• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/fs/ext4/super.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Big-endian to little-endian byte-swapping/bitmaps by
16  *        David S. Miller (davem@caip.rutgers.edu), 1995
17  */
18 
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43 
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46 
47 #include "ext4.h"
48 #include "ext4_extents.h"	/* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56 
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62 static int ext4_mballoc_ready;
63 
64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
65 			     unsigned long journal_devnum);
66 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
67 static int ext4_commit_super(struct super_block *sb, int sync);
68 static void ext4_mark_recovery_complete(struct super_block *sb,
69 					struct ext4_super_block *es);
70 static void ext4_clear_journal_err(struct super_block *sb,
71 				   struct ext4_super_block *es);
72 static int ext4_sync_fs(struct super_block *sb, int wait);
73 static int ext4_remount(struct super_block *sb, int *flags, char *data);
74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
75 static int ext4_unfreeze(struct super_block *sb);
76 static int ext4_freeze(struct super_block *sb);
77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
78 		       const char *dev_name, void *data);
79 static inline int ext2_feature_set_ok(struct super_block *sb);
80 static inline int ext3_feature_set_ok(struct super_block *sb);
81 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t);
86 
87 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
88 static struct file_system_type ext2_fs_type = {
89 	.owner		= THIS_MODULE,
90 	.name		= "ext2",
91 	.mount		= ext4_mount,
92 	.kill_sb	= kill_block_super,
93 	.fs_flags	= FS_REQUIRES_DEV,
94 };
95 MODULE_ALIAS_FS("ext2");
96 MODULE_ALIAS("ext2");
97 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
98 #else
99 #define IS_EXT2_SB(sb) (0)
100 #endif
101 
102 
103 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
104 static struct file_system_type ext3_fs_type = {
105 	.owner		= THIS_MODULE,
106 	.name		= "ext3",
107 	.mount		= ext4_mount,
108 	.kill_sb	= kill_block_super,
109 	.fs_flags	= FS_REQUIRES_DEV,
110 };
111 MODULE_ALIAS_FS("ext3");
112 MODULE_ALIAS("ext3");
113 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
114 #else
115 #define IS_EXT3_SB(sb) (0)
116 #endif
117 
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)118 static int ext4_verify_csum_type(struct super_block *sb,
119 				 struct ext4_super_block *es)
120 {
121 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
122 					EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
123 		return 1;
124 
125 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
126 }
127 
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)128 static __le32 ext4_superblock_csum(struct super_block *sb,
129 				   struct ext4_super_block *es)
130 {
131 	struct ext4_sb_info *sbi = EXT4_SB(sb);
132 	int offset = offsetof(struct ext4_super_block, s_checksum);
133 	__u32 csum;
134 
135 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
136 
137 	return cpu_to_le32(csum);
138 }
139 
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)140 static int ext4_superblock_csum_verify(struct super_block *sb,
141 				       struct ext4_super_block *es)
142 {
143 	if (!ext4_has_metadata_csum(sb))
144 		return 1;
145 
146 	return es->s_checksum == ext4_superblock_csum(sb, es);
147 }
148 
ext4_superblock_csum_set(struct super_block * sb)149 void ext4_superblock_csum_set(struct super_block *sb)
150 {
151 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
152 
153 	if (!ext4_has_metadata_csum(sb))
154 		return;
155 
156 	es->s_checksum = ext4_superblock_csum(sb, es);
157 }
158 
ext4_kvmalloc(size_t size,gfp_t flags)159 void *ext4_kvmalloc(size_t size, gfp_t flags)
160 {
161 	void *ret;
162 
163 	ret = kmalloc(size, flags | __GFP_NOWARN);
164 	if (!ret)
165 		ret = __vmalloc(size, flags, PAGE_KERNEL);
166 	return ret;
167 }
168 
ext4_kvzalloc(size_t size,gfp_t flags)169 void *ext4_kvzalloc(size_t size, gfp_t flags)
170 {
171 	void *ret;
172 
173 	ret = kzalloc(size, flags | __GFP_NOWARN);
174 	if (!ret)
175 		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
176 	return ret;
177 }
178 
ext4_kvfree(void * ptr)179 void ext4_kvfree(void *ptr)
180 {
181 	if (is_vmalloc_addr(ptr))
182 		vfree(ptr);
183 	else
184 		kfree(ptr);
185 
186 }
187 
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)188 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
189 			       struct ext4_group_desc *bg)
190 {
191 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
192 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
193 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
194 }
195 
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)196 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
197 			       struct ext4_group_desc *bg)
198 {
199 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
200 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
201 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
202 }
203 
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)204 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
205 			      struct ext4_group_desc *bg)
206 {
207 	return le32_to_cpu(bg->bg_inode_table_lo) |
208 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
209 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
210 }
211 
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)212 __u32 ext4_free_group_clusters(struct super_block *sb,
213 			       struct ext4_group_desc *bg)
214 {
215 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
216 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
217 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
218 }
219 
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)220 __u32 ext4_free_inodes_count(struct super_block *sb,
221 			      struct ext4_group_desc *bg)
222 {
223 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
224 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
225 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
226 }
227 
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)228 __u32 ext4_used_dirs_count(struct super_block *sb,
229 			      struct ext4_group_desc *bg)
230 {
231 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
232 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
233 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
234 }
235 
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)236 __u32 ext4_itable_unused_count(struct super_block *sb,
237 			      struct ext4_group_desc *bg)
238 {
239 	return le16_to_cpu(bg->bg_itable_unused_lo) |
240 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
241 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
242 }
243 
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)244 void ext4_block_bitmap_set(struct super_block *sb,
245 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
246 {
247 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
248 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
249 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
250 }
251 
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)252 void ext4_inode_bitmap_set(struct super_block *sb,
253 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
254 {
255 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
256 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
257 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
258 }
259 
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)260 void ext4_inode_table_set(struct super_block *sb,
261 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
262 {
263 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
264 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
265 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
266 }
267 
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)268 void ext4_free_group_clusters_set(struct super_block *sb,
269 				  struct ext4_group_desc *bg, __u32 count)
270 {
271 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
272 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
273 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
274 }
275 
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)276 void ext4_free_inodes_set(struct super_block *sb,
277 			  struct ext4_group_desc *bg, __u32 count)
278 {
279 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
280 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
281 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
282 }
283 
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)284 void ext4_used_dirs_set(struct super_block *sb,
285 			  struct ext4_group_desc *bg, __u32 count)
286 {
287 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
288 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
289 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
290 }
291 
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)292 void ext4_itable_unused_set(struct super_block *sb,
293 			  struct ext4_group_desc *bg, __u32 count)
294 {
295 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
296 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
297 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
298 }
299 
300 
__save_error_info(struct super_block * sb,const char * func,unsigned int line)301 static void __save_error_info(struct super_block *sb, const char *func,
302 			    unsigned int line)
303 {
304 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
305 
306 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
307 	if (bdev_read_only(sb->s_bdev))
308 		return;
309 	es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
310 	es->s_last_error_time = cpu_to_le32(get_seconds());
311 	strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
312 	es->s_last_error_line = cpu_to_le32(line);
313 	if (!es->s_first_error_time) {
314 		es->s_first_error_time = es->s_last_error_time;
315 		strncpy(es->s_first_error_func, func,
316 			sizeof(es->s_first_error_func));
317 		es->s_first_error_line = cpu_to_le32(line);
318 		es->s_first_error_ino = es->s_last_error_ino;
319 		es->s_first_error_block = es->s_last_error_block;
320 	}
321 	/*
322 	 * Start the daily error reporting function if it hasn't been
323 	 * started already
324 	 */
325 	if (!es->s_error_count)
326 		mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
327 	le32_add_cpu(&es->s_error_count, 1);
328 }
329 
save_error_info(struct super_block * sb,const char * func,unsigned int line)330 static void save_error_info(struct super_block *sb, const char *func,
331 			    unsigned int line)
332 {
333 	__save_error_info(sb, func, line);
334 	ext4_commit_super(sb, 1);
335 }
336 
337 /*
338  * The del_gendisk() function uninitializes the disk-specific data
339  * structures, including the bdi structure, without telling anyone
340  * else.  Once this happens, any attempt to call mark_buffer_dirty()
341  * (for example, by ext4_commit_super), will cause a kernel OOPS.
342  * This is a kludge to prevent these oops until we can put in a proper
343  * hook in del_gendisk() to inform the VFS and file system layers.
344  */
block_device_ejected(struct super_block * sb)345 static int block_device_ejected(struct super_block *sb)
346 {
347 	struct inode *bd_inode = sb->s_bdev->bd_inode;
348 	struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
349 
350 	return bdi->dev == NULL;
351 }
352 
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)353 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
354 {
355 	struct super_block		*sb = journal->j_private;
356 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
357 	int				error = is_journal_aborted(journal);
358 	struct ext4_journal_cb_entry	*jce;
359 
360 	BUG_ON(txn->t_state == T_FINISHED);
361 	spin_lock(&sbi->s_md_lock);
362 	while (!list_empty(&txn->t_private_list)) {
363 		jce = list_entry(txn->t_private_list.next,
364 				 struct ext4_journal_cb_entry, jce_list);
365 		list_del_init(&jce->jce_list);
366 		spin_unlock(&sbi->s_md_lock);
367 		jce->jce_func(sb, jce, error);
368 		spin_lock(&sbi->s_md_lock);
369 	}
370 	spin_unlock(&sbi->s_md_lock);
371 }
372 
373 /* Deal with the reporting of failure conditions on a filesystem such as
374  * inconsistencies detected or read IO failures.
375  *
376  * On ext2, we can store the error state of the filesystem in the
377  * superblock.  That is not possible on ext4, because we may have other
378  * write ordering constraints on the superblock which prevent us from
379  * writing it out straight away; and given that the journal is about to
380  * be aborted, we can't rely on the current, or future, transactions to
381  * write out the superblock safely.
382  *
383  * We'll just use the jbd2_journal_abort() error code to record an error in
384  * the journal instead.  On recovery, the journal will complain about
385  * that error until we've noted it down and cleared it.
386  */
387 
ext4_handle_error(struct super_block * sb)388 static void ext4_handle_error(struct super_block *sb)
389 {
390 	if (sb->s_flags & MS_RDONLY)
391 		return;
392 
393 	if (!test_opt(sb, ERRORS_CONT)) {
394 		journal_t *journal = EXT4_SB(sb)->s_journal;
395 
396 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
397 		if (journal)
398 			jbd2_journal_abort(journal, -EIO);
399 	}
400 	if (test_opt(sb, ERRORS_RO)) {
401 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
402 		/*
403 		 * Make sure updated value of ->s_mount_flags will be visible
404 		 * before ->s_flags update
405 		 */
406 		smp_wmb();
407 		sb->s_flags |= MS_RDONLY;
408 	}
409 	if (test_opt(sb, ERRORS_PANIC))
410 		panic("EXT4-fs (device %s): panic forced after error\n",
411 			sb->s_id);
412 }
413 
414 #define ext4_error_ratelimit(sb)					\
415 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
416 			     "EXT4-fs error")
417 
__ext4_error(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)418 void __ext4_error(struct super_block *sb, const char *function,
419 		  unsigned int line, const char *fmt, ...)
420 {
421 	struct va_format vaf;
422 	va_list args;
423 
424 	if (ext4_error_ratelimit(sb)) {
425 		va_start(args, fmt);
426 		vaf.fmt = fmt;
427 		vaf.va = &args;
428 		printk(KERN_CRIT
429 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
430 		       sb->s_id, function, line, current->comm, &vaf);
431 		va_end(args);
432 	}
433 	save_error_info(sb, function, line);
434 	ext4_handle_error(sb);
435 }
436 
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)437 void __ext4_error_inode(struct inode *inode, const char *function,
438 			unsigned int line, ext4_fsblk_t block,
439 			const char *fmt, ...)
440 {
441 	va_list args;
442 	struct va_format vaf;
443 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
444 
445 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
446 	es->s_last_error_block = cpu_to_le64(block);
447 	if (ext4_error_ratelimit(inode->i_sb)) {
448 		va_start(args, fmt);
449 		vaf.fmt = fmt;
450 		vaf.va = &args;
451 		if (block)
452 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
453 			       "inode #%lu: block %llu: comm %s: %pV\n",
454 			       inode->i_sb->s_id, function, line, inode->i_ino,
455 			       block, current->comm, &vaf);
456 		else
457 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
458 			       "inode #%lu: comm %s: %pV\n",
459 			       inode->i_sb->s_id, function, line, inode->i_ino,
460 			       current->comm, &vaf);
461 		va_end(args);
462 	}
463 	save_error_info(inode->i_sb, function, line);
464 	ext4_handle_error(inode->i_sb);
465 }
466 
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)467 void __ext4_error_file(struct file *file, const char *function,
468 		       unsigned int line, ext4_fsblk_t block,
469 		       const char *fmt, ...)
470 {
471 	va_list args;
472 	struct va_format vaf;
473 	struct ext4_super_block *es;
474 	struct inode *inode = file_inode(file);
475 	char pathname[80], *path;
476 
477 	es = EXT4_SB(inode->i_sb)->s_es;
478 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
479 	if (ext4_error_ratelimit(inode->i_sb)) {
480 		path = d_path(&(file->f_path), pathname, sizeof(pathname));
481 		if (IS_ERR(path))
482 			path = "(unknown)";
483 		va_start(args, fmt);
484 		vaf.fmt = fmt;
485 		vaf.va = &args;
486 		if (block)
487 			printk(KERN_CRIT
488 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
489 			       "block %llu: comm %s: path %s: %pV\n",
490 			       inode->i_sb->s_id, function, line, inode->i_ino,
491 			       block, current->comm, path, &vaf);
492 		else
493 			printk(KERN_CRIT
494 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
495 			       "comm %s: path %s: %pV\n",
496 			       inode->i_sb->s_id, function, line, inode->i_ino,
497 			       current->comm, path, &vaf);
498 		va_end(args);
499 	}
500 	save_error_info(inode->i_sb, function, line);
501 	ext4_handle_error(inode->i_sb);
502 }
503 
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])504 const char *ext4_decode_error(struct super_block *sb, int errno,
505 			      char nbuf[16])
506 {
507 	char *errstr = NULL;
508 
509 	switch (errno) {
510 	case -EIO:
511 		errstr = "IO failure";
512 		break;
513 	case -ENOMEM:
514 		errstr = "Out of memory";
515 		break;
516 	case -EROFS:
517 		if (!sb || (EXT4_SB(sb)->s_journal &&
518 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
519 			errstr = "Journal has aborted";
520 		else
521 			errstr = "Readonly filesystem";
522 		break;
523 	default:
524 		/* If the caller passed in an extra buffer for unknown
525 		 * errors, textualise them now.  Else we just return
526 		 * NULL. */
527 		if (nbuf) {
528 			/* Check for truncated error codes... */
529 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
530 				errstr = nbuf;
531 		}
532 		break;
533 	}
534 
535 	return errstr;
536 }
537 
538 /* __ext4_std_error decodes expected errors from journaling functions
539  * automatically and invokes the appropriate error response.  */
540 
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)541 void __ext4_std_error(struct super_block *sb, const char *function,
542 		      unsigned int line, int errno)
543 {
544 	char nbuf[16];
545 	const char *errstr;
546 
547 	/* Special case: if the error is EROFS, and we're not already
548 	 * inside a transaction, then there's really no point in logging
549 	 * an error. */
550 	if (errno == -EROFS && journal_current_handle() == NULL &&
551 	    (sb->s_flags & MS_RDONLY))
552 		return;
553 
554 	if (ext4_error_ratelimit(sb)) {
555 		errstr = ext4_decode_error(sb, errno, nbuf);
556 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
557 		       sb->s_id, function, line, errstr);
558 	}
559 
560 	save_error_info(sb, function, line);
561 	ext4_handle_error(sb);
562 }
563 
564 /*
565  * ext4_abort is a much stronger failure handler than ext4_error.  The
566  * abort function may be used to deal with unrecoverable failures such
567  * as journal IO errors or ENOMEM at a critical moment in log management.
568  *
569  * We unconditionally force the filesystem into an ABORT|READONLY state,
570  * unless the error response on the fs has been set to panic in which
571  * case we take the easy way out and panic immediately.
572  */
573 
__ext4_abort(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)574 void __ext4_abort(struct super_block *sb, const char *function,
575 		unsigned int line, const char *fmt, ...)
576 {
577 	va_list args;
578 
579 	save_error_info(sb, function, line);
580 	va_start(args, fmt);
581 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
582 	       function, line);
583 	vprintk(fmt, args);
584 	printk("\n");
585 	va_end(args);
586 
587 	if ((sb->s_flags & MS_RDONLY) == 0) {
588 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
589 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
590 		/*
591 		 * Make sure updated value of ->s_mount_flags will be visible
592 		 * before ->s_flags update
593 		 */
594 		smp_wmb();
595 		sb->s_flags |= MS_RDONLY;
596 		if (EXT4_SB(sb)->s_journal)
597 			jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
598 		save_error_info(sb, function, line);
599 	}
600 	if (test_opt(sb, ERRORS_PANIC))
601 		panic("EXT4-fs panic from previous error\n");
602 }
603 
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)604 void __ext4_msg(struct super_block *sb,
605 		const char *prefix, const char *fmt, ...)
606 {
607 	struct va_format vaf;
608 	va_list args;
609 
610 	if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
611 		return;
612 
613 	va_start(args, fmt);
614 	vaf.fmt = fmt;
615 	vaf.va = &args;
616 	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
617 	va_end(args);
618 }
619 
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)620 void __ext4_warning(struct super_block *sb, const char *function,
621 		    unsigned int line, const char *fmt, ...)
622 {
623 	struct va_format vaf;
624 	va_list args;
625 
626 	if (!___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
627 			  "EXT4-fs warning"))
628 		return;
629 
630 	va_start(args, fmt);
631 	vaf.fmt = fmt;
632 	vaf.va = &args;
633 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
634 	       sb->s_id, function, line, &vaf);
635 	va_end(args);
636 }
637 
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)638 void __ext4_grp_locked_error(const char *function, unsigned int line,
639 			     struct super_block *sb, ext4_group_t grp,
640 			     unsigned long ino, ext4_fsblk_t block,
641 			     const char *fmt, ...)
642 __releases(bitlock)
643 __acquires(bitlock)
644 {
645 	struct va_format vaf;
646 	va_list args;
647 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
648 
649 	es->s_last_error_ino = cpu_to_le32(ino);
650 	es->s_last_error_block = cpu_to_le64(block);
651 	__save_error_info(sb, function, line);
652 
653 	if (ext4_error_ratelimit(sb)) {
654 		va_start(args, fmt);
655 		vaf.fmt = fmt;
656 		vaf.va = &args;
657 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
658 		       sb->s_id, function, line, grp);
659 		if (ino)
660 			printk(KERN_CONT "inode %lu: ", ino);
661 		if (block)
662 			printk(KERN_CONT "block %llu:",
663 			       (unsigned long long) block);
664 		printk(KERN_CONT "%pV\n", &vaf);
665 		va_end(args);
666 	}
667 
668 	if (test_opt(sb, ERRORS_CONT)) {
669 		ext4_commit_super(sb, 0);
670 		return;
671 	}
672 
673 	ext4_unlock_group(sb, grp);
674 	ext4_handle_error(sb);
675 	/*
676 	 * We only get here in the ERRORS_RO case; relocking the group
677 	 * may be dangerous, but nothing bad will happen since the
678 	 * filesystem will have already been marked read/only and the
679 	 * journal has been aborted.  We return 1 as a hint to callers
680 	 * who might what to use the return value from
681 	 * ext4_grp_locked_error() to distinguish between the
682 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
683 	 * aggressively from the ext4 function in question, with a
684 	 * more appropriate error code.
685 	 */
686 	ext4_lock_group(sb, grp);
687 	return;
688 }
689 
ext4_update_dynamic_rev(struct super_block * sb)690 void ext4_update_dynamic_rev(struct super_block *sb)
691 {
692 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
693 
694 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
695 		return;
696 
697 	ext4_warning(sb,
698 		     "updating to rev %d because of new feature flag, "
699 		     "running e2fsck is recommended",
700 		     EXT4_DYNAMIC_REV);
701 
702 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
703 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
704 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
705 	/* leave es->s_feature_*compat flags alone */
706 	/* es->s_uuid will be set by e2fsck if empty */
707 
708 	/*
709 	 * The rest of the superblock fields should be zero, and if not it
710 	 * means they are likely already in use, so leave them alone.  We
711 	 * can leave it up to e2fsck to clean up any inconsistencies there.
712 	 */
713 }
714 
715 /*
716  * Open the external journal device
717  */
ext4_blkdev_get(dev_t dev,struct super_block * sb)718 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
719 {
720 	struct block_device *bdev;
721 	char b[BDEVNAME_SIZE];
722 
723 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
724 	if (IS_ERR(bdev))
725 		goto fail;
726 	return bdev;
727 
728 fail:
729 	ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
730 			__bdevname(dev, b), PTR_ERR(bdev));
731 	return NULL;
732 }
733 
734 /*
735  * Release the journal device
736  */
ext4_blkdev_put(struct block_device * bdev)737 static void ext4_blkdev_put(struct block_device *bdev)
738 {
739 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
740 }
741 
ext4_blkdev_remove(struct ext4_sb_info * sbi)742 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
743 {
744 	struct block_device *bdev;
745 	bdev = sbi->journal_bdev;
746 	if (bdev) {
747 		ext4_blkdev_put(bdev);
748 		sbi->journal_bdev = NULL;
749 	}
750 }
751 
orphan_list_entry(struct list_head * l)752 static inline struct inode *orphan_list_entry(struct list_head *l)
753 {
754 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
755 }
756 
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)757 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
758 {
759 	struct list_head *l;
760 
761 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
762 		 le32_to_cpu(sbi->s_es->s_last_orphan));
763 
764 	printk(KERN_ERR "sb_info orphan list:\n");
765 	list_for_each(l, &sbi->s_orphan) {
766 		struct inode *inode = orphan_list_entry(l);
767 		printk(KERN_ERR "  "
768 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
769 		       inode->i_sb->s_id, inode->i_ino, inode,
770 		       inode->i_mode, inode->i_nlink,
771 		       NEXT_ORPHAN(inode));
772 	}
773 }
774 
ext4_put_super(struct super_block * sb)775 static void ext4_put_super(struct super_block *sb)
776 {
777 	struct ext4_sb_info *sbi = EXT4_SB(sb);
778 	struct ext4_super_block *es = sbi->s_es;
779 	int i, err;
780 
781 	ext4_unregister_li_request(sb);
782 	dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
783 
784 	flush_workqueue(sbi->rsv_conversion_wq);
785 	destroy_workqueue(sbi->rsv_conversion_wq);
786 
787 	if (sbi->s_journal) {
788 		err = jbd2_journal_destroy(sbi->s_journal);
789 		sbi->s_journal = NULL;
790 		if (err < 0)
791 			ext4_abort(sb, "Couldn't clean up the journal");
792 	}
793 
794 	ext4_es_unregister_shrinker(sbi);
795 	del_timer_sync(&sbi->s_err_report);
796 	ext4_release_system_zone(sb);
797 	ext4_mb_release(sb);
798 	ext4_ext_release(sb);
799 	ext4_xattr_put_super(sb);
800 
801 	if (!(sb->s_flags & MS_RDONLY)) {
802 		EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
803 		es->s_state = cpu_to_le16(sbi->s_mount_state);
804 	}
805 	if (!(sb->s_flags & MS_RDONLY))
806 		ext4_commit_super(sb, 1);
807 
808 	if (sbi->s_proc) {
809 		remove_proc_entry("options", sbi->s_proc);
810 		remove_proc_entry(sb->s_id, ext4_proc_root);
811 	}
812 	kobject_del(&sbi->s_kobj);
813 
814 	for (i = 0; i < sbi->s_gdb_count; i++)
815 		brelse(sbi->s_group_desc[i]);
816 	ext4_kvfree(sbi->s_group_desc);
817 	ext4_kvfree(sbi->s_flex_groups);
818 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
819 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
820 	percpu_counter_destroy(&sbi->s_dirs_counter);
821 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
822 	brelse(sbi->s_sbh);
823 #ifdef CONFIG_QUOTA
824 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
825 		kfree(sbi->s_qf_names[i]);
826 #endif
827 
828 	/* Debugging code just in case the in-memory inode orphan list
829 	 * isn't empty.  The on-disk one can be non-empty if we've
830 	 * detected an error and taken the fs readonly, but the
831 	 * in-memory list had better be clean by this point. */
832 	if (!list_empty(&sbi->s_orphan))
833 		dump_orphan_list(sb, sbi);
834 	J_ASSERT(list_empty(&sbi->s_orphan));
835 
836 	invalidate_bdev(sb->s_bdev);
837 	if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
838 		/*
839 		 * Invalidate the journal device's buffers.  We don't want them
840 		 * floating about in memory - the physical journal device may
841 		 * hotswapped, and it breaks the `ro-after' testing code.
842 		 */
843 		sync_blockdev(sbi->journal_bdev);
844 		invalidate_bdev(sbi->journal_bdev);
845 		ext4_blkdev_remove(sbi);
846 	}
847 	if (sbi->s_mb_cache) {
848 		ext4_xattr_destroy_cache(sbi->s_mb_cache);
849 		sbi->s_mb_cache = NULL;
850 	}
851 	if (sbi->s_mmp_tsk)
852 		kthread_stop(sbi->s_mmp_tsk);
853 	sb->s_fs_info = NULL;
854 	/*
855 	 * Now that we are completely done shutting down the
856 	 * superblock, we need to actually destroy the kobject.
857 	 */
858 	kobject_put(&sbi->s_kobj);
859 	wait_for_completion(&sbi->s_kobj_unregister);
860 	if (sbi->s_chksum_driver)
861 		crypto_free_shash(sbi->s_chksum_driver);
862 	kfree(sbi->s_blockgroup_lock);
863 	kfree(sbi);
864 }
865 
866 static struct kmem_cache *ext4_inode_cachep;
867 
868 /*
869  * Called inside transaction, so use GFP_NOFS
870  */
ext4_alloc_inode(struct super_block * sb)871 static struct inode *ext4_alloc_inode(struct super_block *sb)
872 {
873 	struct ext4_inode_info *ei;
874 
875 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
876 	if (!ei)
877 		return NULL;
878 
879 	ei->vfs_inode.i_version = 1;
880 	spin_lock_init(&ei->i_raw_lock);
881 	INIT_LIST_HEAD(&ei->i_prealloc_list);
882 	spin_lock_init(&ei->i_prealloc_lock);
883 	ext4_es_init_tree(&ei->i_es_tree);
884 	rwlock_init(&ei->i_es_lock);
885 	INIT_LIST_HEAD(&ei->i_es_lru);
886 	ei->i_es_all_nr = 0;
887 	ei->i_es_lru_nr = 0;
888 	ei->i_touch_when = 0;
889 	ei->i_reserved_data_blocks = 0;
890 	ei->i_reserved_meta_blocks = 0;
891 	ei->i_allocated_meta_blocks = 0;
892 	ei->i_da_metadata_calc_len = 0;
893 	ei->i_da_metadata_calc_last_lblock = 0;
894 	spin_lock_init(&(ei->i_block_reservation_lock));
895 #ifdef CONFIG_QUOTA
896 	ei->i_reserved_quota = 0;
897 #endif
898 	ei->jinode = NULL;
899 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
900 	spin_lock_init(&ei->i_completed_io_lock);
901 	ei->i_sync_tid = 0;
902 	ei->i_datasync_tid = 0;
903 	atomic_set(&ei->i_ioend_count, 0);
904 	atomic_set(&ei->i_unwritten, 0);
905 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
906 #ifdef CONFIG_EXT4_FS_ENCRYPTION
907 	ei->i_crypt_info = NULL;
908 #endif
909 	return &ei->vfs_inode;
910 }
911 
ext4_drop_inode(struct inode * inode)912 static int ext4_drop_inode(struct inode *inode)
913 {
914 	int drop = generic_drop_inode(inode);
915 
916 	trace_ext4_drop_inode(inode, drop);
917 	return drop;
918 }
919 
ext4_i_callback(struct rcu_head * head)920 static void ext4_i_callback(struct rcu_head *head)
921 {
922 	struct inode *inode = container_of(head, struct inode, i_rcu);
923 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
924 }
925 
ext4_destroy_inode(struct inode * inode)926 static void ext4_destroy_inode(struct inode *inode)
927 {
928 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
929 		ext4_msg(inode->i_sb, KERN_ERR,
930 			 "Inode %lu (%p): orphan list check failed!",
931 			 inode->i_ino, EXT4_I(inode));
932 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
933 				EXT4_I(inode), sizeof(struct ext4_inode_info),
934 				true);
935 		dump_stack();
936 	}
937 	call_rcu(&inode->i_rcu, ext4_i_callback);
938 }
939 
init_once(void * foo)940 static void init_once(void *foo)
941 {
942 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
943 
944 	INIT_LIST_HEAD(&ei->i_orphan);
945 	init_rwsem(&ei->xattr_sem);
946 	init_rwsem(&ei->i_data_sem);
947 	inode_init_once(&ei->vfs_inode);
948 }
949 
init_inodecache(void)950 static int __init init_inodecache(void)
951 {
952 	ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
953 					     sizeof(struct ext4_inode_info),
954 					     0, (SLAB_RECLAIM_ACCOUNT|
955 						SLAB_MEM_SPREAD),
956 					     init_once);
957 	if (ext4_inode_cachep == NULL)
958 		return -ENOMEM;
959 	return 0;
960 }
961 
destroy_inodecache(void)962 static void destroy_inodecache(void)
963 {
964 	/*
965 	 * Make sure all delayed rcu free inodes are flushed before we
966 	 * destroy cache.
967 	 */
968 	rcu_barrier();
969 	kmem_cache_destroy(ext4_inode_cachep);
970 }
971 
ext4_clear_inode(struct inode * inode)972 void ext4_clear_inode(struct inode *inode)
973 {
974 	invalidate_inode_buffers(inode);
975 	clear_inode(inode);
976 	dquot_drop(inode);
977 	ext4_discard_preallocations(inode);
978 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
979 	ext4_es_lru_del(inode);
980 	if (EXT4_I(inode)->jinode) {
981 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
982 					       EXT4_I(inode)->jinode);
983 		jbd2_free_inode(EXT4_I(inode)->jinode);
984 		EXT4_I(inode)->jinode = NULL;
985 	}
986 #ifdef CONFIG_EXT4_FS_ENCRYPTION
987 	if (EXT4_I(inode)->i_crypt_info)
988 		ext4_free_encryption_info(inode, EXT4_I(inode)->i_crypt_info);
989 #endif
990 }
991 
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)992 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
993 					u64 ino, u32 generation)
994 {
995 	struct inode *inode;
996 
997 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
998 		return ERR_PTR(-ESTALE);
999 	if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1000 		return ERR_PTR(-ESTALE);
1001 
1002 	/* iget isn't really right if the inode is currently unallocated!!
1003 	 *
1004 	 * ext4_read_inode will return a bad_inode if the inode had been
1005 	 * deleted, so we should be safe.
1006 	 *
1007 	 * Currently we don't know the generation for parent directory, so
1008 	 * a generation of 0 means "accept any"
1009 	 */
1010 	inode = ext4_iget_normal(sb, ino);
1011 	if (IS_ERR(inode))
1012 		return ERR_CAST(inode);
1013 	if (generation && inode->i_generation != generation) {
1014 		iput(inode);
1015 		return ERR_PTR(-ESTALE);
1016 	}
1017 
1018 	return inode;
1019 }
1020 
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1021 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1022 					int fh_len, int fh_type)
1023 {
1024 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1025 				    ext4_nfs_get_inode);
1026 }
1027 
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1028 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1029 					int fh_len, int fh_type)
1030 {
1031 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1032 				    ext4_nfs_get_inode);
1033 }
1034 
1035 /*
1036  * Try to release metadata pages (indirect blocks, directories) which are
1037  * mapped via the block device.  Since these pages could have journal heads
1038  * which would prevent try_to_free_buffers() from freeing them, we must use
1039  * jbd2 layer's try_to_free_buffers() function to release them.
1040  */
bdev_try_to_free_page(struct super_block * sb,struct page * page,gfp_t wait)1041 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1042 				 gfp_t wait)
1043 {
1044 	journal_t *journal = EXT4_SB(sb)->s_journal;
1045 
1046 	WARN_ON(PageChecked(page));
1047 	if (!page_has_buffers(page))
1048 		return 0;
1049 	if (journal)
1050 		return jbd2_journal_try_to_free_buffers(journal, page,
1051 							wait & ~__GFP_WAIT);
1052 	return try_to_free_buffers(page);
1053 }
1054 
1055 #ifdef CONFIG_QUOTA
1056 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1057 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1058 
1059 static int ext4_write_dquot(struct dquot *dquot);
1060 static int ext4_acquire_dquot(struct dquot *dquot);
1061 static int ext4_release_dquot(struct dquot *dquot);
1062 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1063 static int ext4_write_info(struct super_block *sb, int type);
1064 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1065 			 struct path *path);
1066 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
1067 				 int format_id);
1068 static int ext4_quota_off(struct super_block *sb, int type);
1069 static int ext4_quota_off_sysfile(struct super_block *sb, int type);
1070 static int ext4_quota_on_mount(struct super_block *sb, int type);
1071 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1072 			       size_t len, loff_t off);
1073 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1074 				const char *data, size_t len, loff_t off);
1075 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1076 			     unsigned int flags);
1077 static int ext4_enable_quotas(struct super_block *sb);
1078 
1079 static const struct dquot_operations ext4_quota_operations = {
1080 	.get_reserved_space = ext4_get_reserved_space,
1081 	.write_dquot	= ext4_write_dquot,
1082 	.acquire_dquot	= ext4_acquire_dquot,
1083 	.release_dquot	= ext4_release_dquot,
1084 	.mark_dirty	= ext4_mark_dquot_dirty,
1085 	.write_info	= ext4_write_info,
1086 	.alloc_dquot	= dquot_alloc,
1087 	.destroy_dquot	= dquot_destroy,
1088 };
1089 
1090 static const struct quotactl_ops ext4_qctl_operations = {
1091 	.quota_on	= ext4_quota_on,
1092 	.quota_off	= ext4_quota_off,
1093 	.quota_sync	= dquot_quota_sync,
1094 	.get_info	= dquot_get_dqinfo,
1095 	.set_info	= dquot_set_dqinfo,
1096 	.get_dqblk	= dquot_get_dqblk,
1097 	.set_dqblk	= dquot_set_dqblk
1098 };
1099 
1100 static const struct quotactl_ops ext4_qctl_sysfile_operations = {
1101 	.quota_on_meta	= ext4_quota_on_sysfile,
1102 	.quota_off	= ext4_quota_off_sysfile,
1103 	.quota_sync	= dquot_quota_sync,
1104 	.get_info	= dquot_get_dqinfo,
1105 	.set_info	= dquot_set_dqinfo,
1106 	.get_dqblk	= dquot_get_dqblk,
1107 	.set_dqblk	= dquot_set_dqblk
1108 };
1109 #endif
1110 
1111 static const struct super_operations ext4_sops = {
1112 	.alloc_inode	= ext4_alloc_inode,
1113 	.destroy_inode	= ext4_destroy_inode,
1114 	.write_inode	= ext4_write_inode,
1115 	.dirty_inode	= ext4_dirty_inode,
1116 	.drop_inode	= ext4_drop_inode,
1117 	.evict_inode	= ext4_evict_inode,
1118 	.put_super	= ext4_put_super,
1119 	.sync_fs	= ext4_sync_fs,
1120 	.freeze_fs	= ext4_freeze,
1121 	.unfreeze_fs	= ext4_unfreeze,
1122 	.statfs		= ext4_statfs,
1123 	.remount_fs	= ext4_remount,
1124 	.show_options	= ext4_show_options,
1125 #ifdef CONFIG_QUOTA
1126 	.quota_read	= ext4_quota_read,
1127 	.quota_write	= ext4_quota_write,
1128 #endif
1129 	.bdev_try_to_free_page = bdev_try_to_free_page,
1130 };
1131 
1132 static const struct export_operations ext4_export_ops = {
1133 	.fh_to_dentry = ext4_fh_to_dentry,
1134 	.fh_to_parent = ext4_fh_to_parent,
1135 	.get_parent = ext4_get_parent,
1136 };
1137 
1138 enum {
1139 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1140 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1141 	Opt_nouid32, Opt_debug, Opt_removed,
1142 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1143 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1144 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1145 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1146 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1147 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1148 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1149 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1150 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1151 	Opt_usrquota, Opt_grpquota, Opt_i_version,
1152 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1153 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1154 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1155 	Opt_dioread_nolock, Opt_dioread_lock,
1156 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1157 	Opt_max_dir_size_kb,
1158 };
1159 
1160 static const match_table_t tokens = {
1161 	{Opt_bsd_df, "bsddf"},
1162 	{Opt_minix_df, "minixdf"},
1163 	{Opt_grpid, "grpid"},
1164 	{Opt_grpid, "bsdgroups"},
1165 	{Opt_nogrpid, "nogrpid"},
1166 	{Opt_nogrpid, "sysvgroups"},
1167 	{Opt_resgid, "resgid=%u"},
1168 	{Opt_resuid, "resuid=%u"},
1169 	{Opt_sb, "sb=%u"},
1170 	{Opt_err_cont, "errors=continue"},
1171 	{Opt_err_panic, "errors=panic"},
1172 	{Opt_err_ro, "errors=remount-ro"},
1173 	{Opt_nouid32, "nouid32"},
1174 	{Opt_debug, "debug"},
1175 	{Opt_removed, "oldalloc"},
1176 	{Opt_removed, "orlov"},
1177 	{Opt_user_xattr, "user_xattr"},
1178 	{Opt_nouser_xattr, "nouser_xattr"},
1179 	{Opt_acl, "acl"},
1180 	{Opt_noacl, "noacl"},
1181 	{Opt_noload, "norecovery"},
1182 	{Opt_noload, "noload"},
1183 	{Opt_removed, "nobh"},
1184 	{Opt_removed, "bh"},
1185 	{Opt_commit, "commit=%u"},
1186 	{Opt_min_batch_time, "min_batch_time=%u"},
1187 	{Opt_max_batch_time, "max_batch_time=%u"},
1188 	{Opt_journal_dev, "journal_dev=%u"},
1189 	{Opt_journal_path, "journal_path=%s"},
1190 	{Opt_journal_checksum, "journal_checksum"},
1191 	{Opt_journal_async_commit, "journal_async_commit"},
1192 	{Opt_abort, "abort"},
1193 	{Opt_data_journal, "data=journal"},
1194 	{Opt_data_ordered, "data=ordered"},
1195 	{Opt_data_writeback, "data=writeback"},
1196 	{Opt_data_err_abort, "data_err=abort"},
1197 	{Opt_data_err_ignore, "data_err=ignore"},
1198 	{Opt_offusrjquota, "usrjquota="},
1199 	{Opt_usrjquota, "usrjquota=%s"},
1200 	{Opt_offgrpjquota, "grpjquota="},
1201 	{Opt_grpjquota, "grpjquota=%s"},
1202 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1203 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1204 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1205 	{Opt_grpquota, "grpquota"},
1206 	{Opt_noquota, "noquota"},
1207 	{Opt_quota, "quota"},
1208 	{Opt_usrquota, "usrquota"},
1209 	{Opt_barrier, "barrier=%u"},
1210 	{Opt_barrier, "barrier"},
1211 	{Opt_nobarrier, "nobarrier"},
1212 	{Opt_i_version, "i_version"},
1213 	{Opt_stripe, "stripe=%u"},
1214 	{Opt_delalloc, "delalloc"},
1215 	{Opt_nodelalloc, "nodelalloc"},
1216 	{Opt_removed, "mblk_io_submit"},
1217 	{Opt_removed, "nomblk_io_submit"},
1218 	{Opt_block_validity, "block_validity"},
1219 	{Opt_noblock_validity, "noblock_validity"},
1220 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1221 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1222 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1223 	{Opt_auto_da_alloc, "auto_da_alloc"},
1224 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1225 	{Opt_dioread_nolock, "dioread_nolock"},
1226 	{Opt_dioread_lock, "dioread_lock"},
1227 	{Opt_discard, "discard"},
1228 	{Opt_nodiscard, "nodiscard"},
1229 	{Opt_init_itable, "init_itable=%u"},
1230 	{Opt_init_itable, "init_itable"},
1231 	{Opt_noinit_itable, "noinit_itable"},
1232 	{Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1233 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
1234 	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1235 	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1236 	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1237 	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1238 	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1239 	{Opt_err, NULL},
1240 };
1241 
get_sb_block(void ** data)1242 static ext4_fsblk_t get_sb_block(void **data)
1243 {
1244 	ext4_fsblk_t	sb_block;
1245 	char		*options = (char *) *data;
1246 
1247 	if (!options || strncmp(options, "sb=", 3) != 0)
1248 		return 1;	/* Default location */
1249 
1250 	options += 3;
1251 	/* TODO: use simple_strtoll with >32bit ext4 */
1252 	sb_block = simple_strtoul(options, &options, 0);
1253 	if (*options && *options != ',') {
1254 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1255 		       (char *) *data);
1256 		return 1;
1257 	}
1258 	if (*options == ',')
1259 		options++;
1260 	*data = (void *) options;
1261 
1262 	return sb_block;
1263 }
1264 
1265 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1266 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1267 	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1268 
1269 #ifdef CONFIG_QUOTA
set_qf_name(struct super_block * sb,int qtype,substring_t * args)1270 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1271 {
1272 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1273 	char *qname;
1274 	int ret = -1;
1275 
1276 	if (sb_any_quota_loaded(sb) &&
1277 		!sbi->s_qf_names[qtype]) {
1278 		ext4_msg(sb, KERN_ERR,
1279 			"Cannot change journaled "
1280 			"quota options when quota turned on");
1281 		return -1;
1282 	}
1283 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1284 		ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options "
1285 			 "when QUOTA feature is enabled");
1286 		return -1;
1287 	}
1288 	qname = match_strdup(args);
1289 	if (!qname) {
1290 		ext4_msg(sb, KERN_ERR,
1291 			"Not enough memory for storing quotafile name");
1292 		return -1;
1293 	}
1294 	if (sbi->s_qf_names[qtype]) {
1295 		if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1296 			ret = 1;
1297 		else
1298 			ext4_msg(sb, KERN_ERR,
1299 				 "%s quota file already specified",
1300 				 QTYPE2NAME(qtype));
1301 		goto errout;
1302 	}
1303 	if (strchr(qname, '/')) {
1304 		ext4_msg(sb, KERN_ERR,
1305 			"quotafile must be on filesystem root");
1306 		goto errout;
1307 	}
1308 	sbi->s_qf_names[qtype] = qname;
1309 	set_opt(sb, QUOTA);
1310 	return 1;
1311 errout:
1312 	kfree(qname);
1313 	return ret;
1314 }
1315 
clear_qf_name(struct super_block * sb,int qtype)1316 static int clear_qf_name(struct super_block *sb, int qtype)
1317 {
1318 
1319 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1320 
1321 	if (sb_any_quota_loaded(sb) &&
1322 		sbi->s_qf_names[qtype]) {
1323 		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1324 			" when quota turned on");
1325 		return -1;
1326 	}
1327 	kfree(sbi->s_qf_names[qtype]);
1328 	sbi->s_qf_names[qtype] = NULL;
1329 	return 1;
1330 }
1331 #endif
1332 
1333 #define MOPT_SET	0x0001
1334 #define MOPT_CLEAR	0x0002
1335 #define MOPT_NOSUPPORT	0x0004
1336 #define MOPT_EXPLICIT	0x0008
1337 #define MOPT_CLEAR_ERR	0x0010
1338 #define MOPT_GTE0	0x0020
1339 #ifdef CONFIG_QUOTA
1340 #define MOPT_Q		0
1341 #define MOPT_QFMT	0x0040
1342 #else
1343 #define MOPT_Q		MOPT_NOSUPPORT
1344 #define MOPT_QFMT	MOPT_NOSUPPORT
1345 #endif
1346 #define MOPT_DATAJ	0x0080
1347 #define MOPT_NO_EXT2	0x0100
1348 #define MOPT_NO_EXT3	0x0200
1349 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1350 #define MOPT_STRING	0x0400
1351 
1352 static const struct mount_opts {
1353 	int	token;
1354 	int	mount_opt;
1355 	int	flags;
1356 } ext4_mount_opts[] = {
1357 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1358 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1359 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1360 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1361 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1362 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1363 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1364 	 MOPT_EXT4_ONLY | MOPT_SET},
1365 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1366 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1367 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1368 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1369 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1370 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1371 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1372 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1373 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1374 	 MOPT_EXT4_ONLY | MOPT_SET},
1375 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1376 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1377 	 MOPT_EXT4_ONLY | MOPT_SET},
1378 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1379 	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1380 	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1381 	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1382 	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1383 	 MOPT_NO_EXT2 | MOPT_SET},
1384 	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1385 	 MOPT_NO_EXT2 | MOPT_CLEAR},
1386 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1387 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1388 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1389 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1390 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1391 	{Opt_commit, 0, MOPT_GTE0},
1392 	{Opt_max_batch_time, 0, MOPT_GTE0},
1393 	{Opt_min_batch_time, 0, MOPT_GTE0},
1394 	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1395 	{Opt_init_itable, 0, MOPT_GTE0},
1396 	{Opt_stripe, 0, MOPT_GTE0},
1397 	{Opt_resuid, 0, MOPT_GTE0},
1398 	{Opt_resgid, 0, MOPT_GTE0},
1399 	{Opt_journal_dev, 0, MOPT_GTE0},
1400 	{Opt_journal_path, 0, MOPT_STRING},
1401 	{Opt_journal_ioprio, 0, MOPT_GTE0},
1402 	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1403 	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1404 	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1405 	 MOPT_NO_EXT2 | MOPT_DATAJ},
1406 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1407 	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1408 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1409 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1410 	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1411 #else
1412 	{Opt_acl, 0, MOPT_NOSUPPORT},
1413 	{Opt_noacl, 0, MOPT_NOSUPPORT},
1414 #endif
1415 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1416 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1417 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1418 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1419 							MOPT_SET | MOPT_Q},
1420 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1421 							MOPT_SET | MOPT_Q},
1422 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1423 		       EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1424 	{Opt_usrjquota, 0, MOPT_Q},
1425 	{Opt_grpjquota, 0, MOPT_Q},
1426 	{Opt_offusrjquota, 0, MOPT_Q},
1427 	{Opt_offgrpjquota, 0, MOPT_Q},
1428 	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1429 	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1430 	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1431 	{Opt_max_dir_size_kb, 0, MOPT_GTE0},
1432 	{Opt_test_dummy_encryption, 0, MOPT_GTE0},
1433 	{Opt_err, 0, 0}
1434 };
1435 
handle_mount_opt(struct super_block * sb,char * opt,int token,substring_t * args,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)1436 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1437 			    substring_t *args, unsigned long *journal_devnum,
1438 			    unsigned int *journal_ioprio, int is_remount)
1439 {
1440 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1441 	const struct mount_opts *m;
1442 	kuid_t uid;
1443 	kgid_t gid;
1444 	int arg = 0;
1445 
1446 #ifdef CONFIG_QUOTA
1447 	if (token == Opt_usrjquota)
1448 		return set_qf_name(sb, USRQUOTA, &args[0]);
1449 	else if (token == Opt_grpjquota)
1450 		return set_qf_name(sb, GRPQUOTA, &args[0]);
1451 	else if (token == Opt_offusrjquota)
1452 		return clear_qf_name(sb, USRQUOTA);
1453 	else if (token == Opt_offgrpjquota)
1454 		return clear_qf_name(sb, GRPQUOTA);
1455 #endif
1456 	switch (token) {
1457 	case Opt_noacl:
1458 	case Opt_nouser_xattr:
1459 		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1460 		break;
1461 	case Opt_sb:
1462 		return 1;	/* handled by get_sb_block() */
1463 	case Opt_removed:
1464 		ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1465 		return 1;
1466 	case Opt_abort:
1467 		sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1468 		return 1;
1469 	case Opt_i_version:
1470 		sb->s_flags |= MS_I_VERSION;
1471 		return 1;
1472 	}
1473 
1474 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
1475 		if (token == m->token)
1476 			break;
1477 
1478 	if (m->token == Opt_err) {
1479 		ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1480 			 "or missing value", opt);
1481 		return -1;
1482 	}
1483 
1484 	if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1485 		ext4_msg(sb, KERN_ERR,
1486 			 "Mount option \"%s\" incompatible with ext2", opt);
1487 		return -1;
1488 	}
1489 	if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1490 		ext4_msg(sb, KERN_ERR,
1491 			 "Mount option \"%s\" incompatible with ext3", opt);
1492 		return -1;
1493 	}
1494 
1495 	if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1496 		return -1;
1497 	if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1498 		return -1;
1499 	if (m->flags & MOPT_EXPLICIT)
1500 		set_opt2(sb, EXPLICIT_DELALLOC);
1501 	if (m->flags & MOPT_CLEAR_ERR)
1502 		clear_opt(sb, ERRORS_MASK);
1503 	if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1504 		ext4_msg(sb, KERN_ERR, "Cannot change quota "
1505 			 "options when quota turned on");
1506 		return -1;
1507 	}
1508 
1509 	if (m->flags & MOPT_NOSUPPORT) {
1510 		ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1511 	} else if (token == Opt_commit) {
1512 		if (arg == 0)
1513 			arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1514 		sbi->s_commit_interval = HZ * arg;
1515 	} else if (token == Opt_max_batch_time) {
1516 		sbi->s_max_batch_time = arg;
1517 	} else if (token == Opt_min_batch_time) {
1518 		sbi->s_min_batch_time = arg;
1519 	} else if (token == Opt_inode_readahead_blks) {
1520 		if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1521 			ext4_msg(sb, KERN_ERR,
1522 				 "EXT4-fs: inode_readahead_blks must be "
1523 				 "0 or a power of 2 smaller than 2^31");
1524 			return -1;
1525 		}
1526 		sbi->s_inode_readahead_blks = arg;
1527 	} else if (token == Opt_init_itable) {
1528 		set_opt(sb, INIT_INODE_TABLE);
1529 		if (!args->from)
1530 			arg = EXT4_DEF_LI_WAIT_MULT;
1531 		sbi->s_li_wait_mult = arg;
1532 	} else if (token == Opt_max_dir_size_kb) {
1533 		sbi->s_max_dir_size_kb = arg;
1534 	} else if (token == Opt_stripe) {
1535 		sbi->s_stripe = arg;
1536 	} else if (token == Opt_resuid) {
1537 		uid = make_kuid(current_user_ns(), arg);
1538 		if (!uid_valid(uid)) {
1539 			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1540 			return -1;
1541 		}
1542 		sbi->s_resuid = uid;
1543 	} else if (token == Opt_resgid) {
1544 		gid = make_kgid(current_user_ns(), arg);
1545 		if (!gid_valid(gid)) {
1546 			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1547 			return -1;
1548 		}
1549 		sbi->s_resgid = gid;
1550 	} else if (token == Opt_journal_dev) {
1551 		if (is_remount) {
1552 			ext4_msg(sb, KERN_ERR,
1553 				 "Cannot specify journal on remount");
1554 			return -1;
1555 		}
1556 		*journal_devnum = arg;
1557 	} else if (token == Opt_journal_path) {
1558 		char *journal_path;
1559 		struct inode *journal_inode;
1560 		struct path path;
1561 		int error;
1562 
1563 		if (is_remount) {
1564 			ext4_msg(sb, KERN_ERR,
1565 				 "Cannot specify journal on remount");
1566 			return -1;
1567 		}
1568 		journal_path = match_strdup(&args[0]);
1569 		if (!journal_path) {
1570 			ext4_msg(sb, KERN_ERR, "error: could not dup "
1571 				"journal device string");
1572 			return -1;
1573 		}
1574 
1575 		error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1576 		if (error) {
1577 			ext4_msg(sb, KERN_ERR, "error: could not find "
1578 				"journal device path: error %d", error);
1579 			kfree(journal_path);
1580 			return -1;
1581 		}
1582 
1583 		journal_inode = path.dentry->d_inode;
1584 		if (!S_ISBLK(journal_inode->i_mode)) {
1585 			ext4_msg(sb, KERN_ERR, "error: journal path %s "
1586 				"is not a block device", journal_path);
1587 			path_put(&path);
1588 			kfree(journal_path);
1589 			return -1;
1590 		}
1591 
1592 		*journal_devnum = new_encode_dev(journal_inode->i_rdev);
1593 		path_put(&path);
1594 		kfree(journal_path);
1595 	} else if (token == Opt_journal_ioprio) {
1596 		if (arg > 7) {
1597 			ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1598 				 " (must be 0-7)");
1599 			return -1;
1600 		}
1601 		*journal_ioprio =
1602 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1603 	} else if (token == Opt_test_dummy_encryption) {
1604 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1605 		sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1606 		ext4_msg(sb, KERN_WARNING,
1607 			 "Test dummy encryption mode enabled");
1608 #else
1609 		ext4_msg(sb, KERN_WARNING,
1610 			 "Test dummy encryption mount option ignored");
1611 #endif
1612 	} else if (m->flags & MOPT_DATAJ) {
1613 		if (is_remount) {
1614 			if (!sbi->s_journal)
1615 				ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1616 			else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1617 				ext4_msg(sb, KERN_ERR,
1618 					 "Cannot change data mode on remount");
1619 				return -1;
1620 			}
1621 		} else {
1622 			clear_opt(sb, DATA_FLAGS);
1623 			sbi->s_mount_opt |= m->mount_opt;
1624 		}
1625 #ifdef CONFIG_QUOTA
1626 	} else if (m->flags & MOPT_QFMT) {
1627 		if (sb_any_quota_loaded(sb) &&
1628 		    sbi->s_jquota_fmt != m->mount_opt) {
1629 			ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1630 				 "quota options when quota turned on");
1631 			return -1;
1632 		}
1633 		if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1634 					       EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1635 			ext4_msg(sb, KERN_ERR,
1636 				 "Cannot set journaled quota options "
1637 				 "when QUOTA feature is enabled");
1638 			return -1;
1639 		}
1640 		sbi->s_jquota_fmt = m->mount_opt;
1641 #endif
1642 	} else {
1643 		if (!args->from)
1644 			arg = 1;
1645 		if (m->flags & MOPT_CLEAR)
1646 			arg = !arg;
1647 		else if (unlikely(!(m->flags & MOPT_SET))) {
1648 			ext4_msg(sb, KERN_WARNING,
1649 				 "buggy handling of option %s", opt);
1650 			WARN_ON(1);
1651 			return -1;
1652 		}
1653 		if (arg != 0)
1654 			sbi->s_mount_opt |= m->mount_opt;
1655 		else
1656 			sbi->s_mount_opt &= ~m->mount_opt;
1657 	}
1658 	return 1;
1659 }
1660 
parse_options(char * options,struct super_block * sb,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)1661 static int parse_options(char *options, struct super_block *sb,
1662 			 unsigned long *journal_devnum,
1663 			 unsigned int *journal_ioprio,
1664 			 int is_remount)
1665 {
1666 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1667 	char *p;
1668 	substring_t args[MAX_OPT_ARGS];
1669 	int token;
1670 
1671 	if (!options)
1672 		return 1;
1673 
1674 	while ((p = strsep(&options, ",")) != NULL) {
1675 		if (!*p)
1676 			continue;
1677 		/*
1678 		 * Initialize args struct so we know whether arg was
1679 		 * found; some options take optional arguments.
1680 		 */
1681 		args[0].to = args[0].from = NULL;
1682 		token = match_token(p, tokens, args);
1683 		if (handle_mount_opt(sb, p, token, args, journal_devnum,
1684 				     journal_ioprio, is_remount) < 0)
1685 			return 0;
1686 	}
1687 #ifdef CONFIG_QUOTA
1688 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
1689 	    (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1690 		ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA "
1691 			 "feature is enabled");
1692 		return 0;
1693 	}
1694 	if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1695 		if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1696 			clear_opt(sb, USRQUOTA);
1697 
1698 		if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1699 			clear_opt(sb, GRPQUOTA);
1700 
1701 		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1702 			ext4_msg(sb, KERN_ERR, "old and new quota "
1703 					"format mixing");
1704 			return 0;
1705 		}
1706 
1707 		if (!sbi->s_jquota_fmt) {
1708 			ext4_msg(sb, KERN_ERR, "journaled quota format "
1709 					"not specified");
1710 			return 0;
1711 		}
1712 	}
1713 #endif
1714 	if (test_opt(sb, DIOREAD_NOLOCK)) {
1715 		int blocksize =
1716 			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1717 
1718 		if (blocksize < PAGE_CACHE_SIZE) {
1719 			ext4_msg(sb, KERN_ERR, "can't mount with "
1720 				 "dioread_nolock if block size != PAGE_SIZE");
1721 			return 0;
1722 		}
1723 	}
1724 	return 1;
1725 }
1726 
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)1727 static inline void ext4_show_quota_options(struct seq_file *seq,
1728 					   struct super_block *sb)
1729 {
1730 #if defined(CONFIG_QUOTA)
1731 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1732 
1733 	if (sbi->s_jquota_fmt) {
1734 		char *fmtname = "";
1735 
1736 		switch (sbi->s_jquota_fmt) {
1737 		case QFMT_VFS_OLD:
1738 			fmtname = "vfsold";
1739 			break;
1740 		case QFMT_VFS_V0:
1741 			fmtname = "vfsv0";
1742 			break;
1743 		case QFMT_VFS_V1:
1744 			fmtname = "vfsv1";
1745 			break;
1746 		}
1747 		seq_printf(seq, ",jqfmt=%s", fmtname);
1748 	}
1749 
1750 	if (sbi->s_qf_names[USRQUOTA])
1751 		seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1752 
1753 	if (sbi->s_qf_names[GRPQUOTA])
1754 		seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1755 #endif
1756 }
1757 
token2str(int token)1758 static const char *token2str(int token)
1759 {
1760 	const struct match_token *t;
1761 
1762 	for (t = tokens; t->token != Opt_err; t++)
1763 		if (t->token == token && !strchr(t->pattern, '='))
1764 			break;
1765 	return t->pattern;
1766 }
1767 
1768 /*
1769  * Show an option if
1770  *  - it's set to a non-default value OR
1771  *  - if the per-sb default is different from the global default
1772  */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)1773 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1774 			      int nodefs)
1775 {
1776 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1777 	struct ext4_super_block *es = sbi->s_es;
1778 	int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1779 	const struct mount_opts *m;
1780 	char sep = nodefs ? '\n' : ',';
1781 
1782 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1783 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1784 
1785 	if (sbi->s_sb_block != 1)
1786 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1787 
1788 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1789 		int want_set = m->flags & MOPT_SET;
1790 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1791 		    (m->flags & MOPT_CLEAR_ERR))
1792 			continue;
1793 		if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1794 			continue; /* skip if same as the default */
1795 		if ((want_set &&
1796 		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1797 		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1798 			continue; /* select Opt_noFoo vs Opt_Foo */
1799 		SEQ_OPTS_PRINT("%s", token2str(m->token));
1800 	}
1801 
1802 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1803 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1804 		SEQ_OPTS_PRINT("resuid=%u",
1805 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
1806 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1807 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1808 		SEQ_OPTS_PRINT("resgid=%u",
1809 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
1810 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1811 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1812 		SEQ_OPTS_PUTS("errors=remount-ro");
1813 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1814 		SEQ_OPTS_PUTS("errors=continue");
1815 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1816 		SEQ_OPTS_PUTS("errors=panic");
1817 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1818 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1819 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1820 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1821 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1822 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1823 	if (sb->s_flags & MS_I_VERSION)
1824 		SEQ_OPTS_PUTS("i_version");
1825 	if (nodefs || sbi->s_stripe)
1826 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1827 	if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1828 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1829 			SEQ_OPTS_PUTS("data=journal");
1830 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1831 			SEQ_OPTS_PUTS("data=ordered");
1832 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1833 			SEQ_OPTS_PUTS("data=writeback");
1834 	}
1835 	if (nodefs ||
1836 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1837 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1838 			       sbi->s_inode_readahead_blks);
1839 
1840 	if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1841 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1842 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1843 	if (nodefs || sbi->s_max_dir_size_kb)
1844 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1845 
1846 	ext4_show_quota_options(seq, sb);
1847 	return 0;
1848 }
1849 
ext4_show_options(struct seq_file * seq,struct dentry * root)1850 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1851 {
1852 	return _ext4_show_options(seq, root->d_sb, 0);
1853 }
1854 
options_seq_show(struct seq_file * seq,void * offset)1855 static int options_seq_show(struct seq_file *seq, void *offset)
1856 {
1857 	struct super_block *sb = seq->private;
1858 	int rc;
1859 
1860 	seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1861 	rc = _ext4_show_options(seq, sb, 1);
1862 	seq_puts(seq, "\n");
1863 	return rc;
1864 }
1865 
options_open_fs(struct inode * inode,struct file * file)1866 static int options_open_fs(struct inode *inode, struct file *file)
1867 {
1868 	return single_open(file, options_seq_show, PDE_DATA(inode));
1869 }
1870 
1871 static const struct file_operations ext4_seq_options_fops = {
1872 	.owner = THIS_MODULE,
1873 	.open = options_open_fs,
1874 	.read = seq_read,
1875 	.llseek = seq_lseek,
1876 	.release = single_release,
1877 };
1878 
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)1879 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1880 			    int read_only)
1881 {
1882 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1883 	int res = 0;
1884 
1885 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1886 		ext4_msg(sb, KERN_ERR, "revision level too high, "
1887 			 "forcing read-only mode");
1888 		res = MS_RDONLY;
1889 	}
1890 	if (read_only)
1891 		goto done;
1892 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
1893 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1894 			 "running e2fsck is recommended");
1895 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
1896 		ext4_msg(sb, KERN_WARNING,
1897 			 "warning: mounting fs with errors, "
1898 			 "running e2fsck is recommended");
1899 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1900 		 le16_to_cpu(es->s_mnt_count) >=
1901 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1902 		ext4_msg(sb, KERN_WARNING,
1903 			 "warning: maximal mount count reached, "
1904 			 "running e2fsck is recommended");
1905 	else if (le32_to_cpu(es->s_checkinterval) &&
1906 		(le32_to_cpu(es->s_lastcheck) +
1907 			le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1908 		ext4_msg(sb, KERN_WARNING,
1909 			 "warning: checktime reached, "
1910 			 "running e2fsck is recommended");
1911 	if (!sbi->s_journal)
1912 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1913 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1914 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1915 	le16_add_cpu(&es->s_mnt_count, 1);
1916 	es->s_mtime = cpu_to_le32(get_seconds());
1917 	ext4_update_dynamic_rev(sb);
1918 	if (sbi->s_journal)
1919 		EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1920 
1921 	ext4_commit_super(sb, 1);
1922 done:
1923 	if (test_opt(sb, DEBUG))
1924 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1925 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1926 			sb->s_blocksize,
1927 			sbi->s_groups_count,
1928 			EXT4_BLOCKS_PER_GROUP(sb),
1929 			EXT4_INODES_PER_GROUP(sb),
1930 			sbi->s_mount_opt, sbi->s_mount_opt2);
1931 
1932 	cleancache_init_fs(sb);
1933 	return res;
1934 }
1935 
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)1936 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1937 {
1938 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1939 	struct flex_groups *new_groups;
1940 	int size;
1941 
1942 	if (!sbi->s_log_groups_per_flex)
1943 		return 0;
1944 
1945 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
1946 	if (size <= sbi->s_flex_groups_allocated)
1947 		return 0;
1948 
1949 	size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1950 	new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1951 	if (!new_groups) {
1952 		ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1953 			 size / (int) sizeof(struct flex_groups));
1954 		return -ENOMEM;
1955 	}
1956 
1957 	if (sbi->s_flex_groups) {
1958 		memcpy(new_groups, sbi->s_flex_groups,
1959 		       (sbi->s_flex_groups_allocated *
1960 			sizeof(struct flex_groups)));
1961 		ext4_kvfree(sbi->s_flex_groups);
1962 	}
1963 	sbi->s_flex_groups = new_groups;
1964 	sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1965 	return 0;
1966 }
1967 
ext4_fill_flex_info(struct super_block * sb)1968 static int ext4_fill_flex_info(struct super_block *sb)
1969 {
1970 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1971 	struct ext4_group_desc *gdp = NULL;
1972 	ext4_group_t flex_group;
1973 	int i, err;
1974 
1975 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1976 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1977 		sbi->s_log_groups_per_flex = 0;
1978 		return 1;
1979 	}
1980 
1981 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1982 	if (err)
1983 		goto failed;
1984 
1985 	for (i = 0; i < sbi->s_groups_count; i++) {
1986 		gdp = ext4_get_group_desc(sb, i, NULL);
1987 
1988 		flex_group = ext4_flex_group(sbi, i);
1989 		atomic_add(ext4_free_inodes_count(sb, gdp),
1990 			   &sbi->s_flex_groups[flex_group].free_inodes);
1991 		atomic64_add(ext4_free_group_clusters(sb, gdp),
1992 			     &sbi->s_flex_groups[flex_group].free_clusters);
1993 		atomic_add(ext4_used_dirs_count(sb, gdp),
1994 			   &sbi->s_flex_groups[flex_group].used_dirs);
1995 	}
1996 
1997 	return 1;
1998 failed:
1999 	return 0;
2000 }
2001 
ext4_group_desc_csum(struct ext4_sb_info * sbi,__u32 block_group,struct ext4_group_desc * gdp)2002 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
2003 				   struct ext4_group_desc *gdp)
2004 {
2005 	int offset;
2006 	__u16 crc = 0;
2007 	__le32 le_group = cpu_to_le32(block_group);
2008 
2009 	if (ext4_has_metadata_csum(sbi->s_sb)) {
2010 		/* Use new metadata_csum algorithm */
2011 		__le16 save_csum;
2012 		__u32 csum32;
2013 
2014 		save_csum = gdp->bg_checksum;
2015 		gdp->bg_checksum = 0;
2016 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2017 				     sizeof(le_group));
2018 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
2019 				     sbi->s_desc_size);
2020 		gdp->bg_checksum = save_csum;
2021 
2022 		crc = csum32 & 0xFFFF;
2023 		goto out;
2024 	}
2025 
2026 	/* old crc16 code */
2027 	if (!(sbi->s_es->s_feature_ro_compat &
2028 	      cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)))
2029 		return 0;
2030 
2031 	offset = offsetof(struct ext4_group_desc, bg_checksum);
2032 
2033 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2034 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2035 	crc = crc16(crc, (__u8 *)gdp, offset);
2036 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2037 	/* for checksum of struct ext4_group_desc do the rest...*/
2038 	if ((sbi->s_es->s_feature_incompat &
2039 	     cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2040 	    offset < le16_to_cpu(sbi->s_es->s_desc_size))
2041 		crc = crc16(crc, (__u8 *)gdp + offset,
2042 			    le16_to_cpu(sbi->s_es->s_desc_size) -
2043 				offset);
2044 
2045 out:
2046 	return cpu_to_le16(crc);
2047 }
2048 
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2049 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2050 				struct ext4_group_desc *gdp)
2051 {
2052 	if (ext4_has_group_desc_csum(sb) &&
2053 	    (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
2054 						      block_group, gdp)))
2055 		return 0;
2056 
2057 	return 1;
2058 }
2059 
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2060 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2061 			      struct ext4_group_desc *gdp)
2062 {
2063 	if (!ext4_has_group_desc_csum(sb))
2064 		return;
2065 	gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
2066 }
2067 
2068 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_group_t * first_not_zeroed)2069 static int ext4_check_descriptors(struct super_block *sb,
2070 				  ext4_group_t *first_not_zeroed)
2071 {
2072 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2073 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2074 	ext4_fsblk_t last_block;
2075 	ext4_fsblk_t block_bitmap;
2076 	ext4_fsblk_t inode_bitmap;
2077 	ext4_fsblk_t inode_table;
2078 	int flexbg_flag = 0;
2079 	ext4_group_t i, grp = sbi->s_groups_count;
2080 
2081 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2082 		flexbg_flag = 1;
2083 
2084 	ext4_debug("Checking group descriptors");
2085 
2086 	for (i = 0; i < sbi->s_groups_count; i++) {
2087 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2088 
2089 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2090 			last_block = ext4_blocks_count(sbi->s_es) - 1;
2091 		else
2092 			last_block = first_block +
2093 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2094 
2095 		if ((grp == sbi->s_groups_count) &&
2096 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2097 			grp = i;
2098 
2099 		block_bitmap = ext4_block_bitmap(sb, gdp);
2100 		if (block_bitmap < first_block || block_bitmap > last_block) {
2101 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2102 			       "Block bitmap for group %u not in group "
2103 			       "(block %llu)!", i, block_bitmap);
2104 			return 0;
2105 		}
2106 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2107 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2108 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2109 			       "Inode bitmap for group %u not in group "
2110 			       "(block %llu)!", i, inode_bitmap);
2111 			return 0;
2112 		}
2113 		inode_table = ext4_inode_table(sb, gdp);
2114 		if (inode_table < first_block ||
2115 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2116 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2117 			       "Inode table for group %u not in group "
2118 			       "(block %llu)!", i, inode_table);
2119 			return 0;
2120 		}
2121 		ext4_lock_group(sb, i);
2122 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2123 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2124 				 "Checksum for group %u failed (%u!=%u)",
2125 				 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2126 				     gdp)), le16_to_cpu(gdp->bg_checksum));
2127 			if (!(sb->s_flags & MS_RDONLY)) {
2128 				ext4_unlock_group(sb, i);
2129 				return 0;
2130 			}
2131 		}
2132 		ext4_unlock_group(sb, i);
2133 		if (!flexbg_flag)
2134 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2135 	}
2136 	if (NULL != first_not_zeroed)
2137 		*first_not_zeroed = grp;
2138 	return 1;
2139 }
2140 
2141 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2142  * the superblock) which were deleted from all directories, but held open by
2143  * a process at the time of a crash.  We walk the list and try to delete these
2144  * inodes at recovery time (only with a read-write filesystem).
2145  *
2146  * In order to keep the orphan inode chain consistent during traversal (in
2147  * case of crash during recovery), we link each inode into the superblock
2148  * orphan list_head and handle it the same way as an inode deletion during
2149  * normal operation (which journals the operations for us).
2150  *
2151  * We only do an iget() and an iput() on each inode, which is very safe if we
2152  * accidentally point at an in-use or already deleted inode.  The worst that
2153  * can happen in this case is that we get a "bit already cleared" message from
2154  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2155  * e2fsck was run on this filesystem, and it must have already done the orphan
2156  * inode cleanup for us, so we can safely abort without any further action.
2157  */
ext4_orphan_cleanup(struct super_block * sb,struct ext4_super_block * es)2158 static void ext4_orphan_cleanup(struct super_block *sb,
2159 				struct ext4_super_block *es)
2160 {
2161 	unsigned int s_flags = sb->s_flags;
2162 	int nr_orphans = 0, nr_truncates = 0;
2163 #ifdef CONFIG_QUOTA
2164 	int i;
2165 #endif
2166 	if (!es->s_last_orphan) {
2167 		jbd_debug(4, "no orphan inodes to clean up\n");
2168 		return;
2169 	}
2170 
2171 	if (bdev_read_only(sb->s_bdev)) {
2172 		ext4_msg(sb, KERN_ERR, "write access "
2173 			"unavailable, skipping orphan cleanup");
2174 		return;
2175 	}
2176 
2177 	/* Check if feature set would not allow a r/w mount */
2178 	if (!ext4_feature_set_ok(sb, 0)) {
2179 		ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2180 			 "unknown ROCOMPAT features");
2181 		return;
2182 	}
2183 
2184 	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2185 		/* don't clear list on RO mount w/ errors */
2186 		if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2187 			ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2188 				  "clearing orphan list.\n");
2189 			es->s_last_orphan = 0;
2190 		}
2191 		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2192 		return;
2193 	}
2194 
2195 	if (s_flags & MS_RDONLY) {
2196 		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2197 		sb->s_flags &= ~MS_RDONLY;
2198 	}
2199 #ifdef CONFIG_QUOTA
2200 	/* Needed for iput() to work correctly and not trash data */
2201 	sb->s_flags |= MS_ACTIVE;
2202 	/* Turn on quotas so that they are updated correctly */
2203 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2204 		if (EXT4_SB(sb)->s_qf_names[i]) {
2205 			int ret = ext4_quota_on_mount(sb, i);
2206 			if (ret < 0)
2207 				ext4_msg(sb, KERN_ERR,
2208 					"Cannot turn on journaled "
2209 					"quota: error %d", ret);
2210 		}
2211 	}
2212 #endif
2213 
2214 	while (es->s_last_orphan) {
2215 		struct inode *inode;
2216 
2217 		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2218 		if (IS_ERR(inode)) {
2219 			es->s_last_orphan = 0;
2220 			break;
2221 		}
2222 
2223 		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2224 		dquot_initialize(inode);
2225 		if (inode->i_nlink) {
2226 			if (test_opt(sb, DEBUG))
2227 				ext4_msg(sb, KERN_DEBUG,
2228 					"%s: truncating inode %lu to %lld bytes",
2229 					__func__, inode->i_ino, inode->i_size);
2230 			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2231 				  inode->i_ino, inode->i_size);
2232 			mutex_lock(&inode->i_mutex);
2233 			truncate_inode_pages(inode->i_mapping, inode->i_size);
2234 			ext4_truncate(inode);
2235 			mutex_unlock(&inode->i_mutex);
2236 			nr_truncates++;
2237 		} else {
2238 			if (test_opt(sb, DEBUG))
2239 				ext4_msg(sb, KERN_DEBUG,
2240 					"%s: deleting unreferenced inode %lu",
2241 					__func__, inode->i_ino);
2242 			jbd_debug(2, "deleting unreferenced inode %lu\n",
2243 				  inode->i_ino);
2244 			nr_orphans++;
2245 		}
2246 		iput(inode);  /* The delete magic happens here! */
2247 	}
2248 
2249 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2250 
2251 	if (nr_orphans)
2252 		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2253 		       PLURAL(nr_orphans));
2254 	if (nr_truncates)
2255 		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2256 		       PLURAL(nr_truncates));
2257 #ifdef CONFIG_QUOTA
2258 	/* Turn quotas off */
2259 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2260 		if (sb_dqopt(sb)->files[i])
2261 			dquot_quota_off(sb, i);
2262 	}
2263 #endif
2264 	sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2265 }
2266 
2267 /*
2268  * Maximal extent format file size.
2269  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2270  * extent format containers, within a sector_t, and within i_blocks
2271  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2272  * so that won't be a limiting factor.
2273  *
2274  * However there is other limiting factor. We do store extents in the form
2275  * of starting block and length, hence the resulting length of the extent
2276  * covering maximum file size must fit into on-disk format containers as
2277  * well. Given that length is always by 1 unit bigger than max unit (because
2278  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2279  *
2280  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2281  */
ext4_max_size(int blkbits,int has_huge_files)2282 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2283 {
2284 	loff_t res;
2285 	loff_t upper_limit = MAX_LFS_FILESIZE;
2286 
2287 	/* small i_blocks in vfs inode? */
2288 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2289 		/*
2290 		 * CONFIG_LBDAF is not enabled implies the inode
2291 		 * i_block represent total blocks in 512 bytes
2292 		 * 32 == size of vfs inode i_blocks * 8
2293 		 */
2294 		upper_limit = (1LL << 32) - 1;
2295 
2296 		/* total blocks in file system block size */
2297 		upper_limit >>= (blkbits - 9);
2298 		upper_limit <<= blkbits;
2299 	}
2300 
2301 	/*
2302 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
2303 	 * by one fs block, so ee_len can cover the extent of maximum file
2304 	 * size
2305 	 */
2306 	res = (1LL << 32) - 1;
2307 	res <<= blkbits;
2308 
2309 	/* Sanity check against vm- & vfs- imposed limits */
2310 	if (res > upper_limit)
2311 		res = upper_limit;
2312 
2313 	return res;
2314 }
2315 
2316 /*
2317  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2318  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2319  * We need to be 1 filesystem block less than the 2^48 sector limit.
2320  */
ext4_max_bitmap_size(int bits,int has_huge_files)2321 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2322 {
2323 	loff_t res = EXT4_NDIR_BLOCKS;
2324 	int meta_blocks;
2325 	loff_t upper_limit;
2326 	/* This is calculated to be the largest file size for a dense, block
2327 	 * mapped file such that the file's total number of 512-byte sectors,
2328 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
2329 	 *
2330 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2331 	 * number of 512-byte sectors of the file.
2332 	 */
2333 
2334 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2335 		/*
2336 		 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2337 		 * the inode i_block field represents total file blocks in
2338 		 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2339 		 */
2340 		upper_limit = (1LL << 32) - 1;
2341 
2342 		/* total blocks in file system block size */
2343 		upper_limit >>= (bits - 9);
2344 
2345 	} else {
2346 		/*
2347 		 * We use 48 bit ext4_inode i_blocks
2348 		 * With EXT4_HUGE_FILE_FL set the i_blocks
2349 		 * represent total number of blocks in
2350 		 * file system block size
2351 		 */
2352 		upper_limit = (1LL << 48) - 1;
2353 
2354 	}
2355 
2356 	/* indirect blocks */
2357 	meta_blocks = 1;
2358 	/* double indirect blocks */
2359 	meta_blocks += 1 + (1LL << (bits-2));
2360 	/* tripple indirect blocks */
2361 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2362 
2363 	upper_limit -= meta_blocks;
2364 	upper_limit <<= bits;
2365 
2366 	res += 1LL << (bits-2);
2367 	res += 1LL << (2*(bits-2));
2368 	res += 1LL << (3*(bits-2));
2369 	res <<= bits;
2370 	if (res > upper_limit)
2371 		res = upper_limit;
2372 
2373 	if (res > MAX_LFS_FILESIZE)
2374 		res = MAX_LFS_FILESIZE;
2375 
2376 	return res;
2377 }
2378 
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)2379 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2380 				   ext4_fsblk_t logical_sb_block, int nr)
2381 {
2382 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2383 	ext4_group_t bg, first_meta_bg;
2384 	int has_super = 0;
2385 
2386 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2387 
2388 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2389 	    nr < first_meta_bg)
2390 		return logical_sb_block + nr + 1;
2391 	bg = sbi->s_desc_per_block * nr;
2392 	if (ext4_bg_has_super(sb, bg))
2393 		has_super = 1;
2394 
2395 	/*
2396 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2397 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
2398 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2399 	 * compensate.
2400 	 */
2401 	if (sb->s_blocksize == 1024 && nr == 0 &&
2402 	    le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2403 		has_super++;
2404 
2405 	return (has_super + ext4_group_first_block_no(sb, bg));
2406 }
2407 
2408 /**
2409  * ext4_get_stripe_size: Get the stripe size.
2410  * @sbi: In memory super block info
2411  *
2412  * If we have specified it via mount option, then
2413  * use the mount option value. If the value specified at mount time is
2414  * greater than the blocks per group use the super block value.
2415  * If the super block value is greater than blocks per group return 0.
2416  * Allocator needs it be less than blocks per group.
2417  *
2418  */
ext4_get_stripe_size(struct ext4_sb_info * sbi)2419 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2420 {
2421 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2422 	unsigned long stripe_width =
2423 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2424 	int ret;
2425 
2426 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2427 		ret = sbi->s_stripe;
2428 	else if (stripe_width <= sbi->s_blocks_per_group)
2429 		ret = stripe_width;
2430 	else if (stride <= sbi->s_blocks_per_group)
2431 		ret = stride;
2432 	else
2433 		ret = 0;
2434 
2435 	/*
2436 	 * If the stripe width is 1, this makes no sense and
2437 	 * we set it to 0 to turn off stripe handling code.
2438 	 */
2439 	if (ret <= 1)
2440 		ret = 0;
2441 
2442 	return ret;
2443 }
2444 
2445 /* sysfs supprt */
2446 
2447 struct ext4_attr {
2448 	struct attribute attr;
2449 	ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2450 	ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2451 			 const char *, size_t);
2452 	union {
2453 		int offset;
2454 		int deprecated_val;
2455 	} u;
2456 };
2457 
parse_strtoull(const char * buf,unsigned long long max,unsigned long long * value)2458 static int parse_strtoull(const char *buf,
2459 		unsigned long long max, unsigned long long *value)
2460 {
2461 	int ret;
2462 
2463 	ret = kstrtoull(skip_spaces(buf), 0, value);
2464 	if (!ret && *value > max)
2465 		ret = -EINVAL;
2466 	return ret;
2467 }
2468 
delayed_allocation_blocks_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2469 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2470 					      struct ext4_sb_info *sbi,
2471 					      char *buf)
2472 {
2473 	return snprintf(buf, PAGE_SIZE, "%llu\n",
2474 		(s64) EXT4_C2B(sbi,
2475 			percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2476 }
2477 
session_write_kbytes_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2478 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2479 					 struct ext4_sb_info *sbi, char *buf)
2480 {
2481 	struct super_block *sb = sbi->s_buddy_cache->i_sb;
2482 
2483 	if (!sb->s_bdev->bd_part)
2484 		return snprintf(buf, PAGE_SIZE, "0\n");
2485 	return snprintf(buf, PAGE_SIZE, "%lu\n",
2486 			(part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2487 			 sbi->s_sectors_written_start) >> 1);
2488 }
2489 
lifetime_write_kbytes_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2490 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2491 					  struct ext4_sb_info *sbi, char *buf)
2492 {
2493 	struct super_block *sb = sbi->s_buddy_cache->i_sb;
2494 
2495 	if (!sb->s_bdev->bd_part)
2496 		return snprintf(buf, PAGE_SIZE, "0\n");
2497 	return snprintf(buf, PAGE_SIZE, "%llu\n",
2498 			(unsigned long long)(sbi->s_kbytes_written +
2499 			((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2500 			  EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2501 }
2502 
inode_readahead_blks_store(struct ext4_attr * a,struct ext4_sb_info * sbi,const char * buf,size_t count)2503 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2504 					  struct ext4_sb_info *sbi,
2505 					  const char *buf, size_t count)
2506 {
2507 	unsigned long t;
2508 	int ret;
2509 
2510 	ret = kstrtoul(skip_spaces(buf), 0, &t);
2511 	if (ret)
2512 		return ret;
2513 
2514 	if (t && (!is_power_of_2(t) || t > 0x40000000))
2515 		return -EINVAL;
2516 
2517 	sbi->s_inode_readahead_blks = t;
2518 	return count;
2519 }
2520 
sbi_ui_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2521 static ssize_t sbi_ui_show(struct ext4_attr *a,
2522 			   struct ext4_sb_info *sbi, char *buf)
2523 {
2524 	unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2525 
2526 	return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2527 }
2528 
sbi_ui_store(struct ext4_attr * a,struct ext4_sb_info * sbi,const char * buf,size_t count)2529 static ssize_t sbi_ui_store(struct ext4_attr *a,
2530 			    struct ext4_sb_info *sbi,
2531 			    const char *buf, size_t count)
2532 {
2533 	unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2534 	unsigned long t;
2535 	int ret;
2536 
2537 	ret = kstrtoul(skip_spaces(buf), 0, &t);
2538 	if (ret)
2539 		return ret;
2540 	*ui = t;
2541 	return count;
2542 }
2543 
es_ui_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2544 static ssize_t es_ui_show(struct ext4_attr *a,
2545 			   struct ext4_sb_info *sbi, char *buf)
2546 {
2547 
2548 	unsigned int *ui = (unsigned int *) (((char *) sbi->s_es) +
2549 			   a->u.offset);
2550 
2551 	return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2552 }
2553 
reserved_clusters_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2554 static ssize_t reserved_clusters_show(struct ext4_attr *a,
2555 				  struct ext4_sb_info *sbi, char *buf)
2556 {
2557 	return snprintf(buf, PAGE_SIZE, "%llu\n",
2558 		(unsigned long long) atomic64_read(&sbi->s_resv_clusters));
2559 }
2560 
reserved_clusters_store(struct ext4_attr * a,struct ext4_sb_info * sbi,const char * buf,size_t count)2561 static ssize_t reserved_clusters_store(struct ext4_attr *a,
2562 				   struct ext4_sb_info *sbi,
2563 				   const char *buf, size_t count)
2564 {
2565 	unsigned long long val;
2566 	int ret;
2567 
2568 	if (parse_strtoull(buf, -1ULL, &val))
2569 		return -EINVAL;
2570 	ret = ext4_reserve_clusters(sbi, val);
2571 
2572 	return ret ? ret : count;
2573 }
2574 
trigger_test_error(struct ext4_attr * a,struct ext4_sb_info * sbi,const char * buf,size_t count)2575 static ssize_t trigger_test_error(struct ext4_attr *a,
2576 				  struct ext4_sb_info *sbi,
2577 				  const char *buf, size_t count)
2578 {
2579 	int len = count;
2580 
2581 	if (!capable(CAP_SYS_ADMIN))
2582 		return -EPERM;
2583 
2584 	if (len && buf[len-1] == '\n')
2585 		len--;
2586 
2587 	if (len)
2588 		ext4_error(sbi->s_sb, "%.*s", len, buf);
2589 	return count;
2590 }
2591 
sbi_deprecated_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2592 static ssize_t sbi_deprecated_show(struct ext4_attr *a,
2593 				   struct ext4_sb_info *sbi, char *buf)
2594 {
2595 	return snprintf(buf, PAGE_SIZE, "%d\n", a->u.deprecated_val);
2596 }
2597 
2598 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2599 static struct ext4_attr ext4_attr_##_name = {			\
2600 	.attr = {.name = __stringify(_name), .mode = _mode },	\
2601 	.show	= _show,					\
2602 	.store	= _store,					\
2603 	.u = {							\
2604 		.offset = offsetof(struct ext4_sb_info, _elname),\
2605 	},							\
2606 }
2607 
2608 #define EXT4_ATTR_OFFSET_ES(_name,_mode,_show,_store,_elname)		\
2609 static struct ext4_attr ext4_attr_##_name = {				\
2610 	.attr = {.name = __stringify(_name), .mode = _mode },		\
2611 	.show	= _show,						\
2612 	.store	= _store,						\
2613 	.u = {								\
2614 		.offset = offsetof(struct ext4_super_block, _elname),	\
2615 	},								\
2616 }
2617 
2618 #define EXT4_ATTR(name, mode, show, store) \
2619 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2620 
2621 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2622 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2623 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2624 
2625 #define EXT4_RO_ATTR_ES_UI(name, elname)	\
2626 	EXT4_ATTR_OFFSET_ES(name, 0444, es_ui_show, NULL, elname)
2627 #define EXT4_RW_ATTR_SBI_UI(name, elname)	\
2628 	EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2629 
2630 #define ATTR_LIST(name) &ext4_attr_##name.attr
2631 #define EXT4_DEPRECATED_ATTR(_name, _val)	\
2632 static struct ext4_attr ext4_attr_##_name = {			\
2633 	.attr = {.name = __stringify(_name), .mode = 0444 },	\
2634 	.show	= sbi_deprecated_show,				\
2635 	.u = {							\
2636 		.deprecated_val = _val,				\
2637 	},							\
2638 }
2639 
2640 EXT4_RO_ATTR(delayed_allocation_blocks);
2641 EXT4_RO_ATTR(session_write_kbytes);
2642 EXT4_RO_ATTR(lifetime_write_kbytes);
2643 EXT4_RW_ATTR(reserved_clusters);
2644 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2645 		 inode_readahead_blks_store, s_inode_readahead_blks);
2646 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2647 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2648 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2649 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2650 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2651 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2652 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2653 EXT4_DEPRECATED_ATTR(max_writeback_mb_bump, 128);
2654 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2655 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2656 EXT4_RW_ATTR_SBI_UI(err_ratelimit_interval_ms, s_err_ratelimit_state.interval);
2657 EXT4_RW_ATTR_SBI_UI(err_ratelimit_burst, s_err_ratelimit_state.burst);
2658 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_interval_ms, s_warning_ratelimit_state.interval);
2659 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_burst, s_warning_ratelimit_state.burst);
2660 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_interval_ms, s_msg_ratelimit_state.interval);
2661 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_burst, s_msg_ratelimit_state.burst);
2662 EXT4_RO_ATTR_ES_UI(errors_count, s_error_count);
2663 EXT4_RO_ATTR_ES_UI(first_error_time, s_first_error_time);
2664 EXT4_RO_ATTR_ES_UI(last_error_time, s_last_error_time);
2665 
2666 static struct attribute *ext4_attrs[] = {
2667 	ATTR_LIST(delayed_allocation_blocks),
2668 	ATTR_LIST(session_write_kbytes),
2669 	ATTR_LIST(lifetime_write_kbytes),
2670 	ATTR_LIST(reserved_clusters),
2671 	ATTR_LIST(inode_readahead_blks),
2672 	ATTR_LIST(inode_goal),
2673 	ATTR_LIST(mb_stats),
2674 	ATTR_LIST(mb_max_to_scan),
2675 	ATTR_LIST(mb_min_to_scan),
2676 	ATTR_LIST(mb_order2_req),
2677 	ATTR_LIST(mb_stream_req),
2678 	ATTR_LIST(mb_group_prealloc),
2679 	ATTR_LIST(max_writeback_mb_bump),
2680 	ATTR_LIST(extent_max_zeroout_kb),
2681 	ATTR_LIST(trigger_fs_error),
2682 	ATTR_LIST(err_ratelimit_interval_ms),
2683 	ATTR_LIST(err_ratelimit_burst),
2684 	ATTR_LIST(warning_ratelimit_interval_ms),
2685 	ATTR_LIST(warning_ratelimit_burst),
2686 	ATTR_LIST(msg_ratelimit_interval_ms),
2687 	ATTR_LIST(msg_ratelimit_burst),
2688 	ATTR_LIST(errors_count),
2689 	ATTR_LIST(first_error_time),
2690 	ATTR_LIST(last_error_time),
2691 	NULL,
2692 };
2693 
2694 /* Features this copy of ext4 supports */
2695 EXT4_INFO_ATTR(lazy_itable_init);
2696 EXT4_INFO_ATTR(batched_discard);
2697 EXT4_INFO_ATTR(meta_bg_resize);
2698 EXT4_INFO_ATTR(encryption);
2699 
2700 static struct attribute *ext4_feat_attrs[] = {
2701 	ATTR_LIST(lazy_itable_init),
2702 	ATTR_LIST(batched_discard),
2703 	ATTR_LIST(meta_bg_resize),
2704 	ATTR_LIST(encryption),
2705 	NULL,
2706 };
2707 
ext4_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)2708 static ssize_t ext4_attr_show(struct kobject *kobj,
2709 			      struct attribute *attr, char *buf)
2710 {
2711 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2712 						s_kobj);
2713 	struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2714 
2715 	return a->show ? a->show(a, sbi, buf) : 0;
2716 }
2717 
ext4_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t len)2718 static ssize_t ext4_attr_store(struct kobject *kobj,
2719 			       struct attribute *attr,
2720 			       const char *buf, size_t len)
2721 {
2722 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2723 						s_kobj);
2724 	struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2725 
2726 	return a->store ? a->store(a, sbi, buf, len) : 0;
2727 }
2728 
ext4_sb_release(struct kobject * kobj)2729 static void ext4_sb_release(struct kobject *kobj)
2730 {
2731 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2732 						s_kobj);
2733 	complete(&sbi->s_kobj_unregister);
2734 }
2735 
2736 static const struct sysfs_ops ext4_attr_ops = {
2737 	.show	= ext4_attr_show,
2738 	.store	= ext4_attr_store,
2739 };
2740 
2741 static struct kobj_type ext4_ktype = {
2742 	.default_attrs	= ext4_attrs,
2743 	.sysfs_ops	= &ext4_attr_ops,
2744 	.release	= ext4_sb_release,
2745 };
2746 
ext4_feat_release(struct kobject * kobj)2747 static void ext4_feat_release(struct kobject *kobj)
2748 {
2749 	complete(&ext4_feat->f_kobj_unregister);
2750 }
2751 
ext4_feat_show(struct kobject * kobj,struct attribute * attr,char * buf)2752 static ssize_t ext4_feat_show(struct kobject *kobj,
2753 			      struct attribute *attr, char *buf)
2754 {
2755 	return snprintf(buf, PAGE_SIZE, "supported\n");
2756 }
2757 
2758 /*
2759  * We can not use ext4_attr_show/store because it relies on the kobject
2760  * being embedded in the ext4_sb_info structure which is definitely not
2761  * true in this case.
2762  */
2763 static const struct sysfs_ops ext4_feat_ops = {
2764 	.show	= ext4_feat_show,
2765 	.store	= NULL,
2766 };
2767 
2768 static struct kobj_type ext4_feat_ktype = {
2769 	.default_attrs	= ext4_feat_attrs,
2770 	.sysfs_ops	= &ext4_feat_ops,
2771 	.release	= ext4_feat_release,
2772 };
2773 
2774 /*
2775  * Check whether this filesystem can be mounted based on
2776  * the features present and the RDONLY/RDWR mount requested.
2777  * Returns 1 if this filesystem can be mounted as requested,
2778  * 0 if it cannot be.
2779  */
ext4_feature_set_ok(struct super_block * sb,int readonly)2780 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2781 {
2782 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2783 		ext4_msg(sb, KERN_ERR,
2784 			"Couldn't mount because of "
2785 			"unsupported optional features (%x)",
2786 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2787 			~EXT4_FEATURE_INCOMPAT_SUPP));
2788 		return 0;
2789 	}
2790 
2791 	if (readonly)
2792 		return 1;
2793 
2794 	/* Check that feature set is OK for a read-write mount */
2795 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2796 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2797 			 "unsupported optional features (%x)",
2798 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2799 				~EXT4_FEATURE_RO_COMPAT_SUPP));
2800 		return 0;
2801 	}
2802 	/*
2803 	 * Large file size enabled file system can only be mounted
2804 	 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2805 	 */
2806 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2807 		if (sizeof(blkcnt_t) < sizeof(u64)) {
2808 			ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2809 				 "cannot be mounted RDWR without "
2810 				 "CONFIG_LBDAF");
2811 			return 0;
2812 		}
2813 	}
2814 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2815 	    !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2816 		ext4_msg(sb, KERN_ERR,
2817 			 "Can't support bigalloc feature without "
2818 			 "extents feature\n");
2819 		return 0;
2820 	}
2821 
2822 #ifndef CONFIG_QUOTA
2823 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2824 	    !readonly) {
2825 		ext4_msg(sb, KERN_ERR,
2826 			 "Filesystem with quota feature cannot be mounted RDWR "
2827 			 "without CONFIG_QUOTA");
2828 		return 0;
2829 	}
2830 #endif  /* CONFIG_QUOTA */
2831 	return 1;
2832 }
2833 
2834 /*
2835  * This function is called once a day if we have errors logged
2836  * on the file system
2837  */
print_daily_error_info(unsigned long arg)2838 static void print_daily_error_info(unsigned long arg)
2839 {
2840 	struct super_block *sb = (struct super_block *) arg;
2841 	struct ext4_sb_info *sbi;
2842 	struct ext4_super_block *es;
2843 
2844 	sbi = EXT4_SB(sb);
2845 	es = sbi->s_es;
2846 
2847 	if (es->s_error_count)
2848 		/* fsck newer than v1.41.13 is needed to clean this condition. */
2849 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2850 			 le32_to_cpu(es->s_error_count));
2851 	if (es->s_first_error_time) {
2852 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2853 		       sb->s_id, le32_to_cpu(es->s_first_error_time),
2854 		       (int) sizeof(es->s_first_error_func),
2855 		       es->s_first_error_func,
2856 		       le32_to_cpu(es->s_first_error_line));
2857 		if (es->s_first_error_ino)
2858 			printk(": inode %u",
2859 			       le32_to_cpu(es->s_first_error_ino));
2860 		if (es->s_first_error_block)
2861 			printk(": block %llu", (unsigned long long)
2862 			       le64_to_cpu(es->s_first_error_block));
2863 		printk("\n");
2864 	}
2865 	if (es->s_last_error_time) {
2866 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2867 		       sb->s_id, le32_to_cpu(es->s_last_error_time),
2868 		       (int) sizeof(es->s_last_error_func),
2869 		       es->s_last_error_func,
2870 		       le32_to_cpu(es->s_last_error_line));
2871 		if (es->s_last_error_ino)
2872 			printk(": inode %u",
2873 			       le32_to_cpu(es->s_last_error_ino));
2874 		if (es->s_last_error_block)
2875 			printk(": block %llu", (unsigned long long)
2876 			       le64_to_cpu(es->s_last_error_block));
2877 		printk("\n");
2878 	}
2879 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
2880 }
2881 
2882 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)2883 static int ext4_run_li_request(struct ext4_li_request *elr)
2884 {
2885 	struct ext4_group_desc *gdp = NULL;
2886 	ext4_group_t group, ngroups;
2887 	struct super_block *sb;
2888 	unsigned long timeout = 0;
2889 	int ret = 0;
2890 
2891 	sb = elr->lr_super;
2892 	ngroups = EXT4_SB(sb)->s_groups_count;
2893 
2894 	sb_start_write(sb);
2895 	for (group = elr->lr_next_group; group < ngroups; group++) {
2896 		gdp = ext4_get_group_desc(sb, group, NULL);
2897 		if (!gdp) {
2898 			ret = 1;
2899 			break;
2900 		}
2901 
2902 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2903 			break;
2904 	}
2905 
2906 	if (group >= ngroups)
2907 		ret = 1;
2908 
2909 	if (!ret) {
2910 		timeout = jiffies;
2911 		ret = ext4_init_inode_table(sb, group,
2912 					    elr->lr_timeout ? 0 : 1);
2913 		if (elr->lr_timeout == 0) {
2914 			timeout = (jiffies - timeout) *
2915 				  elr->lr_sbi->s_li_wait_mult;
2916 			elr->lr_timeout = timeout;
2917 		}
2918 		elr->lr_next_sched = jiffies + elr->lr_timeout;
2919 		elr->lr_next_group = group + 1;
2920 	}
2921 	sb_end_write(sb);
2922 
2923 	return ret;
2924 }
2925 
2926 /*
2927  * Remove lr_request from the list_request and free the
2928  * request structure. Should be called with li_list_mtx held
2929  */
ext4_remove_li_request(struct ext4_li_request * elr)2930 static void ext4_remove_li_request(struct ext4_li_request *elr)
2931 {
2932 	struct ext4_sb_info *sbi;
2933 
2934 	if (!elr)
2935 		return;
2936 
2937 	sbi = elr->lr_sbi;
2938 
2939 	list_del(&elr->lr_request);
2940 	sbi->s_li_request = NULL;
2941 	kfree(elr);
2942 }
2943 
ext4_unregister_li_request(struct super_block * sb)2944 static void ext4_unregister_li_request(struct super_block *sb)
2945 {
2946 	mutex_lock(&ext4_li_mtx);
2947 	if (!ext4_li_info) {
2948 		mutex_unlock(&ext4_li_mtx);
2949 		return;
2950 	}
2951 
2952 	mutex_lock(&ext4_li_info->li_list_mtx);
2953 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2954 	mutex_unlock(&ext4_li_info->li_list_mtx);
2955 	mutex_unlock(&ext4_li_mtx);
2956 }
2957 
2958 static struct task_struct *ext4_lazyinit_task;
2959 
2960 /*
2961  * This is the function where ext4lazyinit thread lives. It walks
2962  * through the request list searching for next scheduled filesystem.
2963  * When such a fs is found, run the lazy initialization request
2964  * (ext4_rn_li_request) and keep track of the time spend in this
2965  * function. Based on that time we compute next schedule time of
2966  * the request. When walking through the list is complete, compute
2967  * next waking time and put itself into sleep.
2968  */
ext4_lazyinit_thread(void * arg)2969 static int ext4_lazyinit_thread(void *arg)
2970 {
2971 	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2972 	struct list_head *pos, *n;
2973 	struct ext4_li_request *elr;
2974 	unsigned long next_wakeup, cur;
2975 
2976 	BUG_ON(NULL == eli);
2977 
2978 cont_thread:
2979 	while (true) {
2980 		next_wakeup = MAX_JIFFY_OFFSET;
2981 
2982 		mutex_lock(&eli->li_list_mtx);
2983 		if (list_empty(&eli->li_request_list)) {
2984 			mutex_unlock(&eli->li_list_mtx);
2985 			goto exit_thread;
2986 		}
2987 
2988 		list_for_each_safe(pos, n, &eli->li_request_list) {
2989 			elr = list_entry(pos, struct ext4_li_request,
2990 					 lr_request);
2991 
2992 			if (time_after_eq(jiffies, elr->lr_next_sched)) {
2993 				if (ext4_run_li_request(elr) != 0) {
2994 					/* error, remove the lazy_init job */
2995 					ext4_remove_li_request(elr);
2996 					continue;
2997 				}
2998 			}
2999 
3000 			if (time_before(elr->lr_next_sched, next_wakeup))
3001 				next_wakeup = elr->lr_next_sched;
3002 		}
3003 		mutex_unlock(&eli->li_list_mtx);
3004 
3005 		try_to_freeze();
3006 
3007 		cur = jiffies;
3008 		if ((time_after_eq(cur, next_wakeup)) ||
3009 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3010 			cond_resched();
3011 			continue;
3012 		}
3013 
3014 		schedule_timeout_interruptible(next_wakeup - cur);
3015 
3016 		if (kthread_should_stop()) {
3017 			ext4_clear_request_list();
3018 			goto exit_thread;
3019 		}
3020 	}
3021 
3022 exit_thread:
3023 	/*
3024 	 * It looks like the request list is empty, but we need
3025 	 * to check it under the li_list_mtx lock, to prevent any
3026 	 * additions into it, and of course we should lock ext4_li_mtx
3027 	 * to atomically free the list and ext4_li_info, because at
3028 	 * this point another ext4 filesystem could be registering
3029 	 * new one.
3030 	 */
3031 	mutex_lock(&ext4_li_mtx);
3032 	mutex_lock(&eli->li_list_mtx);
3033 	if (!list_empty(&eli->li_request_list)) {
3034 		mutex_unlock(&eli->li_list_mtx);
3035 		mutex_unlock(&ext4_li_mtx);
3036 		goto cont_thread;
3037 	}
3038 	mutex_unlock(&eli->li_list_mtx);
3039 	kfree(ext4_li_info);
3040 	ext4_li_info = NULL;
3041 	mutex_unlock(&ext4_li_mtx);
3042 
3043 	return 0;
3044 }
3045 
ext4_clear_request_list(void)3046 static void ext4_clear_request_list(void)
3047 {
3048 	struct list_head *pos, *n;
3049 	struct ext4_li_request *elr;
3050 
3051 	mutex_lock(&ext4_li_info->li_list_mtx);
3052 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3053 		elr = list_entry(pos, struct ext4_li_request,
3054 				 lr_request);
3055 		ext4_remove_li_request(elr);
3056 	}
3057 	mutex_unlock(&ext4_li_info->li_list_mtx);
3058 }
3059 
ext4_run_lazyinit_thread(void)3060 static int ext4_run_lazyinit_thread(void)
3061 {
3062 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3063 					 ext4_li_info, "ext4lazyinit");
3064 	if (IS_ERR(ext4_lazyinit_task)) {
3065 		int err = PTR_ERR(ext4_lazyinit_task);
3066 		ext4_clear_request_list();
3067 		kfree(ext4_li_info);
3068 		ext4_li_info = NULL;
3069 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3070 				 "initialization thread\n",
3071 				 err);
3072 		return err;
3073 	}
3074 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3075 	return 0;
3076 }
3077 
3078 /*
3079  * Check whether it make sense to run itable init. thread or not.
3080  * If there is at least one uninitialized inode table, return
3081  * corresponding group number, else the loop goes through all
3082  * groups and return total number of groups.
3083  */
ext4_has_uninit_itable(struct super_block * sb)3084 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3085 {
3086 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3087 	struct ext4_group_desc *gdp = NULL;
3088 
3089 	for (group = 0; group < ngroups; group++) {
3090 		gdp = ext4_get_group_desc(sb, group, NULL);
3091 		if (!gdp)
3092 			continue;
3093 
3094 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3095 			break;
3096 	}
3097 
3098 	return group;
3099 }
3100 
ext4_li_info_new(void)3101 static int ext4_li_info_new(void)
3102 {
3103 	struct ext4_lazy_init *eli = NULL;
3104 
3105 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3106 	if (!eli)
3107 		return -ENOMEM;
3108 
3109 	INIT_LIST_HEAD(&eli->li_request_list);
3110 	mutex_init(&eli->li_list_mtx);
3111 
3112 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3113 
3114 	ext4_li_info = eli;
3115 
3116 	return 0;
3117 }
3118 
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3119 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3120 					    ext4_group_t start)
3121 {
3122 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3123 	struct ext4_li_request *elr;
3124 
3125 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3126 	if (!elr)
3127 		return NULL;
3128 
3129 	elr->lr_super = sb;
3130 	elr->lr_sbi = sbi;
3131 	elr->lr_next_group = start;
3132 
3133 	/*
3134 	 * Randomize first schedule time of the request to
3135 	 * spread the inode table initialization requests
3136 	 * better.
3137 	 */
3138 	elr->lr_next_sched = jiffies + (prandom_u32() %
3139 				(EXT4_DEF_LI_MAX_START_DELAY * HZ));
3140 	return elr;
3141 }
3142 
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)3143 int ext4_register_li_request(struct super_block *sb,
3144 			     ext4_group_t first_not_zeroed)
3145 {
3146 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3147 	struct ext4_li_request *elr = NULL;
3148 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3149 	int ret = 0;
3150 
3151 	mutex_lock(&ext4_li_mtx);
3152 	if (sbi->s_li_request != NULL) {
3153 		/*
3154 		 * Reset timeout so it can be computed again, because
3155 		 * s_li_wait_mult might have changed.
3156 		 */
3157 		sbi->s_li_request->lr_timeout = 0;
3158 		goto out;
3159 	}
3160 
3161 	if (first_not_zeroed == ngroups ||
3162 	    (sb->s_flags & MS_RDONLY) ||
3163 	    !test_opt(sb, INIT_INODE_TABLE))
3164 		goto out;
3165 
3166 	elr = ext4_li_request_new(sb, first_not_zeroed);
3167 	if (!elr) {
3168 		ret = -ENOMEM;
3169 		goto out;
3170 	}
3171 
3172 	if (NULL == ext4_li_info) {
3173 		ret = ext4_li_info_new();
3174 		if (ret)
3175 			goto out;
3176 	}
3177 
3178 	mutex_lock(&ext4_li_info->li_list_mtx);
3179 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3180 	mutex_unlock(&ext4_li_info->li_list_mtx);
3181 
3182 	sbi->s_li_request = elr;
3183 	/*
3184 	 * set elr to NULL here since it has been inserted to
3185 	 * the request_list and the removal and free of it is
3186 	 * handled by ext4_clear_request_list from now on.
3187 	 */
3188 	elr = NULL;
3189 
3190 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3191 		ret = ext4_run_lazyinit_thread();
3192 		if (ret)
3193 			goto out;
3194 	}
3195 out:
3196 	mutex_unlock(&ext4_li_mtx);
3197 	if (ret)
3198 		kfree(elr);
3199 	return ret;
3200 }
3201 
3202 /*
3203  * We do not need to lock anything since this is called on
3204  * module unload.
3205  */
ext4_destroy_lazyinit_thread(void)3206 static void ext4_destroy_lazyinit_thread(void)
3207 {
3208 	/*
3209 	 * If thread exited earlier
3210 	 * there's nothing to be done.
3211 	 */
3212 	if (!ext4_li_info || !ext4_lazyinit_task)
3213 		return;
3214 
3215 	kthread_stop(ext4_lazyinit_task);
3216 }
3217 
set_journal_csum_feature_set(struct super_block * sb)3218 static int set_journal_csum_feature_set(struct super_block *sb)
3219 {
3220 	int ret = 1;
3221 	int compat, incompat;
3222 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3223 
3224 	if (ext4_has_metadata_csum(sb)) {
3225 		/* journal checksum v3 */
3226 		compat = 0;
3227 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3228 	} else {
3229 		/* journal checksum v1 */
3230 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3231 		incompat = 0;
3232 	}
3233 
3234 	jbd2_journal_clear_features(sbi->s_journal,
3235 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3236 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3237 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
3238 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3239 		ret = jbd2_journal_set_features(sbi->s_journal,
3240 				compat, 0,
3241 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3242 				incompat);
3243 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3244 		ret = jbd2_journal_set_features(sbi->s_journal,
3245 				compat, 0,
3246 				incompat);
3247 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3248 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3249 	} else {
3250 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3251 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3252 	}
3253 
3254 	return ret;
3255 }
3256 
3257 /*
3258  * Note: calculating the overhead so we can be compatible with
3259  * historical BSD practice is quite difficult in the face of
3260  * clusters/bigalloc.  This is because multiple metadata blocks from
3261  * different block group can end up in the same allocation cluster.
3262  * Calculating the exact overhead in the face of clustered allocation
3263  * requires either O(all block bitmaps) in memory or O(number of block
3264  * groups**2) in time.  We will still calculate the superblock for
3265  * older file systems --- and if we come across with a bigalloc file
3266  * system with zero in s_overhead_clusters the estimate will be close to
3267  * correct especially for very large cluster sizes --- but for newer
3268  * file systems, it's better to calculate this figure once at mkfs
3269  * time, and store it in the superblock.  If the superblock value is
3270  * present (even for non-bigalloc file systems), we will use it.
3271  */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)3272 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3273 			  char *buf)
3274 {
3275 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
3276 	struct ext4_group_desc	*gdp;
3277 	ext4_fsblk_t		first_block, last_block, b;
3278 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
3279 	int			s, j, count = 0;
3280 
3281 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3282 		return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3283 			sbi->s_itb_per_group + 2);
3284 
3285 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3286 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
3287 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3288 	for (i = 0; i < ngroups; i++) {
3289 		gdp = ext4_get_group_desc(sb, i, NULL);
3290 		b = ext4_block_bitmap(sb, gdp);
3291 		if (b >= first_block && b <= last_block) {
3292 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3293 			count++;
3294 		}
3295 		b = ext4_inode_bitmap(sb, gdp);
3296 		if (b >= first_block && b <= last_block) {
3297 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3298 			count++;
3299 		}
3300 		b = ext4_inode_table(sb, gdp);
3301 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3302 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3303 				int c = EXT4_B2C(sbi, b - first_block);
3304 				ext4_set_bit(c, buf);
3305 				count++;
3306 			}
3307 		if (i != grp)
3308 			continue;
3309 		s = 0;
3310 		if (ext4_bg_has_super(sb, grp)) {
3311 			ext4_set_bit(s++, buf);
3312 			count++;
3313 		}
3314 		for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3315 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3316 			count++;
3317 		}
3318 	}
3319 	if (!count)
3320 		return 0;
3321 	return EXT4_CLUSTERS_PER_GROUP(sb) -
3322 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3323 }
3324 
3325 /*
3326  * Compute the overhead and stash it in sbi->s_overhead
3327  */
ext4_calculate_overhead(struct super_block * sb)3328 int ext4_calculate_overhead(struct super_block *sb)
3329 {
3330 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3331 	struct ext4_super_block *es = sbi->s_es;
3332 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3333 	ext4_fsblk_t overhead = 0;
3334 	char *buf = (char *) get_zeroed_page(GFP_KERNEL);
3335 
3336 	if (!buf)
3337 		return -ENOMEM;
3338 
3339 	/*
3340 	 * Compute the overhead (FS structures).  This is constant
3341 	 * for a given filesystem unless the number of block groups
3342 	 * changes so we cache the previous value until it does.
3343 	 */
3344 
3345 	/*
3346 	 * All of the blocks before first_data_block are overhead
3347 	 */
3348 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3349 
3350 	/*
3351 	 * Add the overhead found in each block group
3352 	 */
3353 	for (i = 0; i < ngroups; i++) {
3354 		int blks;
3355 
3356 		blks = count_overhead(sb, i, buf);
3357 		overhead += blks;
3358 		if (blks)
3359 			memset(buf, 0, PAGE_SIZE);
3360 		cond_resched();
3361 	}
3362 	/* Add the journal blocks as well */
3363 	if (sbi->s_journal)
3364 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3365 
3366 	sbi->s_overhead = overhead;
3367 	smp_wmb();
3368 	free_page((unsigned long) buf);
3369 	return 0;
3370 }
3371 
3372 
ext4_calculate_resv_clusters(struct super_block * sb)3373 static ext4_fsblk_t ext4_calculate_resv_clusters(struct super_block *sb)
3374 {
3375 	ext4_fsblk_t resv_clusters;
3376 
3377 	/*
3378 	 * There's no need to reserve anything when we aren't using extents.
3379 	 * The space estimates are exact, there are no unwritten extents,
3380 	 * hole punching doesn't need new metadata... This is needed especially
3381 	 * to keep ext2/3 backward compatibility.
3382 	 */
3383 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3384 		return 0;
3385 	/*
3386 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3387 	 * This should cover the situations where we can not afford to run
3388 	 * out of space like for example punch hole, or converting
3389 	 * unwritten extents in delalloc path. In most cases such
3390 	 * allocation would require 1, or 2 blocks, higher numbers are
3391 	 * very rare.
3392 	 */
3393 	resv_clusters = ext4_blocks_count(EXT4_SB(sb)->s_es) >>
3394 			EXT4_SB(sb)->s_cluster_bits;
3395 
3396 	do_div(resv_clusters, 50);
3397 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3398 
3399 	return resv_clusters;
3400 }
3401 
3402 
ext4_reserve_clusters(struct ext4_sb_info * sbi,ext4_fsblk_t count)3403 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count)
3404 {
3405 	ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >>
3406 				sbi->s_cluster_bits;
3407 
3408 	if (count >= clusters)
3409 		return -EINVAL;
3410 
3411 	atomic64_set(&sbi->s_resv_clusters, count);
3412 	return 0;
3413 }
3414 
ext4_fill_super(struct super_block * sb,void * data,int silent)3415 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3416 {
3417 	char *orig_data = kstrdup(data, GFP_KERNEL);
3418 	struct buffer_head *bh;
3419 	struct ext4_super_block *es = NULL;
3420 	struct ext4_sb_info *sbi;
3421 	ext4_fsblk_t block;
3422 	ext4_fsblk_t sb_block = get_sb_block(&data);
3423 	ext4_fsblk_t logical_sb_block;
3424 	unsigned long offset = 0;
3425 	unsigned long journal_devnum = 0;
3426 	unsigned long def_mount_opts;
3427 	struct inode *root;
3428 	char *cp;
3429 	const char *descr;
3430 	int ret = -ENOMEM;
3431 	int blocksize, clustersize;
3432 	unsigned int db_count;
3433 	unsigned int i;
3434 	int needs_recovery, has_huge_files, has_bigalloc;
3435 	__u64 blocks_count;
3436 	int err = 0;
3437 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3438 	ext4_group_t first_not_zeroed;
3439 
3440 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3441 	if (!sbi)
3442 		goto out_free_orig;
3443 
3444 	sbi->s_blockgroup_lock =
3445 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3446 	if (!sbi->s_blockgroup_lock) {
3447 		kfree(sbi);
3448 		goto out_free_orig;
3449 	}
3450 	sb->s_fs_info = sbi;
3451 	sbi->s_sb = sb;
3452 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3453 	sbi->s_sb_block = sb_block;
3454 	if (sb->s_bdev->bd_part)
3455 		sbi->s_sectors_written_start =
3456 			part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3457 
3458 	/* Cleanup superblock name */
3459 	for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3460 		*cp = '!';
3461 
3462 	/* -EINVAL is default */
3463 	ret = -EINVAL;
3464 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3465 	if (!blocksize) {
3466 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3467 		goto out_fail;
3468 	}
3469 
3470 	/*
3471 	 * The ext4 superblock will not be buffer aligned for other than 1kB
3472 	 * block sizes.  We need to calculate the offset from buffer start.
3473 	 */
3474 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3475 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3476 		offset = do_div(logical_sb_block, blocksize);
3477 	} else {
3478 		logical_sb_block = sb_block;
3479 	}
3480 
3481 	if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3482 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
3483 		goto out_fail;
3484 	}
3485 	/*
3486 	 * Note: s_es must be initialized as soon as possible because
3487 	 *       some ext4 macro-instructions depend on its value
3488 	 */
3489 	es = (struct ext4_super_block *) (bh->b_data + offset);
3490 	sbi->s_es = es;
3491 	sb->s_magic = le16_to_cpu(es->s_magic);
3492 	if (sb->s_magic != EXT4_SUPER_MAGIC)
3493 		goto cantfind_ext4;
3494 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3495 
3496 	/* Warn if metadata_csum and gdt_csum are both set. */
3497 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3498 				       EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3499 	    EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3500 		ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are "
3501 			     "redundant flags; please run fsck.");
3502 
3503 	/* Check for a known checksum algorithm */
3504 	if (!ext4_verify_csum_type(sb, es)) {
3505 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3506 			 "unknown checksum algorithm.");
3507 		silent = 1;
3508 		goto cantfind_ext4;
3509 	}
3510 
3511 	/* Load the checksum driver */
3512 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3513 				       EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3514 		sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3515 		if (IS_ERR(sbi->s_chksum_driver)) {
3516 			ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3517 			ret = PTR_ERR(sbi->s_chksum_driver);
3518 			sbi->s_chksum_driver = NULL;
3519 			goto failed_mount;
3520 		}
3521 	}
3522 
3523 	/* Check superblock checksum */
3524 	if (!ext4_superblock_csum_verify(sb, es)) {
3525 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3526 			 "invalid superblock checksum.  Run e2fsck?");
3527 		silent = 1;
3528 		goto cantfind_ext4;
3529 	}
3530 
3531 	/* Precompute checksum seed for all metadata */
3532 	if (ext4_has_metadata_csum(sb))
3533 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3534 					       sizeof(es->s_uuid));
3535 
3536 	/* Set defaults before we parse the mount options */
3537 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3538 	set_opt(sb, INIT_INODE_TABLE);
3539 	if (def_mount_opts & EXT4_DEFM_DEBUG)
3540 		set_opt(sb, DEBUG);
3541 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3542 		set_opt(sb, GRPID);
3543 	if (def_mount_opts & EXT4_DEFM_UID16)
3544 		set_opt(sb, NO_UID32);
3545 	/* xattr user namespace & acls are now defaulted on */
3546 	set_opt(sb, XATTR_USER);
3547 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3548 	set_opt(sb, POSIX_ACL);
3549 #endif
3550 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
3551 	if (ext4_has_metadata_csum(sb))
3552 		set_opt(sb, JOURNAL_CHECKSUM);
3553 
3554 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3555 		set_opt(sb, JOURNAL_DATA);
3556 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3557 		set_opt(sb, ORDERED_DATA);
3558 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3559 		set_opt(sb, WRITEBACK_DATA);
3560 
3561 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3562 		set_opt(sb, ERRORS_PANIC);
3563 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3564 		set_opt(sb, ERRORS_CONT);
3565 	else
3566 		set_opt(sb, ERRORS_RO);
3567 	/* block_validity enabled by default; disable with noblock_validity */
3568 	set_opt(sb, BLOCK_VALIDITY);
3569 	if (def_mount_opts & EXT4_DEFM_DISCARD)
3570 		set_opt(sb, DISCARD);
3571 
3572 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3573 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3574 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3575 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3576 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3577 
3578 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3579 		set_opt(sb, BARRIER);
3580 
3581 	/*
3582 	 * enable delayed allocation by default
3583 	 * Use -o nodelalloc to turn it off
3584 	 */
3585 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3586 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3587 		set_opt(sb, DELALLOC);
3588 
3589 	/*
3590 	 * set default s_li_wait_mult for lazyinit, for the case there is
3591 	 * no mount option specified.
3592 	 */
3593 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3594 
3595 	if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3596 			   &journal_devnum, &journal_ioprio, 0)) {
3597 		ext4_msg(sb, KERN_WARNING,
3598 			 "failed to parse options in superblock: %s",
3599 			 sbi->s_es->s_mount_opts);
3600 	}
3601 	sbi->s_def_mount_opt = sbi->s_mount_opt;
3602 	if (!parse_options((char *) data, sb, &journal_devnum,
3603 			   &journal_ioprio, 0))
3604 		goto failed_mount;
3605 
3606 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3607 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3608 			    "with data=journal disables delayed "
3609 			    "allocation and O_DIRECT support!\n");
3610 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3611 			ext4_msg(sb, KERN_ERR, "can't mount with "
3612 				 "both data=journal and delalloc");
3613 			goto failed_mount;
3614 		}
3615 		if (test_opt(sb, DIOREAD_NOLOCK)) {
3616 			ext4_msg(sb, KERN_ERR, "can't mount with "
3617 				 "both data=journal and dioread_nolock");
3618 			goto failed_mount;
3619 		}
3620 		if (test_opt(sb, DELALLOC))
3621 			clear_opt(sb, DELALLOC);
3622 	}
3623 
3624 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3625 		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3626 
3627 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3628 	    (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3629 	     EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3630 	     EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3631 		ext4_msg(sb, KERN_WARNING,
3632 		       "feature flags set on rev 0 fs, "
3633 		       "running e2fsck is recommended");
3634 
3635 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3636 		set_opt2(sb, HURD_COMPAT);
3637 		if (EXT4_HAS_INCOMPAT_FEATURE(sb,
3638 					      EXT4_FEATURE_INCOMPAT_64BIT)) {
3639 			ext4_msg(sb, KERN_ERR,
3640 				 "The Hurd can't support 64-bit file systems");
3641 			goto failed_mount;
3642 		}
3643 	}
3644 
3645 	if (IS_EXT2_SB(sb)) {
3646 		if (ext2_feature_set_ok(sb))
3647 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3648 				 "using the ext4 subsystem");
3649 		else {
3650 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3651 				 "to feature incompatibilities");
3652 			goto failed_mount;
3653 		}
3654 	}
3655 
3656 	if (IS_EXT3_SB(sb)) {
3657 		if (ext3_feature_set_ok(sb))
3658 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3659 				 "using the ext4 subsystem");
3660 		else {
3661 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3662 				 "to feature incompatibilities");
3663 			goto failed_mount;
3664 		}
3665 	}
3666 
3667 	/*
3668 	 * Check feature flags regardless of the revision level, since we
3669 	 * previously didn't change the revision level when setting the flags,
3670 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
3671 	 */
3672 	if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3673 		goto failed_mount;
3674 
3675 	blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3676 	if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3677 	    blocksize > EXT4_MAX_BLOCK_SIZE) {
3678 		ext4_msg(sb, KERN_ERR,
3679 		       "Unsupported filesystem blocksize %d", blocksize);
3680 		goto failed_mount;
3681 	}
3682 
3683 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT) &&
3684 	    es->s_encryption_level) {
3685 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3686 			 es->s_encryption_level);
3687 		goto failed_mount;
3688 	}
3689 
3690 	if (sb->s_blocksize != blocksize) {
3691 		/* Validate the filesystem blocksize */
3692 		if (!sb_set_blocksize(sb, blocksize)) {
3693 			ext4_msg(sb, KERN_ERR, "bad block size %d",
3694 					blocksize);
3695 			goto failed_mount;
3696 		}
3697 
3698 		brelse(bh);
3699 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3700 		offset = do_div(logical_sb_block, blocksize);
3701 		bh = sb_bread_unmovable(sb, logical_sb_block);
3702 		if (!bh) {
3703 			ext4_msg(sb, KERN_ERR,
3704 			       "Can't read superblock on 2nd try");
3705 			goto failed_mount;
3706 		}
3707 		es = (struct ext4_super_block *)(bh->b_data + offset);
3708 		sbi->s_es = es;
3709 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3710 			ext4_msg(sb, KERN_ERR,
3711 			       "Magic mismatch, very weird!");
3712 			goto failed_mount;
3713 		}
3714 	}
3715 
3716 	has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3717 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3718 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3719 						      has_huge_files);
3720 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3721 
3722 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3723 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3724 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3725 	} else {
3726 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3727 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3728 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3729 		    (!is_power_of_2(sbi->s_inode_size)) ||
3730 		    (sbi->s_inode_size > blocksize)) {
3731 			ext4_msg(sb, KERN_ERR,
3732 			       "unsupported inode size: %d",
3733 			       sbi->s_inode_size);
3734 			goto failed_mount;
3735 		}
3736 		if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3737 			sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3738 	}
3739 
3740 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3741 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3742 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3743 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3744 		    !is_power_of_2(sbi->s_desc_size)) {
3745 			ext4_msg(sb, KERN_ERR,
3746 			       "unsupported descriptor size %lu",
3747 			       sbi->s_desc_size);
3748 			goto failed_mount;
3749 		}
3750 	} else
3751 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3752 
3753 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3754 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3755 	if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3756 		goto cantfind_ext4;
3757 
3758 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3759 	if (sbi->s_inodes_per_block == 0)
3760 		goto cantfind_ext4;
3761 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
3762 					sbi->s_inodes_per_block;
3763 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3764 	sbi->s_sbh = bh;
3765 	sbi->s_mount_state = le16_to_cpu(es->s_state);
3766 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3767 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3768 
3769 	for (i = 0; i < 4; i++)
3770 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3771 	sbi->s_def_hash_version = es->s_def_hash_version;
3772 	if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) {
3773 		i = le32_to_cpu(es->s_flags);
3774 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
3775 			sbi->s_hash_unsigned = 3;
3776 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3777 #ifdef __CHAR_UNSIGNED__
3778 			if (!(sb->s_flags & MS_RDONLY))
3779 				es->s_flags |=
3780 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3781 			sbi->s_hash_unsigned = 3;
3782 #else
3783 			if (!(sb->s_flags & MS_RDONLY))
3784 				es->s_flags |=
3785 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3786 #endif
3787 		}
3788 	}
3789 
3790 	/* Handle clustersize */
3791 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3792 	has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3793 				EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3794 	if (has_bigalloc) {
3795 		if (clustersize < blocksize) {
3796 			ext4_msg(sb, KERN_ERR,
3797 				 "cluster size (%d) smaller than "
3798 				 "block size (%d)", clustersize, blocksize);
3799 			goto failed_mount;
3800 		}
3801 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3802 			le32_to_cpu(es->s_log_block_size);
3803 		sbi->s_clusters_per_group =
3804 			le32_to_cpu(es->s_clusters_per_group);
3805 		if (sbi->s_clusters_per_group > blocksize * 8) {
3806 			ext4_msg(sb, KERN_ERR,
3807 				 "#clusters per group too big: %lu",
3808 				 sbi->s_clusters_per_group);
3809 			goto failed_mount;
3810 		}
3811 		if (sbi->s_blocks_per_group !=
3812 		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3813 			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3814 				 "clusters per group (%lu) inconsistent",
3815 				 sbi->s_blocks_per_group,
3816 				 sbi->s_clusters_per_group);
3817 			goto failed_mount;
3818 		}
3819 	} else {
3820 		if (clustersize != blocksize) {
3821 			ext4_warning(sb, "fragment/cluster size (%d) != "
3822 				     "block size (%d)", clustersize,
3823 				     blocksize);
3824 			clustersize = blocksize;
3825 		}
3826 		if (sbi->s_blocks_per_group > blocksize * 8) {
3827 			ext4_msg(sb, KERN_ERR,
3828 				 "#blocks per group too big: %lu",
3829 				 sbi->s_blocks_per_group);
3830 			goto failed_mount;
3831 		}
3832 		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3833 		sbi->s_cluster_bits = 0;
3834 	}
3835 	sbi->s_cluster_ratio = clustersize / blocksize;
3836 
3837 	if (sbi->s_inodes_per_group > blocksize * 8) {
3838 		ext4_msg(sb, KERN_ERR,
3839 		       "#inodes per group too big: %lu",
3840 		       sbi->s_inodes_per_group);
3841 		goto failed_mount;
3842 	}
3843 
3844 	/* Do we have standard group size of clustersize * 8 blocks ? */
3845 	if (sbi->s_blocks_per_group == clustersize << 3)
3846 		set_opt2(sb, STD_GROUP_SIZE);
3847 
3848 	/*
3849 	 * Test whether we have more sectors than will fit in sector_t,
3850 	 * and whether the max offset is addressable by the page cache.
3851 	 */
3852 	err = generic_check_addressable(sb->s_blocksize_bits,
3853 					ext4_blocks_count(es));
3854 	if (err) {
3855 		ext4_msg(sb, KERN_ERR, "filesystem"
3856 			 " too large to mount safely on this system");
3857 		if (sizeof(sector_t) < 8)
3858 			ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3859 		goto failed_mount;
3860 	}
3861 
3862 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3863 		goto cantfind_ext4;
3864 
3865 	/* check blocks count against device size */
3866 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3867 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3868 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3869 		       "exceeds size of device (%llu blocks)",
3870 		       ext4_blocks_count(es), blocks_count);
3871 		goto failed_mount;
3872 	}
3873 
3874 	/*
3875 	 * It makes no sense for the first data block to be beyond the end
3876 	 * of the filesystem.
3877 	 */
3878 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3879 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3880 			 "block %u is beyond end of filesystem (%llu)",
3881 			 le32_to_cpu(es->s_first_data_block),
3882 			 ext4_blocks_count(es));
3883 		goto failed_mount;
3884 	}
3885 	blocks_count = (ext4_blocks_count(es) -
3886 			le32_to_cpu(es->s_first_data_block) +
3887 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
3888 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3889 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3890 		ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3891 		       "(block count %llu, first data block %u, "
3892 		       "blocks per group %lu)", sbi->s_groups_count,
3893 		       ext4_blocks_count(es),
3894 		       le32_to_cpu(es->s_first_data_block),
3895 		       EXT4_BLOCKS_PER_GROUP(sb));
3896 		goto failed_mount;
3897 	}
3898 	sbi->s_groups_count = blocks_count;
3899 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3900 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3901 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3902 		   EXT4_DESC_PER_BLOCK(sb);
3903 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG)) {
3904 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
3905 			ext4_msg(sb, KERN_WARNING,
3906 				 "first meta block group too large: %u "
3907 				 "(group descriptor block count %u)",
3908 				 le32_to_cpu(es->s_first_meta_bg), db_count);
3909 			goto failed_mount;
3910 		}
3911 	}
3912 	sbi->s_group_desc = ext4_kvmalloc(db_count *
3913 					  sizeof(struct buffer_head *),
3914 					  GFP_KERNEL);
3915 	if (sbi->s_group_desc == NULL) {
3916 		ext4_msg(sb, KERN_ERR, "not enough memory");
3917 		ret = -ENOMEM;
3918 		goto failed_mount;
3919 	}
3920 
3921 	if (ext4_proc_root)
3922 		sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3923 
3924 	if (sbi->s_proc)
3925 		proc_create_data("options", S_IRUGO, sbi->s_proc,
3926 				 &ext4_seq_options_fops, sb);
3927 
3928 	bgl_lock_init(sbi->s_blockgroup_lock);
3929 
3930 	for (i = 0; i < db_count; i++) {
3931 		block = descriptor_loc(sb, logical_sb_block, i);
3932 		sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3933 		if (!sbi->s_group_desc[i]) {
3934 			ext4_msg(sb, KERN_ERR,
3935 			       "can't read group descriptor %d", i);
3936 			db_count = i;
3937 			goto failed_mount2;
3938 		}
3939 	}
3940 	if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3941 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3942 		goto failed_mount2;
3943 	}
3944 
3945 	sbi->s_gdb_count = db_count;
3946 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3947 	spin_lock_init(&sbi->s_next_gen_lock);
3948 
3949 	init_timer(&sbi->s_err_report);
3950 	sbi->s_err_report.function = print_daily_error_info;
3951 	sbi->s_err_report.data = (unsigned long) sb;
3952 
3953 	/* Register extent status tree shrinker */
3954 	if (ext4_es_register_shrinker(sbi))
3955 		goto failed_mount3;
3956 
3957 	sbi->s_stripe = ext4_get_stripe_size(sbi);
3958 	sbi->s_extent_max_zeroout_kb = 32;
3959 
3960 	/*
3961 	 * set up enough so that it can read an inode
3962 	 */
3963 	sb->s_op = &ext4_sops;
3964 	sb->s_export_op = &ext4_export_ops;
3965 	sb->s_xattr = ext4_xattr_handlers;
3966 #ifdef CONFIG_QUOTA
3967 	sb->dq_op = &ext4_quota_operations;
3968 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
3969 		sb->s_qcop = &ext4_qctl_sysfile_operations;
3970 	else
3971 		sb->s_qcop = &ext4_qctl_operations;
3972 #endif
3973 	memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3974 
3975 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3976 	mutex_init(&sbi->s_orphan_lock);
3977 
3978 	sb->s_root = NULL;
3979 
3980 	needs_recovery = (es->s_last_orphan != 0 ||
3981 			  EXT4_HAS_INCOMPAT_FEATURE(sb,
3982 				    EXT4_FEATURE_INCOMPAT_RECOVER));
3983 
3984 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3985 	    !(sb->s_flags & MS_RDONLY))
3986 		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3987 			goto failed_mount3a;
3988 
3989 	/*
3990 	 * The first inode we look at is the journal inode.  Don't try
3991 	 * root first: it may be modified in the journal!
3992 	 */
3993 	if (!test_opt(sb, NOLOAD) &&
3994 	    EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3995 		if (ext4_load_journal(sb, es, journal_devnum))
3996 			goto failed_mount3a;
3997 	} else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3998 	      EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3999 		ext4_msg(sb, KERN_ERR, "required journal recovery "
4000 		       "suppressed and not mounted read-only");
4001 		goto failed_mount_wq;
4002 	} else {
4003 		clear_opt(sb, DATA_FLAGS);
4004 		sbi->s_journal = NULL;
4005 		needs_recovery = 0;
4006 		goto no_journal;
4007 	}
4008 
4009 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
4010 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4011 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4012 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4013 		goto failed_mount_wq;
4014 	}
4015 
4016 	if (!set_journal_csum_feature_set(sb)) {
4017 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4018 			 "feature set");
4019 		goto failed_mount_wq;
4020 	}
4021 
4022 	/* We have now updated the journal if required, so we can
4023 	 * validate the data journaling mode. */
4024 	switch (test_opt(sb, DATA_FLAGS)) {
4025 	case 0:
4026 		/* No mode set, assume a default based on the journal
4027 		 * capabilities: ORDERED_DATA if the journal can
4028 		 * cope, else JOURNAL_DATA
4029 		 */
4030 		if (jbd2_journal_check_available_features
4031 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
4032 			set_opt(sb, ORDERED_DATA);
4033 		else
4034 			set_opt(sb, JOURNAL_DATA);
4035 		break;
4036 
4037 	case EXT4_MOUNT_ORDERED_DATA:
4038 	case EXT4_MOUNT_WRITEBACK_DATA:
4039 		if (!jbd2_journal_check_available_features
4040 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4041 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4042 			       "requested data journaling mode");
4043 			goto failed_mount_wq;
4044 		}
4045 	default:
4046 		break;
4047 	}
4048 	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4049 
4050 	sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4051 
4052 no_journal:
4053 	if (ext4_mballoc_ready) {
4054 		sbi->s_mb_cache = ext4_xattr_create_cache(sb->s_id);
4055 		if (!sbi->s_mb_cache) {
4056 			ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
4057 			goto failed_mount_wq;
4058 		}
4059 	}
4060 
4061 	if (unlikely(sbi->s_mount_flags & EXT4_MF_TEST_DUMMY_ENCRYPTION) &&
4062 	    !(sb->s_flags & MS_RDONLY) &&
4063 	    !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT)) {
4064 		EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT);
4065 		ext4_commit_super(sb, 1);
4066 	}
4067 
4068 	/*
4069 	 * Get the # of file system overhead blocks from the
4070 	 * superblock if present.
4071 	 */
4072 	if (es->s_overhead_clusters)
4073 		sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4074 	else {
4075 		err = ext4_calculate_overhead(sb);
4076 		if (err)
4077 			goto failed_mount_wq;
4078 	}
4079 
4080 	/*
4081 	 * The maximum number of concurrent works can be high and
4082 	 * concurrency isn't really necessary.  Limit it to 1.
4083 	 */
4084 	EXT4_SB(sb)->rsv_conversion_wq =
4085 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4086 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
4087 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4088 		ret = -ENOMEM;
4089 		goto failed_mount4;
4090 	}
4091 
4092 	/*
4093 	 * The jbd2_journal_load will have done any necessary log recovery,
4094 	 * so we can safely mount the rest of the filesystem now.
4095 	 */
4096 
4097 	root = ext4_iget(sb, EXT4_ROOT_INO);
4098 	if (IS_ERR(root)) {
4099 		ext4_msg(sb, KERN_ERR, "get root inode failed");
4100 		ret = PTR_ERR(root);
4101 		root = NULL;
4102 		goto failed_mount4;
4103 	}
4104 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4105 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4106 		iput(root);
4107 		goto failed_mount4;
4108 	}
4109 	sb->s_root = d_make_root(root);
4110 	if (!sb->s_root) {
4111 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
4112 		ret = -ENOMEM;
4113 		goto failed_mount4;
4114 	}
4115 
4116 	if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4117 		sb->s_flags |= MS_RDONLY;
4118 
4119 	/* determine the minimum size of new large inodes, if present */
4120 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4121 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4122 						     EXT4_GOOD_OLD_INODE_SIZE;
4123 		if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4124 				       EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
4125 			if (sbi->s_want_extra_isize <
4126 			    le16_to_cpu(es->s_want_extra_isize))
4127 				sbi->s_want_extra_isize =
4128 					le16_to_cpu(es->s_want_extra_isize);
4129 			if (sbi->s_want_extra_isize <
4130 			    le16_to_cpu(es->s_min_extra_isize))
4131 				sbi->s_want_extra_isize =
4132 					le16_to_cpu(es->s_min_extra_isize);
4133 		}
4134 	}
4135 	/* Check if enough inode space is available */
4136 	if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4137 							sbi->s_inode_size) {
4138 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4139 						       EXT4_GOOD_OLD_INODE_SIZE;
4140 		ext4_msg(sb, KERN_INFO, "required extra inode space not"
4141 			 "available");
4142 	}
4143 
4144 	err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sb));
4145 	if (err) {
4146 		ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for "
4147 			 "reserved pool", ext4_calculate_resv_clusters(sb));
4148 		goto failed_mount4a;
4149 	}
4150 
4151 	err = ext4_setup_system_zone(sb);
4152 	if (err) {
4153 		ext4_msg(sb, KERN_ERR, "failed to initialize system "
4154 			 "zone (%d)", err);
4155 		goto failed_mount4a;
4156 	}
4157 
4158 	ext4_ext_init(sb);
4159 	err = ext4_mb_init(sb);
4160 	if (err) {
4161 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4162 			 err);
4163 		goto failed_mount5;
4164 	}
4165 
4166 	block = ext4_count_free_clusters(sb);
4167 	ext4_free_blocks_count_set(sbi->s_es,
4168 				   EXT4_C2B(sbi, block));
4169 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block);
4170 	if (!err) {
4171 		unsigned long freei = ext4_count_free_inodes(sb);
4172 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4173 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei);
4174 	}
4175 	if (!err)
4176 		err = percpu_counter_init(&sbi->s_dirs_counter,
4177 					  ext4_count_dirs(sb));
4178 	if (!err)
4179 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
4180 	if (err) {
4181 		ext4_msg(sb, KERN_ERR, "insufficient memory");
4182 		goto failed_mount6;
4183 	}
4184 
4185 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
4186 		if (!ext4_fill_flex_info(sb)) {
4187 			ext4_msg(sb, KERN_ERR,
4188 			       "unable to initialize "
4189 			       "flex_bg meta info!");
4190 			goto failed_mount6;
4191 		}
4192 
4193 	err = ext4_register_li_request(sb, first_not_zeroed);
4194 	if (err)
4195 		goto failed_mount6;
4196 
4197 	sbi->s_kobj.kset = ext4_kset;
4198 	init_completion(&sbi->s_kobj_unregister);
4199 	err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
4200 				   "%s", sb->s_id);
4201 	if (err)
4202 		goto failed_mount7;
4203 
4204 #ifdef CONFIG_QUOTA
4205 	/* Enable quota usage during mount. */
4206 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
4207 	    !(sb->s_flags & MS_RDONLY)) {
4208 		err = ext4_enable_quotas(sb);
4209 		if (err)
4210 			goto failed_mount8;
4211 	}
4212 #endif  /* CONFIG_QUOTA */
4213 
4214 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4215 	ext4_orphan_cleanup(sb, es);
4216 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4217 	if (needs_recovery) {
4218 		ext4_msg(sb, KERN_INFO, "recovery complete");
4219 		ext4_mark_recovery_complete(sb, es);
4220 	}
4221 	if (EXT4_SB(sb)->s_journal) {
4222 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4223 			descr = " journalled data mode";
4224 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4225 			descr = " ordered data mode";
4226 		else
4227 			descr = " writeback data mode";
4228 	} else
4229 		descr = "out journal";
4230 
4231 	if (test_opt(sb, DISCARD)) {
4232 		struct request_queue *q = bdev_get_queue(sb->s_bdev);
4233 		if (!blk_queue_discard(q))
4234 			ext4_msg(sb, KERN_WARNING,
4235 				 "mounting with \"discard\" option, but "
4236 				 "the device does not support discard");
4237 	}
4238 
4239 	ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4240 		 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4241 		 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4242 
4243 	if (es->s_error_count)
4244 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4245 
4246 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4247 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4248 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4249 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4250 
4251 	kfree(orig_data);
4252 	return 0;
4253 
4254 cantfind_ext4:
4255 	if (!silent)
4256 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4257 	goto failed_mount;
4258 
4259 #ifdef CONFIG_QUOTA
4260 failed_mount8:
4261 	kobject_del(&sbi->s_kobj);
4262 #endif
4263 failed_mount7:
4264 	ext4_unregister_li_request(sb);
4265 failed_mount6:
4266 	ext4_mb_release(sb);
4267 	if (sbi->s_flex_groups)
4268 		ext4_kvfree(sbi->s_flex_groups);
4269 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
4270 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
4271 	percpu_counter_destroy(&sbi->s_dirs_counter);
4272 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4273 failed_mount5:
4274 	ext4_ext_release(sb);
4275 	ext4_release_system_zone(sb);
4276 failed_mount4a:
4277 	dput(sb->s_root);
4278 	sb->s_root = NULL;
4279 failed_mount4:
4280 	ext4_msg(sb, KERN_ERR, "mount failed");
4281 	if (EXT4_SB(sb)->rsv_conversion_wq)
4282 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4283 failed_mount_wq:
4284 	if (sbi->s_journal) {
4285 		jbd2_journal_destroy(sbi->s_journal);
4286 		sbi->s_journal = NULL;
4287 	}
4288 failed_mount3a:
4289 	ext4_es_unregister_shrinker(sbi);
4290 failed_mount3:
4291 	del_timer_sync(&sbi->s_err_report);
4292 	if (sbi->s_mmp_tsk)
4293 		kthread_stop(sbi->s_mmp_tsk);
4294 failed_mount2:
4295 	for (i = 0; i < db_count; i++)
4296 		brelse(sbi->s_group_desc[i]);
4297 	ext4_kvfree(sbi->s_group_desc);
4298 failed_mount:
4299 	if (sbi->s_chksum_driver)
4300 		crypto_free_shash(sbi->s_chksum_driver);
4301 	if (sbi->s_proc) {
4302 		remove_proc_entry("options", sbi->s_proc);
4303 		remove_proc_entry(sb->s_id, ext4_proc_root);
4304 	}
4305 #ifdef CONFIG_QUOTA
4306 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
4307 		kfree(sbi->s_qf_names[i]);
4308 #endif
4309 	ext4_blkdev_remove(sbi);
4310 	brelse(bh);
4311 out_fail:
4312 	sb->s_fs_info = NULL;
4313 	kfree(sbi->s_blockgroup_lock);
4314 	kfree(sbi);
4315 out_free_orig:
4316 	kfree(orig_data);
4317 	return err ? err : ret;
4318 }
4319 
4320 /*
4321  * Setup any per-fs journal parameters now.  We'll do this both on
4322  * initial mount, once the journal has been initialised but before we've
4323  * done any recovery; and again on any subsequent remount.
4324  */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)4325 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4326 {
4327 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4328 
4329 	journal->j_commit_interval = sbi->s_commit_interval;
4330 	journal->j_min_batch_time = sbi->s_min_batch_time;
4331 	journal->j_max_batch_time = sbi->s_max_batch_time;
4332 
4333 	write_lock(&journal->j_state_lock);
4334 	if (test_opt(sb, BARRIER))
4335 		journal->j_flags |= JBD2_BARRIER;
4336 	else
4337 		journal->j_flags &= ~JBD2_BARRIER;
4338 	if (test_opt(sb, DATA_ERR_ABORT))
4339 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4340 	else
4341 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4342 	write_unlock(&journal->j_state_lock);
4343 }
4344 
ext4_get_journal(struct super_block * sb,unsigned int journal_inum)4345 static journal_t *ext4_get_journal(struct super_block *sb,
4346 				   unsigned int journal_inum)
4347 {
4348 	struct inode *journal_inode;
4349 	journal_t *journal;
4350 
4351 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4352 
4353 	/* First, test for the existence of a valid inode on disk.  Bad
4354 	 * things happen if we iget() an unused inode, as the subsequent
4355 	 * iput() will try to delete it. */
4356 
4357 	journal_inode = ext4_iget(sb, journal_inum);
4358 	if (IS_ERR(journal_inode)) {
4359 		ext4_msg(sb, KERN_ERR, "no journal found");
4360 		return NULL;
4361 	}
4362 	if (!journal_inode->i_nlink) {
4363 		make_bad_inode(journal_inode);
4364 		iput(journal_inode);
4365 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4366 		return NULL;
4367 	}
4368 
4369 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4370 		  journal_inode, journal_inode->i_size);
4371 	if (!S_ISREG(journal_inode->i_mode)) {
4372 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
4373 		iput(journal_inode);
4374 		return NULL;
4375 	}
4376 
4377 	journal = jbd2_journal_init_inode(journal_inode);
4378 	if (!journal) {
4379 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4380 		iput(journal_inode);
4381 		return NULL;
4382 	}
4383 	journal->j_private = sb;
4384 	ext4_init_journal_params(sb, journal);
4385 	return journal;
4386 }
4387 
ext4_get_dev_journal(struct super_block * sb,dev_t j_dev)4388 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4389 				       dev_t j_dev)
4390 {
4391 	struct buffer_head *bh;
4392 	journal_t *journal;
4393 	ext4_fsblk_t start;
4394 	ext4_fsblk_t len;
4395 	int hblock, blocksize;
4396 	ext4_fsblk_t sb_block;
4397 	unsigned long offset;
4398 	struct ext4_super_block *es;
4399 	struct block_device *bdev;
4400 
4401 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4402 
4403 	bdev = ext4_blkdev_get(j_dev, sb);
4404 	if (bdev == NULL)
4405 		return NULL;
4406 
4407 	blocksize = sb->s_blocksize;
4408 	hblock = bdev_logical_block_size(bdev);
4409 	if (blocksize < hblock) {
4410 		ext4_msg(sb, KERN_ERR,
4411 			"blocksize too small for journal device");
4412 		goto out_bdev;
4413 	}
4414 
4415 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4416 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4417 	set_blocksize(bdev, blocksize);
4418 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
4419 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4420 		       "external journal");
4421 		goto out_bdev;
4422 	}
4423 
4424 	es = (struct ext4_super_block *) (bh->b_data + offset);
4425 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4426 	    !(le32_to_cpu(es->s_feature_incompat) &
4427 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4428 		ext4_msg(sb, KERN_ERR, "external journal has "
4429 					"bad superblock");
4430 		brelse(bh);
4431 		goto out_bdev;
4432 	}
4433 
4434 	if ((le32_to_cpu(es->s_feature_ro_compat) &
4435 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4436 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
4437 		ext4_msg(sb, KERN_ERR, "external journal has "
4438 				       "corrupt superblock");
4439 		brelse(bh);
4440 		goto out_bdev;
4441 	}
4442 
4443 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4444 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4445 		brelse(bh);
4446 		goto out_bdev;
4447 	}
4448 
4449 	len = ext4_blocks_count(es);
4450 	start = sb_block + 1;
4451 	brelse(bh);	/* we're done with the superblock */
4452 
4453 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4454 					start, len, blocksize);
4455 	if (!journal) {
4456 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
4457 		goto out_bdev;
4458 	}
4459 	journal->j_private = sb;
4460 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4461 	wait_on_buffer(journal->j_sb_buffer);
4462 	if (!buffer_uptodate(journal->j_sb_buffer)) {
4463 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4464 		goto out_journal;
4465 	}
4466 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4467 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
4468 					"user (unsupported) - %d",
4469 			be32_to_cpu(journal->j_superblock->s_nr_users));
4470 		goto out_journal;
4471 	}
4472 	EXT4_SB(sb)->journal_bdev = bdev;
4473 	ext4_init_journal_params(sb, journal);
4474 	return journal;
4475 
4476 out_journal:
4477 	jbd2_journal_destroy(journal);
4478 out_bdev:
4479 	ext4_blkdev_put(bdev);
4480 	return NULL;
4481 }
4482 
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)4483 static int ext4_load_journal(struct super_block *sb,
4484 			     struct ext4_super_block *es,
4485 			     unsigned long journal_devnum)
4486 {
4487 	journal_t *journal;
4488 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4489 	dev_t journal_dev;
4490 	int err = 0;
4491 	int really_read_only;
4492 
4493 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4494 
4495 	if (journal_devnum &&
4496 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4497 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4498 			"numbers have changed");
4499 		journal_dev = new_decode_dev(journal_devnum);
4500 	} else
4501 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4502 
4503 	really_read_only = bdev_read_only(sb->s_bdev);
4504 
4505 	/*
4506 	 * Are we loading a blank journal or performing recovery after a
4507 	 * crash?  For recovery, we need to check in advance whether we
4508 	 * can get read-write access to the device.
4509 	 */
4510 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4511 		if (sb->s_flags & MS_RDONLY) {
4512 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
4513 					"required on readonly filesystem");
4514 			if (really_read_only) {
4515 				ext4_msg(sb, KERN_ERR, "write access "
4516 					"unavailable, cannot proceed");
4517 				return -EROFS;
4518 			}
4519 			ext4_msg(sb, KERN_INFO, "write access will "
4520 			       "be enabled during recovery");
4521 		}
4522 	}
4523 
4524 	if (journal_inum && journal_dev) {
4525 		ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4526 		       "and inode journals!");
4527 		return -EINVAL;
4528 	}
4529 
4530 	if (journal_inum) {
4531 		if (!(journal = ext4_get_journal(sb, journal_inum)))
4532 			return -EINVAL;
4533 	} else {
4534 		if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4535 			return -EINVAL;
4536 	}
4537 
4538 	if (!(journal->j_flags & JBD2_BARRIER))
4539 		ext4_msg(sb, KERN_INFO, "barriers disabled");
4540 
4541 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4542 		err = jbd2_journal_wipe(journal, !really_read_only);
4543 	if (!err) {
4544 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4545 		if (save)
4546 			memcpy(save, ((char *) es) +
4547 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4548 		err = jbd2_journal_load(journal);
4549 		if (save)
4550 			memcpy(((char *) es) + EXT4_S_ERR_START,
4551 			       save, EXT4_S_ERR_LEN);
4552 		kfree(save);
4553 	}
4554 
4555 	if (err) {
4556 		ext4_msg(sb, KERN_ERR, "error loading journal");
4557 		jbd2_journal_destroy(journal);
4558 		return err;
4559 	}
4560 
4561 	EXT4_SB(sb)->s_journal = journal;
4562 	ext4_clear_journal_err(sb, es);
4563 
4564 	if (!really_read_only && journal_devnum &&
4565 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4566 		es->s_journal_dev = cpu_to_le32(journal_devnum);
4567 
4568 		/* Make sure we flush the recovery flag to disk. */
4569 		ext4_commit_super(sb, 1);
4570 	}
4571 
4572 	return 0;
4573 }
4574 
ext4_commit_super(struct super_block * sb,int sync)4575 static int ext4_commit_super(struct super_block *sb, int sync)
4576 {
4577 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4578 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4579 	int error = 0;
4580 
4581 	if (!sbh || block_device_ejected(sb))
4582 		return error;
4583 	if (buffer_write_io_error(sbh)) {
4584 		/*
4585 		 * Oh, dear.  A previous attempt to write the
4586 		 * superblock failed.  This could happen because the
4587 		 * USB device was yanked out.  Or it could happen to
4588 		 * be a transient write error and maybe the block will
4589 		 * be remapped.  Nothing we can do but to retry the
4590 		 * write and hope for the best.
4591 		 */
4592 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
4593 		       "superblock detected");
4594 		clear_buffer_write_io_error(sbh);
4595 		set_buffer_uptodate(sbh);
4596 	}
4597 	/*
4598 	 * If the file system is mounted read-only, don't update the
4599 	 * superblock write time.  This avoids updating the superblock
4600 	 * write time when we are mounting the root file system
4601 	 * read/only but we need to replay the journal; at that point,
4602 	 * for people who are east of GMT and who make their clock
4603 	 * tick in localtime for Windows bug-for-bug compatibility,
4604 	 * the clock is set in the future, and this will cause e2fsck
4605 	 * to complain and force a full file system check.
4606 	 */
4607 	if (!(sb->s_flags & MS_RDONLY))
4608 		es->s_wtime = cpu_to_le32(get_seconds());
4609 	if (sb->s_bdev->bd_part)
4610 		es->s_kbytes_written =
4611 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4612 			    ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4613 			      EXT4_SB(sb)->s_sectors_written_start) >> 1));
4614 	else
4615 		es->s_kbytes_written =
4616 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4617 	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4618 		ext4_free_blocks_count_set(es,
4619 			EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4620 				&EXT4_SB(sb)->s_freeclusters_counter)));
4621 	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4622 		es->s_free_inodes_count =
4623 			cpu_to_le32(percpu_counter_sum_positive(
4624 				&EXT4_SB(sb)->s_freeinodes_counter));
4625 	BUFFER_TRACE(sbh, "marking dirty");
4626 	ext4_superblock_csum_set(sb);
4627 	mark_buffer_dirty(sbh);
4628 	if (sync) {
4629 		error = sync_dirty_buffer(sbh);
4630 		if (error)
4631 			return error;
4632 
4633 		error = buffer_write_io_error(sbh);
4634 		if (error) {
4635 			ext4_msg(sb, KERN_ERR, "I/O error while writing "
4636 			       "superblock");
4637 			clear_buffer_write_io_error(sbh);
4638 			set_buffer_uptodate(sbh);
4639 		}
4640 	}
4641 	return error;
4642 }
4643 
4644 /*
4645  * Have we just finished recovery?  If so, and if we are mounting (or
4646  * remounting) the filesystem readonly, then we will end up with a
4647  * consistent fs on disk.  Record that fact.
4648  */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)4649 static void ext4_mark_recovery_complete(struct super_block *sb,
4650 					struct ext4_super_block *es)
4651 {
4652 	journal_t *journal = EXT4_SB(sb)->s_journal;
4653 
4654 	if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4655 		BUG_ON(journal != NULL);
4656 		return;
4657 	}
4658 	jbd2_journal_lock_updates(journal);
4659 	if (jbd2_journal_flush(journal) < 0)
4660 		goto out;
4661 
4662 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4663 	    sb->s_flags & MS_RDONLY) {
4664 		EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4665 		ext4_commit_super(sb, 1);
4666 	}
4667 
4668 out:
4669 	jbd2_journal_unlock_updates(journal);
4670 }
4671 
4672 /*
4673  * If we are mounting (or read-write remounting) a filesystem whose journal
4674  * has recorded an error from a previous lifetime, move that error to the
4675  * main filesystem now.
4676  */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)4677 static void ext4_clear_journal_err(struct super_block *sb,
4678 				   struct ext4_super_block *es)
4679 {
4680 	journal_t *journal;
4681 	int j_errno;
4682 	const char *errstr;
4683 
4684 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4685 
4686 	journal = EXT4_SB(sb)->s_journal;
4687 
4688 	/*
4689 	 * Now check for any error status which may have been recorded in the
4690 	 * journal by a prior ext4_error() or ext4_abort()
4691 	 */
4692 
4693 	j_errno = jbd2_journal_errno(journal);
4694 	if (j_errno) {
4695 		char nbuf[16];
4696 
4697 		errstr = ext4_decode_error(sb, j_errno, nbuf);
4698 		ext4_warning(sb, "Filesystem error recorded "
4699 			     "from previous mount: %s", errstr);
4700 		ext4_warning(sb, "Marking fs in need of filesystem check.");
4701 
4702 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4703 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4704 		ext4_commit_super(sb, 1);
4705 
4706 		jbd2_journal_clear_err(journal);
4707 		jbd2_journal_update_sb_errno(journal);
4708 	}
4709 }
4710 
4711 /*
4712  * Force the running and committing transactions to commit,
4713  * and wait on the commit.
4714  */
ext4_force_commit(struct super_block * sb)4715 int ext4_force_commit(struct super_block *sb)
4716 {
4717 	journal_t *journal;
4718 
4719 	if (sb->s_flags & MS_RDONLY)
4720 		return 0;
4721 
4722 	journal = EXT4_SB(sb)->s_journal;
4723 	return ext4_journal_force_commit(journal);
4724 }
4725 
ext4_sync_fs(struct super_block * sb,int wait)4726 static int ext4_sync_fs(struct super_block *sb, int wait)
4727 {
4728 	int ret = 0;
4729 	tid_t target;
4730 	bool needs_barrier = false;
4731 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4732 
4733 	trace_ext4_sync_fs(sb, wait);
4734 	flush_workqueue(sbi->rsv_conversion_wq);
4735 	/*
4736 	 * Writeback quota in non-journalled quota case - journalled quota has
4737 	 * no dirty dquots
4738 	 */
4739 	dquot_writeback_dquots(sb, -1);
4740 	/*
4741 	 * Data writeback is possible w/o journal transaction, so barrier must
4742 	 * being sent at the end of the function. But we can skip it if
4743 	 * transaction_commit will do it for us.
4744 	 */
4745 	if (sbi->s_journal) {
4746 		target = jbd2_get_latest_transaction(sbi->s_journal);
4747 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4748 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4749 			needs_barrier = true;
4750 
4751 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4752 			if (wait)
4753 				ret = jbd2_log_wait_commit(sbi->s_journal,
4754 							   target);
4755 		}
4756 	} else if (wait && test_opt(sb, BARRIER))
4757 		needs_barrier = true;
4758 	if (needs_barrier) {
4759 		int err;
4760 		err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4761 		if (!ret)
4762 			ret = err;
4763 	}
4764 
4765 	return ret;
4766 }
4767 
4768 /*
4769  * LVM calls this function before a (read-only) snapshot is created.  This
4770  * gives us a chance to flush the journal completely and mark the fs clean.
4771  *
4772  * Note that only this function cannot bring a filesystem to be in a clean
4773  * state independently. It relies on upper layer to stop all data & metadata
4774  * modifications.
4775  */
ext4_freeze(struct super_block * sb)4776 static int ext4_freeze(struct super_block *sb)
4777 {
4778 	int error = 0;
4779 	journal_t *journal;
4780 
4781 	if (sb->s_flags & MS_RDONLY)
4782 		return 0;
4783 
4784 	journal = EXT4_SB(sb)->s_journal;
4785 
4786 	if (journal) {
4787 		/* Now we set up the journal barrier. */
4788 		jbd2_journal_lock_updates(journal);
4789 
4790 		/*
4791 		 * Don't clear the needs_recovery flag if we failed to
4792 		 * flush the journal.
4793 		 */
4794 		error = jbd2_journal_flush(journal);
4795 		if (error < 0)
4796 			goto out;
4797 	}
4798 
4799 	/* Journal blocked and flushed, clear needs_recovery flag. */
4800 	EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4801 	error = ext4_commit_super(sb, 1);
4802 out:
4803 	if (journal)
4804 		/* we rely on upper layer to stop further updates */
4805 		jbd2_journal_unlock_updates(journal);
4806 	return error;
4807 }
4808 
4809 /*
4810  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
4811  * flag here, even though the filesystem is not technically dirty yet.
4812  */
ext4_unfreeze(struct super_block * sb)4813 static int ext4_unfreeze(struct super_block *sb)
4814 {
4815 	if (sb->s_flags & MS_RDONLY)
4816 		return 0;
4817 
4818 	/* Reset the needs_recovery flag before the fs is unlocked. */
4819 	EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4820 	ext4_commit_super(sb, 1);
4821 	return 0;
4822 }
4823 
4824 /*
4825  * Structure to save mount options for ext4_remount's benefit
4826  */
4827 struct ext4_mount_options {
4828 	unsigned long s_mount_opt;
4829 	unsigned long s_mount_opt2;
4830 	kuid_t s_resuid;
4831 	kgid_t s_resgid;
4832 	unsigned long s_commit_interval;
4833 	u32 s_min_batch_time, s_max_batch_time;
4834 #ifdef CONFIG_QUOTA
4835 	int s_jquota_fmt;
4836 	char *s_qf_names[EXT4_MAXQUOTAS];
4837 #endif
4838 };
4839 
ext4_remount(struct super_block * sb,int * flags,char * data)4840 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4841 {
4842 	struct ext4_super_block *es;
4843 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4844 	unsigned long old_sb_flags;
4845 	struct ext4_mount_options old_opts;
4846 	int enable_quota = 0;
4847 	ext4_group_t g;
4848 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4849 	int err = 0;
4850 #ifdef CONFIG_QUOTA
4851 	int i, j;
4852 #endif
4853 	char *orig_data = kstrdup(data, GFP_KERNEL);
4854 
4855 	/* Store the original options */
4856 	old_sb_flags = sb->s_flags;
4857 	old_opts.s_mount_opt = sbi->s_mount_opt;
4858 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4859 	old_opts.s_resuid = sbi->s_resuid;
4860 	old_opts.s_resgid = sbi->s_resgid;
4861 	old_opts.s_commit_interval = sbi->s_commit_interval;
4862 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
4863 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
4864 #ifdef CONFIG_QUOTA
4865 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4866 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
4867 		if (sbi->s_qf_names[i]) {
4868 			old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4869 							 GFP_KERNEL);
4870 			if (!old_opts.s_qf_names[i]) {
4871 				for (j = 0; j < i; j++)
4872 					kfree(old_opts.s_qf_names[j]);
4873 				kfree(orig_data);
4874 				return -ENOMEM;
4875 			}
4876 		} else
4877 			old_opts.s_qf_names[i] = NULL;
4878 #endif
4879 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4880 		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4881 
4882 	/*
4883 	 * Allow the "check" option to be passed as a remount option.
4884 	 */
4885 	if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4886 		err = -EINVAL;
4887 		goto restore_opts;
4888 	}
4889 
4890 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4891 	    test_opt(sb, JOURNAL_CHECKSUM)) {
4892 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4893 			 "during remount not supported");
4894 		err = -EINVAL;
4895 		goto restore_opts;
4896 	}
4897 
4898 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4899 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4900 			ext4_msg(sb, KERN_ERR, "can't mount with "
4901 				 "both data=journal and delalloc");
4902 			err = -EINVAL;
4903 			goto restore_opts;
4904 		}
4905 		if (test_opt(sb, DIOREAD_NOLOCK)) {
4906 			ext4_msg(sb, KERN_ERR, "can't mount with "
4907 				 "both data=journal and dioread_nolock");
4908 			err = -EINVAL;
4909 			goto restore_opts;
4910 		}
4911 	}
4912 
4913 	if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4914 		ext4_abort(sb, "Abort forced by user");
4915 
4916 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4917 		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4918 
4919 	es = sbi->s_es;
4920 
4921 	if (sbi->s_journal) {
4922 		ext4_init_journal_params(sb, sbi->s_journal);
4923 		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4924 	}
4925 
4926 	if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4927 		if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4928 			err = -EROFS;
4929 			goto restore_opts;
4930 		}
4931 
4932 		if (*flags & MS_RDONLY) {
4933 			err = sync_filesystem(sb);
4934 			if (err < 0)
4935 				goto restore_opts;
4936 			err = dquot_suspend(sb, -1);
4937 			if (err < 0)
4938 				goto restore_opts;
4939 
4940 			/*
4941 			 * First of all, the unconditional stuff we have to do
4942 			 * to disable replay of the journal when we next remount
4943 			 */
4944 			sb->s_flags |= MS_RDONLY;
4945 
4946 			/*
4947 			 * OK, test if we are remounting a valid rw partition
4948 			 * readonly, and if so set the rdonly flag and then
4949 			 * mark the partition as valid again.
4950 			 */
4951 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4952 			    (sbi->s_mount_state & EXT4_VALID_FS))
4953 				es->s_state = cpu_to_le16(sbi->s_mount_state);
4954 
4955 			if (sbi->s_journal)
4956 				ext4_mark_recovery_complete(sb, es);
4957 		} else {
4958 			/* Make sure we can mount this feature set readwrite */
4959 			if (!ext4_feature_set_ok(sb, 0)) {
4960 				err = -EROFS;
4961 				goto restore_opts;
4962 			}
4963 			/*
4964 			 * Make sure the group descriptor checksums
4965 			 * are sane.  If they aren't, refuse to remount r/w.
4966 			 */
4967 			for (g = 0; g < sbi->s_groups_count; g++) {
4968 				struct ext4_group_desc *gdp =
4969 					ext4_get_group_desc(sb, g, NULL);
4970 
4971 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4972 					ext4_msg(sb, KERN_ERR,
4973 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
4974 		g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4975 					       le16_to_cpu(gdp->bg_checksum));
4976 					err = -EINVAL;
4977 					goto restore_opts;
4978 				}
4979 			}
4980 
4981 			/*
4982 			 * If we have an unprocessed orphan list hanging
4983 			 * around from a previously readonly bdev mount,
4984 			 * require a full umount/remount for now.
4985 			 */
4986 			if (es->s_last_orphan) {
4987 				ext4_msg(sb, KERN_WARNING, "Couldn't "
4988 				       "remount RDWR because of unprocessed "
4989 				       "orphan inode list.  Please "
4990 				       "umount/remount instead");
4991 				err = -EINVAL;
4992 				goto restore_opts;
4993 			}
4994 
4995 			/*
4996 			 * Mounting a RDONLY partition read-write, so reread
4997 			 * and store the current valid flag.  (It may have
4998 			 * been changed by e2fsck since we originally mounted
4999 			 * the partition.)
5000 			 */
5001 			if (sbi->s_journal)
5002 				ext4_clear_journal_err(sb, es);
5003 			sbi->s_mount_state = le16_to_cpu(es->s_state);
5004 			if (!ext4_setup_super(sb, es, 0))
5005 				sb->s_flags &= ~MS_RDONLY;
5006 			if (EXT4_HAS_INCOMPAT_FEATURE(sb,
5007 						     EXT4_FEATURE_INCOMPAT_MMP))
5008 				if (ext4_multi_mount_protect(sb,
5009 						le64_to_cpu(es->s_mmp_block))) {
5010 					err = -EROFS;
5011 					goto restore_opts;
5012 				}
5013 			enable_quota = 1;
5014 		}
5015 	}
5016 
5017 	/*
5018 	 * Reinitialize lazy itable initialization thread based on
5019 	 * current settings
5020 	 */
5021 	if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
5022 		ext4_unregister_li_request(sb);
5023 	else {
5024 		ext4_group_t first_not_zeroed;
5025 		first_not_zeroed = ext4_has_uninit_itable(sb);
5026 		ext4_register_li_request(sb, first_not_zeroed);
5027 	}
5028 
5029 	ext4_setup_system_zone(sb);
5030 	if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
5031 		ext4_commit_super(sb, 1);
5032 
5033 #ifdef CONFIG_QUOTA
5034 	/* Release old quota file names */
5035 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5036 		kfree(old_opts.s_qf_names[i]);
5037 	if (enable_quota) {
5038 		if (sb_any_quota_suspended(sb))
5039 			dquot_resume(sb, -1);
5040 		else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
5041 					EXT4_FEATURE_RO_COMPAT_QUOTA)) {
5042 			err = ext4_enable_quotas(sb);
5043 			if (err)
5044 				goto restore_opts;
5045 		}
5046 	}
5047 #endif
5048 
5049 	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5050 	kfree(orig_data);
5051 	return 0;
5052 
5053 restore_opts:
5054 	sb->s_flags = old_sb_flags;
5055 	sbi->s_mount_opt = old_opts.s_mount_opt;
5056 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5057 	sbi->s_resuid = old_opts.s_resuid;
5058 	sbi->s_resgid = old_opts.s_resgid;
5059 	sbi->s_commit_interval = old_opts.s_commit_interval;
5060 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
5061 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
5062 #ifdef CONFIG_QUOTA
5063 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5064 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5065 		kfree(sbi->s_qf_names[i]);
5066 		sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5067 	}
5068 #endif
5069 	kfree(orig_data);
5070 	return err;
5071 }
5072 
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)5073 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5074 {
5075 	struct super_block *sb = dentry->d_sb;
5076 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5077 	struct ext4_super_block *es = sbi->s_es;
5078 	ext4_fsblk_t overhead = 0, resv_blocks;
5079 	u64 fsid;
5080 	s64 bfree;
5081 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5082 
5083 	if (!test_opt(sb, MINIX_DF))
5084 		overhead = sbi->s_overhead;
5085 
5086 	buf->f_type = EXT4_SUPER_MAGIC;
5087 	buf->f_bsize = sb->s_blocksize;
5088 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5089 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5090 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5091 	/* prevent underflow in case that few free space is available */
5092 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5093 	buf->f_bavail = buf->f_bfree -
5094 			(ext4_r_blocks_count(es) + resv_blocks);
5095 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5096 		buf->f_bavail = 0;
5097 	buf->f_files = le32_to_cpu(es->s_inodes_count);
5098 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5099 	buf->f_namelen = EXT4_NAME_LEN;
5100 	fsid = le64_to_cpup((void *)es->s_uuid) ^
5101 	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5102 	buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5103 	buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5104 
5105 	return 0;
5106 }
5107 
5108 /* Helper function for writing quotas on sync - we need to start transaction
5109  * before quota file is locked for write. Otherwise the are possible deadlocks:
5110  * Process 1                         Process 2
5111  * ext4_create()                     quota_sync()
5112  *   jbd2_journal_start()                  write_dquot()
5113  *   dquot_initialize()                         down(dqio_mutex)
5114  *     down(dqio_mutex)                    jbd2_journal_start()
5115  *
5116  */
5117 
5118 #ifdef CONFIG_QUOTA
5119 
dquot_to_inode(struct dquot * dquot)5120 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5121 {
5122 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5123 }
5124 
ext4_write_dquot(struct dquot * dquot)5125 static int ext4_write_dquot(struct dquot *dquot)
5126 {
5127 	int ret, err;
5128 	handle_t *handle;
5129 	struct inode *inode;
5130 
5131 	inode = dquot_to_inode(dquot);
5132 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5133 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5134 	if (IS_ERR(handle))
5135 		return PTR_ERR(handle);
5136 	ret = dquot_commit(dquot);
5137 	err = ext4_journal_stop(handle);
5138 	if (!ret)
5139 		ret = err;
5140 	return ret;
5141 }
5142 
ext4_acquire_dquot(struct dquot * dquot)5143 static int ext4_acquire_dquot(struct dquot *dquot)
5144 {
5145 	int ret, err;
5146 	handle_t *handle;
5147 
5148 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5149 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5150 	if (IS_ERR(handle))
5151 		return PTR_ERR(handle);
5152 	ret = dquot_acquire(dquot);
5153 	err = ext4_journal_stop(handle);
5154 	if (!ret)
5155 		ret = err;
5156 	return ret;
5157 }
5158 
ext4_release_dquot(struct dquot * dquot)5159 static int ext4_release_dquot(struct dquot *dquot)
5160 {
5161 	int ret, err;
5162 	handle_t *handle;
5163 
5164 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5165 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5166 	if (IS_ERR(handle)) {
5167 		/* Release dquot anyway to avoid endless cycle in dqput() */
5168 		dquot_release(dquot);
5169 		return PTR_ERR(handle);
5170 	}
5171 	ret = dquot_release(dquot);
5172 	err = ext4_journal_stop(handle);
5173 	if (!ret)
5174 		ret = err;
5175 	return ret;
5176 }
5177 
ext4_mark_dquot_dirty(struct dquot * dquot)5178 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5179 {
5180 	struct super_block *sb = dquot->dq_sb;
5181 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5182 
5183 	/* Are we journaling quotas? */
5184 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) ||
5185 	    sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5186 		dquot_mark_dquot_dirty(dquot);
5187 		return ext4_write_dquot(dquot);
5188 	} else {
5189 		return dquot_mark_dquot_dirty(dquot);
5190 	}
5191 }
5192 
ext4_write_info(struct super_block * sb,int type)5193 static int ext4_write_info(struct super_block *sb, int type)
5194 {
5195 	int ret, err;
5196 	handle_t *handle;
5197 
5198 	/* Data block + inode block */
5199 	handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2);
5200 	if (IS_ERR(handle))
5201 		return PTR_ERR(handle);
5202 	ret = dquot_commit_info(sb, type);
5203 	err = ext4_journal_stop(handle);
5204 	if (!ret)
5205 		ret = err;
5206 	return ret;
5207 }
5208 
5209 /*
5210  * Turn on quotas during mount time - we need to find
5211  * the quota file and such...
5212  */
ext4_quota_on_mount(struct super_block * sb,int type)5213 static int ext4_quota_on_mount(struct super_block *sb, int type)
5214 {
5215 	return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5216 					EXT4_SB(sb)->s_jquota_fmt, type);
5217 }
5218 
5219 /*
5220  * Standard function to be called on quota_on
5221  */
ext4_quota_on(struct super_block * sb,int type,int format_id,struct path * path)5222 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5223 			 struct path *path)
5224 {
5225 	int err;
5226 
5227 	if (!test_opt(sb, QUOTA))
5228 		return -EINVAL;
5229 
5230 	/* Quotafile not on the same filesystem? */
5231 	if (path->dentry->d_sb != sb)
5232 		return -EXDEV;
5233 	/* Journaling quota? */
5234 	if (EXT4_SB(sb)->s_qf_names[type]) {
5235 		/* Quotafile not in fs root? */
5236 		if (path->dentry->d_parent != sb->s_root)
5237 			ext4_msg(sb, KERN_WARNING,
5238 				"Quota file not on filesystem root. "
5239 				"Journaled quota will not work");
5240 	}
5241 
5242 	/*
5243 	 * When we journal data on quota file, we have to flush journal to see
5244 	 * all updates to the file when we bypass pagecache...
5245 	 */
5246 	if (EXT4_SB(sb)->s_journal &&
5247 	    ext4_should_journal_data(path->dentry->d_inode)) {
5248 		/*
5249 		 * We don't need to lock updates but journal_flush() could
5250 		 * otherwise be livelocked...
5251 		 */
5252 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5253 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5254 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5255 		if (err)
5256 			return err;
5257 	}
5258 
5259 	return dquot_quota_on(sb, type, format_id, path);
5260 }
5261 
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)5262 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5263 			     unsigned int flags)
5264 {
5265 	int err;
5266 	struct inode *qf_inode;
5267 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5268 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5269 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5270 	};
5271 
5272 	BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
5273 
5274 	if (!qf_inums[type])
5275 		return -EPERM;
5276 
5277 	qf_inode = ext4_iget(sb, qf_inums[type]);
5278 	if (IS_ERR(qf_inode)) {
5279 		ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5280 		return PTR_ERR(qf_inode);
5281 	}
5282 
5283 	/* Don't account quota for quota files to avoid recursion */
5284 	qf_inode->i_flags |= S_NOQUOTA;
5285 	err = dquot_enable(qf_inode, type, format_id, flags);
5286 	iput(qf_inode);
5287 
5288 	return err;
5289 }
5290 
5291 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)5292 static int ext4_enable_quotas(struct super_block *sb)
5293 {
5294 	int type, err = 0;
5295 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5296 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5297 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5298 	};
5299 
5300 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5301 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5302 		if (qf_inums[type]) {
5303 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5304 						DQUOT_USAGE_ENABLED);
5305 			if (err) {
5306 				ext4_warning(sb,
5307 					"Failed to enable quota tracking "
5308 					"(type=%d, err=%d). Please run "
5309 					"e2fsck to fix.", type, err);
5310 				return err;
5311 			}
5312 		}
5313 	}
5314 	return 0;
5315 }
5316 
5317 /*
5318  * quota_on function that is used when QUOTA feature is set.
5319  */
ext4_quota_on_sysfile(struct super_block * sb,int type,int format_id)5320 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
5321 				 int format_id)
5322 {
5323 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5324 		return -EINVAL;
5325 
5326 	/*
5327 	 * USAGE was enabled at mount time. Only need to enable LIMITS now.
5328 	 */
5329 	return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED);
5330 }
5331 
ext4_quota_off(struct super_block * sb,int type)5332 static int ext4_quota_off(struct super_block *sb, int type)
5333 {
5334 	struct inode *inode = sb_dqopt(sb)->files[type];
5335 	handle_t *handle;
5336 
5337 	/* Force all delayed allocation blocks to be allocated.
5338 	 * Caller already holds s_umount sem */
5339 	if (test_opt(sb, DELALLOC))
5340 		sync_filesystem(sb);
5341 
5342 	if (!inode)
5343 		goto out;
5344 
5345 	/* Update modification times of quota files when userspace can
5346 	 * start looking at them */
5347 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5348 	if (IS_ERR(handle))
5349 		goto out;
5350 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5351 	ext4_mark_inode_dirty(handle, inode);
5352 	ext4_journal_stop(handle);
5353 
5354 out:
5355 	return dquot_quota_off(sb, type);
5356 }
5357 
5358 /*
5359  * quota_off function that is used when QUOTA feature is set.
5360  */
ext4_quota_off_sysfile(struct super_block * sb,int type)5361 static int ext4_quota_off_sysfile(struct super_block *sb, int type)
5362 {
5363 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5364 		return -EINVAL;
5365 
5366 	/* Disable only the limits. */
5367 	return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED);
5368 }
5369 
5370 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5371  * acquiring the locks... As quota files are never truncated and quota code
5372  * itself serializes the operations (and no one else should touch the files)
5373  * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)5374 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5375 			       size_t len, loff_t off)
5376 {
5377 	struct inode *inode = sb_dqopt(sb)->files[type];
5378 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5379 	int offset = off & (sb->s_blocksize - 1);
5380 	int tocopy;
5381 	size_t toread;
5382 	struct buffer_head *bh;
5383 	loff_t i_size = i_size_read(inode);
5384 
5385 	if (off > i_size)
5386 		return 0;
5387 	if (off+len > i_size)
5388 		len = i_size-off;
5389 	toread = len;
5390 	while (toread > 0) {
5391 		tocopy = sb->s_blocksize - offset < toread ?
5392 				sb->s_blocksize - offset : toread;
5393 		bh = ext4_bread(NULL, inode, blk, 0);
5394 		if (IS_ERR(bh))
5395 			return PTR_ERR(bh);
5396 		if (!bh)	/* A hole? */
5397 			memset(data, 0, tocopy);
5398 		else
5399 			memcpy(data, bh->b_data+offset, tocopy);
5400 		brelse(bh);
5401 		offset = 0;
5402 		toread -= tocopy;
5403 		data += tocopy;
5404 		blk++;
5405 	}
5406 	return len;
5407 }
5408 
5409 /* Write to quotafile (we know the transaction is already started and has
5410  * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)5411 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5412 				const char *data, size_t len, loff_t off)
5413 {
5414 	struct inode *inode = sb_dqopt(sb)->files[type];
5415 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5416 	int err, offset = off & (sb->s_blocksize - 1);
5417 	struct buffer_head *bh;
5418 	handle_t *handle = journal_current_handle();
5419 
5420 	if (EXT4_SB(sb)->s_journal && !handle) {
5421 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5422 			" cancelled because transaction is not started",
5423 			(unsigned long long)off, (unsigned long long)len);
5424 		return -EIO;
5425 	}
5426 	/*
5427 	 * Since we account only one data block in transaction credits,
5428 	 * then it is impossible to cross a block boundary.
5429 	 */
5430 	if (sb->s_blocksize - offset < len) {
5431 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5432 			" cancelled because not block aligned",
5433 			(unsigned long long)off, (unsigned long long)len);
5434 		return -EIO;
5435 	}
5436 
5437 	bh = ext4_bread(handle, inode, blk, 1);
5438 	if (IS_ERR(bh))
5439 		return PTR_ERR(bh);
5440 	if (!bh)
5441 		goto out;
5442 	BUFFER_TRACE(bh, "get write access");
5443 	err = ext4_journal_get_write_access(handle, bh);
5444 	if (err) {
5445 		brelse(bh);
5446 		return err;
5447 	}
5448 	lock_buffer(bh);
5449 	memcpy(bh->b_data+offset, data, len);
5450 	flush_dcache_page(bh->b_page);
5451 	unlock_buffer(bh);
5452 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5453 	brelse(bh);
5454 out:
5455 	if (inode->i_size < off + len) {
5456 		i_size_write(inode, off + len);
5457 		EXT4_I(inode)->i_disksize = inode->i_size;
5458 		ext4_mark_inode_dirty(handle, inode);
5459 	}
5460 	return len;
5461 }
5462 
5463 #endif
5464 
ext4_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)5465 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5466 		       const char *dev_name, void *data)
5467 {
5468 	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5469 }
5470 
5471 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
register_as_ext2(void)5472 static inline void register_as_ext2(void)
5473 {
5474 	int err = register_filesystem(&ext2_fs_type);
5475 	if (err)
5476 		printk(KERN_WARNING
5477 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5478 }
5479 
unregister_as_ext2(void)5480 static inline void unregister_as_ext2(void)
5481 {
5482 	unregister_filesystem(&ext2_fs_type);
5483 }
5484 
ext2_feature_set_ok(struct super_block * sb)5485 static inline int ext2_feature_set_ok(struct super_block *sb)
5486 {
5487 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5488 		return 0;
5489 	if (sb->s_flags & MS_RDONLY)
5490 		return 1;
5491 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5492 		return 0;
5493 	return 1;
5494 }
5495 #else
register_as_ext2(void)5496 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)5497 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)5498 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5499 #endif
5500 
5501 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
register_as_ext3(void)5502 static inline void register_as_ext3(void)
5503 {
5504 	int err = register_filesystem(&ext3_fs_type);
5505 	if (err)
5506 		printk(KERN_WARNING
5507 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5508 }
5509 
unregister_as_ext3(void)5510 static inline void unregister_as_ext3(void)
5511 {
5512 	unregister_filesystem(&ext3_fs_type);
5513 }
5514 
ext3_feature_set_ok(struct super_block * sb)5515 static inline int ext3_feature_set_ok(struct super_block *sb)
5516 {
5517 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5518 		return 0;
5519 	if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5520 		return 0;
5521 	if (sb->s_flags & MS_RDONLY)
5522 		return 1;
5523 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5524 		return 0;
5525 	return 1;
5526 }
5527 #else
register_as_ext3(void)5528 static inline void register_as_ext3(void) { }
unregister_as_ext3(void)5529 static inline void unregister_as_ext3(void) { }
ext3_feature_set_ok(struct super_block * sb)5530 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5531 #endif
5532 
5533 static struct file_system_type ext4_fs_type = {
5534 	.owner		= THIS_MODULE,
5535 	.name		= "ext4",
5536 	.mount		= ext4_mount,
5537 	.kill_sb	= kill_block_super,
5538 	.fs_flags	= FS_REQUIRES_DEV,
5539 };
5540 MODULE_ALIAS_FS("ext4");
5541 
ext4_init_feat_adverts(void)5542 static int __init ext4_init_feat_adverts(void)
5543 {
5544 	struct ext4_features *ef;
5545 	int ret = -ENOMEM;
5546 
5547 	ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5548 	if (!ef)
5549 		goto out;
5550 
5551 	ef->f_kobj.kset = ext4_kset;
5552 	init_completion(&ef->f_kobj_unregister);
5553 	ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5554 				   "features");
5555 	if (ret) {
5556 		kfree(ef);
5557 		goto out;
5558 	}
5559 
5560 	ext4_feat = ef;
5561 	ret = 0;
5562 out:
5563 	return ret;
5564 }
5565 
ext4_exit_feat_adverts(void)5566 static void ext4_exit_feat_adverts(void)
5567 {
5568 	kobject_put(&ext4_feat->f_kobj);
5569 	wait_for_completion(&ext4_feat->f_kobj_unregister);
5570 	kfree(ext4_feat);
5571 }
5572 
5573 /* Shared across all ext4 file systems */
5574 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5575 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5576 
ext4_init_fs(void)5577 static int __init ext4_init_fs(void)
5578 {
5579 	int i, err;
5580 
5581 	ext4_li_info = NULL;
5582 	mutex_init(&ext4_li_mtx);
5583 
5584 	/* Build-time check for flags consistency */
5585 	ext4_check_flag_values();
5586 
5587 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5588 		mutex_init(&ext4__aio_mutex[i]);
5589 		init_waitqueue_head(&ext4__ioend_wq[i]);
5590 	}
5591 
5592 	err = ext4_init_es();
5593 	if (err)
5594 		return err;
5595 
5596 	err = ext4_init_pageio();
5597 	if (err)
5598 		goto out7;
5599 
5600 	err = ext4_init_system_zone();
5601 	if (err)
5602 		goto out6;
5603 	ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5604 	if (!ext4_kset) {
5605 		err = -ENOMEM;
5606 		goto out5;
5607 	}
5608 	ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5609 
5610 	err = ext4_init_feat_adverts();
5611 	if (err)
5612 		goto out4;
5613 
5614 	err = ext4_init_mballoc();
5615 	if (err)
5616 		goto out2;
5617 	else
5618 		ext4_mballoc_ready = 1;
5619 	err = init_inodecache();
5620 	if (err)
5621 		goto out1;
5622 	register_as_ext3();
5623 	register_as_ext2();
5624 	err = register_filesystem(&ext4_fs_type);
5625 	if (err)
5626 		goto out;
5627 
5628 	return 0;
5629 out:
5630 	unregister_as_ext2();
5631 	unregister_as_ext3();
5632 	destroy_inodecache();
5633 out1:
5634 	ext4_mballoc_ready = 0;
5635 	ext4_exit_mballoc();
5636 out2:
5637 	ext4_exit_feat_adverts();
5638 out4:
5639 	if (ext4_proc_root)
5640 		remove_proc_entry("fs/ext4", NULL);
5641 	kset_unregister(ext4_kset);
5642 out5:
5643 	ext4_exit_system_zone();
5644 out6:
5645 	ext4_exit_pageio();
5646 out7:
5647 	ext4_exit_es();
5648 
5649 	return err;
5650 }
5651 
ext4_exit_fs(void)5652 static void __exit ext4_exit_fs(void)
5653 {
5654 	ext4_exit_crypto();
5655 	ext4_destroy_lazyinit_thread();
5656 	unregister_as_ext2();
5657 	unregister_as_ext3();
5658 	unregister_filesystem(&ext4_fs_type);
5659 	destroy_inodecache();
5660 	ext4_exit_mballoc();
5661 	ext4_exit_feat_adverts();
5662 	remove_proc_entry("fs/ext4", NULL);
5663 	kset_unregister(ext4_kset);
5664 	ext4_exit_system_zone();
5665 	ext4_exit_pageio();
5666 	ext4_exit_es();
5667 }
5668 
5669 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5670 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5671 MODULE_LICENSE("GPL");
5672 module_init(ext4_init_fs)
5673 module_exit(ext4_exit_fs)
5674