• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /******************************************************************************
2  *
3  * Copyright(c) 2009-2012  Realtek Corporation.
4  *
5  * Tmis program is free software; you can redistribute it and/or modify it
6  * under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * Tmis program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * tmis program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
17  *
18  * Tme full GNU General Public License is included in this distribution in the
19  * file called LICENSE.
20  *
21  * Contact Information:
22  * wlanfae <wlanfae@realtek.com>
23  * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
24  * Hsinchu 300, Taiwan.
25  *
26  * Larry Finger <Larry.Finger@lwfinger.net>
27  *
28  *****************************************************************************/
29 
30 #include <linux/export.h>
31 #include "wifi.h"
32 #include "efuse.h"
33 
34 static const u8 MAX_PGPKT_SIZE = 9;
35 static const u8 PGPKT_DATA_SIZE = 8;
36 static const int EFUSE_MAX_SIZE = 512;
37 
38 static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = {
39 	{0, 0, 0, 2},
40 	{0, 1, 0, 2},
41 	{0, 2, 0, 2},
42 	{1, 0, 0, 1},
43 	{1, 0, 1, 1},
44 	{1, 1, 0, 1},
45 	{1, 1, 1, 3},
46 	{1, 3, 0, 17},
47 	{3, 3, 1, 48},
48 	{10, 0, 0, 6},
49 	{10, 3, 0, 1},
50 	{10, 3, 1, 1},
51 	{11, 0, 0, 28}
52 };
53 
54 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
55 				    u8 *value);
56 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
57 				    u16 *value);
58 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
59 				    u32 *value);
60 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
61 				     u8 value);
62 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
63 				     u16 value);
64 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
65 				     u32 value);
66 static int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr,
67 					u8 *data);
68 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
69 					u8 data);
70 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
71 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
72 					u8 *data);
73 static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
74 				 u8 word_en, u8 *data);
75 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
76 					u8 *targetdata);
77 static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
78 				       u16 efuse_addr, u8 word_en, u8 *data);
79 static void efuse_power_switch(struct ieee80211_hw *hw, u8 write,
80 					u8 pwrstate);
81 static u16 efuse_get_current_size(struct ieee80211_hw *hw);
82 static u8 efuse_calculate_word_cnts(u8 word_en);
83 
efuse_initialize(struct ieee80211_hw * hw)84 void efuse_initialize(struct ieee80211_hw *hw)
85 {
86 	struct rtl_priv *rtlpriv = rtl_priv(hw);
87 	u8 bytetemp;
88 	u8 temp;
89 
90 	bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
91 	temp = bytetemp | 0x20;
92 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);
93 
94 	bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
95 	temp = bytetemp & 0xFE;
96 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);
97 
98 	bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
99 	temp = bytetemp | 0x80;
100 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);
101 
102 	rtl_write_byte(rtlpriv, 0x2F8, 0x3);
103 
104 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
105 
106 }
107 
efuse_read_1byte(struct ieee80211_hw * hw,u16 address)108 u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address)
109 {
110 	struct rtl_priv *rtlpriv = rtl_priv(hw);
111 	u8 data;
112 	u8 bytetemp;
113 	u8 temp;
114 	u32 k = 0;
115 	const u32 efuse_len =
116 		rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
117 
118 	if (address < efuse_len) {
119 		temp = address & 0xFF;
120 		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
121 			       temp);
122 		bytetemp = rtl_read_byte(rtlpriv,
123 					 rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
124 		temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
125 		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
126 			       temp);
127 
128 		bytetemp = rtl_read_byte(rtlpriv,
129 					 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
130 		temp = bytetemp & 0x7F;
131 		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
132 			       temp);
133 
134 		bytetemp = rtl_read_byte(rtlpriv,
135 					 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
136 		while (!(bytetemp & 0x80)) {
137 			bytetemp = rtl_read_byte(rtlpriv,
138 						 rtlpriv->cfg->
139 						 maps[EFUSE_CTRL] + 3);
140 			k++;
141 			if (k == 1000) {
142 				k = 0;
143 				break;
144 			}
145 		}
146 		data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
147 		return data;
148 	} else
149 		return 0xFF;
150 
151 }
152 EXPORT_SYMBOL(efuse_read_1byte);
153 
efuse_write_1byte(struct ieee80211_hw * hw,u16 address,u8 value)154 void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value)
155 {
156 	struct rtl_priv *rtlpriv = rtl_priv(hw);
157 	u8 bytetemp;
158 	u8 temp;
159 	u32 k = 0;
160 	const u32 efuse_len =
161 		rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
162 
163 	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr=%x Data =%x\n",
164 		 address, value);
165 
166 	if (address < efuse_len) {
167 		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);
168 
169 		temp = address & 0xFF;
170 		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
171 			       temp);
172 		bytetemp = rtl_read_byte(rtlpriv,
173 					 rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
174 
175 		temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
176 		rtl_write_byte(rtlpriv,
177 			       rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);
178 
179 		bytetemp = rtl_read_byte(rtlpriv,
180 					 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
181 		temp = bytetemp | 0x80;
182 		rtl_write_byte(rtlpriv,
183 			       rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);
184 
185 		bytetemp = rtl_read_byte(rtlpriv,
186 					 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
187 
188 		while (bytetemp & 0x80) {
189 			bytetemp = rtl_read_byte(rtlpriv,
190 						 rtlpriv->cfg->
191 						 maps[EFUSE_CTRL] + 3);
192 			k++;
193 			if (k == 100) {
194 				k = 0;
195 				break;
196 			}
197 		}
198 	}
199 
200 }
201 
read_efuse_byte(struct ieee80211_hw * hw,u16 _offset,u8 * pbuf)202 void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
203 {
204 	struct rtl_priv *rtlpriv = rtl_priv(hw);
205 	u32 value32;
206 	u8 readbyte;
207 	u16 retry;
208 
209 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
210 		       (_offset & 0xff));
211 	readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
212 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
213 		       ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
214 
215 	readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
216 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
217 		       (readbyte & 0x7f));
218 
219 	retry = 0;
220 	value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
221 	while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
222 		value32 = rtl_read_dword(rtlpriv,
223 					 rtlpriv->cfg->maps[EFUSE_CTRL]);
224 		retry++;
225 	}
226 
227 	udelay(50);
228 	value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
229 
230 	*pbuf = (u8) (value32 & 0xff);
231 }
232 
read_efuse(struct ieee80211_hw * hw,u16 _offset,u16 _size_byte,u8 * pbuf)233 void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf)
234 {
235 	struct rtl_priv *rtlpriv = rtl_priv(hw);
236 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
237 	u8 *efuse_tbl;
238 	u8 rtemp8[1];
239 	u16 efuse_addr = 0;
240 	u8 offset, wren;
241 	u8 u1temp = 0;
242 	u16 i;
243 	u16 j;
244 	const u16 efuse_max_section =
245 		rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP];
246 	const u32 efuse_len =
247 		rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
248 	u16 **efuse_word;
249 	u16 efuse_utilized = 0;
250 	u8 efuse_usage;
251 
252 	if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) {
253 		RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
254 			 "read_efuse(): Invalid offset(%#x) with read bytes(%#x)!!\n",
255 			 _offset, _size_byte);
256 		return;
257 	}
258 
259 	/* allocate memory for efuse_tbl and efuse_word */
260 	efuse_tbl = kmalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE] *
261 			    sizeof(u8), GFP_ATOMIC);
262 	if (!efuse_tbl)
263 		return;
264 	efuse_word = kmalloc(EFUSE_MAX_WORD_UNIT * sizeof(u16 *), GFP_ATOMIC);
265 	if (!efuse_word)
266 		goto done;
267 	for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
268 		efuse_word[i] = kmalloc(efuse_max_section * sizeof(u16),
269 					GFP_ATOMIC);
270 		if (!efuse_word[i])
271 			goto done;
272 	}
273 
274 	for (i = 0; i < efuse_max_section; i++)
275 		for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
276 			efuse_word[j][i] = 0xFFFF;
277 
278 	read_efuse_byte(hw, efuse_addr, rtemp8);
279 	if (*rtemp8 != 0xFF) {
280 		efuse_utilized++;
281 		RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
282 			"Addr=%d\n", efuse_addr);
283 		efuse_addr++;
284 	}
285 
286 	while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) {
287 		/*  Check PG header for section num.  */
288 		if ((*rtemp8 & 0x1F) == 0x0F) {/* extended header */
289 			u1temp = ((*rtemp8 & 0xE0) >> 5);
290 			read_efuse_byte(hw, efuse_addr, rtemp8);
291 
292 			if ((*rtemp8 & 0x0F) == 0x0F) {
293 				efuse_addr++;
294 				read_efuse_byte(hw, efuse_addr, rtemp8);
295 
296 				if (*rtemp8 != 0xFF &&
297 				    (efuse_addr < efuse_len)) {
298 					efuse_addr++;
299 				}
300 				continue;
301 			} else {
302 				offset = ((*rtemp8 & 0xF0) >> 1) | u1temp;
303 				wren = (*rtemp8 & 0x0F);
304 				efuse_addr++;
305 			}
306 		} else {
307 			offset = ((*rtemp8 >> 4) & 0x0f);
308 			wren = (*rtemp8 & 0x0f);
309 		}
310 
311 		if (offset < efuse_max_section) {
312 			RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
313 				"offset-%d Worden=%x\n", offset, wren);
314 
315 			for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
316 				if (!(wren & 0x01)) {
317 					RTPRINT(rtlpriv, FEEPROM,
318 						EFUSE_READ_ALL,
319 						"Addr=%d\n", efuse_addr);
320 
321 					read_efuse_byte(hw, efuse_addr, rtemp8);
322 					efuse_addr++;
323 					efuse_utilized++;
324 					efuse_word[i][offset] =
325 							 (*rtemp8 & 0xff);
326 
327 					if (efuse_addr >= efuse_len)
328 						break;
329 
330 					RTPRINT(rtlpriv, FEEPROM,
331 						EFUSE_READ_ALL,
332 						"Addr=%d\n", efuse_addr);
333 
334 					read_efuse_byte(hw, efuse_addr, rtemp8);
335 					efuse_addr++;
336 					efuse_utilized++;
337 					efuse_word[i][offset] |=
338 					    (((u16)*rtemp8 << 8) & 0xff00);
339 
340 					if (efuse_addr >= efuse_len)
341 						break;
342 				}
343 
344 				wren >>= 1;
345 			}
346 		}
347 
348 		RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
349 			"Addr=%d\n", efuse_addr);
350 		read_efuse_byte(hw, efuse_addr, rtemp8);
351 		if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) {
352 			efuse_utilized++;
353 			efuse_addr++;
354 		}
355 	}
356 
357 	for (i = 0; i < efuse_max_section; i++) {
358 		for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
359 			efuse_tbl[(i * 8) + (j * 2)] =
360 			    (efuse_word[j][i] & 0xff);
361 			efuse_tbl[(i * 8) + ((j * 2) + 1)] =
362 			    ((efuse_word[j][i] >> 8) & 0xff);
363 		}
364 	}
365 
366 	for (i = 0; i < _size_byte; i++)
367 		pbuf[i] = efuse_tbl[_offset + i];
368 
369 	rtlefuse->efuse_usedbytes = efuse_utilized;
370 	efuse_usage = (u8) ((efuse_utilized * 100) / efuse_len);
371 	rtlefuse->efuse_usedpercentage = efuse_usage;
372 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
373 				      (u8 *)&efuse_utilized);
374 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
375 				      &efuse_usage);
376 done:
377 	for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++)
378 		kfree(efuse_word[i]);
379 	kfree(efuse_word);
380 	kfree(efuse_tbl);
381 }
382 
efuse_shadow_update_chk(struct ieee80211_hw * hw)383 bool efuse_shadow_update_chk(struct ieee80211_hw *hw)
384 {
385 	struct rtl_priv *rtlpriv = rtl_priv(hw);
386 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
387 	u8 section_idx, i, Base;
388 	u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
389 	bool wordchanged, result = true;
390 
391 	for (section_idx = 0; section_idx < 16; section_idx++) {
392 		Base = section_idx * 8;
393 		wordchanged = false;
394 
395 		for (i = 0; i < 8; i = i + 2) {
396 			if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i] !=
397 			     rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i]) ||
398 			    (rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i + 1] !=
399 			     rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i +
400 								   1])) {
401 				words_need++;
402 				wordchanged = true;
403 			}
404 		}
405 
406 		if (wordchanged)
407 			hdr_num++;
408 	}
409 
410 	totalbytes = hdr_num + words_need * 2;
411 	efuse_used = rtlefuse->efuse_usedbytes;
412 
413 	if ((totalbytes + efuse_used) >=
414 	    (EFUSE_MAX_SIZE -
415 	     rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))
416 		result = false;
417 
418 	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
419 		 "efuse_shadow_update_chk(): totalbytes(%#x), hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
420 		 totalbytes, hdr_num, words_need, efuse_used);
421 
422 	return result;
423 }
424 
efuse_shadow_read(struct ieee80211_hw * hw,u8 type,u16 offset,u32 * value)425 void efuse_shadow_read(struct ieee80211_hw *hw, u8 type,
426 		       u16 offset, u32 *value)
427 {
428 	if (type == 1)
429 		efuse_shadow_read_1byte(hw, offset, (u8 *) value);
430 	else if (type == 2)
431 		efuse_shadow_read_2byte(hw, offset, (u16 *) value);
432 	else if (type == 4)
433 		efuse_shadow_read_4byte(hw, offset, value);
434 
435 }
436 
efuse_shadow_write(struct ieee80211_hw * hw,u8 type,u16 offset,u32 value)437 void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset,
438 				u32 value)
439 {
440 	if (type == 1)
441 		efuse_shadow_write_1byte(hw, offset, (u8) value);
442 	else if (type == 2)
443 		efuse_shadow_write_2byte(hw, offset, (u16) value);
444 	else if (type == 4)
445 		efuse_shadow_write_4byte(hw, offset, value);
446 
447 }
448 
efuse_shadow_update(struct ieee80211_hw * hw)449 bool efuse_shadow_update(struct ieee80211_hw *hw)
450 {
451 	struct rtl_priv *rtlpriv = rtl_priv(hw);
452 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
453 	u16 i, offset, base;
454 	u8 word_en = 0x0F;
455 	u8 first_pg = false;
456 
457 	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "--->\n");
458 
459 	if (!efuse_shadow_update_chk(hw)) {
460 		efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
461 		memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
462 		       &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
463 		       rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
464 
465 		RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
466 			 "<---efuse out of capacity!!\n");
467 		return false;
468 	}
469 	efuse_power_switch(hw, true, true);
470 
471 	for (offset = 0; offset < 16; offset++) {
472 
473 		word_en = 0x0F;
474 		base = offset * 8;
475 
476 		for (i = 0; i < 8; i++) {
477 			if (first_pg) {
478 
479 				word_en &= ~(BIT(i / 2));
480 
481 				rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
482 				    rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
483 			} else {
484 
485 				if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
486 				    rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
487 					word_en &= ~(BIT(i / 2));
488 
489 					rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
490 					    rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
491 				}
492 			}
493 		}
494 
495 		if (word_en != 0x0F) {
496 			u8 tmpdata[8];
497 			memcpy(tmpdata,
498 			       &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base],
499 			       8);
500 			RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
501 				      "U-efuse", tmpdata, 8);
502 
503 			if (!efuse_pg_packet_write(hw, (u8) offset, word_en,
504 						   tmpdata)) {
505 				RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
506 					 "PG section(%#x) fail!!\n", offset);
507 				break;
508 			}
509 		}
510 
511 	}
512 
513 	efuse_power_switch(hw, true, false);
514 	efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
515 
516 	memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
517 	       &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
518 	       rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
519 
520 	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "<---\n");
521 	return true;
522 }
523 
rtl_efuse_shadow_map_update(struct ieee80211_hw * hw)524 void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw)
525 {
526 	struct rtl_priv *rtlpriv = rtl_priv(hw);
527 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
528 
529 	if (rtlefuse->autoload_failflag)
530 		memset(&rtlefuse->efuse_map[EFUSE_INIT_MAP][0], 0xFF,
531 			rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
532 	else
533 		efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
534 
535 	memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
536 	       &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
537 	       rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
538 
539 }
540 EXPORT_SYMBOL(rtl_efuse_shadow_map_update);
541 
efuse_force_write_vendor_Id(struct ieee80211_hw * hw)542 void efuse_force_write_vendor_Id(struct ieee80211_hw *hw)
543 {
544 	u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
545 
546 	efuse_power_switch(hw, true, true);
547 
548 	efuse_pg_packet_write(hw, 1, 0xD, tmpdata);
549 
550 	efuse_power_switch(hw, true, false);
551 
552 }
553 
efuse_re_pg_section(struct ieee80211_hw * hw,u8 section_idx)554 void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
555 {
556 }
557 
efuse_shadow_read_1byte(struct ieee80211_hw * hw,u16 offset,u8 * value)558 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw,
559 				    u16 offset, u8 *value)
560 {
561 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
562 	*value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
563 }
564 
efuse_shadow_read_2byte(struct ieee80211_hw * hw,u16 offset,u16 * value)565 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw,
566 				    u16 offset, u16 *value)
567 {
568 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
569 
570 	*value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
571 	*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
572 
573 }
574 
efuse_shadow_read_4byte(struct ieee80211_hw * hw,u16 offset,u32 * value)575 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw,
576 				    u16 offset, u32 *value)
577 {
578 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
579 
580 	*value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
581 	*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
582 	*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
583 	*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
584 }
585 
efuse_shadow_write_1byte(struct ieee80211_hw * hw,u16 offset,u8 value)586 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw,
587 				     u16 offset, u8 value)
588 {
589 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
590 
591 	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
592 }
593 
efuse_shadow_write_2byte(struct ieee80211_hw * hw,u16 offset,u16 value)594 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw,
595 				     u16 offset, u16 value)
596 {
597 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
598 
599 	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
600 	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
601 
602 }
603 
efuse_shadow_write_4byte(struct ieee80211_hw * hw,u16 offset,u32 value)604 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw,
605 				     u16 offset, u32 value)
606 {
607 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
608 
609 	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
610 	    (u8) (value & 0x000000FF);
611 	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
612 	    (u8) ((value >> 8) & 0x0000FF);
613 	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
614 	    (u8) ((value >> 16) & 0x00FF);
615 	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
616 	    (u8) ((value >> 24) & 0xFF);
617 
618 }
619 
efuse_one_byte_read(struct ieee80211_hw * hw,u16 addr,u8 * data)620 static int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
621 {
622 	struct rtl_priv *rtlpriv = rtl_priv(hw);
623 	u8 tmpidx = 0;
624 	int result;
625 
626 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
627 		       (u8) (addr & 0xff));
628 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
629 		       ((u8) ((addr >> 8) & 0x03)) |
630 		       (rtl_read_byte(rtlpriv,
631 				      rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
632 			0xFC));
633 
634 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
635 
636 	while (!(0x80 & rtl_read_byte(rtlpriv,
637 				      rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
638 	       && (tmpidx < 100)) {
639 		tmpidx++;
640 	}
641 
642 	if (tmpidx < 100) {
643 		*data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
644 		result = true;
645 	} else {
646 		*data = 0xff;
647 		result = false;
648 	}
649 	return result;
650 }
651 
efuse_one_byte_write(struct ieee80211_hw * hw,u16 addr,u8 data)652 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
653 {
654 	struct rtl_priv *rtlpriv = rtl_priv(hw);
655 	u8 tmpidx = 0;
656 
657 	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr = %x Data=%x\n",
658 		 addr, data);
659 
660 	rtl_write_byte(rtlpriv,
661 		       rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8) (addr & 0xff));
662 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
663 		       (rtl_read_byte(rtlpriv,
664 			 rtlpriv->cfg->maps[EFUSE_CTRL] +
665 			 2) & 0xFC) | (u8) ((addr >> 8) & 0x03));
666 
667 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
668 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);
669 
670 	while ((0x80 & rtl_read_byte(rtlpriv,
671 				     rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
672 	       && (tmpidx < 100)) {
673 		tmpidx++;
674 	}
675 
676 	if (tmpidx < 100)
677 		return true;
678 
679 	return false;
680 }
681 
efuse_read_all_map(struct ieee80211_hw * hw,u8 * efuse)682 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 * efuse)
683 {
684 	struct rtl_priv *rtlpriv = rtl_priv(hw);
685 	efuse_power_switch(hw, false, true);
686 	read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse);
687 	efuse_power_switch(hw, false, false);
688 }
689 
efuse_read_data_case1(struct ieee80211_hw * hw,u16 * efuse_addr,u8 efuse_data,u8 offset,u8 * tmpdata,u8 * readstate)690 static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
691 				u8 efuse_data, u8 offset, u8 *tmpdata,
692 				u8 *readstate)
693 {
694 	bool dataempty = true;
695 	u8 hoffset;
696 	u8 tmpidx;
697 	u8 hworden;
698 	u8 word_cnts;
699 
700 	hoffset = (efuse_data >> 4) & 0x0F;
701 	hworden = efuse_data & 0x0F;
702 	word_cnts = efuse_calculate_word_cnts(hworden);
703 
704 	if (hoffset == offset) {
705 		for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
706 			if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
707 			    &efuse_data)) {
708 				tmpdata[tmpidx] = efuse_data;
709 				if (efuse_data != 0xff)
710 					dataempty = true;
711 			}
712 		}
713 
714 		if (dataempty) {
715 			*readstate = PG_STATE_DATA;
716 		} else {
717 			*efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
718 			*readstate = PG_STATE_HEADER;
719 		}
720 
721 	} else {
722 		*efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
723 		*readstate = PG_STATE_HEADER;
724 	}
725 }
726 
efuse_pg_packet_read(struct ieee80211_hw * hw,u8 offset,u8 * data)727 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
728 {
729 	u8 readstate = PG_STATE_HEADER;
730 	bool continual = true;
731 	u8 efuse_data, word_cnts = 0;
732 	u16 efuse_addr = 0;
733 	u8 tmpdata[8];
734 
735 	if (data == NULL)
736 		return false;
737 	if (offset > 15)
738 		return false;
739 
740 	memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
741 	memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
742 
743 	while (continual && (efuse_addr < EFUSE_MAX_SIZE)) {
744 		if (readstate & PG_STATE_HEADER) {
745 			if (efuse_one_byte_read(hw, efuse_addr, &efuse_data)
746 			    && (efuse_data != 0xFF))
747 				efuse_read_data_case1(hw, &efuse_addr,
748 						      efuse_data,
749 						      offset, tmpdata,
750 						      &readstate);
751 			else
752 				continual = false;
753 		} else if (readstate & PG_STATE_DATA) {
754 			efuse_word_enable_data_read(0, tmpdata, data);
755 			efuse_addr = efuse_addr + (word_cnts * 2) + 1;
756 			readstate = PG_STATE_HEADER;
757 		}
758 
759 	}
760 
761 	if ((data[0] == 0xff) && (data[1] == 0xff) &&
762 	    (data[2] == 0xff) && (data[3] == 0xff) &&
763 	    (data[4] == 0xff) && (data[5] == 0xff) &&
764 	    (data[6] == 0xff) && (data[7] == 0xff))
765 		return false;
766 	else
767 		return true;
768 
769 }
770 
efuse_write_data_case1(struct ieee80211_hw * hw,u16 * efuse_addr,u8 efuse_data,u8 offset,int * continual,u8 * write_state,struct pgpkt_struct * target_pkt,int * repeat_times,int * result,u8 word_en)771 static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
772 			u8 efuse_data, u8 offset, int *continual,
773 			u8 *write_state, struct pgpkt_struct *target_pkt,
774 			int *repeat_times, int *result, u8 word_en)
775 {
776 	struct rtl_priv *rtlpriv = rtl_priv(hw);
777 	struct pgpkt_struct tmp_pkt;
778 	bool dataempty = true;
779 	u8 originaldata[8 * sizeof(u8)];
780 	u8 badworden = 0x0F;
781 	u8 match_word_en, tmp_word_en;
782 	u8 tmpindex;
783 	u8 tmp_header = efuse_data;
784 	u8 tmp_word_cnts;
785 
786 	tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
787 	tmp_pkt.word_en = tmp_header & 0x0F;
788 	tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
789 
790 	if (tmp_pkt.offset != target_pkt->offset) {
791 		*efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
792 		*write_state = PG_STATE_HEADER;
793 	} else {
794 		for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
795 			u16 address = *efuse_addr + 1 + tmpindex;
796 			if (efuse_one_byte_read(hw, address,
797 			     &efuse_data) && (efuse_data != 0xFF))
798 				dataempty = false;
799 		}
800 
801 		if (!dataempty) {
802 			*efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
803 			*write_state = PG_STATE_HEADER;
804 		} else {
805 			match_word_en = 0x0F;
806 			if (!((target_pkt->word_en & BIT(0)) |
807 			     (tmp_pkt.word_en & BIT(0))))
808 				match_word_en &= (~BIT(0));
809 
810 			if (!((target_pkt->word_en & BIT(1)) |
811 			     (tmp_pkt.word_en & BIT(1))))
812 				match_word_en &= (~BIT(1));
813 
814 			if (!((target_pkt->word_en & BIT(2)) |
815 			     (tmp_pkt.word_en & BIT(2))))
816 				match_word_en &= (~BIT(2));
817 
818 			if (!((target_pkt->word_en & BIT(3)) |
819 			     (tmp_pkt.word_en & BIT(3))))
820 				match_word_en &= (~BIT(3));
821 
822 			if ((match_word_en & 0x0F) != 0x0F) {
823 				badworden = efuse_word_enable_data_write(
824 							    hw, *efuse_addr + 1,
825 							    tmp_pkt.word_en,
826 							    target_pkt->data);
827 
828 				if (0x0F != (badworden & 0x0F)) {
829 					u8 reorg_offset = offset;
830 					u8 reorg_worden = badworden;
831 					efuse_pg_packet_write(hw, reorg_offset,
832 							       reorg_worden,
833 							       originaldata);
834 				}
835 
836 				tmp_word_en = 0x0F;
837 				if ((target_pkt->word_en & BIT(0)) ^
838 				    (match_word_en & BIT(0)))
839 					tmp_word_en &= (~BIT(0));
840 
841 				if ((target_pkt->word_en & BIT(1)) ^
842 				    (match_word_en & BIT(1)))
843 					tmp_word_en &= (~BIT(1));
844 
845 				if ((target_pkt->word_en & BIT(2)) ^
846 				     (match_word_en & BIT(2)))
847 					tmp_word_en &= (~BIT(2));
848 
849 				if ((target_pkt->word_en & BIT(3)) ^
850 				     (match_word_en & BIT(3)))
851 					tmp_word_en &= (~BIT(3));
852 
853 				if ((tmp_word_en & 0x0F) != 0x0F) {
854 					*efuse_addr = efuse_get_current_size(hw);
855 					target_pkt->offset = offset;
856 					target_pkt->word_en = tmp_word_en;
857 				} else {
858 					*continual = false;
859 				}
860 				*write_state = PG_STATE_HEADER;
861 				*repeat_times += 1;
862 				if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
863 					*continual = false;
864 					*result = false;
865 				}
866 			} else {
867 				*efuse_addr += (2 * tmp_word_cnts) + 1;
868 				target_pkt->offset = offset;
869 				target_pkt->word_en = word_en;
870 				*write_state = PG_STATE_HEADER;
871 			}
872 		}
873 	}
874 	RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,  "efuse PG_STATE_HEADER-1\n");
875 }
876 
efuse_write_data_case2(struct ieee80211_hw * hw,u16 * efuse_addr,int * continual,u8 * write_state,struct pgpkt_struct target_pkt,int * repeat_times,int * result)877 static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
878 				   int *continual, u8 *write_state,
879 				   struct pgpkt_struct target_pkt,
880 				   int *repeat_times, int *result)
881 {
882 	struct rtl_priv *rtlpriv = rtl_priv(hw);
883 	struct pgpkt_struct tmp_pkt;
884 	u8 pg_header;
885 	u8 tmp_header;
886 	u8 originaldata[8 * sizeof(u8)];
887 	u8 tmp_word_cnts;
888 	u8 badworden = 0x0F;
889 
890 	pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
891 	efuse_one_byte_write(hw, *efuse_addr, pg_header);
892 	efuse_one_byte_read(hw, *efuse_addr, &tmp_header);
893 
894 	if (tmp_header == pg_header) {
895 		*write_state = PG_STATE_DATA;
896 	} else if (tmp_header == 0xFF) {
897 		*write_state = PG_STATE_HEADER;
898 		*repeat_times += 1;
899 		if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
900 			*continual = false;
901 			*result = false;
902 		}
903 	} else {
904 		tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
905 		tmp_pkt.word_en = tmp_header & 0x0F;
906 
907 		tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
908 
909 		memset(originaldata, 0xff, 8 * sizeof(u8));
910 
911 		if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
912 			badworden = efuse_word_enable_data_write(hw,
913 				    *efuse_addr + 1, tmp_pkt.word_en,
914 				    originaldata);
915 
916 			if (0x0F != (badworden & 0x0F)) {
917 				u8 reorg_offset = tmp_pkt.offset;
918 				u8 reorg_worden = badworden;
919 				efuse_pg_packet_write(hw, reorg_offset,
920 						      reorg_worden,
921 						      originaldata);
922 				*efuse_addr = efuse_get_current_size(hw);
923 			} else {
924 				*efuse_addr = *efuse_addr + (tmp_word_cnts * 2)
925 					      + 1;
926 			}
927 		} else {
928 			*efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
929 		}
930 
931 		*write_state = PG_STATE_HEADER;
932 		*repeat_times += 1;
933 		if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
934 			*continual = false;
935 			*result = false;
936 		}
937 
938 		RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
939 			"efuse PG_STATE_HEADER-2\n");
940 	}
941 }
942 
efuse_pg_packet_write(struct ieee80211_hw * hw,u8 offset,u8 word_en,u8 * data)943 static int efuse_pg_packet_write(struct ieee80211_hw *hw,
944 				 u8 offset, u8 word_en, u8 *data)
945 {
946 	struct rtl_priv *rtlpriv = rtl_priv(hw);
947 	struct pgpkt_struct target_pkt;
948 	u8 write_state = PG_STATE_HEADER;
949 	int continual = true, result = true;
950 	u16 efuse_addr = 0;
951 	u8 efuse_data;
952 	u8 target_word_cnts = 0;
953 	u8 badworden = 0x0F;
954 	static int repeat_times;
955 
956 	if (efuse_get_current_size(hw) >= (EFUSE_MAX_SIZE -
957 	    rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
958 		RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
959 			"efuse_pg_packet_write error\n");
960 		return false;
961 	}
962 
963 	target_pkt.offset = offset;
964 	target_pkt.word_en = word_en;
965 
966 	memset(target_pkt.data, 0xFF, 8 * sizeof(u8));
967 
968 	efuse_word_enable_data_read(word_en, data, target_pkt.data);
969 	target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);
970 
971 	RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,  "efuse Power ON\n");
972 
973 	while (continual && (efuse_addr < (EFUSE_MAX_SIZE -
974 	       rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))) {
975 
976 		if (write_state == PG_STATE_HEADER) {
977 			badworden = 0x0F;
978 			RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
979 				"efuse PG_STATE_HEADER\n");
980 
981 			if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
982 			    (efuse_data != 0xFF))
983 				efuse_write_data_case1(hw, &efuse_addr,
984 						       efuse_data, offset,
985 						       &continual,
986 						       &write_state, &target_pkt,
987 						       &repeat_times, &result,
988 						       word_en);
989 			else
990 				efuse_write_data_case2(hw, &efuse_addr,
991 						       &continual,
992 						       &write_state,
993 						       target_pkt,
994 						       &repeat_times,
995 						       &result);
996 
997 		} else if (write_state == PG_STATE_DATA) {
998 			RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
999 				"efuse PG_STATE_DATA\n");
1000 			badworden =
1001 			    efuse_word_enable_data_write(hw, efuse_addr + 1,
1002 							 target_pkt.word_en,
1003 							 target_pkt.data);
1004 
1005 			if ((badworden & 0x0F) == 0x0F) {
1006 				continual = false;
1007 			} else {
1008 				efuse_addr += (2 * target_word_cnts) + 1;
1009 
1010 				target_pkt.offset = offset;
1011 				target_pkt.word_en = badworden;
1012 				target_word_cnts =
1013 				    efuse_calculate_word_cnts(target_pkt.
1014 							      word_en);
1015 				write_state = PG_STATE_HEADER;
1016 				repeat_times++;
1017 				if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
1018 					continual = false;
1019 					result = false;
1020 				}
1021 				RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
1022 					"efuse PG_STATE_HEADER-3\n");
1023 			}
1024 		}
1025 	}
1026 
1027 	if (efuse_addr >= (EFUSE_MAX_SIZE -
1028 	    rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
1029 		RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1030 			 "efuse_addr(%#x) Out of size!!\n", efuse_addr);
1031 	}
1032 
1033 	return true;
1034 }
1035 
efuse_word_enable_data_read(u8 word_en,u8 * sourdata,u8 * targetdata)1036 static void efuse_word_enable_data_read(u8 word_en,
1037 					u8 *sourdata, u8 *targetdata)
1038 {
1039 	if (!(word_en & BIT(0))) {
1040 		targetdata[0] = sourdata[0];
1041 		targetdata[1] = sourdata[1];
1042 	}
1043 
1044 	if (!(word_en & BIT(1))) {
1045 		targetdata[2] = sourdata[2];
1046 		targetdata[3] = sourdata[3];
1047 	}
1048 
1049 	if (!(word_en & BIT(2))) {
1050 		targetdata[4] = sourdata[4];
1051 		targetdata[5] = sourdata[5];
1052 	}
1053 
1054 	if (!(word_en & BIT(3))) {
1055 		targetdata[6] = sourdata[6];
1056 		targetdata[7] = sourdata[7];
1057 	}
1058 }
1059 
efuse_word_enable_data_write(struct ieee80211_hw * hw,u16 efuse_addr,u8 word_en,u8 * data)1060 static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
1061 				       u16 efuse_addr, u8 word_en, u8 *data)
1062 {
1063 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1064 	u16 tmpaddr;
1065 	u16 start_addr = efuse_addr;
1066 	u8 badworden = 0x0F;
1067 	u8 tmpdata[8];
1068 
1069 	memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
1070 	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "word_en = %x efuse_addr=%x\n",
1071 		 word_en, efuse_addr);
1072 
1073 	if (!(word_en & BIT(0))) {
1074 		tmpaddr = start_addr;
1075 		efuse_one_byte_write(hw, start_addr++, data[0]);
1076 		efuse_one_byte_write(hw, start_addr++, data[1]);
1077 
1078 		efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
1079 		efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
1080 		if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
1081 			badworden &= (~BIT(0));
1082 	}
1083 
1084 	if (!(word_en & BIT(1))) {
1085 		tmpaddr = start_addr;
1086 		efuse_one_byte_write(hw, start_addr++, data[2]);
1087 		efuse_one_byte_write(hw, start_addr++, data[3]);
1088 
1089 		efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
1090 		efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
1091 		if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
1092 			badworden &= (~BIT(1));
1093 	}
1094 
1095 	if (!(word_en & BIT(2))) {
1096 		tmpaddr = start_addr;
1097 		efuse_one_byte_write(hw, start_addr++, data[4]);
1098 		efuse_one_byte_write(hw, start_addr++, data[5]);
1099 
1100 		efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
1101 		efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
1102 		if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
1103 			badworden &= (~BIT(2));
1104 	}
1105 
1106 	if (!(word_en & BIT(3))) {
1107 		tmpaddr = start_addr;
1108 		efuse_one_byte_write(hw, start_addr++, data[6]);
1109 		efuse_one_byte_write(hw, start_addr++, data[7]);
1110 
1111 		efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
1112 		efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
1113 		if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
1114 			badworden &= (~BIT(3));
1115 	}
1116 
1117 	return badworden;
1118 }
1119 
efuse_power_switch(struct ieee80211_hw * hw,u8 write,u8 pwrstate)1120 static void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate)
1121 {
1122 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1123 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1124 	u8 tempval;
1125 	u16 tmpV16;
1126 
1127 	if (pwrstate && (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE)) {
1128 		if (rtlhal->hw_type == HARDWARE_TYPE_RTL8188EE)
1129 			rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_ACCESS],
1130 				       0x69);
1131 
1132 		tmpV16 = rtl_read_word(rtlpriv,
1133 				       rtlpriv->cfg->maps[SYS_ISO_CTRL]);
1134 		if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
1135 			tmpV16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
1136 			rtl_write_word(rtlpriv,
1137 				       rtlpriv->cfg->maps[SYS_ISO_CTRL],
1138 				       tmpV16);
1139 		}
1140 
1141 		tmpV16 = rtl_read_word(rtlpriv,
1142 				       rtlpriv->cfg->maps[SYS_FUNC_EN]);
1143 		if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
1144 			tmpV16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
1145 			rtl_write_word(rtlpriv,
1146 				       rtlpriv->cfg->maps[SYS_FUNC_EN], tmpV16);
1147 		}
1148 
1149 		tmpV16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
1150 		if ((!(tmpV16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
1151 		    (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
1152 			tmpV16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
1153 				   rtlpriv->cfg->maps[EFUSE_ANA8M]);
1154 			rtl_write_word(rtlpriv,
1155 				       rtlpriv->cfg->maps[SYS_CLK], tmpV16);
1156 		}
1157 	}
1158 
1159 	if (pwrstate) {
1160 		if (write) {
1161 			tempval = rtl_read_byte(rtlpriv,
1162 						rtlpriv->cfg->maps[EFUSE_TEST] +
1163 						3);
1164 
1165 			if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) {
1166 				tempval &= 0x0F;
1167 				tempval |= (VOLTAGE_V25 << 4);
1168 			}
1169 
1170 			rtl_write_byte(rtlpriv,
1171 				       rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1172 				       (tempval | 0x80));
1173 		}
1174 
1175 		if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1176 			rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1177 						0x03);
1178 		}
1179 
1180 	} else {
1181 		if (rtlhal->hw_type == HARDWARE_TYPE_RTL8188EE)
1182 			rtl_write_byte(rtlpriv,
1183 				       rtlpriv->cfg->maps[EFUSE_ACCESS], 0);
1184 
1185 		if (write) {
1186 			tempval = rtl_read_byte(rtlpriv,
1187 						rtlpriv->cfg->maps[EFUSE_TEST] +
1188 						3);
1189 			rtl_write_byte(rtlpriv,
1190 				       rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1191 				       (tempval & 0x7F));
1192 		}
1193 
1194 		if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1195 			rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1196 						0x02);
1197 		}
1198 
1199 	}
1200 
1201 }
1202 
efuse_get_current_size(struct ieee80211_hw * hw)1203 static u16 efuse_get_current_size(struct ieee80211_hw *hw)
1204 {
1205 	int continual = true;
1206 	u16 efuse_addr = 0;
1207 	u8 hworden;
1208 	u8 efuse_data, word_cnts;
1209 
1210 	while (continual && efuse_one_byte_read(hw, efuse_addr, &efuse_data)
1211 	       && (efuse_addr < EFUSE_MAX_SIZE)) {
1212 		if (efuse_data != 0xFF) {
1213 			hworden = efuse_data & 0x0F;
1214 			word_cnts = efuse_calculate_word_cnts(hworden);
1215 			efuse_addr = efuse_addr + (word_cnts * 2) + 1;
1216 		} else {
1217 			continual = false;
1218 		}
1219 	}
1220 
1221 	return efuse_addr;
1222 }
1223 
efuse_calculate_word_cnts(u8 word_en)1224 static u8 efuse_calculate_word_cnts(u8 word_en)
1225 {
1226 	u8 word_cnts = 0;
1227 	if (!(word_en & BIT(0)))
1228 		word_cnts++;
1229 	if (!(word_en & BIT(1)))
1230 		word_cnts++;
1231 	if (!(word_en & BIT(2)))
1232 		word_cnts++;
1233 	if (!(word_en & BIT(3)))
1234 		word_cnts++;
1235 	return word_cnts;
1236 }
1237 
1238