• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/fs/ext3/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *	(sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/highuid.h>
26 #include <linux/quotaops.h>
27 #include <linux/writeback.h>
28 #include <linux/mpage.h>
29 #include <linux/namei.h>
30 #include <linux/aio.h>
31 #include "ext3.h"
32 #include "xattr.h"
33 #include "acl.h"
34 
35 static int ext3_writepage_trans_blocks(struct inode *inode);
36 static int ext3_block_truncate_page(struct inode *inode, loff_t from);
37 
38 /*
39  * Test whether an inode is a fast symlink.
40  */
ext3_inode_is_fast_symlink(struct inode * inode)41 static int ext3_inode_is_fast_symlink(struct inode *inode)
42 {
43 	int ea_blocks = EXT3_I(inode)->i_file_acl ?
44 		(inode->i_sb->s_blocksize >> 9) : 0;
45 
46 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
47 }
48 
49 /*
50  * The ext3 forget function must perform a revoke if we are freeing data
51  * which has been journaled.  Metadata (eg. indirect blocks) must be
52  * revoked in all cases.
53  *
54  * "bh" may be NULL: a metadata block may have been freed from memory
55  * but there may still be a record of it in the journal, and that record
56  * still needs to be revoked.
57  */
ext3_forget(handle_t * handle,int is_metadata,struct inode * inode,struct buffer_head * bh,ext3_fsblk_t blocknr)58 int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
59 			struct buffer_head *bh, ext3_fsblk_t blocknr)
60 {
61 	int err;
62 
63 	might_sleep();
64 
65 	trace_ext3_forget(inode, is_metadata, blocknr);
66 	BUFFER_TRACE(bh, "enter");
67 
68 	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
69 		  "data mode %lx\n",
70 		  bh, is_metadata, inode->i_mode,
71 		  test_opt(inode->i_sb, DATA_FLAGS));
72 
73 	/* Never use the revoke function if we are doing full data
74 	 * journaling: there is no need to, and a V1 superblock won't
75 	 * support it.  Otherwise, only skip the revoke on un-journaled
76 	 * data blocks. */
77 
78 	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
79 	    (!is_metadata && !ext3_should_journal_data(inode))) {
80 		if (bh) {
81 			BUFFER_TRACE(bh, "call journal_forget");
82 			return ext3_journal_forget(handle, bh);
83 		}
84 		return 0;
85 	}
86 
87 	/*
88 	 * data!=journal && (is_metadata || should_journal_data(inode))
89 	 */
90 	BUFFER_TRACE(bh, "call ext3_journal_revoke");
91 	err = ext3_journal_revoke(handle, blocknr, bh);
92 	if (err)
93 		ext3_abort(inode->i_sb, __func__,
94 			   "error %d when attempting revoke", err);
95 	BUFFER_TRACE(bh, "exit");
96 	return err;
97 }
98 
99 /*
100  * Work out how many blocks we need to proceed with the next chunk of a
101  * truncate transaction.
102  */
blocks_for_truncate(struct inode * inode)103 static unsigned long blocks_for_truncate(struct inode *inode)
104 {
105 	unsigned long needed;
106 
107 	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
108 
109 	/* Give ourselves just enough room to cope with inodes in which
110 	 * i_blocks is corrupt: we've seen disk corruptions in the past
111 	 * which resulted in random data in an inode which looked enough
112 	 * like a regular file for ext3 to try to delete it.  Things
113 	 * will go a bit crazy if that happens, but at least we should
114 	 * try not to panic the whole kernel. */
115 	if (needed < 2)
116 		needed = 2;
117 
118 	/* But we need to bound the transaction so we don't overflow the
119 	 * journal. */
120 	if (needed > EXT3_MAX_TRANS_DATA)
121 		needed = EXT3_MAX_TRANS_DATA;
122 
123 	return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
124 }
125 
126 /*
127  * Truncate transactions can be complex and absolutely huge.  So we need to
128  * be able to restart the transaction at a conventient checkpoint to make
129  * sure we don't overflow the journal.
130  *
131  * start_transaction gets us a new handle for a truncate transaction,
132  * and extend_transaction tries to extend the existing one a bit.  If
133  * extend fails, we need to propagate the failure up and restart the
134  * transaction in the top-level truncate loop. --sct
135  */
start_transaction(struct inode * inode)136 static handle_t *start_transaction(struct inode *inode)
137 {
138 	handle_t *result;
139 
140 	result = ext3_journal_start(inode, blocks_for_truncate(inode));
141 	if (!IS_ERR(result))
142 		return result;
143 
144 	ext3_std_error(inode->i_sb, PTR_ERR(result));
145 	return result;
146 }
147 
148 /*
149  * Try to extend this transaction for the purposes of truncation.
150  *
151  * Returns 0 if we managed to create more room.  If we can't create more
152  * room, and the transaction must be restarted we return 1.
153  */
try_to_extend_transaction(handle_t * handle,struct inode * inode)154 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
155 {
156 	if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
157 		return 0;
158 	if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
159 		return 0;
160 	return 1;
161 }
162 
163 /*
164  * Restart the transaction associated with *handle.  This does a commit,
165  * so before we call here everything must be consistently dirtied against
166  * this transaction.
167  */
truncate_restart_transaction(handle_t * handle,struct inode * inode)168 static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
169 {
170 	int ret;
171 
172 	jbd_debug(2, "restarting handle %p\n", handle);
173 	/*
174 	 * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
175 	 * At this moment, get_block can be called only for blocks inside
176 	 * i_size since page cache has been already dropped and writes are
177 	 * blocked by i_mutex. So we can safely drop the truncate_mutex.
178 	 */
179 	mutex_unlock(&EXT3_I(inode)->truncate_mutex);
180 	ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
181 	mutex_lock(&EXT3_I(inode)->truncate_mutex);
182 	return ret;
183 }
184 
185 /*
186  * Called at inode eviction from icache
187  */
ext3_evict_inode(struct inode * inode)188 void ext3_evict_inode (struct inode *inode)
189 {
190 	struct ext3_inode_info *ei = EXT3_I(inode);
191 	struct ext3_block_alloc_info *rsv;
192 	handle_t *handle;
193 	int want_delete = 0;
194 
195 	trace_ext3_evict_inode(inode);
196 	if (!inode->i_nlink && !is_bad_inode(inode)) {
197 		dquot_initialize(inode);
198 		want_delete = 1;
199 	}
200 
201 	/*
202 	 * When journalling data dirty buffers are tracked only in the journal.
203 	 * So although mm thinks everything is clean and ready for reaping the
204 	 * inode might still have some pages to write in the running
205 	 * transaction or waiting to be checkpointed. Thus calling
206 	 * journal_invalidatepage() (via truncate_inode_pages()) to discard
207 	 * these buffers can cause data loss. Also even if we did not discard
208 	 * these buffers, we would have no way to find them after the inode
209 	 * is reaped and thus user could see stale data if he tries to read
210 	 * them before the transaction is checkpointed. So be careful and
211 	 * force everything to disk here... We use ei->i_datasync_tid to
212 	 * store the newest transaction containing inode's data.
213 	 *
214 	 * Note that directories do not have this problem because they don't
215 	 * use page cache.
216 	 *
217 	 * The s_journal check handles the case when ext3_get_journal() fails
218 	 * and puts the journal inode.
219 	 */
220 	if (inode->i_nlink && ext3_should_journal_data(inode) &&
221 	    EXT3_SB(inode->i_sb)->s_journal &&
222 	    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
223 	    inode->i_ino != EXT3_JOURNAL_INO) {
224 		tid_t commit_tid = atomic_read(&ei->i_datasync_tid);
225 		journal_t *journal = EXT3_SB(inode->i_sb)->s_journal;
226 
227 		log_start_commit(journal, commit_tid);
228 		log_wait_commit(journal, commit_tid);
229 		filemap_write_and_wait(&inode->i_data);
230 	}
231 	truncate_inode_pages(&inode->i_data, 0);
232 
233 	ext3_discard_reservation(inode);
234 	rsv = ei->i_block_alloc_info;
235 	ei->i_block_alloc_info = NULL;
236 	if (unlikely(rsv))
237 		kfree(rsv);
238 
239 	if (!want_delete)
240 		goto no_delete;
241 
242 	handle = start_transaction(inode);
243 	if (IS_ERR(handle)) {
244 		/*
245 		 * If we're going to skip the normal cleanup, we still need to
246 		 * make sure that the in-core orphan linked list is properly
247 		 * cleaned up.
248 		 */
249 		ext3_orphan_del(NULL, inode);
250 		goto no_delete;
251 	}
252 
253 	if (IS_SYNC(inode))
254 		handle->h_sync = 1;
255 	inode->i_size = 0;
256 	if (inode->i_blocks)
257 		ext3_truncate(inode);
258 	/*
259 	 * Kill off the orphan record created when the inode lost the last
260 	 * link.  Note that ext3_orphan_del() has to be able to cope with the
261 	 * deletion of a non-existent orphan - ext3_truncate() could
262 	 * have removed the record.
263 	 */
264 	ext3_orphan_del(handle, inode);
265 	ei->i_dtime = get_seconds();
266 
267 	/*
268 	 * One subtle ordering requirement: if anything has gone wrong
269 	 * (transaction abort, IO errors, whatever), then we can still
270 	 * do these next steps (the fs will already have been marked as
271 	 * having errors), but we can't free the inode if the mark_dirty
272 	 * fails.
273 	 */
274 	if (ext3_mark_inode_dirty(handle, inode)) {
275 		/* If that failed, just dquot_drop() and be done with that */
276 		dquot_drop(inode);
277 		clear_inode(inode);
278 	} else {
279 		ext3_xattr_delete_inode(handle, inode);
280 		dquot_free_inode(inode);
281 		dquot_drop(inode);
282 		clear_inode(inode);
283 		ext3_free_inode(handle, inode);
284 	}
285 	ext3_journal_stop(handle);
286 	return;
287 no_delete:
288 	clear_inode(inode);
289 	dquot_drop(inode);
290 }
291 
292 typedef struct {
293 	__le32	*p;
294 	__le32	key;
295 	struct buffer_head *bh;
296 } Indirect;
297 
add_chain(Indirect * p,struct buffer_head * bh,__le32 * v)298 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
299 {
300 	p->key = *(p->p = v);
301 	p->bh = bh;
302 }
303 
verify_chain(Indirect * from,Indirect * to)304 static int verify_chain(Indirect *from, Indirect *to)
305 {
306 	while (from <= to && from->key == *from->p)
307 		from++;
308 	return (from > to);
309 }
310 
311 /**
312  *	ext3_block_to_path - parse the block number into array of offsets
313  *	@inode: inode in question (we are only interested in its superblock)
314  *	@i_block: block number to be parsed
315  *	@offsets: array to store the offsets in
316  *      @boundary: set this non-zero if the referred-to block is likely to be
317  *             followed (on disk) by an indirect block.
318  *
319  *	To store the locations of file's data ext3 uses a data structure common
320  *	for UNIX filesystems - tree of pointers anchored in the inode, with
321  *	data blocks at leaves and indirect blocks in intermediate nodes.
322  *	This function translates the block number into path in that tree -
323  *	return value is the path length and @offsets[n] is the offset of
324  *	pointer to (n+1)th node in the nth one. If @block is out of range
325  *	(negative or too large) warning is printed and zero returned.
326  *
327  *	Note: function doesn't find node addresses, so no IO is needed. All
328  *	we need to know is the capacity of indirect blocks (taken from the
329  *	inode->i_sb).
330  */
331 
332 /*
333  * Portability note: the last comparison (check that we fit into triple
334  * indirect block) is spelled differently, because otherwise on an
335  * architecture with 32-bit longs and 8Kb pages we might get into trouble
336  * if our filesystem had 8Kb blocks. We might use long long, but that would
337  * kill us on x86. Oh, well, at least the sign propagation does not matter -
338  * i_block would have to be negative in the very beginning, so we would not
339  * get there at all.
340  */
341 
ext3_block_to_path(struct inode * inode,long i_block,int offsets[4],int * boundary)342 static int ext3_block_to_path(struct inode *inode,
343 			long i_block, int offsets[4], int *boundary)
344 {
345 	int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
346 	int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
347 	const long direct_blocks = EXT3_NDIR_BLOCKS,
348 		indirect_blocks = ptrs,
349 		double_blocks = (1 << (ptrs_bits * 2));
350 	int n = 0;
351 	int final = 0;
352 
353 	if (i_block < 0) {
354 		ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
355 	} else if (i_block < direct_blocks) {
356 		offsets[n++] = i_block;
357 		final = direct_blocks;
358 	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
359 		offsets[n++] = EXT3_IND_BLOCK;
360 		offsets[n++] = i_block;
361 		final = ptrs;
362 	} else if ((i_block -= indirect_blocks) < double_blocks) {
363 		offsets[n++] = EXT3_DIND_BLOCK;
364 		offsets[n++] = i_block >> ptrs_bits;
365 		offsets[n++] = i_block & (ptrs - 1);
366 		final = ptrs;
367 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
368 		offsets[n++] = EXT3_TIND_BLOCK;
369 		offsets[n++] = i_block >> (ptrs_bits * 2);
370 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
371 		offsets[n++] = i_block & (ptrs - 1);
372 		final = ptrs;
373 	} else {
374 		ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
375 	}
376 	if (boundary)
377 		*boundary = final - 1 - (i_block & (ptrs - 1));
378 	return n;
379 }
380 
381 /**
382  *	ext3_get_branch - read the chain of indirect blocks leading to data
383  *	@inode: inode in question
384  *	@depth: depth of the chain (1 - direct pointer, etc.)
385  *	@offsets: offsets of pointers in inode/indirect blocks
386  *	@chain: place to store the result
387  *	@err: here we store the error value
388  *
389  *	Function fills the array of triples <key, p, bh> and returns %NULL
390  *	if everything went OK or the pointer to the last filled triple
391  *	(incomplete one) otherwise. Upon the return chain[i].key contains
392  *	the number of (i+1)-th block in the chain (as it is stored in memory,
393  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
394  *	number (it points into struct inode for i==0 and into the bh->b_data
395  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
396  *	block for i>0 and NULL for i==0. In other words, it holds the block
397  *	numbers of the chain, addresses they were taken from (and where we can
398  *	verify that chain did not change) and buffer_heads hosting these
399  *	numbers.
400  *
401  *	Function stops when it stumbles upon zero pointer (absent block)
402  *		(pointer to last triple returned, *@err == 0)
403  *	or when it gets an IO error reading an indirect block
404  *		(ditto, *@err == -EIO)
405  *	or when it notices that chain had been changed while it was reading
406  *		(ditto, *@err == -EAGAIN)
407  *	or when it reads all @depth-1 indirect blocks successfully and finds
408  *	the whole chain, all way to the data (returns %NULL, *err == 0).
409  */
ext3_get_branch(struct inode * inode,int depth,int * offsets,Indirect chain[4],int * err)410 static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
411 				 Indirect chain[4], int *err)
412 {
413 	struct super_block *sb = inode->i_sb;
414 	Indirect *p = chain;
415 	struct buffer_head *bh;
416 
417 	*err = 0;
418 	/* i_data is not going away, no lock needed */
419 	add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
420 	if (!p->key)
421 		goto no_block;
422 	while (--depth) {
423 		bh = sb_bread(sb, le32_to_cpu(p->key));
424 		if (!bh)
425 			goto failure;
426 		/* Reader: pointers */
427 		if (!verify_chain(chain, p))
428 			goto changed;
429 		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
430 		/* Reader: end */
431 		if (!p->key)
432 			goto no_block;
433 	}
434 	return NULL;
435 
436 changed:
437 	brelse(bh);
438 	*err = -EAGAIN;
439 	goto no_block;
440 failure:
441 	*err = -EIO;
442 no_block:
443 	return p;
444 }
445 
446 /**
447  *	ext3_find_near - find a place for allocation with sufficient locality
448  *	@inode: owner
449  *	@ind: descriptor of indirect block.
450  *
451  *	This function returns the preferred place for block allocation.
452  *	It is used when heuristic for sequential allocation fails.
453  *	Rules are:
454  *	  + if there is a block to the left of our position - allocate near it.
455  *	  + if pointer will live in indirect block - allocate near that block.
456  *	  + if pointer will live in inode - allocate in the same
457  *	    cylinder group.
458  *
459  * In the latter case we colour the starting block by the callers PID to
460  * prevent it from clashing with concurrent allocations for a different inode
461  * in the same block group.   The PID is used here so that functionally related
462  * files will be close-by on-disk.
463  *
464  *	Caller must make sure that @ind is valid and will stay that way.
465  */
ext3_find_near(struct inode * inode,Indirect * ind)466 static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
467 {
468 	struct ext3_inode_info *ei = EXT3_I(inode);
469 	__le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
470 	__le32 *p;
471 	ext3_fsblk_t bg_start;
472 	ext3_grpblk_t colour;
473 
474 	/* Try to find previous block */
475 	for (p = ind->p - 1; p >= start; p--) {
476 		if (*p)
477 			return le32_to_cpu(*p);
478 	}
479 
480 	/* No such thing, so let's try location of indirect block */
481 	if (ind->bh)
482 		return ind->bh->b_blocknr;
483 
484 	/*
485 	 * It is going to be referred to from the inode itself? OK, just put it
486 	 * into the same cylinder group then.
487 	 */
488 	bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
489 	colour = (current->pid % 16) *
490 			(EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
491 	return bg_start + colour;
492 }
493 
494 /**
495  *	ext3_find_goal - find a preferred place for allocation.
496  *	@inode: owner
497  *	@block:  block we want
498  *	@partial: pointer to the last triple within a chain
499  *
500  *	Normally this function find the preferred place for block allocation,
501  *	returns it.
502  */
503 
ext3_find_goal(struct inode * inode,long block,Indirect * partial)504 static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
505 				   Indirect *partial)
506 {
507 	struct ext3_block_alloc_info *block_i;
508 
509 	block_i =  EXT3_I(inode)->i_block_alloc_info;
510 
511 	/*
512 	 * try the heuristic for sequential allocation,
513 	 * failing that at least try to get decent locality.
514 	 */
515 	if (block_i && (block == block_i->last_alloc_logical_block + 1)
516 		&& (block_i->last_alloc_physical_block != 0)) {
517 		return block_i->last_alloc_physical_block + 1;
518 	}
519 
520 	return ext3_find_near(inode, partial);
521 }
522 
523 /**
524  *	ext3_blks_to_allocate - Look up the block map and count the number
525  *	of direct blocks need to be allocated for the given branch.
526  *
527  *	@branch: chain of indirect blocks
528  *	@k: number of blocks need for indirect blocks
529  *	@blks: number of data blocks to be mapped.
530  *	@blocks_to_boundary:  the offset in the indirect block
531  *
532  *	return the total number of blocks to be allocate, including the
533  *	direct and indirect blocks.
534  */
ext3_blks_to_allocate(Indirect * branch,int k,unsigned long blks,int blocks_to_boundary)535 static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
536 		int blocks_to_boundary)
537 {
538 	unsigned long count = 0;
539 
540 	/*
541 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
542 	 * then it's clear blocks on that path have not allocated
543 	 */
544 	if (k > 0) {
545 		/* right now we don't handle cross boundary allocation */
546 		if (blks < blocks_to_boundary + 1)
547 			count += blks;
548 		else
549 			count += blocks_to_boundary + 1;
550 		return count;
551 	}
552 
553 	count++;
554 	while (count < blks && count <= blocks_to_boundary &&
555 		le32_to_cpu(*(branch[0].p + count)) == 0) {
556 		count++;
557 	}
558 	return count;
559 }
560 
561 /**
562  *	ext3_alloc_blocks - multiple allocate blocks needed for a branch
563  *	@handle: handle for this transaction
564  *	@inode: owner
565  *	@goal: preferred place for allocation
566  *	@indirect_blks: the number of blocks need to allocate for indirect
567  *			blocks
568  *	@blks:	number of blocks need to allocated for direct blocks
569  *	@new_blocks: on return it will store the new block numbers for
570  *	the indirect blocks(if needed) and the first direct block,
571  *	@err: here we store the error value
572  *
573  *	return the number of direct blocks allocated
574  */
ext3_alloc_blocks(handle_t * handle,struct inode * inode,ext3_fsblk_t goal,int indirect_blks,int blks,ext3_fsblk_t new_blocks[4],int * err)575 static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
576 			ext3_fsblk_t goal, int indirect_blks, int blks,
577 			ext3_fsblk_t new_blocks[4], int *err)
578 {
579 	int target, i;
580 	unsigned long count = 0;
581 	int index = 0;
582 	ext3_fsblk_t current_block = 0;
583 	int ret = 0;
584 
585 	/*
586 	 * Here we try to allocate the requested multiple blocks at once,
587 	 * on a best-effort basis.
588 	 * To build a branch, we should allocate blocks for
589 	 * the indirect blocks(if not allocated yet), and at least
590 	 * the first direct block of this branch.  That's the
591 	 * minimum number of blocks need to allocate(required)
592 	 */
593 	target = blks + indirect_blks;
594 
595 	while (1) {
596 		count = target;
597 		/* allocating blocks for indirect blocks and direct blocks */
598 		current_block = ext3_new_blocks(handle,inode,goal,&count,err);
599 		if (*err)
600 			goto failed_out;
601 
602 		target -= count;
603 		/* allocate blocks for indirect blocks */
604 		while (index < indirect_blks && count) {
605 			new_blocks[index++] = current_block++;
606 			count--;
607 		}
608 
609 		if (count > 0)
610 			break;
611 	}
612 
613 	/* save the new block number for the first direct block */
614 	new_blocks[index] = current_block;
615 
616 	/* total number of blocks allocated for direct blocks */
617 	ret = count;
618 	*err = 0;
619 	return ret;
620 failed_out:
621 	for (i = 0; i <index; i++)
622 		ext3_free_blocks(handle, inode, new_blocks[i], 1);
623 	return ret;
624 }
625 
626 /**
627  *	ext3_alloc_branch - allocate and set up a chain of blocks.
628  *	@handle: handle for this transaction
629  *	@inode: owner
630  *	@indirect_blks: number of allocated indirect blocks
631  *	@blks: number of allocated direct blocks
632  *	@goal: preferred place for allocation
633  *	@offsets: offsets (in the blocks) to store the pointers to next.
634  *	@branch: place to store the chain in.
635  *
636  *	This function allocates blocks, zeroes out all but the last one,
637  *	links them into chain and (if we are synchronous) writes them to disk.
638  *	In other words, it prepares a branch that can be spliced onto the
639  *	inode. It stores the information about that chain in the branch[], in
640  *	the same format as ext3_get_branch() would do. We are calling it after
641  *	we had read the existing part of chain and partial points to the last
642  *	triple of that (one with zero ->key). Upon the exit we have the same
643  *	picture as after the successful ext3_get_block(), except that in one
644  *	place chain is disconnected - *branch->p is still zero (we did not
645  *	set the last link), but branch->key contains the number that should
646  *	be placed into *branch->p to fill that gap.
647  *
648  *	If allocation fails we free all blocks we've allocated (and forget
649  *	their buffer_heads) and return the error value the from failed
650  *	ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
651  *	as described above and return 0.
652  */
ext3_alloc_branch(handle_t * handle,struct inode * inode,int indirect_blks,int * blks,ext3_fsblk_t goal,int * offsets,Indirect * branch)653 static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
654 			int indirect_blks, int *blks, ext3_fsblk_t goal,
655 			int *offsets, Indirect *branch)
656 {
657 	int blocksize = inode->i_sb->s_blocksize;
658 	int i, n = 0;
659 	int err = 0;
660 	struct buffer_head *bh;
661 	int num;
662 	ext3_fsblk_t new_blocks[4];
663 	ext3_fsblk_t current_block;
664 
665 	num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
666 				*blks, new_blocks, &err);
667 	if (err)
668 		return err;
669 
670 	branch[0].key = cpu_to_le32(new_blocks[0]);
671 	/*
672 	 * metadata blocks and data blocks are allocated.
673 	 */
674 	for (n = 1; n <= indirect_blks;  n++) {
675 		/*
676 		 * Get buffer_head for parent block, zero it out
677 		 * and set the pointer to new one, then send
678 		 * parent to disk.
679 		 */
680 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
681 		if (unlikely(!bh)) {
682 			err = -ENOMEM;
683 			goto failed;
684 		}
685 		branch[n].bh = bh;
686 		lock_buffer(bh);
687 		BUFFER_TRACE(bh, "call get_create_access");
688 		err = ext3_journal_get_create_access(handle, bh);
689 		if (err) {
690 			unlock_buffer(bh);
691 			brelse(bh);
692 			goto failed;
693 		}
694 
695 		memset(bh->b_data, 0, blocksize);
696 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
697 		branch[n].key = cpu_to_le32(new_blocks[n]);
698 		*branch[n].p = branch[n].key;
699 		if ( n == indirect_blks) {
700 			current_block = new_blocks[n];
701 			/*
702 			 * End of chain, update the last new metablock of
703 			 * the chain to point to the new allocated
704 			 * data blocks numbers
705 			 */
706 			for (i=1; i < num; i++)
707 				*(branch[n].p + i) = cpu_to_le32(++current_block);
708 		}
709 		BUFFER_TRACE(bh, "marking uptodate");
710 		set_buffer_uptodate(bh);
711 		unlock_buffer(bh);
712 
713 		BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
714 		err = ext3_journal_dirty_metadata(handle, bh);
715 		if (err)
716 			goto failed;
717 	}
718 	*blks = num;
719 	return err;
720 failed:
721 	/* Allocation failed, free what we already allocated */
722 	for (i = 1; i <= n ; i++) {
723 		BUFFER_TRACE(branch[i].bh, "call journal_forget");
724 		ext3_journal_forget(handle, branch[i].bh);
725 	}
726 	for (i = 0; i < indirect_blks; i++)
727 		ext3_free_blocks(handle, inode, new_blocks[i], 1);
728 
729 	ext3_free_blocks(handle, inode, new_blocks[i], num);
730 
731 	return err;
732 }
733 
734 /**
735  * ext3_splice_branch - splice the allocated branch onto inode.
736  * @handle: handle for this transaction
737  * @inode: owner
738  * @block: (logical) number of block we are adding
739  * @where: location of missing link
740  * @num:   number of indirect blocks we are adding
741  * @blks:  number of direct blocks we are adding
742  *
743  * This function fills the missing link and does all housekeeping needed in
744  * inode (->i_blocks, etc.). In case of success we end up with the full
745  * chain to new block and return 0.
746  */
ext3_splice_branch(handle_t * handle,struct inode * inode,long block,Indirect * where,int num,int blks)747 static int ext3_splice_branch(handle_t *handle, struct inode *inode,
748 			long block, Indirect *where, int num, int blks)
749 {
750 	int i;
751 	int err = 0;
752 	struct ext3_block_alloc_info *block_i;
753 	ext3_fsblk_t current_block;
754 	struct ext3_inode_info *ei = EXT3_I(inode);
755 	struct timespec now;
756 
757 	block_i = ei->i_block_alloc_info;
758 	/*
759 	 * If we're splicing into a [td]indirect block (as opposed to the
760 	 * inode) then we need to get write access to the [td]indirect block
761 	 * before the splice.
762 	 */
763 	if (where->bh) {
764 		BUFFER_TRACE(where->bh, "get_write_access");
765 		err = ext3_journal_get_write_access(handle, where->bh);
766 		if (err)
767 			goto err_out;
768 	}
769 	/* That's it */
770 
771 	*where->p = where->key;
772 
773 	/*
774 	 * Update the host buffer_head or inode to point to more just allocated
775 	 * direct blocks blocks
776 	 */
777 	if (num == 0 && blks > 1) {
778 		current_block = le32_to_cpu(where->key) + 1;
779 		for (i = 1; i < blks; i++)
780 			*(where->p + i ) = cpu_to_le32(current_block++);
781 	}
782 
783 	/*
784 	 * update the most recently allocated logical & physical block
785 	 * in i_block_alloc_info, to assist find the proper goal block for next
786 	 * allocation
787 	 */
788 	if (block_i) {
789 		block_i->last_alloc_logical_block = block + blks - 1;
790 		block_i->last_alloc_physical_block =
791 				le32_to_cpu(where[num].key) + blks - 1;
792 	}
793 
794 	/* We are done with atomic stuff, now do the rest of housekeeping */
795 	now = CURRENT_TIME_SEC;
796 	if (!timespec_equal(&inode->i_ctime, &now) || !where->bh) {
797 		inode->i_ctime = now;
798 		ext3_mark_inode_dirty(handle, inode);
799 	}
800 	/* ext3_mark_inode_dirty already updated i_sync_tid */
801 	atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
802 
803 	/* had we spliced it onto indirect block? */
804 	if (where->bh) {
805 		/*
806 		 * If we spliced it onto an indirect block, we haven't
807 		 * altered the inode.  Note however that if it is being spliced
808 		 * onto an indirect block at the very end of the file (the
809 		 * file is growing) then we *will* alter the inode to reflect
810 		 * the new i_size.  But that is not done here - it is done in
811 		 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
812 		 */
813 		jbd_debug(5, "splicing indirect only\n");
814 		BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
815 		err = ext3_journal_dirty_metadata(handle, where->bh);
816 		if (err)
817 			goto err_out;
818 	} else {
819 		/*
820 		 * OK, we spliced it into the inode itself on a direct block.
821 		 * Inode was dirtied above.
822 		 */
823 		jbd_debug(5, "splicing direct\n");
824 	}
825 	return err;
826 
827 err_out:
828 	for (i = 1; i <= num; i++) {
829 		BUFFER_TRACE(where[i].bh, "call journal_forget");
830 		ext3_journal_forget(handle, where[i].bh);
831 		ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
832 	}
833 	ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
834 
835 	return err;
836 }
837 
838 /*
839  * Allocation strategy is simple: if we have to allocate something, we will
840  * have to go the whole way to leaf. So let's do it before attaching anything
841  * to tree, set linkage between the newborn blocks, write them if sync is
842  * required, recheck the path, free and repeat if check fails, otherwise
843  * set the last missing link (that will protect us from any truncate-generated
844  * removals - all blocks on the path are immune now) and possibly force the
845  * write on the parent block.
846  * That has a nice additional property: no special recovery from the failed
847  * allocations is needed - we simply release blocks and do not touch anything
848  * reachable from inode.
849  *
850  * `handle' can be NULL if create == 0.
851  *
852  * The BKL may not be held on entry here.  Be sure to take it early.
853  * return > 0, # of blocks mapped or allocated.
854  * return = 0, if plain lookup failed.
855  * return < 0, error case.
856  */
ext3_get_blocks_handle(handle_t * handle,struct inode * inode,sector_t iblock,unsigned long maxblocks,struct buffer_head * bh_result,int create)857 int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
858 		sector_t iblock, unsigned long maxblocks,
859 		struct buffer_head *bh_result,
860 		int create)
861 {
862 	int err = -EIO;
863 	int offsets[4];
864 	Indirect chain[4];
865 	Indirect *partial;
866 	ext3_fsblk_t goal;
867 	int indirect_blks;
868 	int blocks_to_boundary = 0;
869 	int depth;
870 	struct ext3_inode_info *ei = EXT3_I(inode);
871 	int count = 0;
872 	ext3_fsblk_t first_block = 0;
873 
874 
875 	trace_ext3_get_blocks_enter(inode, iblock, maxblocks, create);
876 	J_ASSERT(handle != NULL || create == 0);
877 	depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
878 
879 	if (depth == 0)
880 		goto out;
881 
882 	partial = ext3_get_branch(inode, depth, offsets, chain, &err);
883 
884 	/* Simplest case - block found, no allocation needed */
885 	if (!partial) {
886 		first_block = le32_to_cpu(chain[depth - 1].key);
887 		clear_buffer_new(bh_result);
888 		count++;
889 		/*map more blocks*/
890 		while (count < maxblocks && count <= blocks_to_boundary) {
891 			ext3_fsblk_t blk;
892 
893 			if (!verify_chain(chain, chain + depth - 1)) {
894 				/*
895 				 * Indirect block might be removed by
896 				 * truncate while we were reading it.
897 				 * Handling of that case: forget what we've
898 				 * got now. Flag the err as EAGAIN, so it
899 				 * will reread.
900 				 */
901 				err = -EAGAIN;
902 				count = 0;
903 				break;
904 			}
905 			blk = le32_to_cpu(*(chain[depth-1].p + count));
906 
907 			if (blk == first_block + count)
908 				count++;
909 			else
910 				break;
911 		}
912 		if (err != -EAGAIN)
913 			goto got_it;
914 	}
915 
916 	/* Next simple case - plain lookup or failed read of indirect block */
917 	if (!create || err == -EIO)
918 		goto cleanup;
919 
920 	/*
921 	 * Block out ext3_truncate while we alter the tree
922 	 */
923 	mutex_lock(&ei->truncate_mutex);
924 
925 	/*
926 	 * If the indirect block is missing while we are reading
927 	 * the chain(ext3_get_branch() returns -EAGAIN err), or
928 	 * if the chain has been changed after we grab the semaphore,
929 	 * (either because another process truncated this branch, or
930 	 * another get_block allocated this branch) re-grab the chain to see if
931 	 * the request block has been allocated or not.
932 	 *
933 	 * Since we already block the truncate/other get_block
934 	 * at this point, we will have the current copy of the chain when we
935 	 * splice the branch into the tree.
936 	 */
937 	if (err == -EAGAIN || !verify_chain(chain, partial)) {
938 		while (partial > chain) {
939 			brelse(partial->bh);
940 			partial--;
941 		}
942 		partial = ext3_get_branch(inode, depth, offsets, chain, &err);
943 		if (!partial) {
944 			count++;
945 			mutex_unlock(&ei->truncate_mutex);
946 			if (err)
947 				goto cleanup;
948 			clear_buffer_new(bh_result);
949 			goto got_it;
950 		}
951 	}
952 
953 	/*
954 	 * Okay, we need to do block allocation.  Lazily initialize the block
955 	 * allocation info here if necessary
956 	*/
957 	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
958 		ext3_init_block_alloc_info(inode);
959 
960 	goal = ext3_find_goal(inode, iblock, partial);
961 
962 	/* the number of blocks need to allocate for [d,t]indirect blocks */
963 	indirect_blks = (chain + depth) - partial - 1;
964 
965 	/*
966 	 * Next look up the indirect map to count the totoal number of
967 	 * direct blocks to allocate for this branch.
968 	 */
969 	count = ext3_blks_to_allocate(partial, indirect_blks,
970 					maxblocks, blocks_to_boundary);
971 	err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
972 				offsets + (partial - chain), partial);
973 
974 	/*
975 	 * The ext3_splice_branch call will free and forget any buffers
976 	 * on the new chain if there is a failure, but that risks using
977 	 * up transaction credits, especially for bitmaps where the
978 	 * credits cannot be returned.  Can we handle this somehow?  We
979 	 * may need to return -EAGAIN upwards in the worst case.  --sct
980 	 */
981 	if (!err)
982 		err = ext3_splice_branch(handle, inode, iblock,
983 					partial, indirect_blks, count);
984 	mutex_unlock(&ei->truncate_mutex);
985 	if (err)
986 		goto cleanup;
987 
988 	set_buffer_new(bh_result);
989 got_it:
990 	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
991 	if (count > blocks_to_boundary)
992 		set_buffer_boundary(bh_result);
993 	err = count;
994 	/* Clean up and exit */
995 	partial = chain + depth - 1;	/* the whole chain */
996 cleanup:
997 	while (partial > chain) {
998 		BUFFER_TRACE(partial->bh, "call brelse");
999 		brelse(partial->bh);
1000 		partial--;
1001 	}
1002 	BUFFER_TRACE(bh_result, "returned");
1003 out:
1004 	trace_ext3_get_blocks_exit(inode, iblock,
1005 				   depth ? le32_to_cpu(chain[depth-1].key) : 0,
1006 				   count, err);
1007 	return err;
1008 }
1009 
1010 /* Maximum number of blocks we map for direct IO at once. */
1011 #define DIO_MAX_BLOCKS 4096
1012 /*
1013  * Number of credits we need for writing DIO_MAX_BLOCKS:
1014  * We need sb + group descriptor + bitmap + inode -> 4
1015  * For B blocks with A block pointers per block we need:
1016  * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
1017  * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
1018  */
1019 #define DIO_CREDITS 25
1020 
ext3_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1021 static int ext3_get_block(struct inode *inode, sector_t iblock,
1022 			struct buffer_head *bh_result, int create)
1023 {
1024 	handle_t *handle = ext3_journal_current_handle();
1025 	int ret = 0, started = 0;
1026 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1027 
1028 	if (create && !handle) {	/* Direct IO write... */
1029 		if (max_blocks > DIO_MAX_BLOCKS)
1030 			max_blocks = DIO_MAX_BLOCKS;
1031 		handle = ext3_journal_start(inode, DIO_CREDITS +
1032 				EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
1033 		if (IS_ERR(handle)) {
1034 			ret = PTR_ERR(handle);
1035 			goto out;
1036 		}
1037 		started = 1;
1038 	}
1039 
1040 	ret = ext3_get_blocks_handle(handle, inode, iblock,
1041 					max_blocks, bh_result, create);
1042 	if (ret > 0) {
1043 		bh_result->b_size = (ret << inode->i_blkbits);
1044 		ret = 0;
1045 	}
1046 	if (started)
1047 		ext3_journal_stop(handle);
1048 out:
1049 	return ret;
1050 }
1051 
ext3_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)1052 int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1053 		u64 start, u64 len)
1054 {
1055 	return generic_block_fiemap(inode, fieinfo, start, len,
1056 				    ext3_get_block);
1057 }
1058 
1059 /*
1060  * `handle' can be NULL if create is zero
1061  */
ext3_getblk(handle_t * handle,struct inode * inode,long block,int create,int * errp)1062 struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
1063 				long block, int create, int *errp)
1064 {
1065 	struct buffer_head dummy;
1066 	int fatal = 0, err;
1067 
1068 	J_ASSERT(handle != NULL || create == 0);
1069 
1070 	dummy.b_state = 0;
1071 	dummy.b_blocknr = -1000;
1072 	buffer_trace_init(&dummy.b_history);
1073 	err = ext3_get_blocks_handle(handle, inode, block, 1,
1074 					&dummy, create);
1075 	/*
1076 	 * ext3_get_blocks_handle() returns number of blocks
1077 	 * mapped. 0 in case of a HOLE.
1078 	 */
1079 	if (err > 0) {
1080 		WARN_ON(err > 1);
1081 		err = 0;
1082 	}
1083 	*errp = err;
1084 	if (!err && buffer_mapped(&dummy)) {
1085 		struct buffer_head *bh;
1086 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1087 		if (unlikely(!bh)) {
1088 			*errp = -ENOMEM;
1089 			goto err;
1090 		}
1091 		if (buffer_new(&dummy)) {
1092 			J_ASSERT(create != 0);
1093 			J_ASSERT(handle != NULL);
1094 
1095 			/*
1096 			 * Now that we do not always journal data, we should
1097 			 * keep in mind whether this should always journal the
1098 			 * new buffer as metadata.  For now, regular file
1099 			 * writes use ext3_get_block instead, so it's not a
1100 			 * problem.
1101 			 */
1102 			lock_buffer(bh);
1103 			BUFFER_TRACE(bh, "call get_create_access");
1104 			fatal = ext3_journal_get_create_access(handle, bh);
1105 			if (!fatal && !buffer_uptodate(bh)) {
1106 				memset(bh->b_data,0,inode->i_sb->s_blocksize);
1107 				set_buffer_uptodate(bh);
1108 			}
1109 			unlock_buffer(bh);
1110 			BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1111 			err = ext3_journal_dirty_metadata(handle, bh);
1112 			if (!fatal)
1113 				fatal = err;
1114 		} else {
1115 			BUFFER_TRACE(bh, "not a new buffer");
1116 		}
1117 		if (fatal) {
1118 			*errp = fatal;
1119 			brelse(bh);
1120 			bh = NULL;
1121 		}
1122 		return bh;
1123 	}
1124 err:
1125 	return NULL;
1126 }
1127 
ext3_bread(handle_t * handle,struct inode * inode,int block,int create,int * err)1128 struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1129 			       int block, int create, int *err)
1130 {
1131 	struct buffer_head * bh;
1132 
1133 	bh = ext3_getblk(handle, inode, block, create, err);
1134 	if (!bh)
1135 		return bh;
1136 	if (bh_uptodate_or_lock(bh))
1137 		return bh;
1138 	get_bh(bh);
1139 	bh->b_end_io = end_buffer_read_sync;
1140 	submit_bh(READ | REQ_META | REQ_PRIO, bh);
1141 	wait_on_buffer(bh);
1142 	if (buffer_uptodate(bh))
1143 		return bh;
1144 	put_bh(bh);
1145 	*err = -EIO;
1146 	return NULL;
1147 }
1148 
walk_page_buffers(handle_t * handle,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct buffer_head * bh))1149 static int walk_page_buffers(	handle_t *handle,
1150 				struct buffer_head *head,
1151 				unsigned from,
1152 				unsigned to,
1153 				int *partial,
1154 				int (*fn)(	handle_t *handle,
1155 						struct buffer_head *bh))
1156 {
1157 	struct buffer_head *bh;
1158 	unsigned block_start, block_end;
1159 	unsigned blocksize = head->b_size;
1160 	int err, ret = 0;
1161 	struct buffer_head *next;
1162 
1163 	for (	bh = head, block_start = 0;
1164 		ret == 0 && (bh != head || !block_start);
1165 		block_start = block_end, bh = next)
1166 	{
1167 		next = bh->b_this_page;
1168 		block_end = block_start + blocksize;
1169 		if (block_end <= from || block_start >= to) {
1170 			if (partial && !buffer_uptodate(bh))
1171 				*partial = 1;
1172 			continue;
1173 		}
1174 		err = (*fn)(handle, bh);
1175 		if (!ret)
1176 			ret = err;
1177 	}
1178 	return ret;
1179 }
1180 
1181 /*
1182  * To preserve ordering, it is essential that the hole instantiation and
1183  * the data write be encapsulated in a single transaction.  We cannot
1184  * close off a transaction and start a new one between the ext3_get_block()
1185  * and the commit_write().  So doing the journal_start at the start of
1186  * prepare_write() is the right place.
1187  *
1188  * Also, this function can nest inside ext3_writepage() ->
1189  * block_write_full_page(). In that case, we *know* that ext3_writepage()
1190  * has generated enough buffer credits to do the whole page.  So we won't
1191  * block on the journal in that case, which is good, because the caller may
1192  * be PF_MEMALLOC.
1193  *
1194  * By accident, ext3 can be reentered when a transaction is open via
1195  * quota file writes.  If we were to commit the transaction while thus
1196  * reentered, there can be a deadlock - we would be holding a quota
1197  * lock, and the commit would never complete if another thread had a
1198  * transaction open and was blocking on the quota lock - a ranking
1199  * violation.
1200  *
1201  * So what we do is to rely on the fact that journal_stop/journal_start
1202  * will _not_ run commit under these circumstances because handle->h_ref
1203  * is elevated.  We'll still have enough credits for the tiny quotafile
1204  * write.
1205  */
do_journal_get_write_access(handle_t * handle,struct buffer_head * bh)1206 static int do_journal_get_write_access(handle_t *handle,
1207 					struct buffer_head *bh)
1208 {
1209 	int dirty = buffer_dirty(bh);
1210 	int ret;
1211 
1212 	if (!buffer_mapped(bh) || buffer_freed(bh))
1213 		return 0;
1214 	/*
1215 	 * __block_prepare_write() could have dirtied some buffers. Clean
1216 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1217 	 * otherwise about fs integrity issues. Setting of the dirty bit
1218 	 * by __block_prepare_write() isn't a real problem here as we clear
1219 	 * the bit before releasing a page lock and thus writeback cannot
1220 	 * ever write the buffer.
1221 	 */
1222 	if (dirty)
1223 		clear_buffer_dirty(bh);
1224 	ret = ext3_journal_get_write_access(handle, bh);
1225 	if (!ret && dirty)
1226 		ret = ext3_journal_dirty_metadata(handle, bh);
1227 	return ret;
1228 }
1229 
1230 /*
1231  * Truncate blocks that were not used by write. We have to truncate the
1232  * pagecache as well so that corresponding buffers get properly unmapped.
1233  */
ext3_truncate_failed_write(struct inode * inode)1234 static void ext3_truncate_failed_write(struct inode *inode)
1235 {
1236 	truncate_inode_pages(inode->i_mapping, inode->i_size);
1237 	ext3_truncate(inode);
1238 }
1239 
1240 /*
1241  * Truncate blocks that were not used by direct IO write. We have to zero out
1242  * the last file block as well because direct IO might have written to it.
1243  */
ext3_truncate_failed_direct_write(struct inode * inode)1244 static void ext3_truncate_failed_direct_write(struct inode *inode)
1245 {
1246 	ext3_block_truncate_page(inode, inode->i_size);
1247 	ext3_truncate(inode);
1248 }
1249 
ext3_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)1250 static int ext3_write_begin(struct file *file, struct address_space *mapping,
1251 				loff_t pos, unsigned len, unsigned flags,
1252 				struct page **pagep, void **fsdata)
1253 {
1254 	struct inode *inode = mapping->host;
1255 	int ret;
1256 	handle_t *handle;
1257 	int retries = 0;
1258 	struct page *page;
1259 	pgoff_t index;
1260 	unsigned from, to;
1261 	/* Reserve one block more for addition to orphan list in case
1262 	 * we allocate blocks but write fails for some reason */
1263 	int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
1264 
1265 	trace_ext3_write_begin(inode, pos, len, flags);
1266 
1267 	index = pos >> PAGE_CACHE_SHIFT;
1268 	from = pos & (PAGE_CACHE_SIZE - 1);
1269 	to = from + len;
1270 
1271 retry:
1272 	page = grab_cache_page_write_begin(mapping, index, flags);
1273 	if (!page)
1274 		return -ENOMEM;
1275 	*pagep = page;
1276 
1277 	handle = ext3_journal_start(inode, needed_blocks);
1278 	if (IS_ERR(handle)) {
1279 		unlock_page(page);
1280 		page_cache_release(page);
1281 		ret = PTR_ERR(handle);
1282 		goto out;
1283 	}
1284 	ret = __block_write_begin(page, pos, len, ext3_get_block);
1285 	if (ret)
1286 		goto write_begin_failed;
1287 
1288 	if (ext3_should_journal_data(inode)) {
1289 		ret = walk_page_buffers(handle, page_buffers(page),
1290 				from, to, NULL, do_journal_get_write_access);
1291 	}
1292 write_begin_failed:
1293 	if (ret) {
1294 		/*
1295 		 * block_write_begin may have instantiated a few blocks
1296 		 * outside i_size.  Trim these off again. Don't need
1297 		 * i_size_read because we hold i_mutex.
1298 		 *
1299 		 * Add inode to orphan list in case we crash before truncate
1300 		 * finishes. Do this only if ext3_can_truncate() agrees so
1301 		 * that orphan processing code is happy.
1302 		 */
1303 		if (pos + len > inode->i_size && ext3_can_truncate(inode))
1304 			ext3_orphan_add(handle, inode);
1305 		ext3_journal_stop(handle);
1306 		unlock_page(page);
1307 		page_cache_release(page);
1308 		if (pos + len > inode->i_size)
1309 			ext3_truncate_failed_write(inode);
1310 	}
1311 	if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1312 		goto retry;
1313 out:
1314 	return ret;
1315 }
1316 
1317 
ext3_journal_dirty_data(handle_t * handle,struct buffer_head * bh)1318 int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1319 {
1320 	int err = journal_dirty_data(handle, bh);
1321 	if (err)
1322 		ext3_journal_abort_handle(__func__, __func__,
1323 						bh, handle, err);
1324 	return err;
1325 }
1326 
1327 /* For ordered writepage and write_end functions */
journal_dirty_data_fn(handle_t * handle,struct buffer_head * bh)1328 static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1329 {
1330 	/*
1331 	 * Write could have mapped the buffer but it didn't copy the data in
1332 	 * yet. So avoid filing such buffer into a transaction.
1333 	 */
1334 	if (buffer_mapped(bh) && buffer_uptodate(bh))
1335 		return ext3_journal_dirty_data(handle, bh);
1336 	return 0;
1337 }
1338 
1339 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct buffer_head * bh)1340 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1341 {
1342 	if (!buffer_mapped(bh) || buffer_freed(bh))
1343 		return 0;
1344 	set_buffer_uptodate(bh);
1345 	return ext3_journal_dirty_metadata(handle, bh);
1346 }
1347 
1348 /*
1349  * This is nasty and subtle: ext3_write_begin() could have allocated blocks
1350  * for the whole page but later we failed to copy the data in. Update inode
1351  * size according to what we managed to copy. The rest is going to be
1352  * truncated in write_end function.
1353  */
update_file_sizes(struct inode * inode,loff_t pos,unsigned copied)1354 static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
1355 {
1356 	/* What matters to us is i_disksize. We don't write i_size anywhere */
1357 	if (pos + copied > inode->i_size)
1358 		i_size_write(inode, pos + copied);
1359 	if (pos + copied > EXT3_I(inode)->i_disksize) {
1360 		EXT3_I(inode)->i_disksize = pos + copied;
1361 		mark_inode_dirty(inode);
1362 	}
1363 }
1364 
1365 /*
1366  * We need to pick up the new inode size which generic_commit_write gave us
1367  * `file' can be NULL - eg, when called from page_symlink().
1368  *
1369  * ext3 never places buffers on inode->i_mapping->private_list.  metadata
1370  * buffers are managed internally.
1371  */
ext3_ordered_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1372 static int ext3_ordered_write_end(struct file *file,
1373 				struct address_space *mapping,
1374 				loff_t pos, unsigned len, unsigned copied,
1375 				struct page *page, void *fsdata)
1376 {
1377 	handle_t *handle = ext3_journal_current_handle();
1378 	struct inode *inode = file->f_mapping->host;
1379 	unsigned from, to;
1380 	int ret = 0, ret2;
1381 
1382 	trace_ext3_ordered_write_end(inode, pos, len, copied);
1383 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1384 
1385 	from = pos & (PAGE_CACHE_SIZE - 1);
1386 	to = from + copied;
1387 	ret = walk_page_buffers(handle, page_buffers(page),
1388 		from, to, NULL, journal_dirty_data_fn);
1389 
1390 	if (ret == 0)
1391 		update_file_sizes(inode, pos, copied);
1392 	/*
1393 	 * There may be allocated blocks outside of i_size because
1394 	 * we failed to copy some data. Prepare for truncate.
1395 	 */
1396 	if (pos + len > inode->i_size && ext3_can_truncate(inode))
1397 		ext3_orphan_add(handle, inode);
1398 	ret2 = ext3_journal_stop(handle);
1399 	if (!ret)
1400 		ret = ret2;
1401 	unlock_page(page);
1402 	page_cache_release(page);
1403 
1404 	if (pos + len > inode->i_size)
1405 		ext3_truncate_failed_write(inode);
1406 	return ret ? ret : copied;
1407 }
1408 
ext3_writeback_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1409 static int ext3_writeback_write_end(struct file *file,
1410 				struct address_space *mapping,
1411 				loff_t pos, unsigned len, unsigned copied,
1412 				struct page *page, void *fsdata)
1413 {
1414 	handle_t *handle = ext3_journal_current_handle();
1415 	struct inode *inode = file->f_mapping->host;
1416 	int ret;
1417 
1418 	trace_ext3_writeback_write_end(inode, pos, len, copied);
1419 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1420 	update_file_sizes(inode, pos, copied);
1421 	/*
1422 	 * There may be allocated blocks outside of i_size because
1423 	 * we failed to copy some data. Prepare for truncate.
1424 	 */
1425 	if (pos + len > inode->i_size && ext3_can_truncate(inode))
1426 		ext3_orphan_add(handle, inode);
1427 	ret = ext3_journal_stop(handle);
1428 	unlock_page(page);
1429 	page_cache_release(page);
1430 
1431 	if (pos + len > inode->i_size)
1432 		ext3_truncate_failed_write(inode);
1433 	return ret ? ret : copied;
1434 }
1435 
ext3_journalled_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1436 static int ext3_journalled_write_end(struct file *file,
1437 				struct address_space *mapping,
1438 				loff_t pos, unsigned len, unsigned copied,
1439 				struct page *page, void *fsdata)
1440 {
1441 	handle_t *handle = ext3_journal_current_handle();
1442 	struct inode *inode = mapping->host;
1443 	struct ext3_inode_info *ei = EXT3_I(inode);
1444 	int ret = 0, ret2;
1445 	int partial = 0;
1446 	unsigned from, to;
1447 
1448 	trace_ext3_journalled_write_end(inode, pos, len, copied);
1449 	from = pos & (PAGE_CACHE_SIZE - 1);
1450 	to = from + len;
1451 
1452 	if (copied < len) {
1453 		if (!PageUptodate(page))
1454 			copied = 0;
1455 		page_zero_new_buffers(page, from + copied, to);
1456 		to = from + copied;
1457 	}
1458 
1459 	ret = walk_page_buffers(handle, page_buffers(page), from,
1460 				to, &partial, write_end_fn);
1461 	if (!partial)
1462 		SetPageUptodate(page);
1463 
1464 	if (pos + copied > inode->i_size)
1465 		i_size_write(inode, pos + copied);
1466 	/*
1467 	 * There may be allocated blocks outside of i_size because
1468 	 * we failed to copy some data. Prepare for truncate.
1469 	 */
1470 	if (pos + len > inode->i_size && ext3_can_truncate(inode))
1471 		ext3_orphan_add(handle, inode);
1472 	ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1473 	atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
1474 	if (inode->i_size > ei->i_disksize) {
1475 		ei->i_disksize = inode->i_size;
1476 		ret2 = ext3_mark_inode_dirty(handle, inode);
1477 		if (!ret)
1478 			ret = ret2;
1479 	}
1480 
1481 	ret2 = ext3_journal_stop(handle);
1482 	if (!ret)
1483 		ret = ret2;
1484 	unlock_page(page);
1485 	page_cache_release(page);
1486 
1487 	if (pos + len > inode->i_size)
1488 		ext3_truncate_failed_write(inode);
1489 	return ret ? ret : copied;
1490 }
1491 
1492 /*
1493  * bmap() is special.  It gets used by applications such as lilo and by
1494  * the swapper to find the on-disk block of a specific piece of data.
1495  *
1496  * Naturally, this is dangerous if the block concerned is still in the
1497  * journal.  If somebody makes a swapfile on an ext3 data-journaling
1498  * filesystem and enables swap, then they may get a nasty shock when the
1499  * data getting swapped to that swapfile suddenly gets overwritten by
1500  * the original zero's written out previously to the journal and
1501  * awaiting writeback in the kernel's buffer cache.
1502  *
1503  * So, if we see any bmap calls here on a modified, data-journaled file,
1504  * take extra steps to flush any blocks which might be in the cache.
1505  */
ext3_bmap(struct address_space * mapping,sector_t block)1506 static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1507 {
1508 	struct inode *inode = mapping->host;
1509 	journal_t *journal;
1510 	int err;
1511 
1512 	if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
1513 		/*
1514 		 * This is a REALLY heavyweight approach, but the use of
1515 		 * bmap on dirty files is expected to be extremely rare:
1516 		 * only if we run lilo or swapon on a freshly made file
1517 		 * do we expect this to happen.
1518 		 *
1519 		 * (bmap requires CAP_SYS_RAWIO so this does not
1520 		 * represent an unprivileged user DOS attack --- we'd be
1521 		 * in trouble if mortal users could trigger this path at
1522 		 * will.)
1523 		 *
1524 		 * NB. EXT3_STATE_JDATA is not set on files other than
1525 		 * regular files.  If somebody wants to bmap a directory
1526 		 * or symlink and gets confused because the buffer
1527 		 * hasn't yet been flushed to disk, they deserve
1528 		 * everything they get.
1529 		 */
1530 
1531 		ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
1532 		journal = EXT3_JOURNAL(inode);
1533 		journal_lock_updates(journal);
1534 		err = journal_flush(journal);
1535 		journal_unlock_updates(journal);
1536 
1537 		if (err)
1538 			return 0;
1539 	}
1540 
1541 	return generic_block_bmap(mapping,block,ext3_get_block);
1542 }
1543 
bget_one(handle_t * handle,struct buffer_head * bh)1544 static int bget_one(handle_t *handle, struct buffer_head *bh)
1545 {
1546 	get_bh(bh);
1547 	return 0;
1548 }
1549 
bput_one(handle_t * handle,struct buffer_head * bh)1550 static int bput_one(handle_t *handle, struct buffer_head *bh)
1551 {
1552 	put_bh(bh);
1553 	return 0;
1554 }
1555 
buffer_unmapped(handle_t * handle,struct buffer_head * bh)1556 static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
1557 {
1558 	return !buffer_mapped(bh);
1559 }
1560 
1561 /*
1562  * Note that we always start a transaction even if we're not journalling
1563  * data.  This is to preserve ordering: any hole instantiation within
1564  * __block_write_full_page -> ext3_get_block() should be journalled
1565  * along with the data so we don't crash and then get metadata which
1566  * refers to old data.
1567  *
1568  * In all journalling modes block_write_full_page() will start the I/O.
1569  *
1570  * Problem:
1571  *
1572  *	ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1573  *		ext3_writepage()
1574  *
1575  * Similar for:
1576  *
1577  *	ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1578  *
1579  * Same applies to ext3_get_block().  We will deadlock on various things like
1580  * lock_journal and i_truncate_mutex.
1581  *
1582  * Setting PF_MEMALLOC here doesn't work - too many internal memory
1583  * allocations fail.
1584  *
1585  * 16May01: If we're reentered then journal_current_handle() will be
1586  *	    non-zero. We simply *return*.
1587  *
1588  * 1 July 2001: @@@ FIXME:
1589  *   In journalled data mode, a data buffer may be metadata against the
1590  *   current transaction.  But the same file is part of a shared mapping
1591  *   and someone does a writepage() on it.
1592  *
1593  *   We will move the buffer onto the async_data list, but *after* it has
1594  *   been dirtied. So there's a small window where we have dirty data on
1595  *   BJ_Metadata.
1596  *
1597  *   Note that this only applies to the last partial page in the file.  The
1598  *   bit which block_write_full_page() uses prepare/commit for.  (That's
1599  *   broken code anyway: it's wrong for msync()).
1600  *
1601  *   It's a rare case: affects the final partial page, for journalled data
1602  *   where the file is subject to bith write() and writepage() in the same
1603  *   transction.  To fix it we'll need a custom block_write_full_page().
1604  *   We'll probably need that anyway for journalling writepage() output.
1605  *
1606  * We don't honour synchronous mounts for writepage().  That would be
1607  * disastrous.  Any write() or metadata operation will sync the fs for
1608  * us.
1609  *
1610  * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1611  * we don't need to open a transaction here.
1612  */
ext3_ordered_writepage(struct page * page,struct writeback_control * wbc)1613 static int ext3_ordered_writepage(struct page *page,
1614 				struct writeback_control *wbc)
1615 {
1616 	struct inode *inode = page->mapping->host;
1617 	struct buffer_head *page_bufs;
1618 	handle_t *handle = NULL;
1619 	int ret = 0;
1620 	int err;
1621 
1622 	J_ASSERT(PageLocked(page));
1623 	/*
1624 	 * We don't want to warn for emergency remount. The condition is
1625 	 * ordered to avoid dereferencing inode->i_sb in non-error case to
1626 	 * avoid slow-downs.
1627 	 */
1628 	WARN_ON_ONCE(IS_RDONLY(inode) &&
1629 		     !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1630 
1631 	/*
1632 	 * We give up here if we're reentered, because it might be for a
1633 	 * different filesystem.
1634 	 */
1635 	if (ext3_journal_current_handle())
1636 		goto out_fail;
1637 
1638 	trace_ext3_ordered_writepage(page);
1639 	if (!page_has_buffers(page)) {
1640 		create_empty_buffers(page, inode->i_sb->s_blocksize,
1641 				(1 << BH_Dirty)|(1 << BH_Uptodate));
1642 		page_bufs = page_buffers(page);
1643 	} else {
1644 		page_bufs = page_buffers(page);
1645 		if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
1646 				       NULL, buffer_unmapped)) {
1647 			/* Provide NULL get_block() to catch bugs if buffers
1648 			 * weren't really mapped */
1649 			return block_write_full_page(page, NULL, wbc);
1650 		}
1651 	}
1652 	handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1653 
1654 	if (IS_ERR(handle)) {
1655 		ret = PTR_ERR(handle);
1656 		goto out_fail;
1657 	}
1658 
1659 	walk_page_buffers(handle, page_bufs, 0,
1660 			PAGE_CACHE_SIZE, NULL, bget_one);
1661 
1662 	ret = block_write_full_page(page, ext3_get_block, wbc);
1663 
1664 	/*
1665 	 * The page can become unlocked at any point now, and
1666 	 * truncate can then come in and change things.  So we
1667 	 * can't touch *page from now on.  But *page_bufs is
1668 	 * safe due to elevated refcount.
1669 	 */
1670 
1671 	/*
1672 	 * And attach them to the current transaction.  But only if
1673 	 * block_write_full_page() succeeded.  Otherwise they are unmapped,
1674 	 * and generally junk.
1675 	 */
1676 	if (ret == 0) {
1677 		err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1678 					NULL, journal_dirty_data_fn);
1679 		if (!ret)
1680 			ret = err;
1681 	}
1682 	walk_page_buffers(handle, page_bufs, 0,
1683 			PAGE_CACHE_SIZE, NULL, bput_one);
1684 	err = ext3_journal_stop(handle);
1685 	if (!ret)
1686 		ret = err;
1687 	return ret;
1688 
1689 out_fail:
1690 	redirty_page_for_writepage(wbc, page);
1691 	unlock_page(page);
1692 	return ret;
1693 }
1694 
ext3_writeback_writepage(struct page * page,struct writeback_control * wbc)1695 static int ext3_writeback_writepage(struct page *page,
1696 				struct writeback_control *wbc)
1697 {
1698 	struct inode *inode = page->mapping->host;
1699 	handle_t *handle = NULL;
1700 	int ret = 0;
1701 	int err;
1702 
1703 	J_ASSERT(PageLocked(page));
1704 	/*
1705 	 * We don't want to warn for emergency remount. The condition is
1706 	 * ordered to avoid dereferencing inode->i_sb in non-error case to
1707 	 * avoid slow-downs.
1708 	 */
1709 	WARN_ON_ONCE(IS_RDONLY(inode) &&
1710 		     !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1711 
1712 	if (ext3_journal_current_handle())
1713 		goto out_fail;
1714 
1715 	trace_ext3_writeback_writepage(page);
1716 	if (page_has_buffers(page)) {
1717 		if (!walk_page_buffers(NULL, page_buffers(page), 0,
1718 				      PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
1719 			/* Provide NULL get_block() to catch bugs if buffers
1720 			 * weren't really mapped */
1721 			return block_write_full_page(page, NULL, wbc);
1722 		}
1723 	}
1724 
1725 	handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1726 	if (IS_ERR(handle)) {
1727 		ret = PTR_ERR(handle);
1728 		goto out_fail;
1729 	}
1730 
1731 	ret = block_write_full_page(page, ext3_get_block, wbc);
1732 
1733 	err = ext3_journal_stop(handle);
1734 	if (!ret)
1735 		ret = err;
1736 	return ret;
1737 
1738 out_fail:
1739 	redirty_page_for_writepage(wbc, page);
1740 	unlock_page(page);
1741 	return ret;
1742 }
1743 
ext3_journalled_writepage(struct page * page,struct writeback_control * wbc)1744 static int ext3_journalled_writepage(struct page *page,
1745 				struct writeback_control *wbc)
1746 {
1747 	struct inode *inode = page->mapping->host;
1748 	handle_t *handle = NULL;
1749 	int ret = 0;
1750 	int err;
1751 
1752 	J_ASSERT(PageLocked(page));
1753 	/*
1754 	 * We don't want to warn for emergency remount. The condition is
1755 	 * ordered to avoid dereferencing inode->i_sb in non-error case to
1756 	 * avoid slow-downs.
1757 	 */
1758 	WARN_ON_ONCE(IS_RDONLY(inode) &&
1759 		     !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1760 
1761 	if (ext3_journal_current_handle())
1762 		goto no_write;
1763 
1764 	trace_ext3_journalled_writepage(page);
1765 	handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1766 	if (IS_ERR(handle)) {
1767 		ret = PTR_ERR(handle);
1768 		goto no_write;
1769 	}
1770 
1771 	if (!page_has_buffers(page) || PageChecked(page)) {
1772 		/*
1773 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1774 		 * doesn't seem much point in redirtying the page here.
1775 		 */
1776 		ClearPageChecked(page);
1777 		ret = __block_write_begin(page, 0, PAGE_CACHE_SIZE,
1778 					  ext3_get_block);
1779 		if (ret != 0) {
1780 			ext3_journal_stop(handle);
1781 			goto out_unlock;
1782 		}
1783 		ret = walk_page_buffers(handle, page_buffers(page), 0,
1784 			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1785 
1786 		err = walk_page_buffers(handle, page_buffers(page), 0,
1787 				PAGE_CACHE_SIZE, NULL, write_end_fn);
1788 		if (ret == 0)
1789 			ret = err;
1790 		ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1791 		atomic_set(&EXT3_I(inode)->i_datasync_tid,
1792 			   handle->h_transaction->t_tid);
1793 		unlock_page(page);
1794 	} else {
1795 		/*
1796 		 * It may be a page full of checkpoint-mode buffers.  We don't
1797 		 * really know unless we go poke around in the buffer_heads.
1798 		 * But block_write_full_page will do the right thing.
1799 		 */
1800 		ret = block_write_full_page(page, ext3_get_block, wbc);
1801 	}
1802 	err = ext3_journal_stop(handle);
1803 	if (!ret)
1804 		ret = err;
1805 out:
1806 	return ret;
1807 
1808 no_write:
1809 	redirty_page_for_writepage(wbc, page);
1810 out_unlock:
1811 	unlock_page(page);
1812 	goto out;
1813 }
1814 
ext3_readpage(struct file * file,struct page * page)1815 static int ext3_readpage(struct file *file, struct page *page)
1816 {
1817 	trace_ext3_readpage(page);
1818 	return mpage_readpage(page, ext3_get_block);
1819 }
1820 
1821 static int
ext3_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)1822 ext3_readpages(struct file *file, struct address_space *mapping,
1823 		struct list_head *pages, unsigned nr_pages)
1824 {
1825 	return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1826 }
1827 
ext3_invalidatepage(struct page * page,unsigned int offset,unsigned int length)1828 static void ext3_invalidatepage(struct page *page, unsigned int offset,
1829 				unsigned int length)
1830 {
1831 	journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1832 
1833 	trace_ext3_invalidatepage(page, offset);
1834 
1835 	/*
1836 	 * If it's a full truncate we just forget about the pending dirtying
1837 	 */
1838 	if (offset == 0)
1839 		ClearPageChecked(page);
1840 
1841 	journal_invalidatepage(journal, page, offset);
1842 }
1843 
ext3_releasepage(struct page * page,gfp_t wait)1844 static int ext3_releasepage(struct page *page, gfp_t wait)
1845 {
1846 	journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1847 
1848 	trace_ext3_releasepage(page);
1849 	WARN_ON(PageChecked(page));
1850 	if (!page_has_buffers(page))
1851 		return 0;
1852 	return journal_try_to_free_buffers(journal, page, wait);
1853 }
1854 
1855 /*
1856  * If the O_DIRECT write will extend the file then add this inode to the
1857  * orphan list.  So recovery will truncate it back to the original size
1858  * if the machine crashes during the write.
1859  *
1860  * If the O_DIRECT write is intantiating holes inside i_size and the machine
1861  * crashes then stale disk data _may_ be exposed inside the file. But current
1862  * VFS code falls back into buffered path in that case so we are safe.
1863  */
ext3_direct_IO(int rw,struct kiocb * iocb,const struct iovec * iov,loff_t offset,unsigned long nr_segs)1864 static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1865 			const struct iovec *iov, loff_t offset,
1866 			unsigned long nr_segs)
1867 {
1868 	struct file *file = iocb->ki_filp;
1869 	struct inode *inode = file->f_mapping->host;
1870 	struct ext3_inode_info *ei = EXT3_I(inode);
1871 	handle_t *handle;
1872 	ssize_t ret;
1873 	int orphan = 0;
1874 	size_t count = iov_length(iov, nr_segs);
1875 	int retries = 0;
1876 
1877 	trace_ext3_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
1878 
1879 	if (rw == WRITE) {
1880 		loff_t final_size = offset + count;
1881 
1882 		if (final_size > inode->i_size) {
1883 			/* Credits for sb + inode write */
1884 			handle = ext3_journal_start(inode, 2);
1885 			if (IS_ERR(handle)) {
1886 				ret = PTR_ERR(handle);
1887 				goto out;
1888 			}
1889 			ret = ext3_orphan_add(handle, inode);
1890 			if (ret) {
1891 				ext3_journal_stop(handle);
1892 				goto out;
1893 			}
1894 			orphan = 1;
1895 			ei->i_disksize = inode->i_size;
1896 			ext3_journal_stop(handle);
1897 		}
1898 	}
1899 
1900 retry:
1901 	ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
1902 				 ext3_get_block);
1903 	/*
1904 	 * In case of error extending write may have instantiated a few
1905 	 * blocks outside i_size. Trim these off again.
1906 	 */
1907 	if (unlikely((rw & WRITE) && ret < 0)) {
1908 		loff_t isize = i_size_read(inode);
1909 		loff_t end = offset + iov_length(iov, nr_segs);
1910 
1911 		if (end > isize)
1912 			ext3_truncate_failed_direct_write(inode);
1913 	}
1914 	if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1915 		goto retry;
1916 
1917 	if (orphan) {
1918 		int err;
1919 
1920 		/* Credits for sb + inode write */
1921 		handle = ext3_journal_start(inode, 2);
1922 		if (IS_ERR(handle)) {
1923 			/* This is really bad luck. We've written the data
1924 			 * but cannot extend i_size. Truncate allocated blocks
1925 			 * and pretend the write failed... */
1926 			ext3_truncate_failed_direct_write(inode);
1927 			ret = PTR_ERR(handle);
1928 			goto out;
1929 		}
1930 		if (inode->i_nlink)
1931 			ext3_orphan_del(handle, inode);
1932 		if (ret > 0) {
1933 			loff_t end = offset + ret;
1934 			if (end > inode->i_size) {
1935 				ei->i_disksize = end;
1936 				i_size_write(inode, end);
1937 				/*
1938 				 * We're going to return a positive `ret'
1939 				 * here due to non-zero-length I/O, so there's
1940 				 * no way of reporting error returns from
1941 				 * ext3_mark_inode_dirty() to userspace.  So
1942 				 * ignore it.
1943 				 */
1944 				ext3_mark_inode_dirty(handle, inode);
1945 			}
1946 		}
1947 		err = ext3_journal_stop(handle);
1948 		if (ret == 0)
1949 			ret = err;
1950 	}
1951 out:
1952 	trace_ext3_direct_IO_exit(inode, offset,
1953 				iov_length(iov, nr_segs), rw, ret);
1954 	return ret;
1955 }
1956 
1957 /*
1958  * Pages can be marked dirty completely asynchronously from ext3's journalling
1959  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1960  * much here because ->set_page_dirty is called under VFS locks.  The page is
1961  * not necessarily locked.
1962  *
1963  * We cannot just dirty the page and leave attached buffers clean, because the
1964  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1965  * or jbddirty because all the journalling code will explode.
1966  *
1967  * So what we do is to mark the page "pending dirty" and next time writepage
1968  * is called, propagate that into the buffers appropriately.
1969  */
ext3_journalled_set_page_dirty(struct page * page)1970 static int ext3_journalled_set_page_dirty(struct page *page)
1971 {
1972 	SetPageChecked(page);
1973 	return __set_page_dirty_nobuffers(page);
1974 }
1975 
1976 static const struct address_space_operations ext3_ordered_aops = {
1977 	.readpage		= ext3_readpage,
1978 	.readpages		= ext3_readpages,
1979 	.writepage		= ext3_ordered_writepage,
1980 	.write_begin		= ext3_write_begin,
1981 	.write_end		= ext3_ordered_write_end,
1982 	.bmap			= ext3_bmap,
1983 	.invalidatepage		= ext3_invalidatepage,
1984 	.releasepage		= ext3_releasepage,
1985 	.direct_IO		= ext3_direct_IO,
1986 	.migratepage		= buffer_migrate_page,
1987 	.is_partially_uptodate  = block_is_partially_uptodate,
1988 	.error_remove_page	= generic_error_remove_page,
1989 };
1990 
1991 static const struct address_space_operations ext3_writeback_aops = {
1992 	.readpage		= ext3_readpage,
1993 	.readpages		= ext3_readpages,
1994 	.writepage		= ext3_writeback_writepage,
1995 	.write_begin		= ext3_write_begin,
1996 	.write_end		= ext3_writeback_write_end,
1997 	.bmap			= ext3_bmap,
1998 	.invalidatepage		= ext3_invalidatepage,
1999 	.releasepage		= ext3_releasepage,
2000 	.direct_IO		= ext3_direct_IO,
2001 	.migratepage		= buffer_migrate_page,
2002 	.is_partially_uptodate  = block_is_partially_uptodate,
2003 	.error_remove_page	= generic_error_remove_page,
2004 };
2005 
2006 static const struct address_space_operations ext3_journalled_aops = {
2007 	.readpage		= ext3_readpage,
2008 	.readpages		= ext3_readpages,
2009 	.writepage		= ext3_journalled_writepage,
2010 	.write_begin		= ext3_write_begin,
2011 	.write_end		= ext3_journalled_write_end,
2012 	.set_page_dirty		= ext3_journalled_set_page_dirty,
2013 	.bmap			= ext3_bmap,
2014 	.invalidatepage		= ext3_invalidatepage,
2015 	.releasepage		= ext3_releasepage,
2016 	.is_partially_uptodate  = block_is_partially_uptodate,
2017 	.error_remove_page	= generic_error_remove_page,
2018 };
2019 
ext3_set_aops(struct inode * inode)2020 void ext3_set_aops(struct inode *inode)
2021 {
2022 	if (ext3_should_order_data(inode))
2023 		inode->i_mapping->a_ops = &ext3_ordered_aops;
2024 	else if (ext3_should_writeback_data(inode))
2025 		inode->i_mapping->a_ops = &ext3_writeback_aops;
2026 	else
2027 		inode->i_mapping->a_ops = &ext3_journalled_aops;
2028 }
2029 
2030 /*
2031  * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
2032  * up to the end of the block which corresponds to `from'.
2033  * This required during truncate. We need to physically zero the tail end
2034  * of that block so it doesn't yield old data if the file is later grown.
2035  */
ext3_block_truncate_page(struct inode * inode,loff_t from)2036 static int ext3_block_truncate_page(struct inode *inode, loff_t from)
2037 {
2038 	ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2039 	unsigned offset = from & (PAGE_CACHE_SIZE - 1);
2040 	unsigned blocksize, iblock, length, pos;
2041 	struct page *page;
2042 	handle_t *handle = NULL;
2043 	struct buffer_head *bh;
2044 	int err = 0;
2045 
2046 	/* Truncated on block boundary - nothing to do */
2047 	blocksize = inode->i_sb->s_blocksize;
2048 	if ((from & (blocksize - 1)) == 0)
2049 		return 0;
2050 
2051 	page = grab_cache_page(inode->i_mapping, index);
2052 	if (!page)
2053 		return -ENOMEM;
2054 	length = blocksize - (offset & (blocksize - 1));
2055 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2056 
2057 	if (!page_has_buffers(page))
2058 		create_empty_buffers(page, blocksize, 0);
2059 
2060 	/* Find the buffer that contains "offset" */
2061 	bh = page_buffers(page);
2062 	pos = blocksize;
2063 	while (offset >= pos) {
2064 		bh = bh->b_this_page;
2065 		iblock++;
2066 		pos += blocksize;
2067 	}
2068 
2069 	err = 0;
2070 	if (buffer_freed(bh)) {
2071 		BUFFER_TRACE(bh, "freed: skip");
2072 		goto unlock;
2073 	}
2074 
2075 	if (!buffer_mapped(bh)) {
2076 		BUFFER_TRACE(bh, "unmapped");
2077 		ext3_get_block(inode, iblock, bh, 0);
2078 		/* unmapped? It's a hole - nothing to do */
2079 		if (!buffer_mapped(bh)) {
2080 			BUFFER_TRACE(bh, "still unmapped");
2081 			goto unlock;
2082 		}
2083 	}
2084 
2085 	/* Ok, it's mapped. Make sure it's up-to-date */
2086 	if (PageUptodate(page))
2087 		set_buffer_uptodate(bh);
2088 
2089 	if (!bh_uptodate_or_lock(bh)) {
2090 		err = bh_submit_read(bh);
2091 		/* Uhhuh. Read error. Complain and punt. */
2092 		if (err)
2093 			goto unlock;
2094 	}
2095 
2096 	/* data=writeback mode doesn't need transaction to zero-out data */
2097 	if (!ext3_should_writeback_data(inode)) {
2098 		/* We journal at most one block */
2099 		handle = ext3_journal_start(inode, 1);
2100 		if (IS_ERR(handle)) {
2101 			clear_highpage(page);
2102 			flush_dcache_page(page);
2103 			err = PTR_ERR(handle);
2104 			goto unlock;
2105 		}
2106 	}
2107 
2108 	if (ext3_should_journal_data(inode)) {
2109 		BUFFER_TRACE(bh, "get write access");
2110 		err = ext3_journal_get_write_access(handle, bh);
2111 		if (err)
2112 			goto stop;
2113 	}
2114 
2115 	zero_user(page, offset, length);
2116 	BUFFER_TRACE(bh, "zeroed end of block");
2117 
2118 	err = 0;
2119 	if (ext3_should_journal_data(inode)) {
2120 		err = ext3_journal_dirty_metadata(handle, bh);
2121 	} else {
2122 		if (ext3_should_order_data(inode))
2123 			err = ext3_journal_dirty_data(handle, bh);
2124 		mark_buffer_dirty(bh);
2125 	}
2126 stop:
2127 	if (handle)
2128 		ext3_journal_stop(handle);
2129 
2130 unlock:
2131 	unlock_page(page);
2132 	page_cache_release(page);
2133 	return err;
2134 }
2135 
2136 /*
2137  * Probably it should be a library function... search for first non-zero word
2138  * or memcmp with zero_page, whatever is better for particular architecture.
2139  * Linus?
2140  */
all_zeroes(__le32 * p,__le32 * q)2141 static inline int all_zeroes(__le32 *p, __le32 *q)
2142 {
2143 	while (p < q)
2144 		if (*p++)
2145 			return 0;
2146 	return 1;
2147 }
2148 
2149 /**
2150  *	ext3_find_shared - find the indirect blocks for partial truncation.
2151  *	@inode:	  inode in question
2152  *	@depth:	  depth of the affected branch
2153  *	@offsets: offsets of pointers in that branch (see ext3_block_to_path)
2154  *	@chain:	  place to store the pointers to partial indirect blocks
2155  *	@top:	  place to the (detached) top of branch
2156  *
2157  *	This is a helper function used by ext3_truncate().
2158  *
2159  *	When we do truncate() we may have to clean the ends of several
2160  *	indirect blocks but leave the blocks themselves alive. Block is
2161  *	partially truncated if some data below the new i_size is referred
2162  *	from it (and it is on the path to the first completely truncated
2163  *	data block, indeed).  We have to free the top of that path along
2164  *	with everything to the right of the path. Since no allocation
2165  *	past the truncation point is possible until ext3_truncate()
2166  *	finishes, we may safely do the latter, but top of branch may
2167  *	require special attention - pageout below the truncation point
2168  *	might try to populate it.
2169  *
2170  *	We atomically detach the top of branch from the tree, store the
2171  *	block number of its root in *@top, pointers to buffer_heads of
2172  *	partially truncated blocks - in @chain[].bh and pointers to
2173  *	their last elements that should not be removed - in
2174  *	@chain[].p. Return value is the pointer to last filled element
2175  *	of @chain.
2176  *
2177  *	The work left to caller to do the actual freeing of subtrees:
2178  *		a) free the subtree starting from *@top
2179  *		b) free the subtrees whose roots are stored in
2180  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
2181  *		c) free the subtrees growing from the inode past the @chain[0].
2182  *			(no partially truncated stuff there).  */
2183 
ext3_find_shared(struct inode * inode,int depth,int offsets[4],Indirect chain[4],__le32 * top)2184 static Indirect *ext3_find_shared(struct inode *inode, int depth,
2185 			int offsets[4], Indirect chain[4], __le32 *top)
2186 {
2187 	Indirect *partial, *p;
2188 	int k, err;
2189 
2190 	*top = 0;
2191 	/* Make k index the deepest non-null offset + 1 */
2192 	for (k = depth; k > 1 && !offsets[k-1]; k--)
2193 		;
2194 	partial = ext3_get_branch(inode, k, offsets, chain, &err);
2195 	/* Writer: pointers */
2196 	if (!partial)
2197 		partial = chain + k-1;
2198 	/*
2199 	 * If the branch acquired continuation since we've looked at it -
2200 	 * fine, it should all survive and (new) top doesn't belong to us.
2201 	 */
2202 	if (!partial->key && *partial->p)
2203 		/* Writer: end */
2204 		goto no_top;
2205 	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2206 		;
2207 	/*
2208 	 * OK, we've found the last block that must survive. The rest of our
2209 	 * branch should be detached before unlocking. However, if that rest
2210 	 * of branch is all ours and does not grow immediately from the inode
2211 	 * it's easier to cheat and just decrement partial->p.
2212 	 */
2213 	if (p == chain + k - 1 && p > chain) {
2214 		p->p--;
2215 	} else {
2216 		*top = *p->p;
2217 		/* Nope, don't do this in ext3.  Must leave the tree intact */
2218 #if 0
2219 		*p->p = 0;
2220 #endif
2221 	}
2222 	/* Writer: end */
2223 
2224 	while(partial > p) {
2225 		brelse(partial->bh);
2226 		partial--;
2227 	}
2228 no_top:
2229 	return partial;
2230 }
2231 
2232 /*
2233  * Zero a number of block pointers in either an inode or an indirect block.
2234  * If we restart the transaction we must again get write access to the
2235  * indirect block for further modification.
2236  *
2237  * We release `count' blocks on disk, but (last - first) may be greater
2238  * than `count' because there can be holes in there.
2239  */
ext3_clear_blocks(handle_t * handle,struct inode * inode,struct buffer_head * bh,ext3_fsblk_t block_to_free,unsigned long count,__le32 * first,__le32 * last)2240 static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
2241 		struct buffer_head *bh, ext3_fsblk_t block_to_free,
2242 		unsigned long count, __le32 *first, __le32 *last)
2243 {
2244 	__le32 *p;
2245 	if (try_to_extend_transaction(handle, inode)) {
2246 		if (bh) {
2247 			BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2248 			if (ext3_journal_dirty_metadata(handle, bh))
2249 				return;
2250 		}
2251 		ext3_mark_inode_dirty(handle, inode);
2252 		truncate_restart_transaction(handle, inode);
2253 		if (bh) {
2254 			BUFFER_TRACE(bh, "retaking write access");
2255 			if (ext3_journal_get_write_access(handle, bh))
2256 				return;
2257 		}
2258 	}
2259 
2260 	/*
2261 	 * Any buffers which are on the journal will be in memory. We find
2262 	 * them on the hash table so journal_revoke() will run journal_forget()
2263 	 * on them.  We've already detached each block from the file, so
2264 	 * bforget() in journal_forget() should be safe.
2265 	 *
2266 	 * AKPM: turn on bforget in journal_forget()!!!
2267 	 */
2268 	for (p = first; p < last; p++) {
2269 		u32 nr = le32_to_cpu(*p);
2270 		if (nr) {
2271 			struct buffer_head *bh;
2272 
2273 			*p = 0;
2274 			bh = sb_find_get_block(inode->i_sb, nr);
2275 			ext3_forget(handle, 0, inode, bh, nr);
2276 		}
2277 	}
2278 
2279 	ext3_free_blocks(handle, inode, block_to_free, count);
2280 }
2281 
2282 /**
2283  * ext3_free_data - free a list of data blocks
2284  * @handle:	handle for this transaction
2285  * @inode:	inode we are dealing with
2286  * @this_bh:	indirect buffer_head which contains *@first and *@last
2287  * @first:	array of block numbers
2288  * @last:	points immediately past the end of array
2289  *
2290  * We are freeing all blocks referred from that array (numbers are stored as
2291  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2292  *
2293  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2294  * blocks are contiguous then releasing them at one time will only affect one
2295  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2296  * actually use a lot of journal space.
2297  *
2298  * @this_bh will be %NULL if @first and @last point into the inode's direct
2299  * block pointers.
2300  */
ext3_free_data(handle_t * handle,struct inode * inode,struct buffer_head * this_bh,__le32 * first,__le32 * last)2301 static void ext3_free_data(handle_t *handle, struct inode *inode,
2302 			   struct buffer_head *this_bh,
2303 			   __le32 *first, __le32 *last)
2304 {
2305 	ext3_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2306 	unsigned long count = 0;	    /* Number of blocks in the run */
2307 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
2308 					       corresponding to
2309 					       block_to_free */
2310 	ext3_fsblk_t nr;		    /* Current block # */
2311 	__le32 *p;			    /* Pointer into inode/ind
2312 					       for current block */
2313 	int err;
2314 
2315 	if (this_bh) {				/* For indirect block */
2316 		BUFFER_TRACE(this_bh, "get_write_access");
2317 		err = ext3_journal_get_write_access(handle, this_bh);
2318 		/* Important: if we can't update the indirect pointers
2319 		 * to the blocks, we can't free them. */
2320 		if (err)
2321 			return;
2322 	}
2323 
2324 	for (p = first; p < last; p++) {
2325 		nr = le32_to_cpu(*p);
2326 		if (nr) {
2327 			/* accumulate blocks to free if they're contiguous */
2328 			if (count == 0) {
2329 				block_to_free = nr;
2330 				block_to_free_p = p;
2331 				count = 1;
2332 			} else if (nr == block_to_free + count) {
2333 				count++;
2334 			} else {
2335 				ext3_clear_blocks(handle, inode, this_bh,
2336 						  block_to_free,
2337 						  count, block_to_free_p, p);
2338 				block_to_free = nr;
2339 				block_to_free_p = p;
2340 				count = 1;
2341 			}
2342 		}
2343 	}
2344 
2345 	if (count > 0)
2346 		ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2347 				  count, block_to_free_p, p);
2348 
2349 	if (this_bh) {
2350 		BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
2351 
2352 		/*
2353 		 * The buffer head should have an attached journal head at this
2354 		 * point. However, if the data is corrupted and an indirect
2355 		 * block pointed to itself, it would have been detached when
2356 		 * the block was cleared. Check for this instead of OOPSing.
2357 		 */
2358 		if (bh2jh(this_bh))
2359 			ext3_journal_dirty_metadata(handle, this_bh);
2360 		else
2361 			ext3_error(inode->i_sb, "ext3_free_data",
2362 				   "circular indirect block detected, "
2363 				   "inode=%lu, block=%llu",
2364 				   inode->i_ino,
2365 				   (unsigned long long)this_bh->b_blocknr);
2366 	}
2367 }
2368 
2369 /**
2370  *	ext3_free_branches - free an array of branches
2371  *	@handle: JBD handle for this transaction
2372  *	@inode:	inode we are dealing with
2373  *	@parent_bh: the buffer_head which contains *@first and *@last
2374  *	@first:	array of block numbers
2375  *	@last:	pointer immediately past the end of array
2376  *	@depth:	depth of the branches to free
2377  *
2378  *	We are freeing all blocks referred from these branches (numbers are
2379  *	stored as little-endian 32-bit) and updating @inode->i_blocks
2380  *	appropriately.
2381  */
ext3_free_branches(handle_t * handle,struct inode * inode,struct buffer_head * parent_bh,__le32 * first,__le32 * last,int depth)2382 static void ext3_free_branches(handle_t *handle, struct inode *inode,
2383 			       struct buffer_head *parent_bh,
2384 			       __le32 *first, __le32 *last, int depth)
2385 {
2386 	ext3_fsblk_t nr;
2387 	__le32 *p;
2388 
2389 	if (is_handle_aborted(handle))
2390 		return;
2391 
2392 	if (depth--) {
2393 		struct buffer_head *bh;
2394 		int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2395 		p = last;
2396 		while (--p >= first) {
2397 			nr = le32_to_cpu(*p);
2398 			if (!nr)
2399 				continue;		/* A hole */
2400 
2401 			/* Go read the buffer for the next level down */
2402 			bh = sb_bread(inode->i_sb, nr);
2403 
2404 			/*
2405 			 * A read failure? Report error and clear slot
2406 			 * (should be rare).
2407 			 */
2408 			if (!bh) {
2409 				ext3_error(inode->i_sb, "ext3_free_branches",
2410 					   "Read failure, inode=%lu, block="E3FSBLK,
2411 					   inode->i_ino, nr);
2412 				continue;
2413 			}
2414 
2415 			/* This zaps the entire block.  Bottom up. */
2416 			BUFFER_TRACE(bh, "free child branches");
2417 			ext3_free_branches(handle, inode, bh,
2418 					   (__le32*)bh->b_data,
2419 					   (__le32*)bh->b_data + addr_per_block,
2420 					   depth);
2421 
2422 			/*
2423 			 * Everything below this this pointer has been
2424 			 * released.  Now let this top-of-subtree go.
2425 			 *
2426 			 * We want the freeing of this indirect block to be
2427 			 * atomic in the journal with the updating of the
2428 			 * bitmap block which owns it.  So make some room in
2429 			 * the journal.
2430 			 *
2431 			 * We zero the parent pointer *after* freeing its
2432 			 * pointee in the bitmaps, so if extend_transaction()
2433 			 * for some reason fails to put the bitmap changes and
2434 			 * the release into the same transaction, recovery
2435 			 * will merely complain about releasing a free block,
2436 			 * rather than leaking blocks.
2437 			 */
2438 			if (is_handle_aborted(handle))
2439 				return;
2440 			if (try_to_extend_transaction(handle, inode)) {
2441 				ext3_mark_inode_dirty(handle, inode);
2442 				truncate_restart_transaction(handle, inode);
2443 			}
2444 
2445 			/*
2446 			 * We've probably journalled the indirect block several
2447 			 * times during the truncate.  But it's no longer
2448 			 * needed and we now drop it from the transaction via
2449 			 * journal_revoke().
2450 			 *
2451 			 * That's easy if it's exclusively part of this
2452 			 * transaction.  But if it's part of the committing
2453 			 * transaction then journal_forget() will simply
2454 			 * brelse() it.  That means that if the underlying
2455 			 * block is reallocated in ext3_get_block(),
2456 			 * unmap_underlying_metadata() will find this block
2457 			 * and will try to get rid of it.  damn, damn. Thus
2458 			 * we don't allow a block to be reallocated until
2459 			 * a transaction freeing it has fully committed.
2460 			 *
2461 			 * We also have to make sure journal replay after a
2462 			 * crash does not overwrite non-journaled data blocks
2463 			 * with old metadata when the block got reallocated for
2464 			 * data.  Thus we have to store a revoke record for a
2465 			 * block in the same transaction in which we free the
2466 			 * block.
2467 			 */
2468 			ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2469 
2470 			ext3_free_blocks(handle, inode, nr, 1);
2471 
2472 			if (parent_bh) {
2473 				/*
2474 				 * The block which we have just freed is
2475 				 * pointed to by an indirect block: journal it
2476 				 */
2477 				BUFFER_TRACE(parent_bh, "get_write_access");
2478 				if (!ext3_journal_get_write_access(handle,
2479 								   parent_bh)){
2480 					*p = 0;
2481 					BUFFER_TRACE(parent_bh,
2482 					"call ext3_journal_dirty_metadata");
2483 					ext3_journal_dirty_metadata(handle,
2484 								    parent_bh);
2485 				}
2486 			}
2487 		}
2488 	} else {
2489 		/* We have reached the bottom of the tree. */
2490 		BUFFER_TRACE(parent_bh, "free data blocks");
2491 		ext3_free_data(handle, inode, parent_bh, first, last);
2492 	}
2493 }
2494 
ext3_can_truncate(struct inode * inode)2495 int ext3_can_truncate(struct inode *inode)
2496 {
2497 	if (S_ISREG(inode->i_mode))
2498 		return 1;
2499 	if (S_ISDIR(inode->i_mode))
2500 		return 1;
2501 	if (S_ISLNK(inode->i_mode))
2502 		return !ext3_inode_is_fast_symlink(inode);
2503 	return 0;
2504 }
2505 
2506 /*
2507  * ext3_truncate()
2508  *
2509  * We block out ext3_get_block() block instantiations across the entire
2510  * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2511  * simultaneously on behalf of the same inode.
2512  *
2513  * As we work through the truncate and commit bits of it to the journal there
2514  * is one core, guiding principle: the file's tree must always be consistent on
2515  * disk.  We must be able to restart the truncate after a crash.
2516  *
2517  * The file's tree may be transiently inconsistent in memory (although it
2518  * probably isn't), but whenever we close off and commit a journal transaction,
2519  * the contents of (the filesystem + the journal) must be consistent and
2520  * restartable.  It's pretty simple, really: bottom up, right to left (although
2521  * left-to-right works OK too).
2522  *
2523  * Note that at recovery time, journal replay occurs *before* the restart of
2524  * truncate against the orphan inode list.
2525  *
2526  * The committed inode has the new, desired i_size (which is the same as
2527  * i_disksize in this case).  After a crash, ext3_orphan_cleanup() will see
2528  * that this inode's truncate did not complete and it will again call
2529  * ext3_truncate() to have another go.  So there will be instantiated blocks
2530  * to the right of the truncation point in a crashed ext3 filesystem.  But
2531  * that's fine - as long as they are linked from the inode, the post-crash
2532  * ext3_truncate() run will find them and release them.
2533  */
ext3_truncate(struct inode * inode)2534 void ext3_truncate(struct inode *inode)
2535 {
2536 	handle_t *handle;
2537 	struct ext3_inode_info *ei = EXT3_I(inode);
2538 	__le32 *i_data = ei->i_data;
2539 	int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2540 	int offsets[4];
2541 	Indirect chain[4];
2542 	Indirect *partial;
2543 	__le32 nr = 0;
2544 	int n;
2545 	long last_block;
2546 	unsigned blocksize = inode->i_sb->s_blocksize;
2547 
2548 	trace_ext3_truncate_enter(inode);
2549 
2550 	if (!ext3_can_truncate(inode))
2551 		goto out_notrans;
2552 
2553 	if (inode->i_size == 0 && ext3_should_writeback_data(inode))
2554 		ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
2555 
2556 	handle = start_transaction(inode);
2557 	if (IS_ERR(handle))
2558 		goto out_notrans;
2559 
2560 	last_block = (inode->i_size + blocksize-1)
2561 					>> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2562 	n = ext3_block_to_path(inode, last_block, offsets, NULL);
2563 	if (n == 0)
2564 		goto out_stop;	/* error */
2565 
2566 	/*
2567 	 * OK.  This truncate is going to happen.  We add the inode to the
2568 	 * orphan list, so that if this truncate spans multiple transactions,
2569 	 * and we crash, we will resume the truncate when the filesystem
2570 	 * recovers.  It also marks the inode dirty, to catch the new size.
2571 	 *
2572 	 * Implication: the file must always be in a sane, consistent
2573 	 * truncatable state while each transaction commits.
2574 	 */
2575 	if (ext3_orphan_add(handle, inode))
2576 		goto out_stop;
2577 
2578 	/*
2579 	 * The orphan list entry will now protect us from any crash which
2580 	 * occurs before the truncate completes, so it is now safe to propagate
2581 	 * the new, shorter inode size (held for now in i_size) into the
2582 	 * on-disk inode. We do this via i_disksize, which is the value which
2583 	 * ext3 *really* writes onto the disk inode.
2584 	 */
2585 	ei->i_disksize = inode->i_size;
2586 
2587 	/*
2588 	 * From here we block out all ext3_get_block() callers who want to
2589 	 * modify the block allocation tree.
2590 	 */
2591 	mutex_lock(&ei->truncate_mutex);
2592 
2593 	if (n == 1) {		/* direct blocks */
2594 		ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2595 			       i_data + EXT3_NDIR_BLOCKS);
2596 		goto do_indirects;
2597 	}
2598 
2599 	partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2600 	/* Kill the top of shared branch (not detached) */
2601 	if (nr) {
2602 		if (partial == chain) {
2603 			/* Shared branch grows from the inode */
2604 			ext3_free_branches(handle, inode, NULL,
2605 					   &nr, &nr+1, (chain+n-1) - partial);
2606 			*partial->p = 0;
2607 			/*
2608 			 * We mark the inode dirty prior to restart,
2609 			 * and prior to stop.  No need for it here.
2610 			 */
2611 		} else {
2612 			/* Shared branch grows from an indirect block */
2613 			ext3_free_branches(handle, inode, partial->bh,
2614 					partial->p,
2615 					partial->p+1, (chain+n-1) - partial);
2616 		}
2617 	}
2618 	/* Clear the ends of indirect blocks on the shared branch */
2619 	while (partial > chain) {
2620 		ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2621 				   (__le32*)partial->bh->b_data+addr_per_block,
2622 				   (chain+n-1) - partial);
2623 		BUFFER_TRACE(partial->bh, "call brelse");
2624 		brelse (partial->bh);
2625 		partial--;
2626 	}
2627 do_indirects:
2628 	/* Kill the remaining (whole) subtrees */
2629 	switch (offsets[0]) {
2630 	default:
2631 		nr = i_data[EXT3_IND_BLOCK];
2632 		if (nr) {
2633 			ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2634 			i_data[EXT3_IND_BLOCK] = 0;
2635 		}
2636 	case EXT3_IND_BLOCK:
2637 		nr = i_data[EXT3_DIND_BLOCK];
2638 		if (nr) {
2639 			ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2640 			i_data[EXT3_DIND_BLOCK] = 0;
2641 		}
2642 	case EXT3_DIND_BLOCK:
2643 		nr = i_data[EXT3_TIND_BLOCK];
2644 		if (nr) {
2645 			ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2646 			i_data[EXT3_TIND_BLOCK] = 0;
2647 		}
2648 	case EXT3_TIND_BLOCK:
2649 		;
2650 	}
2651 
2652 	ext3_discard_reservation(inode);
2653 
2654 	mutex_unlock(&ei->truncate_mutex);
2655 	inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2656 	ext3_mark_inode_dirty(handle, inode);
2657 
2658 	/*
2659 	 * In a multi-transaction truncate, we only make the final transaction
2660 	 * synchronous
2661 	 */
2662 	if (IS_SYNC(inode))
2663 		handle->h_sync = 1;
2664 out_stop:
2665 	/*
2666 	 * If this was a simple ftruncate(), and the file will remain alive
2667 	 * then we need to clear up the orphan record which we created above.
2668 	 * However, if this was a real unlink then we were called by
2669 	 * ext3_evict_inode(), and we allow that function to clean up the
2670 	 * orphan info for us.
2671 	 */
2672 	if (inode->i_nlink)
2673 		ext3_orphan_del(handle, inode);
2674 
2675 	ext3_journal_stop(handle);
2676 	trace_ext3_truncate_exit(inode);
2677 	return;
2678 out_notrans:
2679 	/*
2680 	 * Delete the inode from orphan list so that it doesn't stay there
2681 	 * forever and trigger assertion on umount.
2682 	 */
2683 	if (inode->i_nlink)
2684 		ext3_orphan_del(NULL, inode);
2685 	trace_ext3_truncate_exit(inode);
2686 }
2687 
ext3_get_inode_block(struct super_block * sb,unsigned long ino,struct ext3_iloc * iloc)2688 static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
2689 		unsigned long ino, struct ext3_iloc *iloc)
2690 {
2691 	unsigned long block_group;
2692 	unsigned long offset;
2693 	ext3_fsblk_t block;
2694 	struct ext3_group_desc *gdp;
2695 
2696 	if (!ext3_valid_inum(sb, ino)) {
2697 		/*
2698 		 * This error is already checked for in namei.c unless we are
2699 		 * looking at an NFS filehandle, in which case no error
2700 		 * report is needed
2701 		 */
2702 		return 0;
2703 	}
2704 
2705 	block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2706 	gdp = ext3_get_group_desc(sb, block_group, NULL);
2707 	if (!gdp)
2708 		return 0;
2709 	/*
2710 	 * Figure out the offset within the block group inode table
2711 	 */
2712 	offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2713 		EXT3_INODE_SIZE(sb);
2714 	block = le32_to_cpu(gdp->bg_inode_table) +
2715 		(offset >> EXT3_BLOCK_SIZE_BITS(sb));
2716 
2717 	iloc->block_group = block_group;
2718 	iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2719 	return block;
2720 }
2721 
2722 /*
2723  * ext3_get_inode_loc returns with an extra refcount against the inode's
2724  * underlying buffer_head on success. If 'in_mem' is true, we have all
2725  * data in memory that is needed to recreate the on-disk version of this
2726  * inode.
2727  */
__ext3_get_inode_loc(struct inode * inode,struct ext3_iloc * iloc,int in_mem)2728 static int __ext3_get_inode_loc(struct inode *inode,
2729 				struct ext3_iloc *iloc, int in_mem)
2730 {
2731 	ext3_fsblk_t block;
2732 	struct buffer_head *bh;
2733 
2734 	block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2735 	if (!block)
2736 		return -EIO;
2737 
2738 	bh = sb_getblk(inode->i_sb, block);
2739 	if (unlikely(!bh)) {
2740 		ext3_error (inode->i_sb, "ext3_get_inode_loc",
2741 				"unable to read inode block - "
2742 				"inode=%lu, block="E3FSBLK,
2743 				 inode->i_ino, block);
2744 		return -ENOMEM;
2745 	}
2746 	if (!buffer_uptodate(bh)) {
2747 		lock_buffer(bh);
2748 
2749 		/*
2750 		 * If the buffer has the write error flag, we have failed
2751 		 * to write out another inode in the same block.  In this
2752 		 * case, we don't have to read the block because we may
2753 		 * read the old inode data successfully.
2754 		 */
2755 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
2756 			set_buffer_uptodate(bh);
2757 
2758 		if (buffer_uptodate(bh)) {
2759 			/* someone brought it uptodate while we waited */
2760 			unlock_buffer(bh);
2761 			goto has_buffer;
2762 		}
2763 
2764 		/*
2765 		 * If we have all information of the inode in memory and this
2766 		 * is the only valid inode in the block, we need not read the
2767 		 * block.
2768 		 */
2769 		if (in_mem) {
2770 			struct buffer_head *bitmap_bh;
2771 			struct ext3_group_desc *desc;
2772 			int inodes_per_buffer;
2773 			int inode_offset, i;
2774 			int block_group;
2775 			int start;
2776 
2777 			block_group = (inode->i_ino - 1) /
2778 					EXT3_INODES_PER_GROUP(inode->i_sb);
2779 			inodes_per_buffer = bh->b_size /
2780 				EXT3_INODE_SIZE(inode->i_sb);
2781 			inode_offset = ((inode->i_ino - 1) %
2782 					EXT3_INODES_PER_GROUP(inode->i_sb));
2783 			start = inode_offset & ~(inodes_per_buffer - 1);
2784 
2785 			/* Is the inode bitmap in cache? */
2786 			desc = ext3_get_group_desc(inode->i_sb,
2787 						block_group, NULL);
2788 			if (!desc)
2789 				goto make_io;
2790 
2791 			bitmap_bh = sb_getblk(inode->i_sb,
2792 					le32_to_cpu(desc->bg_inode_bitmap));
2793 			if (unlikely(!bitmap_bh))
2794 				goto make_io;
2795 
2796 			/*
2797 			 * If the inode bitmap isn't in cache then the
2798 			 * optimisation may end up performing two reads instead
2799 			 * of one, so skip it.
2800 			 */
2801 			if (!buffer_uptodate(bitmap_bh)) {
2802 				brelse(bitmap_bh);
2803 				goto make_io;
2804 			}
2805 			for (i = start; i < start + inodes_per_buffer; i++) {
2806 				if (i == inode_offset)
2807 					continue;
2808 				if (ext3_test_bit(i, bitmap_bh->b_data))
2809 					break;
2810 			}
2811 			brelse(bitmap_bh);
2812 			if (i == start + inodes_per_buffer) {
2813 				/* all other inodes are free, so skip I/O */
2814 				memset(bh->b_data, 0, bh->b_size);
2815 				set_buffer_uptodate(bh);
2816 				unlock_buffer(bh);
2817 				goto has_buffer;
2818 			}
2819 		}
2820 
2821 make_io:
2822 		/*
2823 		 * There are other valid inodes in the buffer, this inode
2824 		 * has in-inode xattrs, or we don't have this inode in memory.
2825 		 * Read the block from disk.
2826 		 */
2827 		trace_ext3_load_inode(inode);
2828 		get_bh(bh);
2829 		bh->b_end_io = end_buffer_read_sync;
2830 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
2831 		wait_on_buffer(bh);
2832 		if (!buffer_uptodate(bh)) {
2833 			ext3_error(inode->i_sb, "ext3_get_inode_loc",
2834 					"unable to read inode block - "
2835 					"inode=%lu, block="E3FSBLK,
2836 					inode->i_ino, block);
2837 			brelse(bh);
2838 			return -EIO;
2839 		}
2840 	}
2841 has_buffer:
2842 	iloc->bh = bh;
2843 	return 0;
2844 }
2845 
ext3_get_inode_loc(struct inode * inode,struct ext3_iloc * iloc)2846 int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2847 {
2848 	/* We have all inode data except xattrs in memory here. */
2849 	return __ext3_get_inode_loc(inode, iloc,
2850 		!ext3_test_inode_state(inode, EXT3_STATE_XATTR));
2851 }
2852 
ext3_set_inode_flags(struct inode * inode)2853 void ext3_set_inode_flags(struct inode *inode)
2854 {
2855 	unsigned int flags = EXT3_I(inode)->i_flags;
2856 
2857 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2858 	if (flags & EXT3_SYNC_FL)
2859 		inode->i_flags |= S_SYNC;
2860 	if (flags & EXT3_APPEND_FL)
2861 		inode->i_flags |= S_APPEND;
2862 	if (flags & EXT3_IMMUTABLE_FL)
2863 		inode->i_flags |= S_IMMUTABLE;
2864 	if (flags & EXT3_NOATIME_FL)
2865 		inode->i_flags |= S_NOATIME;
2866 	if (flags & EXT3_DIRSYNC_FL)
2867 		inode->i_flags |= S_DIRSYNC;
2868 }
2869 
2870 /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
ext3_get_inode_flags(struct ext3_inode_info * ei)2871 void ext3_get_inode_flags(struct ext3_inode_info *ei)
2872 {
2873 	unsigned int flags = ei->vfs_inode.i_flags;
2874 
2875 	ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2876 			EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2877 	if (flags & S_SYNC)
2878 		ei->i_flags |= EXT3_SYNC_FL;
2879 	if (flags & S_APPEND)
2880 		ei->i_flags |= EXT3_APPEND_FL;
2881 	if (flags & S_IMMUTABLE)
2882 		ei->i_flags |= EXT3_IMMUTABLE_FL;
2883 	if (flags & S_NOATIME)
2884 		ei->i_flags |= EXT3_NOATIME_FL;
2885 	if (flags & S_DIRSYNC)
2886 		ei->i_flags |= EXT3_DIRSYNC_FL;
2887 }
2888 
ext3_iget(struct super_block * sb,unsigned long ino)2889 struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
2890 {
2891 	struct ext3_iloc iloc;
2892 	struct ext3_inode *raw_inode;
2893 	struct ext3_inode_info *ei;
2894 	struct buffer_head *bh;
2895 	struct inode *inode;
2896 	journal_t *journal = EXT3_SB(sb)->s_journal;
2897 	transaction_t *transaction;
2898 	long ret;
2899 	int block;
2900 	uid_t i_uid;
2901 	gid_t i_gid;
2902 
2903 	inode = iget_locked(sb, ino);
2904 	if (!inode)
2905 		return ERR_PTR(-ENOMEM);
2906 	if (!(inode->i_state & I_NEW))
2907 		return inode;
2908 
2909 	ei = EXT3_I(inode);
2910 	ei->i_block_alloc_info = NULL;
2911 
2912 	ret = __ext3_get_inode_loc(inode, &iloc, 0);
2913 	if (ret < 0)
2914 		goto bad_inode;
2915 	bh = iloc.bh;
2916 	raw_inode = ext3_raw_inode(&iloc);
2917 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2918 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2919 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2920 	if(!(test_opt (inode->i_sb, NO_UID32))) {
2921 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2922 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2923 	}
2924 	i_uid_write(inode, i_uid);
2925 	i_gid_write(inode, i_gid);
2926 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
2927 	inode->i_size = le32_to_cpu(raw_inode->i_size);
2928 	inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2929 	inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2930 	inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
2931 	inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2932 
2933 	ei->i_state_flags = 0;
2934 	ei->i_dir_start_lookup = 0;
2935 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2936 	/* We now have enough fields to check if the inode was active or not.
2937 	 * This is needed because nfsd might try to access dead inodes
2938 	 * the test is that same one that e2fsck uses
2939 	 * NeilBrown 1999oct15
2940 	 */
2941 	if (inode->i_nlink == 0) {
2942 		if (inode->i_mode == 0 ||
2943 		    !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2944 			/* this inode is deleted */
2945 			brelse (bh);
2946 			ret = -ESTALE;
2947 			goto bad_inode;
2948 		}
2949 		/* The only unlinked inodes we let through here have
2950 		 * valid i_mode and are being read by the orphan
2951 		 * recovery code: that's fine, we're about to complete
2952 		 * the process of deleting those. */
2953 	}
2954 	inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2955 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2956 #ifdef EXT3_FRAGMENTS
2957 	ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2958 	ei->i_frag_no = raw_inode->i_frag;
2959 	ei->i_frag_size = raw_inode->i_fsize;
2960 #endif
2961 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2962 	if (!S_ISREG(inode->i_mode)) {
2963 		ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2964 	} else {
2965 		inode->i_size |=
2966 			((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2967 	}
2968 	ei->i_disksize = inode->i_size;
2969 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2970 	ei->i_block_group = iloc.block_group;
2971 	/*
2972 	 * NOTE! The in-memory inode i_data array is in little-endian order
2973 	 * even on big-endian machines: we do NOT byteswap the block numbers!
2974 	 */
2975 	for (block = 0; block < EXT3_N_BLOCKS; block++)
2976 		ei->i_data[block] = raw_inode->i_block[block];
2977 	INIT_LIST_HEAD(&ei->i_orphan);
2978 
2979 	/*
2980 	 * Set transaction id's of transactions that have to be committed
2981 	 * to finish f[data]sync. We set them to currently running transaction
2982 	 * as we cannot be sure that the inode or some of its metadata isn't
2983 	 * part of the transaction - the inode could have been reclaimed and
2984 	 * now it is reread from disk.
2985 	 */
2986 	if (journal) {
2987 		tid_t tid;
2988 
2989 		spin_lock(&journal->j_state_lock);
2990 		if (journal->j_running_transaction)
2991 			transaction = journal->j_running_transaction;
2992 		else
2993 			transaction = journal->j_committing_transaction;
2994 		if (transaction)
2995 			tid = transaction->t_tid;
2996 		else
2997 			tid = journal->j_commit_sequence;
2998 		spin_unlock(&journal->j_state_lock);
2999 		atomic_set(&ei->i_sync_tid, tid);
3000 		atomic_set(&ei->i_datasync_tid, tid);
3001 	}
3002 
3003 	if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
3004 	    EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
3005 		/*
3006 		 * When mke2fs creates big inodes it does not zero out
3007 		 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
3008 		 * so ignore those first few inodes.
3009 		 */
3010 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3011 		if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3012 		    EXT3_INODE_SIZE(inode->i_sb)) {
3013 			brelse (bh);
3014 			ret = -EIO;
3015 			goto bad_inode;
3016 		}
3017 		if (ei->i_extra_isize == 0) {
3018 			/* The extra space is currently unused. Use it. */
3019 			ei->i_extra_isize = sizeof(struct ext3_inode) -
3020 					    EXT3_GOOD_OLD_INODE_SIZE;
3021 		} else {
3022 			__le32 *magic = (void *)raw_inode +
3023 					EXT3_GOOD_OLD_INODE_SIZE +
3024 					ei->i_extra_isize;
3025 			if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
3026 				 ext3_set_inode_state(inode, EXT3_STATE_XATTR);
3027 		}
3028 	} else
3029 		ei->i_extra_isize = 0;
3030 
3031 	if (S_ISREG(inode->i_mode)) {
3032 		inode->i_op = &ext3_file_inode_operations;
3033 		inode->i_fop = &ext3_file_operations;
3034 		ext3_set_aops(inode);
3035 	} else if (S_ISDIR(inode->i_mode)) {
3036 		inode->i_op = &ext3_dir_inode_operations;
3037 		inode->i_fop = &ext3_dir_operations;
3038 	} else if (S_ISLNK(inode->i_mode)) {
3039 		if (ext3_inode_is_fast_symlink(inode)) {
3040 			inode->i_op = &ext3_fast_symlink_inode_operations;
3041 			nd_terminate_link(ei->i_data, inode->i_size,
3042 				sizeof(ei->i_data) - 1);
3043 		} else {
3044 			inode->i_op = &ext3_symlink_inode_operations;
3045 			ext3_set_aops(inode);
3046 		}
3047 	} else {
3048 		inode->i_op = &ext3_special_inode_operations;
3049 		if (raw_inode->i_block[0])
3050 			init_special_inode(inode, inode->i_mode,
3051 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3052 		else
3053 			init_special_inode(inode, inode->i_mode,
3054 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3055 	}
3056 	brelse (iloc.bh);
3057 	ext3_set_inode_flags(inode);
3058 	unlock_new_inode(inode);
3059 	return inode;
3060 
3061 bad_inode:
3062 	iget_failed(inode);
3063 	return ERR_PTR(ret);
3064 }
3065 
3066 /*
3067  * Post the struct inode info into an on-disk inode location in the
3068  * buffer-cache.  This gobbles the caller's reference to the
3069  * buffer_head in the inode location struct.
3070  *
3071  * The caller must have write access to iloc->bh.
3072  */
ext3_do_update_inode(handle_t * handle,struct inode * inode,struct ext3_iloc * iloc)3073 static int ext3_do_update_inode(handle_t *handle,
3074 				struct inode *inode,
3075 				struct ext3_iloc *iloc)
3076 {
3077 	struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
3078 	struct ext3_inode_info *ei = EXT3_I(inode);
3079 	struct buffer_head *bh = iloc->bh;
3080 	int err = 0, rc, block;
3081 	int need_datasync = 0;
3082 	__le32 disksize;
3083 	uid_t i_uid;
3084 	gid_t i_gid;
3085 
3086 again:
3087 	/* we can't allow multiple procs in here at once, its a bit racey */
3088 	lock_buffer(bh);
3089 
3090 	/* For fields not not tracking in the in-memory inode,
3091 	 * initialise them to zero for new inodes. */
3092 	if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
3093 		memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
3094 
3095 	ext3_get_inode_flags(ei);
3096 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3097 	i_uid = i_uid_read(inode);
3098 	i_gid = i_gid_read(inode);
3099 	if(!(test_opt(inode->i_sb, NO_UID32))) {
3100 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
3101 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
3102 /*
3103  * Fix up interoperability with old kernels. Otherwise, old inodes get
3104  * re-used with the upper 16 bits of the uid/gid intact
3105  */
3106 		if(!ei->i_dtime) {
3107 			raw_inode->i_uid_high =
3108 				cpu_to_le16(high_16_bits(i_uid));
3109 			raw_inode->i_gid_high =
3110 				cpu_to_le16(high_16_bits(i_gid));
3111 		} else {
3112 			raw_inode->i_uid_high = 0;
3113 			raw_inode->i_gid_high = 0;
3114 		}
3115 	} else {
3116 		raw_inode->i_uid_low =
3117 			cpu_to_le16(fs_high2lowuid(i_uid));
3118 		raw_inode->i_gid_low =
3119 			cpu_to_le16(fs_high2lowgid(i_gid));
3120 		raw_inode->i_uid_high = 0;
3121 		raw_inode->i_gid_high = 0;
3122 	}
3123 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3124 	disksize = cpu_to_le32(ei->i_disksize);
3125 	if (disksize != raw_inode->i_size) {
3126 		need_datasync = 1;
3127 		raw_inode->i_size = disksize;
3128 	}
3129 	raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
3130 	raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
3131 	raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
3132 	raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
3133 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3134 	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
3135 #ifdef EXT3_FRAGMENTS
3136 	raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
3137 	raw_inode->i_frag = ei->i_frag_no;
3138 	raw_inode->i_fsize = ei->i_frag_size;
3139 #endif
3140 	raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
3141 	if (!S_ISREG(inode->i_mode)) {
3142 		raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
3143 	} else {
3144 		disksize = cpu_to_le32(ei->i_disksize >> 32);
3145 		if (disksize != raw_inode->i_size_high) {
3146 			raw_inode->i_size_high = disksize;
3147 			need_datasync = 1;
3148 		}
3149 		if (ei->i_disksize > 0x7fffffffULL) {
3150 			struct super_block *sb = inode->i_sb;
3151 			if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
3152 					EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
3153 			    EXT3_SB(sb)->s_es->s_rev_level ==
3154 					cpu_to_le32(EXT3_GOOD_OLD_REV)) {
3155 			       /* If this is the first large file
3156 				* created, add a flag to the superblock.
3157 				*/
3158 				unlock_buffer(bh);
3159 				err = ext3_journal_get_write_access(handle,
3160 						EXT3_SB(sb)->s_sbh);
3161 				if (err)
3162 					goto out_brelse;
3163 
3164 				ext3_update_dynamic_rev(sb);
3165 				EXT3_SET_RO_COMPAT_FEATURE(sb,
3166 					EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
3167 				handle->h_sync = 1;
3168 				err = ext3_journal_dirty_metadata(handle,
3169 						EXT3_SB(sb)->s_sbh);
3170 				/* get our lock and start over */
3171 				goto again;
3172 			}
3173 		}
3174 	}
3175 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3176 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3177 		if (old_valid_dev(inode->i_rdev)) {
3178 			raw_inode->i_block[0] =
3179 				cpu_to_le32(old_encode_dev(inode->i_rdev));
3180 			raw_inode->i_block[1] = 0;
3181 		} else {
3182 			raw_inode->i_block[0] = 0;
3183 			raw_inode->i_block[1] =
3184 				cpu_to_le32(new_encode_dev(inode->i_rdev));
3185 			raw_inode->i_block[2] = 0;
3186 		}
3187 	} else for (block = 0; block < EXT3_N_BLOCKS; block++)
3188 		raw_inode->i_block[block] = ei->i_data[block];
3189 
3190 	if (ei->i_extra_isize)
3191 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3192 
3193 	BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
3194 	unlock_buffer(bh);
3195 	rc = ext3_journal_dirty_metadata(handle, bh);
3196 	if (!err)
3197 		err = rc;
3198 	ext3_clear_inode_state(inode, EXT3_STATE_NEW);
3199 
3200 	atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
3201 	if (need_datasync)
3202 		atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
3203 out_brelse:
3204 	brelse (bh);
3205 	ext3_std_error(inode->i_sb, err);
3206 	return err;
3207 }
3208 
3209 /*
3210  * ext3_write_inode()
3211  *
3212  * We are called from a few places:
3213  *
3214  * - Within generic_file_write() for O_SYNC files.
3215  *   Here, there will be no transaction running. We wait for any running
3216  *   transaction to commit.
3217  *
3218  * - Within sys_sync(), kupdate and such.
3219  *   We wait on commit, if tol to.
3220  *
3221  * - Within prune_icache() (PF_MEMALLOC == true)
3222  *   Here we simply return.  We can't afford to block kswapd on the
3223  *   journal commit.
3224  *
3225  * In all cases it is actually safe for us to return without doing anything,
3226  * because the inode has been copied into a raw inode buffer in
3227  * ext3_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3228  * knfsd.
3229  *
3230  * Note that we are absolutely dependent upon all inode dirtiers doing the
3231  * right thing: they *must* call mark_inode_dirty() after dirtying info in
3232  * which we are interested.
3233  *
3234  * It would be a bug for them to not do this.  The code:
3235  *
3236  *	mark_inode_dirty(inode)
3237  *	stuff();
3238  *	inode->i_size = expr;
3239  *
3240  * is in error because a kswapd-driven write_inode() could occur while
3241  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3242  * will no longer be on the superblock's dirty inode list.
3243  */
ext3_write_inode(struct inode * inode,struct writeback_control * wbc)3244 int ext3_write_inode(struct inode *inode, struct writeback_control *wbc)
3245 {
3246 	if (current->flags & PF_MEMALLOC)
3247 		return 0;
3248 
3249 	if (ext3_journal_current_handle()) {
3250 		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3251 		dump_stack();
3252 		return -EIO;
3253 	}
3254 
3255 	if (wbc->sync_mode != WB_SYNC_ALL)
3256 		return 0;
3257 
3258 	return ext3_force_commit(inode->i_sb);
3259 }
3260 
3261 /*
3262  * ext3_setattr()
3263  *
3264  * Called from notify_change.
3265  *
3266  * We want to trap VFS attempts to truncate the file as soon as
3267  * possible.  In particular, we want to make sure that when the VFS
3268  * shrinks i_size, we put the inode on the orphan list and modify
3269  * i_disksize immediately, so that during the subsequent flushing of
3270  * dirty pages and freeing of disk blocks, we can guarantee that any
3271  * commit will leave the blocks being flushed in an unused state on
3272  * disk.  (On recovery, the inode will get truncated and the blocks will
3273  * be freed, so we have a strong guarantee that no future commit will
3274  * leave these blocks visible to the user.)
3275  *
3276  * Called with inode->sem down.
3277  */
ext3_setattr(struct dentry * dentry,struct iattr * attr)3278 int ext3_setattr(struct dentry *dentry, struct iattr *attr)
3279 {
3280 	struct inode *inode = dentry->d_inode;
3281 	int error, rc = 0;
3282 	const unsigned int ia_valid = attr->ia_valid;
3283 
3284 	error = inode_change_ok(inode, attr);
3285 	if (error)
3286 		return error;
3287 
3288 	if (is_quota_modification(inode, attr))
3289 		dquot_initialize(inode);
3290 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3291 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3292 		handle_t *handle;
3293 
3294 		/* (user+group)*(old+new) structure, inode write (sb,
3295 		 * inode block, ? - but truncate inode update has it) */
3296 		handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3297 					EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
3298 		if (IS_ERR(handle)) {
3299 			error = PTR_ERR(handle);
3300 			goto err_out;
3301 		}
3302 		error = dquot_transfer(inode, attr);
3303 		if (error) {
3304 			ext3_journal_stop(handle);
3305 			return error;
3306 		}
3307 		/* Update corresponding info in inode so that everything is in
3308 		 * one transaction */
3309 		if (attr->ia_valid & ATTR_UID)
3310 			inode->i_uid = attr->ia_uid;
3311 		if (attr->ia_valid & ATTR_GID)
3312 			inode->i_gid = attr->ia_gid;
3313 		error = ext3_mark_inode_dirty(handle, inode);
3314 		ext3_journal_stop(handle);
3315 	}
3316 
3317 	if (attr->ia_valid & ATTR_SIZE)
3318 		inode_dio_wait(inode);
3319 
3320 	if (S_ISREG(inode->i_mode) &&
3321 	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3322 		handle_t *handle;
3323 
3324 		handle = ext3_journal_start(inode, 3);
3325 		if (IS_ERR(handle)) {
3326 			error = PTR_ERR(handle);
3327 			goto err_out;
3328 		}
3329 
3330 		error = ext3_orphan_add(handle, inode);
3331 		if (error) {
3332 			ext3_journal_stop(handle);
3333 			goto err_out;
3334 		}
3335 		EXT3_I(inode)->i_disksize = attr->ia_size;
3336 		error = ext3_mark_inode_dirty(handle, inode);
3337 		ext3_journal_stop(handle);
3338 		if (error) {
3339 			/* Some hard fs error must have happened. Bail out. */
3340 			ext3_orphan_del(NULL, inode);
3341 			goto err_out;
3342 		}
3343 		rc = ext3_block_truncate_page(inode, attr->ia_size);
3344 		if (rc) {
3345 			/* Cleanup orphan list and exit */
3346 			handle = ext3_journal_start(inode, 3);
3347 			if (IS_ERR(handle)) {
3348 				ext3_orphan_del(NULL, inode);
3349 				goto err_out;
3350 			}
3351 			ext3_orphan_del(handle, inode);
3352 			ext3_journal_stop(handle);
3353 			goto err_out;
3354 		}
3355 	}
3356 
3357 	if ((attr->ia_valid & ATTR_SIZE) &&
3358 	    attr->ia_size != i_size_read(inode)) {
3359 		truncate_setsize(inode, attr->ia_size);
3360 		ext3_truncate(inode);
3361 	}
3362 
3363 	setattr_copy(inode, attr);
3364 	mark_inode_dirty(inode);
3365 
3366 	if (ia_valid & ATTR_MODE)
3367 		rc = ext3_acl_chmod(inode);
3368 
3369 err_out:
3370 	ext3_std_error(inode->i_sb, error);
3371 	if (!error)
3372 		error = rc;
3373 	return error;
3374 }
3375 
3376 
3377 /*
3378  * How many blocks doth make a writepage()?
3379  *
3380  * With N blocks per page, it may be:
3381  * N data blocks
3382  * 2 indirect block
3383  * 2 dindirect
3384  * 1 tindirect
3385  * N+5 bitmap blocks (from the above)
3386  * N+5 group descriptor summary blocks
3387  * 1 inode block
3388  * 1 superblock.
3389  * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3390  *
3391  * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3392  *
3393  * With ordered or writeback data it's the same, less the N data blocks.
3394  *
3395  * If the inode's direct blocks can hold an integral number of pages then a
3396  * page cannot straddle two indirect blocks, and we can only touch one indirect
3397  * and dindirect block, and the "5" above becomes "3".
3398  *
3399  * This still overestimates under most circumstances.  If we were to pass the
3400  * start and end offsets in here as well we could do block_to_path() on each
3401  * block and work out the exact number of indirects which are touched.  Pah.
3402  */
3403 
ext3_writepage_trans_blocks(struct inode * inode)3404 static int ext3_writepage_trans_blocks(struct inode *inode)
3405 {
3406 	int bpp = ext3_journal_blocks_per_page(inode);
3407 	int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3408 	int ret;
3409 
3410 	if (ext3_should_journal_data(inode))
3411 		ret = 3 * (bpp + indirects) + 2;
3412 	else
3413 		ret = 2 * (bpp + indirects) + indirects + 2;
3414 
3415 #ifdef CONFIG_QUOTA
3416 	/* We know that structure was already allocated during dquot_initialize so
3417 	 * we will be updating only the data blocks + inodes */
3418 	ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
3419 #endif
3420 
3421 	return ret;
3422 }
3423 
3424 /*
3425  * The caller must have previously called ext3_reserve_inode_write().
3426  * Give this, we know that the caller already has write access to iloc->bh.
3427  */
ext3_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext3_iloc * iloc)3428 int ext3_mark_iloc_dirty(handle_t *handle,
3429 		struct inode *inode, struct ext3_iloc *iloc)
3430 {
3431 	int err = 0;
3432 
3433 	/* the do_update_inode consumes one bh->b_count */
3434 	get_bh(iloc->bh);
3435 
3436 	/* ext3_do_update_inode() does journal_dirty_metadata */
3437 	err = ext3_do_update_inode(handle, inode, iloc);
3438 	put_bh(iloc->bh);
3439 	return err;
3440 }
3441 
3442 /*
3443  * On success, We end up with an outstanding reference count against
3444  * iloc->bh.  This _must_ be cleaned up later.
3445  */
3446 
3447 int
ext3_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext3_iloc * iloc)3448 ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
3449 			 struct ext3_iloc *iloc)
3450 {
3451 	int err = 0;
3452 	if (handle) {
3453 		err = ext3_get_inode_loc(inode, iloc);
3454 		if (!err) {
3455 			BUFFER_TRACE(iloc->bh, "get_write_access");
3456 			err = ext3_journal_get_write_access(handle, iloc->bh);
3457 			if (err) {
3458 				brelse(iloc->bh);
3459 				iloc->bh = NULL;
3460 			}
3461 		}
3462 	}
3463 	ext3_std_error(inode->i_sb, err);
3464 	return err;
3465 }
3466 
3467 /*
3468  * What we do here is to mark the in-core inode as clean with respect to inode
3469  * dirtiness (it may still be data-dirty).
3470  * This means that the in-core inode may be reaped by prune_icache
3471  * without having to perform any I/O.  This is a very good thing,
3472  * because *any* task may call prune_icache - even ones which
3473  * have a transaction open against a different journal.
3474  *
3475  * Is this cheating?  Not really.  Sure, we haven't written the
3476  * inode out, but prune_icache isn't a user-visible syncing function.
3477  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3478  * we start and wait on commits.
3479  */
ext3_mark_inode_dirty(handle_t * handle,struct inode * inode)3480 int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3481 {
3482 	struct ext3_iloc iloc;
3483 	int err;
3484 
3485 	might_sleep();
3486 	trace_ext3_mark_inode_dirty(inode, _RET_IP_);
3487 	err = ext3_reserve_inode_write(handle, inode, &iloc);
3488 	if (!err)
3489 		err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3490 	return err;
3491 }
3492 
3493 /*
3494  * ext3_dirty_inode() is called from __mark_inode_dirty()
3495  *
3496  * We're really interested in the case where a file is being extended.
3497  * i_size has been changed by generic_commit_write() and we thus need
3498  * to include the updated inode in the current transaction.
3499  *
3500  * Also, dquot_alloc_space() will always dirty the inode when blocks
3501  * are allocated to the file.
3502  *
3503  * If the inode is marked synchronous, we don't honour that here - doing
3504  * so would cause a commit on atime updates, which we don't bother doing.
3505  * We handle synchronous inodes at the highest possible level.
3506  */
ext3_dirty_inode(struct inode * inode,int flags)3507 void ext3_dirty_inode(struct inode *inode, int flags)
3508 {
3509 	handle_t *current_handle = ext3_journal_current_handle();
3510 	handle_t *handle;
3511 
3512 	handle = ext3_journal_start(inode, 2);
3513 	if (IS_ERR(handle))
3514 		goto out;
3515 	if (current_handle &&
3516 		current_handle->h_transaction != handle->h_transaction) {
3517 		/* This task has a transaction open against a different fs */
3518 		printk(KERN_EMERG "%s: transactions do not match!\n",
3519 		       __func__);
3520 	} else {
3521 		jbd_debug(5, "marking dirty.  outer handle=%p\n",
3522 				current_handle);
3523 		ext3_mark_inode_dirty(handle, inode);
3524 	}
3525 	ext3_journal_stop(handle);
3526 out:
3527 	return;
3528 }
3529 
3530 #if 0
3531 /*
3532  * Bind an inode's backing buffer_head into this transaction, to prevent
3533  * it from being flushed to disk early.  Unlike
3534  * ext3_reserve_inode_write, this leaves behind no bh reference and
3535  * returns no iloc structure, so the caller needs to repeat the iloc
3536  * lookup to mark the inode dirty later.
3537  */
3538 static int ext3_pin_inode(handle_t *handle, struct inode *inode)
3539 {
3540 	struct ext3_iloc iloc;
3541 
3542 	int err = 0;
3543 	if (handle) {
3544 		err = ext3_get_inode_loc(inode, &iloc);
3545 		if (!err) {
3546 			BUFFER_TRACE(iloc.bh, "get_write_access");
3547 			err = journal_get_write_access(handle, iloc.bh);
3548 			if (!err)
3549 				err = ext3_journal_dirty_metadata(handle,
3550 								  iloc.bh);
3551 			brelse(iloc.bh);
3552 		}
3553 	}
3554 	ext3_std_error(inode->i_sb, err);
3555 	return err;
3556 }
3557 #endif
3558 
ext3_change_inode_journal_flag(struct inode * inode,int val)3559 int ext3_change_inode_journal_flag(struct inode *inode, int val)
3560 {
3561 	journal_t *journal;
3562 	handle_t *handle;
3563 	int err;
3564 
3565 	/*
3566 	 * We have to be very careful here: changing a data block's
3567 	 * journaling status dynamically is dangerous.  If we write a
3568 	 * data block to the journal, change the status and then delete
3569 	 * that block, we risk forgetting to revoke the old log record
3570 	 * from the journal and so a subsequent replay can corrupt data.
3571 	 * So, first we make sure that the journal is empty and that
3572 	 * nobody is changing anything.
3573 	 */
3574 
3575 	journal = EXT3_JOURNAL(inode);
3576 	if (is_journal_aborted(journal))
3577 		return -EROFS;
3578 
3579 	journal_lock_updates(journal);
3580 	journal_flush(journal);
3581 
3582 	/*
3583 	 * OK, there are no updates running now, and all cached data is
3584 	 * synced to disk.  We are now in a completely consistent state
3585 	 * which doesn't have anything in the journal, and we know that
3586 	 * no filesystem updates are running, so it is safe to modify
3587 	 * the inode's in-core data-journaling state flag now.
3588 	 */
3589 
3590 	if (val)
3591 		EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3592 	else
3593 		EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3594 	ext3_set_aops(inode);
3595 
3596 	journal_unlock_updates(journal);
3597 
3598 	/* Finally we can mark the inode as dirty. */
3599 
3600 	handle = ext3_journal_start(inode, 1);
3601 	if (IS_ERR(handle))
3602 		return PTR_ERR(handle);
3603 
3604 	err = ext3_mark_inode_dirty(handle, inode);
3605 	handle->h_sync = 1;
3606 	ext3_journal_stop(handle);
3607 	ext3_std_error(inode->i_sb, err);
3608 
3609 	return err;
3610 }
3611