 */
1071 unsigned long dummy_size = remaining_size + 1024;
1072 void *dummy = kzalloc(dummy_size, GFP_ATOMIC);
1073
1074 if (!dummy)
1075 return EFI_OUT_OF_RESOURCES;
1076
1077 status = efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
1078 EFI_VARIABLE_NON_VOLATILE |
1079 EFI_VARIABLE_BOOTSERVICE_ACCESS |
1080 EFI_VARIABLE_RUNTIME_ACCESS,
1081 dummy_size, dummy);
1082
1083 if (status == EFI_SUCCESS) {
1084 /*
1085 * This should have failed, so if it didn't make sure
1086 * that we delete it...
1087 */
1088 efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
1089 EFI_VARIABLE_NON_VOLATILE |
1090 EFI_VARIABLE_BOOTSERVICE_ACCESS |
1091 EFI_VARIABLE_RUNTIME_ACCESS,
1092 0, dummy);
1093 }
1094
1095 kfree(dummy);
1096
1097 /*
1098 * The runtime code may now have triggered a garbage collection
1099 * run, so check the variable info again
1100 */
1101 status = efi.query_variable_info(attributes, &storage_size,
1102 &remaining_size, &max_size);
1103
1104 if (status != EFI_SUCCESS)
1105 return status;
1106
1107 /*
1108 * There still isn't enough room, so return an error
1109 */
1110 if (remaining_size - size < EFI_MIN_RESERVE)
1111 return EFI_OUT_OF_RESOURCES;
1112 }
1113
1114 return EFI_SUCCESS;
1115 }
1116 EXPORT_SYMBOL_GPL(efi_query_variable_store);
1117