1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h" /* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62 static int ext4_mballoc_ready;
63
64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
65 unsigned long journal_devnum);
66 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
67 static int ext4_commit_super(struct super_block *sb, int sync);
68 static void ext4_mark_recovery_complete(struct super_block *sb,
69 struct ext4_super_block *es);
70 static void ext4_clear_journal_err(struct super_block *sb,
71 struct ext4_super_block *es);
72 static int ext4_sync_fs(struct super_block *sb, int wait);
73 static int ext4_remount(struct super_block *sb, int *flags, char *data);
74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
75 static int ext4_unfreeze(struct super_block *sb);
76 static int ext4_freeze(struct super_block *sb);
77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
78 const char *dev_name, void *data);
79 static inline int ext2_feature_set_ok(struct super_block *sb);
80 static inline int ext3_feature_set_ok(struct super_block *sb);
81 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t);
86
87 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
88 static struct file_system_type ext2_fs_type = {
89 .owner = THIS_MODULE,
90 .name = "ext2",
91 .mount = ext4_mount,
92 .kill_sb = kill_block_super,
93 .fs_flags = FS_REQUIRES_DEV,
94 };
95 MODULE_ALIAS_FS("ext2");
96 MODULE_ALIAS("ext2");
97 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
98 #else
99 #define IS_EXT2_SB(sb) (0)
100 #endif
101
102
103 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
104 static struct file_system_type ext3_fs_type = {
105 .owner = THIS_MODULE,
106 .name = "ext3",
107 .mount = ext4_mount,
108 .kill_sb = kill_block_super,
109 .fs_flags = FS_REQUIRES_DEV,
110 };
111 MODULE_ALIAS_FS("ext3");
112 MODULE_ALIAS("ext3");
113 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
114 #else
115 #define IS_EXT3_SB(sb) (0)
116 #endif
117
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)118 static int ext4_verify_csum_type(struct super_block *sb,
119 struct ext4_super_block *es)
120 {
121 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
122 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
123 return 1;
124
125 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
126 }
127
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)128 static __le32 ext4_superblock_csum(struct super_block *sb,
129 struct ext4_super_block *es)
130 {
131 struct ext4_sb_info *sbi = EXT4_SB(sb);
132 int offset = offsetof(struct ext4_super_block, s_checksum);
133 __u32 csum;
134
135 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
136
137 return cpu_to_le32(csum);
138 }
139
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)140 static int ext4_superblock_csum_verify(struct super_block *sb,
141 struct ext4_super_block *es)
142 {
143 if (!ext4_has_metadata_csum(sb))
144 return 1;
145
146 return es->s_checksum == ext4_superblock_csum(sb, es);
147 }
148
ext4_superblock_csum_set(struct super_block * sb)149 void ext4_superblock_csum_set(struct super_block *sb)
150 {
151 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
152
153 if (!ext4_has_metadata_csum(sb))
154 return;
155
156 es->s_checksum = ext4_superblock_csum(sb, es);
157 }
158
ext4_kvmalloc(size_t size,gfp_t flags)159 void *ext4_kvmalloc(size_t size, gfp_t flags)
160 {
161 void *ret;
162
163 ret = kmalloc(size, flags | __GFP_NOWARN);
164 if (!ret)
165 ret = __vmalloc(size, flags, PAGE_KERNEL);
166 return ret;
167 }
168
ext4_kvzalloc(size_t size,gfp_t flags)169 void *ext4_kvzalloc(size_t size, gfp_t flags)
170 {
171 void *ret;
172
173 ret = kzalloc(size, flags | __GFP_NOWARN);
174 if (!ret)
175 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
176 return ret;
177 }
178
ext4_kvfree(void * ptr)179 void ext4_kvfree(void *ptr)
180 {
181 if (is_vmalloc_addr(ptr))
182 vfree(ptr);
183 else
184 kfree(ptr);
185
186 }
187
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)188 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
189 struct ext4_group_desc *bg)
190 {
191 return le32_to_cpu(bg->bg_block_bitmap_lo) |
192 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
193 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
194 }
195
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)196 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
197 struct ext4_group_desc *bg)
198 {
199 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
200 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
201 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
202 }
203
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)204 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
205 struct ext4_group_desc *bg)
206 {
207 return le32_to_cpu(bg->bg_inode_table_lo) |
208 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
209 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
210 }
211
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)212 __u32 ext4_free_group_clusters(struct super_block *sb,
213 struct ext4_group_desc *bg)
214 {
215 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
216 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
217 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
218 }
219
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)220 __u32 ext4_free_inodes_count(struct super_block *sb,
221 struct ext4_group_desc *bg)
222 {
223 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
224 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
225 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
226 }
227
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)228 __u32 ext4_used_dirs_count(struct super_block *sb,
229 struct ext4_group_desc *bg)
230 {
231 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
232 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
233 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
234 }
235
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)236 __u32 ext4_itable_unused_count(struct super_block *sb,
237 struct ext4_group_desc *bg)
238 {
239 return le16_to_cpu(bg->bg_itable_unused_lo) |
240 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
241 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
242 }
243
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)244 void ext4_block_bitmap_set(struct super_block *sb,
245 struct ext4_group_desc *bg, ext4_fsblk_t blk)
246 {
247 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
248 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
249 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
250 }
251
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)252 void ext4_inode_bitmap_set(struct super_block *sb,
253 struct ext4_group_desc *bg, ext4_fsblk_t blk)
254 {
255 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
256 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
257 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
258 }
259
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)260 void ext4_inode_table_set(struct super_block *sb,
261 struct ext4_group_desc *bg, ext4_fsblk_t blk)
262 {
263 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
264 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
265 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
266 }
267
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)268 void ext4_free_group_clusters_set(struct super_block *sb,
269 struct ext4_group_desc *bg, __u32 count)
270 {
271 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
272 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
273 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
274 }
275
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)276 void ext4_free_inodes_set(struct super_block *sb,
277 struct ext4_group_desc *bg, __u32 count)
278 {
279 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
280 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
281 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
282 }
283
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)284 void ext4_used_dirs_set(struct super_block *sb,
285 struct ext4_group_desc *bg, __u32 count)
286 {
287 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
288 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
289 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
290 }
291
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)292 void ext4_itable_unused_set(struct super_block *sb,
293 struct ext4_group_desc *bg, __u32 count)
294 {
295 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
296 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
297 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
298 }
299
300
__save_error_info(struct super_block * sb,const char * func,unsigned int line)301 static void __save_error_info(struct super_block *sb, const char *func,
302 unsigned int line)
303 {
304 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
305
306 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
307 if (bdev_read_only(sb->s_bdev))
308 return;
309 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
310 es->s_last_error_time = cpu_to_le32(get_seconds());
311 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
312 es->s_last_error_line = cpu_to_le32(line);
313 if (!es->s_first_error_time) {
314 es->s_first_error_time = es->s_last_error_time;
315 strncpy(es->s_first_error_func, func,
316 sizeof(es->s_first_error_func));
317 es->s_first_error_line = cpu_to_le32(line);
318 es->s_first_error_ino = es->s_last_error_ino;
319 es->s_first_error_block = es->s_last_error_block;
320 }
321 /*
322 * Start the daily error reporting function if it hasn't been
323 * started already
324 */
325 if (!es->s_error_count)
326 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
327 le32_add_cpu(&es->s_error_count, 1);
328 }
329
save_error_info(struct super_block * sb,const char * func,unsigned int line)330 static void save_error_info(struct super_block *sb, const char *func,
331 unsigned int line)
332 {
333 __save_error_info(sb, func, line);
334 ext4_commit_super(sb, 1);
335 }
336
337 /*
338 * The del_gendisk() function uninitializes the disk-specific data
339 * structures, including the bdi structure, without telling anyone
340 * else. Once this happens, any attempt to call mark_buffer_dirty()
341 * (for example, by ext4_commit_super), will cause a kernel OOPS.
342 * This is a kludge to prevent these oops until we can put in a proper
343 * hook in del_gendisk() to inform the VFS and file system layers.
344 */
block_device_ejected(struct super_block * sb)345 static int block_device_ejected(struct super_block *sb)
346 {
347 struct inode *bd_inode = sb->s_bdev->bd_inode;
348 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
349
350 return bdi->dev == NULL;
351 }
352
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)353 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
354 {
355 struct super_block *sb = journal->j_private;
356 struct ext4_sb_info *sbi = EXT4_SB(sb);
357 int error = is_journal_aborted(journal);
358 struct ext4_journal_cb_entry *jce;
359
360 BUG_ON(txn->t_state == T_FINISHED);
361 spin_lock(&sbi->s_md_lock);
362 while (!list_empty(&txn->t_private_list)) {
363 jce = list_entry(txn->t_private_list.next,
364 struct ext4_journal_cb_entry, jce_list);
365 list_del_init(&jce->jce_list);
366 spin_unlock(&sbi->s_md_lock);
367 jce->jce_func(sb, jce, error);
368 spin_lock(&sbi->s_md_lock);
369 }
370 spin_unlock(&sbi->s_md_lock);
371 }
372
373 /* Deal with the reporting of failure conditions on a filesystem such as
374 * inconsistencies detected or read IO failures.
375 *
376 * On ext2, we can store the error state of the filesystem in the
377 * superblock. That is not possible on ext4, because we may have other
378 * write ordering constraints on the superblock which prevent us from
379 * writing it out straight away; and given that the journal is about to
380 * be aborted, we can't rely on the current, or future, transactions to
381 * write out the superblock safely.
382 *
383 * We'll just use the jbd2_journal_abort() error code to record an error in
384 * the journal instead. On recovery, the journal will complain about
385 * that error until we've noted it down and cleared it.
386 */
387
ext4_handle_error(struct super_block * sb)388 static void ext4_handle_error(struct super_block *sb)
389 {
390 if (sb->s_flags & MS_RDONLY)
391 return;
392
393 if (!test_opt(sb, ERRORS_CONT)) {
394 journal_t *journal = EXT4_SB(sb)->s_journal;
395
396 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
397 if (journal)
398 jbd2_journal_abort(journal, -EIO);
399 }
400 if (test_opt(sb, ERRORS_RO)) {
401 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
402 /*
403 * Make sure updated value of ->s_mount_flags will be visible
404 * before ->s_flags update
405 */
406 smp_wmb();
407 sb->s_flags |= MS_RDONLY;
408 }
409 if (test_opt(sb, ERRORS_PANIC))
410 panic("EXT4-fs (device %s): panic forced after error\n",
411 sb->s_id);
412 }
413
414 #define ext4_error_ratelimit(sb) \
415 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
416 "EXT4-fs error")
417
__ext4_error(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)418 void __ext4_error(struct super_block *sb, const char *function,
419 unsigned int line, const char *fmt, ...)
420 {
421 struct va_format vaf;
422 va_list args;
423
424 if (ext4_error_ratelimit(sb)) {
425 va_start(args, fmt);
426 vaf.fmt = fmt;
427 vaf.va = &args;
428 printk(KERN_CRIT
429 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
430 sb->s_id, function, line, current->comm, &vaf);
431 va_end(args);
432 }
433 save_error_info(sb, function, line);
434 ext4_handle_error(sb);
435 }
436
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)437 void __ext4_error_inode(struct inode *inode, const char *function,
438 unsigned int line, ext4_fsblk_t block,
439 const char *fmt, ...)
440 {
441 va_list args;
442 struct va_format vaf;
443 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
444
445 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
446 es->s_last_error_block = cpu_to_le64(block);
447 if (ext4_error_ratelimit(inode->i_sb)) {
448 va_start(args, fmt);
449 vaf.fmt = fmt;
450 vaf.va = &args;
451 if (block)
452 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
453 "inode #%lu: block %llu: comm %s: %pV\n",
454 inode->i_sb->s_id, function, line, inode->i_ino,
455 block, current->comm, &vaf);
456 else
457 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
458 "inode #%lu: comm %s: %pV\n",
459 inode->i_sb->s_id, function, line, inode->i_ino,
460 current->comm, &vaf);
461 va_end(args);
462 }
463 save_error_info(inode->i_sb, function, line);
464 ext4_handle_error(inode->i_sb);
465 }
466
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)467 void __ext4_error_file(struct file *file, const char *function,
468 unsigned int line, ext4_fsblk_t block,
469 const char *fmt, ...)
470 {
471 va_list args;
472 struct va_format vaf;
473 struct ext4_super_block *es;
474 struct inode *inode = file_inode(file);
475 char pathname[80], *path;
476
477 es = EXT4_SB(inode->i_sb)->s_es;
478 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
479 if (ext4_error_ratelimit(inode->i_sb)) {
480 path = d_path(&(file->f_path), pathname, sizeof(pathname));
481 if (IS_ERR(path))
482 path = "(unknown)";
483 va_start(args, fmt);
484 vaf.fmt = fmt;
485 vaf.va = &args;
486 if (block)
487 printk(KERN_CRIT
488 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
489 "block %llu: comm %s: path %s: %pV\n",
490 inode->i_sb->s_id, function, line, inode->i_ino,
491 block, current->comm, path, &vaf);
492 else
493 printk(KERN_CRIT
494 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
495 "comm %s: path %s: %pV\n",
496 inode->i_sb->s_id, function, line, inode->i_ino,
497 current->comm, path, &vaf);
498 va_end(args);
499 }
500 save_error_info(inode->i_sb, function, line);
501 ext4_handle_error(inode->i_sb);
502 }
503
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])504 const char *ext4_decode_error(struct super_block *sb, int errno,
505 char nbuf[16])
506 {
507 char *errstr = NULL;
508
509 switch (errno) {
510 case -EIO:
511 errstr = "IO failure";
512 break;
513 case -ENOMEM:
514 errstr = "Out of memory";
515 break;
516 case -EROFS:
517 if (!sb || (EXT4_SB(sb)->s_journal &&
518 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
519 errstr = "Journal has aborted";
520 else
521 errstr = "Readonly filesystem";
522 break;
523 default:
524 /* If the caller passed in an extra buffer for unknown
525 * errors, textualise them now. Else we just return
526 * NULL. */
527 if (nbuf) {
528 /* Check for truncated error codes... */
529 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
530 errstr = nbuf;
531 }
532 break;
533 }
534
535 return errstr;
536 }
537
538 /* __ext4_std_error decodes expected errors from journaling functions
539 * automatically and invokes the appropriate error response. */
540
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)541 void __ext4_std_error(struct super_block *sb, const char *function,
542 unsigned int line, int errno)
543 {
544 char nbuf[16];
545 const char *errstr;
546
547 /* Special case: if the error is EROFS, and we're not already
548 * inside a transaction, then there's really no point in logging
549 * an error. */
550 if (errno == -EROFS && journal_current_handle() == NULL &&
551 (sb->s_flags & MS_RDONLY))
552 return;
553
554 if (ext4_error_ratelimit(sb)) {
555 errstr = ext4_decode_error(sb, errno, nbuf);
556 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
557 sb->s_id, function, line, errstr);
558 }
559
560 save_error_info(sb, function, line);
561 ext4_handle_error(sb);
562 }
563
564 /*
565 * ext4_abort is a much stronger failure handler than ext4_error. The
566 * abort function may be used to deal with unrecoverable failures such
567 * as journal IO errors or ENOMEM at a critical moment in log management.
568 *
569 * We unconditionally force the filesystem into an ABORT|READONLY state,
570 * unless the error response on the fs has been set to panic in which
571 * case we take the easy way out and panic immediately.
572 */
573
__ext4_abort(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)574 void __ext4_abort(struct super_block *sb, const char *function,
575 unsigned int line, const char *fmt, ...)
576 {
577 va_list args;
578
579 save_error_info(sb, function, line);
580 va_start(args, fmt);
581 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
582 function, line);
583 vprintk(fmt, args);
584 printk("\n");
585 va_end(args);
586
587 if ((sb->s_flags & MS_RDONLY) == 0) {
588 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
589 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
590 /*
591 * Make sure updated value of ->s_mount_flags will be visible
592 * before ->s_flags update
593 */
594 smp_wmb();
595 sb->s_flags |= MS_RDONLY;
596 if (EXT4_SB(sb)->s_journal)
597 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
598 save_error_info(sb, function, line);
599 }
600 if (test_opt(sb, ERRORS_PANIC))
601 panic("EXT4-fs panic from previous error\n");
602 }
603
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)604 void __ext4_msg(struct super_block *sb,
605 const char *prefix, const char *fmt, ...)
606 {
607 struct va_format vaf;
608 va_list args;
609
610 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
611 return;
612
613 va_start(args, fmt);
614 vaf.fmt = fmt;
615 vaf.va = &args;
616 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
617 va_end(args);
618 }
619
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)620 void __ext4_warning(struct super_block *sb, const char *function,
621 unsigned int line, const char *fmt, ...)
622 {
623 struct va_format vaf;
624 va_list args;
625
626 if (!___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
627 "EXT4-fs warning"))
628 return;
629
630 va_start(args, fmt);
631 vaf.fmt = fmt;
632 vaf.va = &args;
633 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
634 sb->s_id, function, line, &vaf);
635 va_end(args);
636 }
637
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)638 void __ext4_grp_locked_error(const char *function, unsigned int line,
639 struct super_block *sb, ext4_group_t grp,
640 unsigned long ino, ext4_fsblk_t block,
641 const char *fmt, ...)
642 __releases(bitlock)
643 __acquires(bitlock)
644 {
645 struct va_format vaf;
646 va_list args;
647 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
648
649 es->s_last_error_ino = cpu_to_le32(ino);
650 es->s_last_error_block = cpu_to_le64(block);
651 __save_error_info(sb, function, line);
652
653 if (ext4_error_ratelimit(sb)) {
654 va_start(args, fmt);
655 vaf.fmt = fmt;
656 vaf.va = &args;
657 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
658 sb->s_id, function, line, grp);
659 if (ino)
660 printk(KERN_CONT "inode %lu: ", ino);
661 if (block)
662 printk(KERN_CONT "block %llu:",
663 (unsigned long long) block);
664 printk(KERN_CONT "%pV\n", &vaf);
665 va_end(args);
666 }
667
668 if (test_opt(sb, ERRORS_CONT)) {
669 ext4_commit_super(sb, 0);
670 return;
671 }
672
673 ext4_unlock_group(sb, grp);
674 ext4_handle_error(sb);
675 /*
676 * We only get here in the ERRORS_RO case; relocking the group
677 * may be dangerous, but nothing bad will happen since the
678 * filesystem will have already been marked read/only and the
679 * journal has been aborted. We return 1 as a hint to callers
680 * who might what to use the return value from
681 * ext4_grp_locked_error() to distinguish between the
682 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
683 * aggressively from the ext4 function in question, with a
684 * more appropriate error code.
685 */
686 ext4_lock_group(sb, grp);
687 return;
688 }
689
ext4_update_dynamic_rev(struct super_block * sb)690 void ext4_update_dynamic_rev(struct super_block *sb)
691 {
692 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
693
694 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
695 return;
696
697 ext4_warning(sb,
698 "updating to rev %d because of new feature flag, "
699 "running e2fsck is recommended",
700 EXT4_DYNAMIC_REV);
701
702 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
703 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
704 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
705 /* leave es->s_feature_*compat flags alone */
706 /* es->s_uuid will be set by e2fsck if empty */
707
708 /*
709 * The rest of the superblock fields should be zero, and if not it
710 * means they are likely already in use, so leave them alone. We
711 * can leave it up to e2fsck to clean up any inconsistencies there.
712 */
713 }
714
715 /*
716 * Open the external journal device
717 */
ext4_blkdev_get(dev_t dev,struct super_block * sb)718 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
719 {
720 struct block_device *bdev;
721 char b[BDEVNAME_SIZE];
722
723 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
724 if (IS_ERR(bdev))
725 goto fail;
726 return bdev;
727
728 fail:
729 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
730 __bdevname(dev, b), PTR_ERR(bdev));
731 return NULL;
732 }
733
734 /*
735 * Release the journal device
736 */
ext4_blkdev_put(struct block_device * bdev)737 static void ext4_blkdev_put(struct block_device *bdev)
738 {
739 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
740 }
741
ext4_blkdev_remove(struct ext4_sb_info * sbi)742 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
743 {
744 struct block_device *bdev;
745 bdev = sbi->journal_bdev;
746 if (bdev) {
747 ext4_blkdev_put(bdev);
748 sbi->journal_bdev = NULL;
749 }
750 }
751
orphan_list_entry(struct list_head * l)752 static inline struct inode *orphan_list_entry(struct list_head *l)
753 {
754 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
755 }
756
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)757 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
758 {
759 struct list_head *l;
760
761 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
762 le32_to_cpu(sbi->s_es->s_last_orphan));
763
764 printk(KERN_ERR "sb_info orphan list:\n");
765 list_for_each(l, &sbi->s_orphan) {
766 struct inode *inode = orphan_list_entry(l);
767 printk(KERN_ERR " "
768 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
769 inode->i_sb->s_id, inode->i_ino, inode,
770 inode->i_mode, inode->i_nlink,
771 NEXT_ORPHAN(inode));
772 }
773 }
774
ext4_put_super(struct super_block * sb)775 static void ext4_put_super(struct super_block *sb)
776 {
777 struct ext4_sb_info *sbi = EXT4_SB(sb);
778 struct ext4_super_block *es = sbi->s_es;
779 int i, err;
780
781 ext4_unregister_li_request(sb);
782 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
783
784 flush_workqueue(sbi->rsv_conversion_wq);
785 destroy_workqueue(sbi->rsv_conversion_wq);
786
787 if (sbi->s_journal) {
788 err = jbd2_journal_destroy(sbi->s_journal);
789 sbi->s_journal = NULL;
790 if (err < 0)
791 ext4_abort(sb, "Couldn't clean up the journal");
792 }
793
794 ext4_es_unregister_shrinker(sbi);
795 del_timer_sync(&sbi->s_err_report);
796 ext4_release_system_zone(sb);
797 ext4_mb_release(sb);
798 ext4_ext_release(sb);
799 ext4_xattr_put_super(sb);
800
801 if (!(sb->s_flags & MS_RDONLY)) {
802 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
803 es->s_state = cpu_to_le16(sbi->s_mount_state);
804 }
805 if (!(sb->s_flags & MS_RDONLY))
806 ext4_commit_super(sb, 1);
807
808 if (sbi->s_proc) {
809 remove_proc_entry("options", sbi->s_proc);
810 remove_proc_entry(sb->s_id, ext4_proc_root);
811 }
812 kobject_del(&sbi->s_kobj);
813
814 for (i = 0; i < sbi->s_gdb_count; i++)
815 brelse(sbi->s_group_desc[i]);
816 ext4_kvfree(sbi->s_group_desc);
817 ext4_kvfree(sbi->s_flex_groups);
818 percpu_counter_destroy(&sbi->s_freeclusters_counter);
819 percpu_counter_destroy(&sbi->s_freeinodes_counter);
820 percpu_counter_destroy(&sbi->s_dirs_counter);
821 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
822 brelse(sbi->s_sbh);
823 #ifdef CONFIG_QUOTA
824 for (i = 0; i < EXT4_MAXQUOTAS; i++)
825 kfree(sbi->s_qf_names[i]);
826 #endif
827
828 /* Debugging code just in case the in-memory inode orphan list
829 * isn't empty. The on-disk one can be non-empty if we've
830 * detected an error and taken the fs readonly, but the
831 * in-memory list had better be clean by this point. */
832 if (!list_empty(&sbi->s_orphan))
833 dump_orphan_list(sb, sbi);
834 J_ASSERT(list_empty(&sbi->s_orphan));
835
836 invalidate_bdev(sb->s_bdev);
837 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
838 /*
839 * Invalidate the journal device's buffers. We don't want them
840 * floating about in memory - the physical journal device may
841 * hotswapped, and it breaks the `ro-after' testing code.
842 */
843 sync_blockdev(sbi->journal_bdev);
844 invalidate_bdev(sbi->journal_bdev);
845 ext4_blkdev_remove(sbi);
846 }
847 if (sbi->s_mb_cache) {
848 ext4_xattr_destroy_cache(sbi->s_mb_cache);
849 sbi->s_mb_cache = NULL;
850 }
851 if (sbi->s_mmp_tsk)
852 kthread_stop(sbi->s_mmp_tsk);
853 sb->s_fs_info = NULL;
854 /*
855 * Now that we are completely done shutting down the
856 * superblock, we need to actually destroy the kobject.
857 */
858 kobject_put(&sbi->s_kobj);
859 wait_for_completion(&sbi->s_kobj_unregister);
860 if (sbi->s_chksum_driver)
861 crypto_free_shash(sbi->s_chksum_driver);
862 kfree(sbi->s_blockgroup_lock);
863 kfree(sbi);
864 }
865
866 static struct kmem_cache *ext4_inode_cachep;
867
868 /*
869 * Called inside transaction, so use GFP_NOFS
870 */
ext4_alloc_inode(struct super_block * sb)871 static struct inode *ext4_alloc_inode(struct super_block *sb)
872 {
873 struct ext4_inode_info *ei;
874
875 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
876 if (!ei)
877 return NULL;
878
879 ei->vfs_inode.i_version = 1;
880 spin_lock_init(&ei->i_raw_lock);
881 INIT_LIST_HEAD(&ei->i_prealloc_list);
882 spin_lock_init(&ei->i_prealloc_lock);
883 ext4_es_init_tree(&ei->i_es_tree);
884 rwlock_init(&ei->i_es_lock);
885 INIT_LIST_HEAD(&ei->i_es_lru);
886 ei->i_es_all_nr = 0;
887 ei->i_es_lru_nr = 0;
888 ei->i_touch_when = 0;
889 ei->i_reserved_data_blocks = 0;
890 ei->i_reserved_meta_blocks = 0;
891 ei->i_allocated_meta_blocks = 0;
892 ei->i_da_metadata_calc_len = 0;
893 ei->i_da_metadata_calc_last_lblock = 0;
894 spin_lock_init(&(ei->i_block_reservation_lock));
895 #ifdef CONFIG_QUOTA
896 ei->i_reserved_quota = 0;
897 #endif
898 ei->jinode = NULL;
899 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
900 spin_lock_init(&ei->i_completed_io_lock);
901 ei->i_sync_tid = 0;
902 ei->i_datasync_tid = 0;
903 atomic_set(&ei->i_ioend_count, 0);
904 atomic_set(&ei->i_unwritten, 0);
905 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
906 #ifdef CONFIG_EXT4_FS_ENCRYPTION
907 ei->i_crypt_info = NULL;
908 #endif
909 return &ei->vfs_inode;
910 }
911
ext4_drop_inode(struct inode * inode)912 static int ext4_drop_inode(struct inode *inode)
913 {
914 int drop = generic_drop_inode(inode);
915
916 trace_ext4_drop_inode(inode, drop);
917 return drop;
918 }
919
ext4_i_callback(struct rcu_head * head)920 static void ext4_i_callback(struct rcu_head *head)
921 {
922 struct inode *inode = container_of(head, struct inode, i_rcu);
923 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
924 }
925
ext4_destroy_inode(struct inode * inode)926 static void ext4_destroy_inode(struct inode *inode)
927 {
928 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
929 ext4_msg(inode->i_sb, KERN_ERR,
930 "Inode %lu (%p): orphan list check failed!",
931 inode->i_ino, EXT4_I(inode));
932 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
933 EXT4_I(inode), sizeof(struct ext4_inode_info),
934 true);
935 dump_stack();
936 }
937 call_rcu(&inode->i_rcu, ext4_i_callback);
938 }
939
init_once(void * foo)940 static void init_once(void *foo)
941 {
942 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
943
944 INIT_LIST_HEAD(&ei->i_orphan);
945 init_rwsem(&ei->xattr_sem);
946 init_rwsem(&ei->i_data_sem);
947 inode_init_once(&ei->vfs_inode);
948 }
949
init_inodecache(void)950 static int __init init_inodecache(void)
951 {
952 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
953 sizeof(struct ext4_inode_info),
954 0, (SLAB_RECLAIM_ACCOUNT|
955 SLAB_MEM_SPREAD),
956 init_once);
957 if (ext4_inode_cachep == NULL)
958 return -ENOMEM;
959 return 0;
960 }
961
destroy_inodecache(void)962 static void destroy_inodecache(void)
963 {
964 /*
965 * Make sure all delayed rcu free inodes are flushed before we
966 * destroy cache.
967 */
968 rcu_barrier();
969 kmem_cache_destroy(ext4_inode_cachep);
970 }
971
ext4_clear_inode(struct inode * inode)972 void ext4_clear_inode(struct inode *inode)
973 {
974 invalidate_inode_buffers(inode);
975 clear_inode(inode);
976 dquot_drop(inode);
977 ext4_discard_preallocations(inode);
978 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
979 ext4_es_lru_del(inode);
980 if (EXT4_I(inode)->jinode) {
981 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
982 EXT4_I(inode)->jinode);
983 jbd2_free_inode(EXT4_I(inode)->jinode);
984 EXT4_I(inode)->jinode = NULL;
985 }
986 #ifdef CONFIG_EXT4_FS_ENCRYPTION
987 if (EXT4_I(inode)->i_crypt_info)
988 ext4_free_encryption_info(inode, EXT4_I(inode)->i_crypt_info);
989 #endif
990 }
991
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)992 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
993 u64 ino, u32 generation)
994 {
995 struct inode *inode;
996
997 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
998 return ERR_PTR(-ESTALE);
999 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1000 return ERR_PTR(-ESTALE);
1001
1002 /* iget isn't really right if the inode is currently unallocated!!
1003 *
1004 * ext4_read_inode will return a bad_inode if the inode had been
1005 * deleted, so we should be safe.
1006 *
1007 * Currently we don't know the generation for parent directory, so
1008 * a generation of 0 means "accept any"
1009 */
1010 inode = ext4_iget_normal(sb, ino);
1011 if (IS_ERR(inode))
1012 return ERR_CAST(inode);
1013 if (generation && inode->i_generation != generation) {
1014 iput(inode);
1015 return ERR_PTR(-ESTALE);
1016 }
1017
1018 return inode;
1019 }
1020
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1021 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1022 int fh_len, int fh_type)
1023 {
1024 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1025 ext4_nfs_get_inode);
1026 }
1027
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1028 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1029 int fh_len, int fh_type)
1030 {
1031 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1032 ext4_nfs_get_inode);
1033 }
1034
1035 /*
1036 * Try to release metadata pages (indirect blocks, directories) which are
1037 * mapped via the block device. Since these pages could have journal heads
1038 * which would prevent try_to_free_buffers() from freeing them, we must use
1039 * jbd2 layer's try_to_free_buffers() function to release them.
1040 */
bdev_try_to_free_page(struct super_block * sb,struct page * page,gfp_t wait)1041 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1042 gfp_t wait)
1043 {
1044 journal_t *journal = EXT4_SB(sb)->s_journal;
1045
1046 WARN_ON(PageChecked(page));
1047 if (!page_has_buffers(page))
1048 return 0;
1049 if (journal)
1050 return jbd2_journal_try_to_free_buffers(journal, page,
1051 wait & ~__GFP_WAIT);
1052 return try_to_free_buffers(page);
1053 }
1054
1055 #ifdef CONFIG_QUOTA
1056 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1057 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1058
1059 static int ext4_write_dquot(struct dquot *dquot);
1060 static int ext4_acquire_dquot(struct dquot *dquot);
1061 static int ext4_release_dquot(struct dquot *dquot);
1062 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1063 static int ext4_write_info(struct super_block *sb, int type);
1064 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1065 struct path *path);
1066 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
1067 int format_id);
1068 static int ext4_quota_off(struct super_block *sb, int type);
1069 static int ext4_quota_off_sysfile(struct super_block *sb, int type);
1070 static int ext4_quota_on_mount(struct super_block *sb, int type);
1071 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1072 size_t len, loff_t off);
1073 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1074 const char *data, size_t len, loff_t off);
1075 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1076 unsigned int flags);
1077 static int ext4_enable_quotas(struct super_block *sb);
1078
1079 static const struct dquot_operations ext4_quota_operations = {
1080 .get_reserved_space = ext4_get_reserved_space,
1081 .write_dquot = ext4_write_dquot,
1082 .acquire_dquot = ext4_acquire_dquot,
1083 .release_dquot = ext4_release_dquot,
1084 .mark_dirty = ext4_mark_dquot_dirty,
1085 .write_info = ext4_write_info,
1086 .alloc_dquot = dquot_alloc,
1087 .destroy_dquot = dquot_destroy,
1088 };
1089
1090 static const struct quotactl_ops ext4_qctl_operations = {
1091 .quota_on = ext4_quota_on,
1092 .quota_off = ext4_quota_off,
1093 .quota_sync = dquot_quota_sync,
1094 .get_info = dquot_get_dqinfo,
1095 .set_info = dquot_set_dqinfo,
1096 .get_dqblk = dquot_get_dqblk,
1097 .set_dqblk = dquot_set_dqblk
1098 };
1099
1100 static const struct quotactl_ops ext4_qctl_sysfile_operations = {
1101 .quota_on_meta = ext4_quota_on_sysfile,
1102 .quota_off = ext4_quota_off_sysfile,
1103 .quota_sync = dquot_quota_sync,
1104 .get_info = dquot_get_dqinfo,
1105 .set_info = dquot_set_dqinfo,
1106 .get_dqblk = dquot_get_dqblk,
1107 .set_dqblk = dquot_set_dqblk
1108 };
1109 #endif
1110
1111 static const struct super_operations ext4_sops = {
1112 .alloc_inode = ext4_alloc_inode,
1113 .destroy_inode = ext4_destroy_inode,
1114 .write_inode = ext4_write_inode,
1115 .dirty_inode = ext4_dirty_inode,
1116 .drop_inode = ext4_drop_inode,
1117 .evict_inode = ext4_evict_inode,
1118 .put_super = ext4_put_super,
1119 .sync_fs = ext4_sync_fs,
1120 .freeze_fs = ext4_freeze,
1121 .unfreeze_fs = ext4_unfreeze,
1122 .statfs = ext4_statfs,
1123 .remount_fs = ext4_remount,
1124 .show_options = ext4_show_options,
1125 #ifdef CONFIG_QUOTA
1126 .quota_read = ext4_quota_read,
1127 .quota_write = ext4_quota_write,
1128 #endif
1129 .bdev_try_to_free_page = bdev_try_to_free_page,
1130 };
1131
1132 static const struct export_operations ext4_export_ops = {
1133 .fh_to_dentry = ext4_fh_to_dentry,
1134 .fh_to_parent = ext4_fh_to_parent,
1135 .get_parent = ext4_get_parent,
1136 };
1137
1138 enum {
1139 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1140 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1141 Opt_nouid32, Opt_debug, Opt_removed,
1142 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1143 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1144 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1145 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1146 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1147 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1148 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1149 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1150 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1151 Opt_usrquota, Opt_grpquota, Opt_i_version,
1152 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1153 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1154 Opt_inode_readahead_blks, Opt_journal_ioprio,
1155 Opt_dioread_nolock, Opt_dioread_lock,
1156 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1157 Opt_max_dir_size_kb,
1158 };
1159
1160 static const match_table_t tokens = {
1161 {Opt_bsd_df, "bsddf"},
1162 {Opt_minix_df, "minixdf"},
1163 {Opt_grpid, "grpid"},
1164 {Opt_grpid, "bsdgroups"},
1165 {Opt_nogrpid, "nogrpid"},
1166 {Opt_nogrpid, "sysvgroups"},
1167 {Opt_resgid, "resgid=%u"},
1168 {Opt_resuid, "resuid=%u"},
1169 {Opt_sb, "sb=%u"},
1170 {Opt_err_cont, "errors=continue"},
1171 {Opt_err_panic, "errors=panic"},
1172 {Opt_err_ro, "errors=remount-ro"},
1173 {Opt_nouid32, "nouid32"},
1174 {Opt_debug, "debug"},
1175 {Opt_removed, "oldalloc"},
1176 {Opt_removed, "orlov"},
1177 {Opt_user_xattr, "user_xattr"},
1178 {Opt_nouser_xattr, "nouser_xattr"},
1179 {Opt_acl, "acl"},
1180 {Opt_noacl, "noacl"},
1181 {Opt_noload, "norecovery"},
1182 {Opt_noload, "noload"},
1183 {Opt_removed, "nobh"},
1184 {Opt_removed, "bh"},
1185 {Opt_commit, "commit=%u"},
1186 {Opt_min_batch_time, "min_batch_time=%u"},
1187 {Opt_max_batch_time, "max_batch_time=%u"},
1188 {Opt_journal_dev, "journal_dev=%u"},
1189 {Opt_journal_path, "journal_path=%s"},
1190 {Opt_journal_checksum, "journal_checksum"},
1191 {Opt_journal_async_commit, "journal_async_commit"},
1192 {Opt_abort, "abort"},
1193 {Opt_data_journal, "data=journal"},
1194 {Opt_data_ordered, "data=ordered"},
1195 {Opt_data_writeback, "data=writeback"},
1196 {Opt_data_err_abort, "data_err=abort"},
1197 {Opt_data_err_ignore, "data_err=ignore"},
1198 {Opt_offusrjquota, "usrjquota="},
1199 {Opt_usrjquota, "usrjquota=%s"},
1200 {Opt_offgrpjquota, "grpjquota="},
1201 {Opt_grpjquota, "grpjquota=%s"},
1202 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1203 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1204 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1205 {Opt_grpquota, "grpquota"},
1206 {Opt_noquota, "noquota"},
1207 {Opt_quota, "quota"},
1208 {Opt_usrquota, "usrquota"},
1209 {Opt_barrier, "barrier=%u"},
1210 {Opt_barrier, "barrier"},
1211 {Opt_nobarrier, "nobarrier"},
1212 {Opt_i_version, "i_version"},
1213 {Opt_stripe, "stripe=%u"},
1214 {Opt_delalloc, "delalloc"},
1215 {Opt_nodelalloc, "nodelalloc"},
1216 {Opt_removed, "mblk_io_submit"},
1217 {Opt_removed, "nomblk_io_submit"},
1218 {Opt_block_validity, "block_validity"},
1219 {Opt_noblock_validity, "noblock_validity"},
1220 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1221 {Opt_journal_ioprio, "journal_ioprio=%u"},
1222 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1223 {Opt_auto_da_alloc, "auto_da_alloc"},
1224 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1225 {Opt_dioread_nolock, "dioread_nolock"},
1226 {Opt_dioread_lock, "dioread_lock"},
1227 {Opt_discard, "discard"},
1228 {Opt_nodiscard, "nodiscard"},
1229 {Opt_init_itable, "init_itable=%u"},
1230 {Opt_init_itable, "init_itable"},
1231 {Opt_noinit_itable, "noinit_itable"},
1232 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1233 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1234 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1235 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1236 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1237 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1238 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1239 {Opt_err, NULL},
1240 };
1241
get_sb_block(void ** data)1242 static ext4_fsblk_t get_sb_block(void **data)
1243 {
1244 ext4_fsblk_t sb_block;
1245 char *options = (char *) *data;
1246
1247 if (!options || strncmp(options, "sb=", 3) != 0)
1248 return 1; /* Default location */
1249
1250 options += 3;
1251 /* TODO: use simple_strtoll with >32bit ext4 */
1252 sb_block = simple_strtoul(options, &options, 0);
1253 if (*options && *options != ',') {
1254 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1255 (char *) *data);
1256 return 1;
1257 }
1258 if (*options == ',')
1259 options++;
1260 *data = (void *) options;
1261
1262 return sb_block;
1263 }
1264
1265 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1266 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1267 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1268
1269 #ifdef CONFIG_QUOTA
set_qf_name(struct super_block * sb,int qtype,substring_t * args)1270 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1271 {
1272 struct ext4_sb_info *sbi = EXT4_SB(sb);
1273 char *qname;
1274 int ret = -1;
1275
1276 if (sb_any_quota_loaded(sb) &&
1277 !sbi->s_qf_names[qtype]) {
1278 ext4_msg(sb, KERN_ERR,
1279 "Cannot change journaled "
1280 "quota options when quota turned on");
1281 return -1;
1282 }
1283 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1284 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options "
1285 "when QUOTA feature is enabled");
1286 return -1;
1287 }
1288 qname = match_strdup(args);
1289 if (!qname) {
1290 ext4_msg(sb, KERN_ERR,
1291 "Not enough memory for storing quotafile name");
1292 return -1;
1293 }
1294 if (sbi->s_qf_names[qtype]) {
1295 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1296 ret = 1;
1297 else
1298 ext4_msg(sb, KERN_ERR,
1299 "%s quota file already specified",
1300 QTYPE2NAME(qtype));
1301 goto errout;
1302 }
1303 if (strchr(qname, '/')) {
1304 ext4_msg(sb, KERN_ERR,
1305 "quotafile must be on filesystem root");
1306 goto errout;
1307 }
1308 sbi->s_qf_names[qtype] = qname;
1309 set_opt(sb, QUOTA);
1310 return 1;
1311 errout:
1312 kfree(qname);
1313 return ret;
1314 }
1315
clear_qf_name(struct super_block * sb,int qtype)1316 static int clear_qf_name(struct super_block *sb, int qtype)
1317 {
1318
1319 struct ext4_sb_info *sbi = EXT4_SB(sb);
1320
1321 if (sb_any_quota_loaded(sb) &&
1322 sbi->s_qf_names[qtype]) {
1323 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1324 " when quota turned on");
1325 return -1;
1326 }
1327 kfree(sbi->s_qf_names[qtype]);
1328 sbi->s_qf_names[qtype] = NULL;
1329 return 1;
1330 }
1331 #endif
1332
1333 #define MOPT_SET 0x0001
1334 #define MOPT_CLEAR 0x0002
1335 #define MOPT_NOSUPPORT 0x0004
1336 #define MOPT_EXPLICIT 0x0008
1337 #define MOPT_CLEAR_ERR 0x0010
1338 #define MOPT_GTE0 0x0020
1339 #ifdef CONFIG_QUOTA
1340 #define MOPT_Q 0
1341 #define MOPT_QFMT 0x0040
1342 #else
1343 #define MOPT_Q MOPT_NOSUPPORT
1344 #define MOPT_QFMT MOPT_NOSUPPORT
1345 #endif
1346 #define MOPT_DATAJ 0x0080
1347 #define MOPT_NO_EXT2 0x0100
1348 #define MOPT_NO_EXT3 0x0200
1349 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1350 #define MOPT_STRING 0x0400
1351
1352 static const struct mount_opts {
1353 int token;
1354 int mount_opt;
1355 int flags;
1356 } ext4_mount_opts[] = {
1357 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1358 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1359 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1360 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1361 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1362 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1363 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1364 MOPT_EXT4_ONLY | MOPT_SET},
1365 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1366 MOPT_EXT4_ONLY | MOPT_CLEAR},
1367 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1368 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1369 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1370 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1371 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1372 MOPT_EXT4_ONLY | MOPT_CLEAR},
1373 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1374 MOPT_EXT4_ONLY | MOPT_SET},
1375 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1376 EXT4_MOUNT_JOURNAL_CHECKSUM),
1377 MOPT_EXT4_ONLY | MOPT_SET},
1378 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1379 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1380 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1381 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1382 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1383 MOPT_NO_EXT2 | MOPT_SET},
1384 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1385 MOPT_NO_EXT2 | MOPT_CLEAR},
1386 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1387 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1388 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1389 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1390 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1391 {Opt_commit, 0, MOPT_GTE0},
1392 {Opt_max_batch_time, 0, MOPT_GTE0},
1393 {Opt_min_batch_time, 0, MOPT_GTE0},
1394 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1395 {Opt_init_itable, 0, MOPT_GTE0},
1396 {Opt_stripe, 0, MOPT_GTE0},
1397 {Opt_resuid, 0, MOPT_GTE0},
1398 {Opt_resgid, 0, MOPT_GTE0},
1399 {Opt_journal_dev, 0, MOPT_GTE0},
1400 {Opt_journal_path, 0, MOPT_STRING},
1401 {Opt_journal_ioprio, 0, MOPT_GTE0},
1402 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1403 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1404 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1405 MOPT_NO_EXT2 | MOPT_DATAJ},
1406 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1407 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1408 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1409 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1410 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1411 #else
1412 {Opt_acl, 0, MOPT_NOSUPPORT},
1413 {Opt_noacl, 0, MOPT_NOSUPPORT},
1414 #endif
1415 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1416 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1417 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1418 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1419 MOPT_SET | MOPT_Q},
1420 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1421 MOPT_SET | MOPT_Q},
1422 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1423 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1424 {Opt_usrjquota, 0, MOPT_Q},
1425 {Opt_grpjquota, 0, MOPT_Q},
1426 {Opt_offusrjquota, 0, MOPT_Q},
1427 {Opt_offgrpjquota, 0, MOPT_Q},
1428 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1429 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1430 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1431 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1432 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1433 {Opt_err, 0, 0}
1434 };
1435
handle_mount_opt(struct super_block * sb,char * opt,int token,substring_t * args,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)1436 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1437 substring_t *args, unsigned long *journal_devnum,
1438 unsigned int *journal_ioprio, int is_remount)
1439 {
1440 struct ext4_sb_info *sbi = EXT4_SB(sb);
1441 const struct mount_opts *m;
1442 kuid_t uid;
1443 kgid_t gid;
1444 int arg = 0;
1445
1446 #ifdef CONFIG_QUOTA
1447 if (token == Opt_usrjquota)
1448 return set_qf_name(sb, USRQUOTA, &args[0]);
1449 else if (token == Opt_grpjquota)
1450 return set_qf_name(sb, GRPQUOTA, &args[0]);
1451 else if (token == Opt_offusrjquota)
1452 return clear_qf_name(sb, USRQUOTA);
1453 else if (token == Opt_offgrpjquota)
1454 return clear_qf_name(sb, GRPQUOTA);
1455 #endif
1456 switch (token) {
1457 case Opt_noacl:
1458 case Opt_nouser_xattr:
1459 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1460 break;
1461 case Opt_sb:
1462 return 1; /* handled by get_sb_block() */
1463 case Opt_removed:
1464 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1465 return 1;
1466 case Opt_abort:
1467 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1468 return 1;
1469 case Opt_i_version:
1470 sb->s_flags |= MS_I_VERSION;
1471 return 1;
1472 }
1473
1474 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1475 if (token == m->token)
1476 break;
1477
1478 if (m->token == Opt_err) {
1479 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1480 "or missing value", opt);
1481 return -1;
1482 }
1483
1484 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1485 ext4_msg(sb, KERN_ERR,
1486 "Mount option \"%s\" incompatible with ext2", opt);
1487 return -1;
1488 }
1489 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1490 ext4_msg(sb, KERN_ERR,
1491 "Mount option \"%s\" incompatible with ext3", opt);
1492 return -1;
1493 }
1494
1495 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1496 return -1;
1497 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1498 return -1;
1499 if (m->flags & MOPT_EXPLICIT)
1500 set_opt2(sb, EXPLICIT_DELALLOC);
1501 if (m->flags & MOPT_CLEAR_ERR)
1502 clear_opt(sb, ERRORS_MASK);
1503 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1504 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1505 "options when quota turned on");
1506 return -1;
1507 }
1508
1509 if (m->flags & MOPT_NOSUPPORT) {
1510 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1511 } else if (token == Opt_commit) {
1512 if (arg == 0)
1513 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1514 sbi->s_commit_interval = HZ * arg;
1515 } else if (token == Opt_max_batch_time) {
1516 sbi->s_max_batch_time = arg;
1517 } else if (token == Opt_min_batch_time) {
1518 sbi->s_min_batch_time = arg;
1519 } else if (token == Opt_inode_readahead_blks) {
1520 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1521 ext4_msg(sb, KERN_ERR,
1522 "EXT4-fs: inode_readahead_blks must be "
1523 "0 or a power of 2 smaller than 2^31");
1524 return -1;
1525 }
1526 sbi->s_inode_readahead_blks = arg;
1527 } else if (token == Opt_init_itable) {
1528 set_opt(sb, INIT_INODE_TABLE);
1529 if (!args->from)
1530 arg = EXT4_DEF_LI_WAIT_MULT;
1531 sbi->s_li_wait_mult = arg;
1532 } else if (token == Opt_max_dir_size_kb) {
1533 sbi->s_max_dir_size_kb = arg;
1534 } else if (token == Opt_stripe) {
1535 sbi->s_stripe = arg;
1536 } else if (token == Opt_resuid) {
1537 uid = make_kuid(current_user_ns(), arg);
1538 if (!uid_valid(uid)) {
1539 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1540 return -1;
1541 }
1542 sbi->s_resuid = uid;
1543 } else if (token == Opt_resgid) {
1544 gid = make_kgid(current_user_ns(), arg);
1545 if (!gid_valid(gid)) {
1546 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1547 return -1;
1548 }
1549 sbi->s_resgid = gid;
1550 } else if (token == Opt_journal_dev) {
1551 if (is_remount) {
1552 ext4_msg(sb, KERN_ERR,
1553 "Cannot specify journal on remount");
1554 return -1;
1555 }
1556 *journal_devnum = arg;
1557 } else if (token == Opt_journal_path) {
1558 char *journal_path;
1559 struct inode *journal_inode;
1560 struct path path;
1561 int error;
1562
1563 if (is_remount) {
1564 ext4_msg(sb, KERN_ERR,
1565 "Cannot specify journal on remount");
1566 return -1;
1567 }
1568 journal_path = match_strdup(&args[0]);
1569 if (!journal_path) {
1570 ext4_msg(sb, KERN_ERR, "error: could not dup "
1571 "journal device string");
1572 return -1;
1573 }
1574
1575 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1576 if (error) {
1577 ext4_msg(sb, KERN_ERR, "error: could not find "
1578 "journal device path: error %d", error);
1579 kfree(journal_path);
1580 return -1;
1581 }
1582
1583 journal_inode = path.dentry->d_inode;
1584 if (!S_ISBLK(journal_inode->i_mode)) {
1585 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1586 "is not a block device", journal_path);
1587 path_put(&path);
1588 kfree(journal_path);
1589 return -1;
1590 }
1591
1592 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1593 path_put(&path);
1594 kfree(journal_path);
1595 } else if (token == Opt_journal_ioprio) {
1596 if (arg > 7) {
1597 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1598 " (must be 0-7)");
1599 return -1;
1600 }
1601 *journal_ioprio =
1602 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1603 } else if (token == Opt_test_dummy_encryption) {
1604 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1605 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1606 ext4_msg(sb, KERN_WARNING,
1607 "Test dummy encryption mode enabled");
1608 #else
1609 ext4_msg(sb, KERN_WARNING,
1610 "Test dummy encryption mount option ignored");
1611 #endif
1612 } else if (m->flags & MOPT_DATAJ) {
1613 if (is_remount) {
1614 if (!sbi->s_journal)
1615 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1616 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1617 ext4_msg(sb, KERN_ERR,
1618 "Cannot change data mode on remount");
1619 return -1;
1620 }
1621 } else {
1622 clear_opt(sb, DATA_FLAGS);
1623 sbi->s_mount_opt |= m->mount_opt;
1624 }
1625 #ifdef CONFIG_QUOTA
1626 } else if (m->flags & MOPT_QFMT) {
1627 if (sb_any_quota_loaded(sb) &&
1628 sbi->s_jquota_fmt != m->mount_opt) {
1629 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1630 "quota options when quota turned on");
1631 return -1;
1632 }
1633 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1634 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1635 ext4_msg(sb, KERN_ERR,
1636 "Cannot set journaled quota options "
1637 "when QUOTA feature is enabled");
1638 return -1;
1639 }
1640 sbi->s_jquota_fmt = m->mount_opt;
1641 #endif
1642 } else {
1643 if (!args->from)
1644 arg = 1;
1645 if (m->flags & MOPT_CLEAR)
1646 arg = !arg;
1647 else if (unlikely(!(m->flags & MOPT_SET))) {
1648 ext4_msg(sb, KERN_WARNING,
1649 "buggy handling of option %s", opt);
1650 WARN_ON(1);
1651 return -1;
1652 }
1653 if (arg != 0)
1654 sbi->s_mount_opt |= m->mount_opt;
1655 else
1656 sbi->s_mount_opt &= ~m->mount_opt;
1657 }
1658 return 1;
1659 }
1660
parse_options(char * options,struct super_block * sb,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)1661 static int parse_options(char *options, struct super_block *sb,
1662 unsigned long *journal_devnum,
1663 unsigned int *journal_ioprio,
1664 int is_remount)
1665 {
1666 struct ext4_sb_info *sbi = EXT4_SB(sb);
1667 char *p;
1668 substring_t args[MAX_OPT_ARGS];
1669 int token;
1670
1671 if (!options)
1672 return 1;
1673
1674 while ((p = strsep(&options, ",")) != NULL) {
1675 if (!*p)
1676 continue;
1677 /*
1678 * Initialize args struct so we know whether arg was
1679 * found; some options take optional arguments.
1680 */
1681 args[0].to = args[0].from = NULL;
1682 token = match_token(p, tokens, args);
1683 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1684 journal_ioprio, is_remount) < 0)
1685 return 0;
1686 }
1687 #ifdef CONFIG_QUOTA
1688 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
1689 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1690 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA "
1691 "feature is enabled");
1692 return 0;
1693 }
1694 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1695 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1696 clear_opt(sb, USRQUOTA);
1697
1698 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1699 clear_opt(sb, GRPQUOTA);
1700
1701 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1702 ext4_msg(sb, KERN_ERR, "old and new quota "
1703 "format mixing");
1704 return 0;
1705 }
1706
1707 if (!sbi->s_jquota_fmt) {
1708 ext4_msg(sb, KERN_ERR, "journaled quota format "
1709 "not specified");
1710 return 0;
1711 }
1712 }
1713 #endif
1714 if (test_opt(sb, DIOREAD_NOLOCK)) {
1715 int blocksize =
1716 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1717
1718 if (blocksize < PAGE_CACHE_SIZE) {
1719 ext4_msg(sb, KERN_ERR, "can't mount with "
1720 "dioread_nolock if block size != PAGE_SIZE");
1721 return 0;
1722 }
1723 }
1724 return 1;
1725 }
1726
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)1727 static inline void ext4_show_quota_options(struct seq_file *seq,
1728 struct super_block *sb)
1729 {
1730 #if defined(CONFIG_QUOTA)
1731 struct ext4_sb_info *sbi = EXT4_SB(sb);
1732
1733 if (sbi->s_jquota_fmt) {
1734 char *fmtname = "";
1735
1736 switch (sbi->s_jquota_fmt) {
1737 case QFMT_VFS_OLD:
1738 fmtname = "vfsold";
1739 break;
1740 case QFMT_VFS_V0:
1741 fmtname = "vfsv0";
1742 break;
1743 case QFMT_VFS_V1:
1744 fmtname = "vfsv1";
1745 break;
1746 }
1747 seq_printf(seq, ",jqfmt=%s", fmtname);
1748 }
1749
1750 if (sbi->s_qf_names[USRQUOTA])
1751 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1752
1753 if (sbi->s_qf_names[GRPQUOTA])
1754 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1755 #endif
1756 }
1757
token2str(int token)1758 static const char *token2str(int token)
1759 {
1760 const struct match_token *t;
1761
1762 for (t = tokens; t->token != Opt_err; t++)
1763 if (t->token == token && !strchr(t->pattern, '='))
1764 break;
1765 return t->pattern;
1766 }
1767
1768 /*
1769 * Show an option if
1770 * - it's set to a non-default value OR
1771 * - if the per-sb default is different from the global default
1772 */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)1773 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1774 int nodefs)
1775 {
1776 struct ext4_sb_info *sbi = EXT4_SB(sb);
1777 struct ext4_super_block *es = sbi->s_es;
1778 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1779 const struct mount_opts *m;
1780 char sep = nodefs ? '\n' : ',';
1781
1782 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1783 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1784
1785 if (sbi->s_sb_block != 1)
1786 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1787
1788 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1789 int want_set = m->flags & MOPT_SET;
1790 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1791 (m->flags & MOPT_CLEAR_ERR))
1792 continue;
1793 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1794 continue; /* skip if same as the default */
1795 if ((want_set &&
1796 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1797 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1798 continue; /* select Opt_noFoo vs Opt_Foo */
1799 SEQ_OPTS_PRINT("%s", token2str(m->token));
1800 }
1801
1802 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1803 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1804 SEQ_OPTS_PRINT("resuid=%u",
1805 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1806 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1807 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1808 SEQ_OPTS_PRINT("resgid=%u",
1809 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1810 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1811 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1812 SEQ_OPTS_PUTS("errors=remount-ro");
1813 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1814 SEQ_OPTS_PUTS("errors=continue");
1815 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1816 SEQ_OPTS_PUTS("errors=panic");
1817 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1818 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1819 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1820 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1821 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1822 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1823 if (sb->s_flags & MS_I_VERSION)
1824 SEQ_OPTS_PUTS("i_version");
1825 if (nodefs || sbi->s_stripe)
1826 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1827 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1828 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1829 SEQ_OPTS_PUTS("data=journal");
1830 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1831 SEQ_OPTS_PUTS("data=ordered");
1832 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1833 SEQ_OPTS_PUTS("data=writeback");
1834 }
1835 if (nodefs ||
1836 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1837 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1838 sbi->s_inode_readahead_blks);
1839
1840 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1841 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1842 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1843 if (nodefs || sbi->s_max_dir_size_kb)
1844 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1845
1846 ext4_show_quota_options(seq, sb);
1847 return 0;
1848 }
1849
ext4_show_options(struct seq_file * seq,struct dentry * root)1850 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1851 {
1852 return _ext4_show_options(seq, root->d_sb, 0);
1853 }
1854
options_seq_show(struct seq_file * seq,void * offset)1855 static int options_seq_show(struct seq_file *seq, void *offset)
1856 {
1857 struct super_block *sb = seq->private;
1858 int rc;
1859
1860 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1861 rc = _ext4_show_options(seq, sb, 1);
1862 seq_puts(seq, "\n");
1863 return rc;
1864 }
1865
options_open_fs(struct inode * inode,struct file * file)1866 static int options_open_fs(struct inode *inode, struct file *file)
1867 {
1868 return single_open(file, options_seq_show, PDE_DATA(inode));
1869 }
1870
1871 static const struct file_operations ext4_seq_options_fops = {
1872 .owner = THIS_MODULE,
1873 .open = options_open_fs,
1874 .read = seq_read,
1875 .llseek = seq_lseek,
1876 .release = single_release,
1877 };
1878
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)1879 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1880 int read_only)
1881 {
1882 struct ext4_sb_info *sbi = EXT4_SB(sb);
1883 int res = 0;
1884
1885 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1886 ext4_msg(sb, KERN_ERR, "revision level too high, "
1887 "forcing read-only mode");
1888 res = MS_RDONLY;
1889 }
1890 if (read_only)
1891 goto done;
1892 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1893 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1894 "running e2fsck is recommended");
1895 else if (sbi->s_mount_state & EXT4_ERROR_FS)
1896 ext4_msg(sb, KERN_WARNING,
1897 "warning: mounting fs with errors, "
1898 "running e2fsck is recommended");
1899 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1900 le16_to_cpu(es->s_mnt_count) >=
1901 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1902 ext4_msg(sb, KERN_WARNING,
1903 "warning: maximal mount count reached, "
1904 "running e2fsck is recommended");
1905 else if (le32_to_cpu(es->s_checkinterval) &&
1906 (le32_to_cpu(es->s_lastcheck) +
1907 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1908 ext4_msg(sb, KERN_WARNING,
1909 "warning: checktime reached, "
1910 "running e2fsck is recommended");
1911 if (!sbi->s_journal)
1912 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1913 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1914 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1915 le16_add_cpu(&es->s_mnt_count, 1);
1916 es->s_mtime = cpu_to_le32(get_seconds());
1917 ext4_update_dynamic_rev(sb);
1918 if (sbi->s_journal)
1919 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1920
1921 ext4_commit_super(sb, 1);
1922 done:
1923 if (test_opt(sb, DEBUG))
1924 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1925 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1926 sb->s_blocksize,
1927 sbi->s_groups_count,
1928 EXT4_BLOCKS_PER_GROUP(sb),
1929 EXT4_INODES_PER_GROUP(sb),
1930 sbi->s_mount_opt, sbi->s_mount_opt2);
1931
1932 cleancache_init_fs(sb);
1933 return res;
1934 }
1935
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)1936 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1937 {
1938 struct ext4_sb_info *sbi = EXT4_SB(sb);
1939 struct flex_groups *new_groups;
1940 int size;
1941
1942 if (!sbi->s_log_groups_per_flex)
1943 return 0;
1944
1945 size = ext4_flex_group(sbi, ngroup - 1) + 1;
1946 if (size <= sbi->s_flex_groups_allocated)
1947 return 0;
1948
1949 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1950 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1951 if (!new_groups) {
1952 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1953 size / (int) sizeof(struct flex_groups));
1954 return -ENOMEM;
1955 }
1956
1957 if (sbi->s_flex_groups) {
1958 memcpy(new_groups, sbi->s_flex_groups,
1959 (sbi->s_flex_groups_allocated *
1960 sizeof(struct flex_groups)));
1961 ext4_kvfree(sbi->s_flex_groups);
1962 }
1963 sbi->s_flex_groups = new_groups;
1964 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1965 return 0;
1966 }
1967
ext4_fill_flex_info(struct super_block * sb)1968 static int ext4_fill_flex_info(struct super_block *sb)
1969 {
1970 struct ext4_sb_info *sbi = EXT4_SB(sb);
1971 struct ext4_group_desc *gdp = NULL;
1972 ext4_group_t flex_group;
1973 int i, err;
1974
1975 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1976 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1977 sbi->s_log_groups_per_flex = 0;
1978 return 1;
1979 }
1980
1981 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1982 if (err)
1983 goto failed;
1984
1985 for (i = 0; i < sbi->s_groups_count; i++) {
1986 gdp = ext4_get_group_desc(sb, i, NULL);
1987
1988 flex_group = ext4_flex_group(sbi, i);
1989 atomic_add(ext4_free_inodes_count(sb, gdp),
1990 &sbi->s_flex_groups[flex_group].free_inodes);
1991 atomic64_add(ext4_free_group_clusters(sb, gdp),
1992 &sbi->s_flex_groups[flex_group].free_clusters);
1993 atomic_add(ext4_used_dirs_count(sb, gdp),
1994 &sbi->s_flex_groups[flex_group].used_dirs);
1995 }
1996
1997 return 1;
1998 failed:
1999 return 0;
2000 }
2001
ext4_group_desc_csum(struct ext4_sb_info * sbi,__u32 block_group,struct ext4_group_desc * gdp)2002 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
2003 struct ext4_group_desc *gdp)
2004 {
2005 int offset;
2006 __u16 crc = 0;
2007 __le32 le_group = cpu_to_le32(block_group);
2008
2009 if (ext4_has_metadata_csum(sbi->s_sb)) {
2010 /* Use new metadata_csum algorithm */
2011 __le16 save_csum;
2012 __u32 csum32;
2013
2014 save_csum = gdp->bg_checksum;
2015 gdp->bg_checksum = 0;
2016 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2017 sizeof(le_group));
2018 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
2019 sbi->s_desc_size);
2020 gdp->bg_checksum = save_csum;
2021
2022 crc = csum32 & 0xFFFF;
2023 goto out;
2024 }
2025
2026 /* old crc16 code */
2027 if (!(sbi->s_es->s_feature_ro_compat &
2028 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)))
2029 return 0;
2030
2031 offset = offsetof(struct ext4_group_desc, bg_checksum);
2032
2033 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2034 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2035 crc = crc16(crc, (__u8 *)gdp, offset);
2036 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2037 /* for checksum of struct ext4_group_desc do the rest...*/
2038 if ((sbi->s_es->s_feature_incompat &
2039 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2040 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2041 crc = crc16(crc, (__u8 *)gdp + offset,
2042 le16_to_cpu(sbi->s_es->s_desc_size) -
2043 offset);
2044
2045 out:
2046 return cpu_to_le16(crc);
2047 }
2048
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2049 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2050 struct ext4_group_desc *gdp)
2051 {
2052 if (ext4_has_group_desc_csum(sb) &&
2053 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
2054 block_group, gdp)))
2055 return 0;
2056
2057 return 1;
2058 }
2059
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2060 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2061 struct ext4_group_desc *gdp)
2062 {
2063 if (!ext4_has_group_desc_csum(sb))
2064 return;
2065 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
2066 }
2067
2068 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_group_t * first_not_zeroed)2069 static int ext4_check_descriptors(struct super_block *sb,
2070 ext4_group_t *first_not_zeroed)
2071 {
2072 struct ext4_sb_info *sbi = EXT4_SB(sb);
2073 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2074 ext4_fsblk_t last_block;
2075 ext4_fsblk_t block_bitmap;
2076 ext4_fsblk_t inode_bitmap;
2077 ext4_fsblk_t inode_table;
2078 int flexbg_flag = 0;
2079 ext4_group_t i, grp = sbi->s_groups_count;
2080
2081 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2082 flexbg_flag = 1;
2083
2084 ext4_debug("Checking group descriptors");
2085
2086 for (i = 0; i < sbi->s_groups_count; i++) {
2087 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2088
2089 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2090 last_block = ext4_blocks_count(sbi->s_es) - 1;
2091 else
2092 last_block = first_block +
2093 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2094
2095 if ((grp == sbi->s_groups_count) &&
2096 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2097 grp = i;
2098
2099 block_bitmap = ext4_block_bitmap(sb, gdp);
2100 if (block_bitmap < first_block || block_bitmap > last_block) {
2101 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2102 "Block bitmap for group %u not in group "
2103 "(block %llu)!", i, block_bitmap);
2104 return 0;
2105 }
2106 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2107 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2108 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2109 "Inode bitmap for group %u not in group "
2110 "(block %llu)!", i, inode_bitmap);
2111 return 0;
2112 }
2113 inode_table = ext4_inode_table(sb, gdp);
2114 if (inode_table < first_block ||
2115 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2116 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2117 "Inode table for group %u not in group "
2118 "(block %llu)!", i, inode_table);
2119 return 0;
2120 }
2121 ext4_lock_group(sb, i);
2122 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2123 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2124 "Checksum for group %u failed (%u!=%u)",
2125 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2126 gdp)), le16_to_cpu(gdp->bg_checksum));
2127 if (!(sb->s_flags & MS_RDONLY)) {
2128 ext4_unlock_group(sb, i);
2129 return 0;
2130 }
2131 }
2132 ext4_unlock_group(sb, i);
2133 if (!flexbg_flag)
2134 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2135 }
2136 if (NULL != first_not_zeroed)
2137 *first_not_zeroed = grp;
2138 return 1;
2139 }
2140
2141 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2142 * the superblock) which were deleted from all directories, but held open by
2143 * a process at the time of a crash. We walk the list and try to delete these
2144 * inodes at recovery time (only with a read-write filesystem).
2145 *
2146 * In order to keep the orphan inode chain consistent during traversal (in
2147 * case of crash during recovery), we link each inode into the superblock
2148 * orphan list_head and handle it the same way as an inode deletion during
2149 * normal operation (which journals the operations for us).
2150 *
2151 * We only do an iget() and an iput() on each inode, which is very safe if we
2152 * accidentally point at an in-use or already deleted inode. The worst that
2153 * can happen in this case is that we get a "bit already cleared" message from
2154 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2155 * e2fsck was run on this filesystem, and it must have already done the orphan
2156 * inode cleanup for us, so we can safely abort without any further action.
2157 */
ext4_orphan_cleanup(struct super_block * sb,struct ext4_super_block * es)2158 static void ext4_orphan_cleanup(struct super_block *sb,
2159 struct ext4_super_block *es)
2160 {
2161 unsigned int s_flags = sb->s_flags;
2162 int nr_orphans = 0, nr_truncates = 0;
2163 #ifdef CONFIG_QUOTA
2164 int i;
2165 #endif
2166 if (!es->s_last_orphan) {
2167 jbd_debug(4, "no orphan inodes to clean up\n");
2168 return;
2169 }
2170
2171 if (bdev_read_only(sb->s_bdev)) {
2172 ext4_msg(sb, KERN_ERR, "write access "
2173 "unavailable, skipping orphan cleanup");
2174 return;
2175 }
2176
2177 /* Check if feature set would not allow a r/w mount */
2178 if (!ext4_feature_set_ok(sb, 0)) {
2179 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2180 "unknown ROCOMPAT features");
2181 return;
2182 }
2183
2184 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2185 /* don't clear list on RO mount w/ errors */
2186 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2187 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2188 "clearing orphan list.\n");
2189 es->s_last_orphan = 0;
2190 }
2191 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2192 return;
2193 }
2194
2195 if (s_flags & MS_RDONLY) {
2196 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2197 sb->s_flags &= ~MS_RDONLY;
2198 }
2199 #ifdef CONFIG_QUOTA
2200 /* Needed for iput() to work correctly and not trash data */
2201 sb->s_flags |= MS_ACTIVE;
2202 /* Turn on quotas so that they are updated correctly */
2203 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2204 if (EXT4_SB(sb)->s_qf_names[i]) {
2205 int ret = ext4_quota_on_mount(sb, i);
2206 if (ret < 0)
2207 ext4_msg(sb, KERN_ERR,
2208 "Cannot turn on journaled "
2209 "quota: error %d", ret);
2210 }
2211 }
2212 #endif
2213
2214 while (es->s_last_orphan) {
2215 struct inode *inode;
2216
2217 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2218 if (IS_ERR(inode)) {
2219 es->s_last_orphan = 0;
2220 break;
2221 }
2222
2223 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2224 dquot_initialize(inode);
2225 if (inode->i_nlink) {
2226 if (test_opt(sb, DEBUG))
2227 ext4_msg(sb, KERN_DEBUG,
2228 "%s: truncating inode %lu to %lld bytes",
2229 __func__, inode->i_ino, inode->i_size);
2230 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2231 inode->i_ino, inode->i_size);
2232 mutex_lock(&inode->i_mutex);
2233 truncate_inode_pages(inode->i_mapping, inode->i_size);
2234 ext4_truncate(inode);
2235 mutex_unlock(&inode->i_mutex);
2236 nr_truncates++;
2237 } else {
2238 if (test_opt(sb, DEBUG))
2239 ext4_msg(sb, KERN_DEBUG,
2240 "%s: deleting unreferenced inode %lu",
2241 __func__, inode->i_ino);
2242 jbd_debug(2, "deleting unreferenced inode %lu\n",
2243 inode->i_ino);
2244 nr_orphans++;
2245 }
2246 iput(inode); /* The delete magic happens here! */
2247 }
2248
2249 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2250
2251 if (nr_orphans)
2252 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2253 PLURAL(nr_orphans));
2254 if (nr_truncates)
2255 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2256 PLURAL(nr_truncates));
2257 #ifdef CONFIG_QUOTA
2258 /* Turn quotas off */
2259 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2260 if (sb_dqopt(sb)->files[i])
2261 dquot_quota_off(sb, i);
2262 }
2263 #endif
2264 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2265 }
2266
2267 /*
2268 * Maximal extent format file size.
2269 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2270 * extent format containers, within a sector_t, and within i_blocks
2271 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2272 * so that won't be a limiting factor.
2273 *
2274 * However there is other limiting factor. We do store extents in the form
2275 * of starting block and length, hence the resulting length of the extent
2276 * covering maximum file size must fit into on-disk format containers as
2277 * well. Given that length is always by 1 unit bigger than max unit (because
2278 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2279 *
2280 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2281 */
ext4_max_size(int blkbits,int has_huge_files)2282 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2283 {
2284 loff_t res;
2285 loff_t upper_limit = MAX_LFS_FILESIZE;
2286
2287 /* small i_blocks in vfs inode? */
2288 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2289 /*
2290 * CONFIG_LBDAF is not enabled implies the inode
2291 * i_block represent total blocks in 512 bytes
2292 * 32 == size of vfs inode i_blocks * 8
2293 */
2294 upper_limit = (1LL << 32) - 1;
2295
2296 /* total blocks in file system block size */
2297 upper_limit >>= (blkbits - 9);
2298 upper_limit <<= blkbits;
2299 }
2300
2301 /*
2302 * 32-bit extent-start container, ee_block. We lower the maxbytes
2303 * by one fs block, so ee_len can cover the extent of maximum file
2304 * size
2305 */
2306 res = (1LL << 32) - 1;
2307 res <<= blkbits;
2308
2309 /* Sanity check against vm- & vfs- imposed limits */
2310 if (res > upper_limit)
2311 res = upper_limit;
2312
2313 return res;
2314 }
2315
2316 /*
2317 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2318 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2319 * We need to be 1 filesystem block less than the 2^48 sector limit.
2320 */
ext4_max_bitmap_size(int bits,int has_huge_files)2321 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2322 {
2323 loff_t res = EXT4_NDIR_BLOCKS;
2324 int meta_blocks;
2325 loff_t upper_limit;
2326 /* This is calculated to be the largest file size for a dense, block
2327 * mapped file such that the file's total number of 512-byte sectors,
2328 * including data and all indirect blocks, does not exceed (2^48 - 1).
2329 *
2330 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2331 * number of 512-byte sectors of the file.
2332 */
2333
2334 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2335 /*
2336 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2337 * the inode i_block field represents total file blocks in
2338 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2339 */
2340 upper_limit = (1LL << 32) - 1;
2341
2342 /* total blocks in file system block size */
2343 upper_limit >>= (bits - 9);
2344
2345 } else {
2346 /*
2347 * We use 48 bit ext4_inode i_blocks
2348 * With EXT4_HUGE_FILE_FL set the i_blocks
2349 * represent total number of blocks in
2350 * file system block size
2351 */
2352 upper_limit = (1LL << 48) - 1;
2353
2354 }
2355
2356 /* indirect blocks */
2357 meta_blocks = 1;
2358 /* double indirect blocks */
2359 meta_blocks += 1 + (1LL << (bits-2));
2360 /* tripple indirect blocks */
2361 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2362
2363 upper_limit -= meta_blocks;
2364 upper_limit <<= bits;
2365
2366 res += 1LL << (bits-2);
2367 res += 1LL << (2*(bits-2));
2368 res += 1LL << (3*(bits-2));
2369 res <<= bits;
2370 if (res > upper_limit)
2371 res = upper_limit;
2372
2373 if (res > MAX_LFS_FILESIZE)
2374 res = MAX_LFS_FILESIZE;
2375
2376 return res;
2377 }
2378
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)2379 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2380 ext4_fsblk_t logical_sb_block, int nr)
2381 {
2382 struct ext4_sb_info *sbi = EXT4_SB(sb);
2383 ext4_group_t bg, first_meta_bg;
2384 int has_super = 0;
2385
2386 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2387
2388 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2389 nr < first_meta_bg)
2390 return logical_sb_block + nr + 1;
2391 bg = sbi->s_desc_per_block * nr;
2392 if (ext4_bg_has_super(sb, bg))
2393 has_super = 1;
2394
2395 /*
2396 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2397 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2398 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2399 * compensate.
2400 */
2401 if (sb->s_blocksize == 1024 && nr == 0 &&
2402 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2403 has_super++;
2404
2405 return (has_super + ext4_group_first_block_no(sb, bg));
2406 }
2407
2408 /**
2409 * ext4_get_stripe_size: Get the stripe size.
2410 * @sbi: In memory super block info
2411 *
2412 * If we have specified it via mount option, then
2413 * use the mount option value. If the value specified at mount time is
2414 * greater than the blocks per group use the super block value.
2415 * If the super block value is greater than blocks per group return 0.
2416 * Allocator needs it be less than blocks per group.
2417 *
2418 */
ext4_get_stripe_size(struct ext4_sb_info * sbi)2419 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2420 {
2421 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2422 unsigned long stripe_width =
2423 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2424 int ret;
2425
2426 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2427 ret = sbi->s_stripe;
2428 else if (stripe_width <= sbi->s_blocks_per_group)
2429 ret = stripe_width;
2430 else if (stride <= sbi->s_blocks_per_group)
2431 ret = stride;
2432 else
2433 ret = 0;
2434
2435 /*
2436 * If the stripe width is 1, this makes no sense and
2437 * we set it to 0 to turn off stripe handling code.
2438 */
2439 if (ret <= 1)
2440 ret = 0;
2441
2442 return ret;
2443 }
2444
2445 /* sysfs supprt */
2446
2447 struct ext4_attr {
2448 struct attribute attr;
2449 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2450 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2451 const char *, size_t);
2452 union {
2453 int offset;
2454 int deprecated_val;
2455 } u;
2456 };
2457
parse_strtoull(const char * buf,unsigned long long max,unsigned long long * value)2458 static int parse_strtoull(const char *buf,
2459 unsigned long long max, unsigned long long *value)
2460 {
2461 int ret;
2462
2463 ret = kstrtoull(skip_spaces(buf), 0, value);
2464 if (!ret && *value > max)
2465 ret = -EINVAL;
2466 return ret;
2467 }
2468
delayed_allocation_blocks_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2469 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2470 struct ext4_sb_info *sbi,
2471 char *buf)
2472 {
2473 return snprintf(buf, PAGE_SIZE, "%llu\n",
2474 (s64) EXT4_C2B(sbi,
2475 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2476 }
2477
session_write_kbytes_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2478 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2479 struct ext4_sb_info *sbi, char *buf)
2480 {
2481 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2482
2483 if (!sb->s_bdev->bd_part)
2484 return snprintf(buf, PAGE_SIZE, "0\n");
2485 return snprintf(buf, PAGE_SIZE, "%lu\n",
2486 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2487 sbi->s_sectors_written_start) >> 1);
2488 }
2489
lifetime_write_kbytes_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2490 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2491 struct ext4_sb_info *sbi, char *buf)
2492 {
2493 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2494
2495 if (!sb->s_bdev->bd_part)
2496 return snprintf(buf, PAGE_SIZE, "0\n");
2497 return snprintf(buf, PAGE_SIZE, "%llu\n",
2498 (unsigned long long)(sbi->s_kbytes_written +
2499 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2500 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2501 }
2502
inode_readahead_blks_store(struct ext4_attr * a,struct ext4_sb_info * sbi,const char * buf,size_t count)2503 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2504 struct ext4_sb_info *sbi,
2505 const char *buf, size_t count)
2506 {
2507 unsigned long t;
2508 int ret;
2509
2510 ret = kstrtoul(skip_spaces(buf), 0, &t);
2511 if (ret)
2512 return ret;
2513
2514 if (t && (!is_power_of_2(t) || t > 0x40000000))
2515 return -EINVAL;
2516
2517 sbi->s_inode_readahead_blks = t;
2518 return count;
2519 }
2520
sbi_ui_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2521 static ssize_t sbi_ui_show(struct ext4_attr *a,
2522 struct ext4_sb_info *sbi, char *buf)
2523 {
2524 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2525
2526 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2527 }
2528
sbi_ui_store(struct ext4_attr * a,struct ext4_sb_info * sbi,const char * buf,size_t count)2529 static ssize_t sbi_ui_store(struct ext4_attr *a,
2530 struct ext4_sb_info *sbi,
2531 const char *buf, size_t count)
2532 {
2533 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2534 unsigned long t;
2535 int ret;
2536
2537 ret = kstrtoul(skip_spaces(buf), 0, &t);
2538 if (ret)
2539 return ret;
2540 *ui = t;
2541 return count;
2542 }
2543
es_ui_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2544 static ssize_t es_ui_show(struct ext4_attr *a,
2545 struct ext4_sb_info *sbi, char *buf)
2546 {
2547
2548 unsigned int *ui = (unsigned int *) (((char *) sbi->s_es) +
2549 a->u.offset);
2550
2551 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2552 }
2553
reserved_clusters_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2554 static ssize_t reserved_clusters_show(struct ext4_attr *a,
2555 struct ext4_sb_info *sbi, char *buf)
2556 {
2557 return snprintf(buf, PAGE_SIZE, "%llu\n",
2558 (unsigned long long) atomic64_read(&sbi->s_resv_clusters));
2559 }
2560
reserved_clusters_store(struct ext4_attr * a,struct ext4_sb_info * sbi,const char * buf,size_t count)2561 static ssize_t reserved_clusters_store(struct ext4_attr *a,
2562 struct ext4_sb_info *sbi,
2563 const char *buf, size_t count)
2564 {
2565 unsigned long long val;
2566 int ret;
2567
2568 if (parse_strtoull(buf, -1ULL, &val))
2569 return -EINVAL;
2570 ret = ext4_reserve_clusters(sbi, val);
2571
2572 return ret ? ret : count;
2573 }
2574
trigger_test_error(struct ext4_attr * a,struct ext4_sb_info * sbi,const char * buf,size_t count)2575 static ssize_t trigger_test_error(struct ext4_attr *a,
2576 struct ext4_sb_info *sbi,
2577 const char *buf, size_t count)
2578 {
2579 int len = count;
2580
2581 if (!capable(CAP_SYS_ADMIN))
2582 return -EPERM;
2583
2584 if (len && buf[len-1] == '\n')
2585 len--;
2586
2587 if (len)
2588 ext4_error(sbi->s_sb, "%.*s", len, buf);
2589 return count;
2590 }
2591
sbi_deprecated_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2592 static ssize_t sbi_deprecated_show(struct ext4_attr *a,
2593 struct ext4_sb_info *sbi, char *buf)
2594 {
2595 return snprintf(buf, PAGE_SIZE, "%d\n", a->u.deprecated_val);
2596 }
2597
2598 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2599 static struct ext4_attr ext4_attr_##_name = { \
2600 .attr = {.name = __stringify(_name), .mode = _mode }, \
2601 .show = _show, \
2602 .store = _store, \
2603 .u = { \
2604 .offset = offsetof(struct ext4_sb_info, _elname),\
2605 }, \
2606 }
2607
2608 #define EXT4_ATTR_OFFSET_ES(_name,_mode,_show,_store,_elname) \
2609 static struct ext4_attr ext4_attr_##_name = { \
2610 .attr = {.name = __stringify(_name), .mode = _mode }, \
2611 .show = _show, \
2612 .store = _store, \
2613 .u = { \
2614 .offset = offsetof(struct ext4_super_block, _elname), \
2615 }, \
2616 }
2617
2618 #define EXT4_ATTR(name, mode, show, store) \
2619 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2620
2621 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2622 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2623 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2624
2625 #define EXT4_RO_ATTR_ES_UI(name, elname) \
2626 EXT4_ATTR_OFFSET_ES(name, 0444, es_ui_show, NULL, elname)
2627 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2628 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2629
2630 #define ATTR_LIST(name) &ext4_attr_##name.attr
2631 #define EXT4_DEPRECATED_ATTR(_name, _val) \
2632 static struct ext4_attr ext4_attr_##_name = { \
2633 .attr = {.name = __stringify(_name), .mode = 0444 }, \
2634 .show = sbi_deprecated_show, \
2635 .u = { \
2636 .deprecated_val = _val, \
2637 }, \
2638 }
2639
2640 EXT4_RO_ATTR(delayed_allocation_blocks);
2641 EXT4_RO_ATTR(session_write_kbytes);
2642 EXT4_RO_ATTR(lifetime_write_kbytes);
2643 EXT4_RW_ATTR(reserved_clusters);
2644 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2645 inode_readahead_blks_store, s_inode_readahead_blks);
2646 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2647 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2648 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2649 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2650 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2651 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2652 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2653 EXT4_DEPRECATED_ATTR(max_writeback_mb_bump, 128);
2654 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2655 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2656 EXT4_RW_ATTR_SBI_UI(err_ratelimit_interval_ms, s_err_ratelimit_state.interval);
2657 EXT4_RW_ATTR_SBI_UI(err_ratelimit_burst, s_err_ratelimit_state.burst);
2658 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_interval_ms, s_warning_ratelimit_state.interval);
2659 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_burst, s_warning_ratelimit_state.burst);
2660 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_interval_ms, s_msg_ratelimit_state.interval);
2661 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_burst, s_msg_ratelimit_state.burst);
2662 EXT4_RO_ATTR_ES_UI(errors_count, s_error_count);
2663 EXT4_RO_ATTR_ES_UI(first_error_time, s_first_error_time);
2664 EXT4_RO_ATTR_ES_UI(last_error_time, s_last_error_time);
2665
2666 static struct attribute *ext4_attrs[] = {
2667 ATTR_LIST(delayed_allocation_blocks),
2668 ATTR_LIST(session_write_kbytes),
2669 ATTR_LIST(lifetime_write_kbytes),
2670 ATTR_LIST(reserved_clusters),
2671 ATTR_LIST(inode_readahead_blks),
2672 ATTR_LIST(inode_goal),
2673 ATTR_LIST(mb_stats),
2674 ATTR_LIST(mb_max_to_scan),
2675 ATTR_LIST(mb_min_to_scan),
2676 ATTR_LIST(mb_order2_req),
2677 ATTR_LIST(mb_stream_req),
2678 ATTR_LIST(mb_group_prealloc),
2679 ATTR_LIST(max_writeback_mb_bump),
2680 ATTR_LIST(extent_max_zeroout_kb),
2681 ATTR_LIST(trigger_fs_error),
2682 ATTR_LIST(err_ratelimit_interval_ms),
2683 ATTR_LIST(err_ratelimit_burst),
2684 ATTR_LIST(warning_ratelimit_interval_ms),
2685 ATTR_LIST(warning_ratelimit_burst),
2686 ATTR_LIST(msg_ratelimit_interval_ms),
2687 ATTR_LIST(msg_ratelimit_burst),
2688 ATTR_LIST(errors_count),
2689 ATTR_LIST(first_error_time),
2690 ATTR_LIST(last_error_time),
2691 NULL,
2692 };
2693
2694 /* Features this copy of ext4 supports */
2695 EXT4_INFO_ATTR(lazy_itable_init);
2696 EXT4_INFO_ATTR(batched_discard);
2697 EXT4_INFO_ATTR(meta_bg_resize);
2698 EXT4_INFO_ATTR(encryption);
2699
2700 static struct attribute *ext4_feat_attrs[] = {
2701 ATTR_LIST(lazy_itable_init),
2702 ATTR_LIST(batched_discard),
2703 ATTR_LIST(meta_bg_resize),
2704 ATTR_LIST(encryption),
2705 NULL,
2706 };
2707
ext4_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)2708 static ssize_t ext4_attr_show(struct kobject *kobj,
2709 struct attribute *attr, char *buf)
2710 {
2711 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2712 s_kobj);
2713 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2714
2715 return a->show ? a->show(a, sbi, buf) : 0;
2716 }
2717
ext4_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t len)2718 static ssize_t ext4_attr_store(struct kobject *kobj,
2719 struct attribute *attr,
2720 const char *buf, size_t len)
2721 {
2722 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2723 s_kobj);
2724 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2725
2726 return a->store ? a->store(a, sbi, buf, len) : 0;
2727 }
2728
ext4_sb_release(struct kobject * kobj)2729 static void ext4_sb_release(struct kobject *kobj)
2730 {
2731 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2732 s_kobj);
2733 complete(&sbi->s_kobj_unregister);
2734 }
2735
2736 static const struct sysfs_ops ext4_attr_ops = {
2737 .show = ext4_attr_show,
2738 .store = ext4_attr_store,
2739 };
2740
2741 static struct kobj_type ext4_ktype = {
2742 .default_attrs = ext4_attrs,
2743 .sysfs_ops = &ext4_attr_ops,
2744 .release = ext4_sb_release,
2745 };
2746
ext4_feat_release(struct kobject * kobj)2747 static void ext4_feat_release(struct kobject *kobj)
2748 {
2749 complete(&ext4_feat->f_kobj_unregister);
2750 }
2751
ext4_feat_show(struct kobject * kobj,struct attribute * attr,char * buf)2752 static ssize_t ext4_feat_show(struct kobject *kobj,
2753 struct attribute *attr, char *buf)
2754 {
2755 return snprintf(buf, PAGE_SIZE, "supported\n");
2756 }
2757
2758 /*
2759 * We can not use ext4_attr_show/store because it relies on the kobject
2760 * being embedded in the ext4_sb_info structure which is definitely not
2761 * true in this case.
2762 */
2763 static const struct sysfs_ops ext4_feat_ops = {
2764 .show = ext4_feat_show,
2765 .store = NULL,
2766 };
2767
2768 static struct kobj_type ext4_feat_ktype = {
2769 .default_attrs = ext4_feat_attrs,
2770 .sysfs_ops = &ext4_feat_ops,
2771 .release = ext4_feat_release,
2772 };
2773
2774 /*
2775 * Check whether this filesystem can be mounted based on
2776 * the features present and the RDONLY/RDWR mount requested.
2777 * Returns 1 if this filesystem can be mounted as requested,
2778 * 0 if it cannot be.
2779 */
ext4_feature_set_ok(struct super_block * sb,int readonly)2780 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2781 {
2782 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2783 ext4_msg(sb, KERN_ERR,
2784 "Couldn't mount because of "
2785 "unsupported optional features (%x)",
2786 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2787 ~EXT4_FEATURE_INCOMPAT_SUPP));
2788 return 0;
2789 }
2790
2791 if (readonly)
2792 return 1;
2793
2794 /* Check that feature set is OK for a read-write mount */
2795 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2796 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2797 "unsupported optional features (%x)",
2798 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2799 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2800 return 0;
2801 }
2802 /*
2803 * Large file size enabled file system can only be mounted
2804 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2805 */
2806 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2807 if (sizeof(blkcnt_t) < sizeof(u64)) {
2808 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2809 "cannot be mounted RDWR without "
2810 "CONFIG_LBDAF");
2811 return 0;
2812 }
2813 }
2814 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2815 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2816 ext4_msg(sb, KERN_ERR,
2817 "Can't support bigalloc feature without "
2818 "extents feature\n");
2819 return 0;
2820 }
2821
2822 #ifndef CONFIG_QUOTA
2823 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2824 !readonly) {
2825 ext4_msg(sb, KERN_ERR,
2826 "Filesystem with quota feature cannot be mounted RDWR "
2827 "without CONFIG_QUOTA");
2828 return 0;
2829 }
2830 #endif /* CONFIG_QUOTA */
2831 return 1;
2832 }
2833
2834 /*
2835 * This function is called once a day if we have errors logged
2836 * on the file system
2837 */
print_daily_error_info(unsigned long arg)2838 static void print_daily_error_info(unsigned long arg)
2839 {
2840 struct super_block *sb = (struct super_block *) arg;
2841 struct ext4_sb_info *sbi;
2842 struct ext4_super_block *es;
2843
2844 sbi = EXT4_SB(sb);
2845 es = sbi->s_es;
2846
2847 if (es->s_error_count)
2848 /* fsck newer than v1.41.13 is needed to clean this condition. */
2849 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2850 le32_to_cpu(es->s_error_count));
2851 if (es->s_first_error_time) {
2852 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2853 sb->s_id, le32_to_cpu(es->s_first_error_time),
2854 (int) sizeof(es->s_first_error_func),
2855 es->s_first_error_func,
2856 le32_to_cpu(es->s_first_error_line));
2857 if (es->s_first_error_ino)
2858 printk(": inode %u",
2859 le32_to_cpu(es->s_first_error_ino));
2860 if (es->s_first_error_block)
2861 printk(": block %llu", (unsigned long long)
2862 le64_to_cpu(es->s_first_error_block));
2863 printk("\n");
2864 }
2865 if (es->s_last_error_time) {
2866 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2867 sb->s_id, le32_to_cpu(es->s_last_error_time),
2868 (int) sizeof(es->s_last_error_func),
2869 es->s_last_error_func,
2870 le32_to_cpu(es->s_last_error_line));
2871 if (es->s_last_error_ino)
2872 printk(": inode %u",
2873 le32_to_cpu(es->s_last_error_ino));
2874 if (es->s_last_error_block)
2875 printk(": block %llu", (unsigned long long)
2876 le64_to_cpu(es->s_last_error_block));
2877 printk("\n");
2878 }
2879 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2880 }
2881
2882 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)2883 static int ext4_run_li_request(struct ext4_li_request *elr)
2884 {
2885 struct ext4_group_desc *gdp = NULL;
2886 ext4_group_t group, ngroups;
2887 struct super_block *sb;
2888 unsigned long timeout = 0;
2889 int ret = 0;
2890
2891 sb = elr->lr_super;
2892 ngroups = EXT4_SB(sb)->s_groups_count;
2893
2894 sb_start_write(sb);
2895 for (group = elr->lr_next_group; group < ngroups; group++) {
2896 gdp = ext4_get_group_desc(sb, group, NULL);
2897 if (!gdp) {
2898 ret = 1;
2899 break;
2900 }
2901
2902 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2903 break;
2904 }
2905
2906 if (group >= ngroups)
2907 ret = 1;
2908
2909 if (!ret) {
2910 timeout = jiffies;
2911 ret = ext4_init_inode_table(sb, group,
2912 elr->lr_timeout ? 0 : 1);
2913 if (elr->lr_timeout == 0) {
2914 timeout = (jiffies - timeout) *
2915 elr->lr_sbi->s_li_wait_mult;
2916 elr->lr_timeout = timeout;
2917 }
2918 elr->lr_next_sched = jiffies + elr->lr_timeout;
2919 elr->lr_next_group = group + 1;
2920 }
2921 sb_end_write(sb);
2922
2923 return ret;
2924 }
2925
2926 /*
2927 * Remove lr_request from the list_request and free the
2928 * request structure. Should be called with li_list_mtx held
2929 */
ext4_remove_li_request(struct ext4_li_request * elr)2930 static void ext4_remove_li_request(struct ext4_li_request *elr)
2931 {
2932 struct ext4_sb_info *sbi;
2933
2934 if (!elr)
2935 return;
2936
2937 sbi = elr->lr_sbi;
2938
2939 list_del(&elr->lr_request);
2940 sbi->s_li_request = NULL;
2941 kfree(elr);
2942 }
2943
ext4_unregister_li_request(struct super_block * sb)2944 static void ext4_unregister_li_request(struct super_block *sb)
2945 {
2946 mutex_lock(&ext4_li_mtx);
2947 if (!ext4_li_info) {
2948 mutex_unlock(&ext4_li_mtx);
2949 return;
2950 }
2951
2952 mutex_lock(&ext4_li_info->li_list_mtx);
2953 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2954 mutex_unlock(&ext4_li_info->li_list_mtx);
2955 mutex_unlock(&ext4_li_mtx);
2956 }
2957
2958 static struct task_struct *ext4_lazyinit_task;
2959
2960 /*
2961 * This is the function where ext4lazyinit thread lives. It walks
2962 * through the request list searching for next scheduled filesystem.
2963 * When such a fs is found, run the lazy initialization request
2964 * (ext4_rn_li_request) and keep track of the time spend in this
2965 * function. Based on that time we compute next schedule time of
2966 * the request. When walking through the list is complete, compute
2967 * next waking time and put itself into sleep.
2968 */
ext4_lazyinit_thread(void * arg)2969 static int ext4_lazyinit_thread(void *arg)
2970 {
2971 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2972 struct list_head *pos, *n;
2973 struct ext4_li_request *elr;
2974 unsigned long next_wakeup, cur;
2975
2976 BUG_ON(NULL == eli);
2977
2978 cont_thread:
2979 while (true) {
2980 next_wakeup = MAX_JIFFY_OFFSET;
2981
2982 mutex_lock(&eli->li_list_mtx);
2983 if (list_empty(&eli->li_request_list)) {
2984 mutex_unlock(&eli->li_list_mtx);
2985 goto exit_thread;
2986 }
2987
2988 list_for_each_safe(pos, n, &eli->li_request_list) {
2989 elr = list_entry(pos, struct ext4_li_request,
2990 lr_request);
2991
2992 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2993 if (ext4_run_li_request(elr) != 0) {
2994 /* error, remove the lazy_init job */
2995 ext4_remove_li_request(elr);
2996 continue;
2997 }
2998 }
2999
3000 if (time_before(elr->lr_next_sched, next_wakeup))
3001 next_wakeup = elr->lr_next_sched;
3002 }
3003 mutex_unlock(&eli->li_list_mtx);
3004
3005 try_to_freeze();
3006
3007 cur = jiffies;
3008 if ((time_after_eq(cur, next_wakeup)) ||
3009 (MAX_JIFFY_OFFSET == next_wakeup)) {
3010 cond_resched();
3011 continue;
3012 }
3013
3014 schedule_timeout_interruptible(next_wakeup - cur);
3015
3016 if (kthread_should_stop()) {
3017 ext4_clear_request_list();
3018 goto exit_thread;
3019 }
3020 }
3021
3022 exit_thread:
3023 /*
3024 * It looks like the request list is empty, but we need
3025 * to check it under the li_list_mtx lock, to prevent any
3026 * additions into it, and of course we should lock ext4_li_mtx
3027 * to atomically free the list and ext4_li_info, because at
3028 * this point another ext4 filesystem could be registering
3029 * new one.
3030 */
3031 mutex_lock(&ext4_li_mtx);
3032 mutex_lock(&eli->li_list_mtx);
3033 if (!list_empty(&eli->li_request_list)) {
3034 mutex_unlock(&eli->li_list_mtx);
3035 mutex_unlock(&ext4_li_mtx);
3036 goto cont_thread;
3037 }
3038 mutex_unlock(&eli->li_list_mtx);
3039 kfree(ext4_li_info);
3040 ext4_li_info = NULL;
3041 mutex_unlock(&ext4_li_mtx);
3042
3043 return 0;
3044 }
3045
ext4_clear_request_list(void)3046 static void ext4_clear_request_list(void)
3047 {
3048 struct list_head *pos, *n;
3049 struct ext4_li_request *elr;
3050
3051 mutex_lock(&ext4_li_info->li_list_mtx);
3052 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3053 elr = list_entry(pos, struct ext4_li_request,
3054 lr_request);
3055 ext4_remove_li_request(elr);
3056 }
3057 mutex_unlock(&ext4_li_info->li_list_mtx);
3058 }
3059
ext4_run_lazyinit_thread(void)3060 static int ext4_run_lazyinit_thread(void)
3061 {
3062 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3063 ext4_li_info, "ext4lazyinit");
3064 if (IS_ERR(ext4_lazyinit_task)) {
3065 int err = PTR_ERR(ext4_lazyinit_task);
3066 ext4_clear_request_list();
3067 kfree(ext4_li_info);
3068 ext4_li_info = NULL;
3069 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3070 "initialization thread\n",
3071 err);
3072 return err;
3073 }
3074 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3075 return 0;
3076 }
3077
3078 /*
3079 * Check whether it make sense to run itable init. thread or not.
3080 * If there is at least one uninitialized inode table, return
3081 * corresponding group number, else the loop goes through all
3082 * groups and return total number of groups.
3083 */
ext4_has_uninit_itable(struct super_block * sb)3084 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3085 {
3086 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3087 struct ext4_group_desc *gdp = NULL;
3088
3089 for (group = 0; group < ngroups; group++) {
3090 gdp = ext4_get_group_desc(sb, group, NULL);
3091 if (!gdp)
3092 continue;
3093
3094 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3095 break;
3096 }
3097
3098 return group;
3099 }
3100
ext4_li_info_new(void)3101 static int ext4_li_info_new(void)
3102 {
3103 struct ext4_lazy_init *eli = NULL;
3104
3105 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3106 if (!eli)
3107 return -ENOMEM;
3108
3109 INIT_LIST_HEAD(&eli->li_request_list);
3110 mutex_init(&eli->li_list_mtx);
3111
3112 eli->li_state |= EXT4_LAZYINIT_QUIT;
3113
3114 ext4_li_info = eli;
3115
3116 return 0;
3117 }
3118
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3119 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3120 ext4_group_t start)
3121 {
3122 struct ext4_sb_info *sbi = EXT4_SB(sb);
3123 struct ext4_li_request *elr;
3124
3125 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3126 if (!elr)
3127 return NULL;
3128
3129 elr->lr_super = sb;
3130 elr->lr_sbi = sbi;
3131 elr->lr_next_group = start;
3132
3133 /*
3134 * Randomize first schedule time of the request to
3135 * spread the inode table initialization requests
3136 * better.
3137 */
3138 elr->lr_next_sched = jiffies + (prandom_u32() %
3139 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3140 return elr;
3141 }
3142
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)3143 int ext4_register_li_request(struct super_block *sb,
3144 ext4_group_t first_not_zeroed)
3145 {
3146 struct ext4_sb_info *sbi = EXT4_SB(sb);
3147 struct ext4_li_request *elr = NULL;
3148 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3149 int ret = 0;
3150
3151 mutex_lock(&ext4_li_mtx);
3152 if (sbi->s_li_request != NULL) {
3153 /*
3154 * Reset timeout so it can be computed again, because
3155 * s_li_wait_mult might have changed.
3156 */
3157 sbi->s_li_request->lr_timeout = 0;
3158 goto out;
3159 }
3160
3161 if (first_not_zeroed == ngroups ||
3162 (sb->s_flags & MS_RDONLY) ||
3163 !test_opt(sb, INIT_INODE_TABLE))
3164 goto out;
3165
3166 elr = ext4_li_request_new(sb, first_not_zeroed);
3167 if (!elr) {
3168 ret = -ENOMEM;
3169 goto out;
3170 }
3171
3172 if (NULL == ext4_li_info) {
3173 ret = ext4_li_info_new();
3174 if (ret)
3175 goto out;
3176 }
3177
3178 mutex_lock(&ext4_li_info->li_list_mtx);
3179 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3180 mutex_unlock(&ext4_li_info->li_list_mtx);
3181
3182 sbi->s_li_request = elr;
3183 /*
3184 * set elr to NULL here since it has been inserted to
3185 * the request_list and the removal and free of it is
3186 * handled by ext4_clear_request_list from now on.
3187 */
3188 elr = NULL;
3189
3190 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3191 ret = ext4_run_lazyinit_thread();
3192 if (ret)
3193 goto out;
3194 }
3195 out:
3196 mutex_unlock(&ext4_li_mtx);
3197 if (ret)
3198 kfree(elr);
3199 return ret;
3200 }
3201
3202 /*
3203 * We do not need to lock anything since this is called on
3204 * module unload.
3205 */
ext4_destroy_lazyinit_thread(void)3206 static void ext4_destroy_lazyinit_thread(void)
3207 {
3208 /*
3209 * If thread exited earlier
3210 * there's nothing to be done.
3211 */
3212 if (!ext4_li_info || !ext4_lazyinit_task)
3213 return;
3214
3215 kthread_stop(ext4_lazyinit_task);
3216 }
3217
set_journal_csum_feature_set(struct super_block * sb)3218 static int set_journal_csum_feature_set(struct super_block *sb)
3219 {
3220 int ret = 1;
3221 int compat, incompat;
3222 struct ext4_sb_info *sbi = EXT4_SB(sb);
3223
3224 if (ext4_has_metadata_csum(sb)) {
3225 /* journal checksum v3 */
3226 compat = 0;
3227 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3228 } else {
3229 /* journal checksum v1 */
3230 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3231 incompat = 0;
3232 }
3233
3234 jbd2_journal_clear_features(sbi->s_journal,
3235 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3236 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3237 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3238 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3239 ret = jbd2_journal_set_features(sbi->s_journal,
3240 compat, 0,
3241 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3242 incompat);
3243 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3244 ret = jbd2_journal_set_features(sbi->s_journal,
3245 compat, 0,
3246 incompat);
3247 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3248 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3249 } else {
3250 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3251 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3252 }
3253
3254 return ret;
3255 }
3256
3257 /*
3258 * Note: calculating the overhead so we can be compatible with
3259 * historical BSD practice is quite difficult in the face of
3260 * clusters/bigalloc. This is because multiple metadata blocks from
3261 * different block group can end up in the same allocation cluster.
3262 * Calculating the exact overhead in the face of clustered allocation
3263 * requires either O(all block bitmaps) in memory or O(number of block
3264 * groups**2) in time. We will still calculate the superblock for
3265 * older file systems --- and if we come across with a bigalloc file
3266 * system with zero in s_overhead_clusters the estimate will be close to
3267 * correct especially for very large cluster sizes --- but for newer
3268 * file systems, it's better to calculate this figure once at mkfs
3269 * time, and store it in the superblock. If the superblock value is
3270 * present (even for non-bigalloc file systems), we will use it.
3271 */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)3272 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3273 char *buf)
3274 {
3275 struct ext4_sb_info *sbi = EXT4_SB(sb);
3276 struct ext4_group_desc *gdp;
3277 ext4_fsblk_t first_block, last_block, b;
3278 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3279 int s, j, count = 0;
3280
3281 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3282 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3283 sbi->s_itb_per_group + 2);
3284
3285 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3286 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3287 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3288 for (i = 0; i < ngroups; i++) {
3289 gdp = ext4_get_group_desc(sb, i, NULL);
3290 b = ext4_block_bitmap(sb, gdp);
3291 if (b >= first_block && b <= last_block) {
3292 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3293 count++;
3294 }
3295 b = ext4_inode_bitmap(sb, gdp);
3296 if (b >= first_block && b <= last_block) {
3297 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3298 count++;
3299 }
3300 b = ext4_inode_table(sb, gdp);
3301 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3302 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3303 int c = EXT4_B2C(sbi, b - first_block);
3304 ext4_set_bit(c, buf);
3305 count++;
3306 }
3307 if (i != grp)
3308 continue;
3309 s = 0;
3310 if (ext4_bg_has_super(sb, grp)) {
3311 ext4_set_bit(s++, buf);
3312 count++;
3313 }
3314 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3315 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3316 count++;
3317 }
3318 }
3319 if (!count)
3320 return 0;
3321 return EXT4_CLUSTERS_PER_GROUP(sb) -
3322 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3323 }
3324
3325 /*
3326 * Compute the overhead and stash it in sbi->s_overhead
3327 */
ext4_calculate_overhead(struct super_block * sb)3328 int ext4_calculate_overhead(struct super_block *sb)
3329 {
3330 struct ext4_sb_info *sbi = EXT4_SB(sb);
3331 struct ext4_super_block *es = sbi->s_es;
3332 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3333 ext4_fsblk_t overhead = 0;
3334 char *buf = (char *) get_zeroed_page(GFP_KERNEL);
3335
3336 if (!buf)
3337 return -ENOMEM;
3338
3339 /*
3340 * Compute the overhead (FS structures). This is constant
3341 * for a given filesystem unless the number of block groups
3342 * changes so we cache the previous value until it does.
3343 */
3344
3345 /*
3346 * All of the blocks before first_data_block are overhead
3347 */
3348 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3349
3350 /*
3351 * Add the overhead found in each block group
3352 */
3353 for (i = 0; i < ngroups; i++) {
3354 int blks;
3355
3356 blks = count_overhead(sb, i, buf);
3357 overhead += blks;
3358 if (blks)
3359 memset(buf, 0, PAGE_SIZE);
3360 cond_resched();
3361 }
3362 /* Add the journal blocks as well */
3363 if (sbi->s_journal)
3364 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3365
3366 sbi->s_overhead = overhead;
3367 smp_wmb();
3368 free_page((unsigned long) buf);
3369 return 0;
3370 }
3371
3372
ext4_calculate_resv_clusters(struct super_block * sb)3373 static ext4_fsblk_t ext4_calculate_resv_clusters(struct super_block *sb)
3374 {
3375 ext4_fsblk_t resv_clusters;
3376
3377 /*
3378 * There's no need to reserve anything when we aren't using extents.
3379 * The space estimates are exact, there are no unwritten extents,
3380 * hole punching doesn't need new metadata... This is needed especially
3381 * to keep ext2/3 backward compatibility.
3382 */
3383 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3384 return 0;
3385 /*
3386 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3387 * This should cover the situations where we can not afford to run
3388 * out of space like for example punch hole, or converting
3389 * unwritten extents in delalloc path. In most cases such
3390 * allocation would require 1, or 2 blocks, higher numbers are
3391 * very rare.
3392 */
3393 resv_clusters = ext4_blocks_count(EXT4_SB(sb)->s_es) >>
3394 EXT4_SB(sb)->s_cluster_bits;
3395
3396 do_div(resv_clusters, 50);
3397 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3398
3399 return resv_clusters;
3400 }
3401
3402
ext4_reserve_clusters(struct ext4_sb_info * sbi,ext4_fsblk_t count)3403 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count)
3404 {
3405 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >>
3406 sbi->s_cluster_bits;
3407
3408 if (count >= clusters)
3409 return -EINVAL;
3410
3411 atomic64_set(&sbi->s_resv_clusters, count);
3412 return 0;
3413 }
3414
ext4_fill_super(struct super_block * sb,void * data,int silent)3415 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3416 {
3417 char *orig_data = kstrdup(data, GFP_KERNEL);
3418 struct buffer_head *bh;
3419 struct ext4_super_block *es = NULL;
3420 struct ext4_sb_info *sbi;
3421 ext4_fsblk_t block;
3422 ext4_fsblk_t sb_block = get_sb_block(&data);
3423 ext4_fsblk_t logical_sb_block;
3424 unsigned long offset = 0;
3425 unsigned long journal_devnum = 0;
3426 unsigned long def_mount_opts;
3427 struct inode *root;
3428 char *cp;
3429 const char *descr;
3430 int ret = -ENOMEM;
3431 int blocksize, clustersize;
3432 unsigned int db_count;
3433 unsigned int i;
3434 int needs_recovery, has_huge_files, has_bigalloc;
3435 __u64 blocks_count;
3436 int err = 0;
3437 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3438 ext4_group_t first_not_zeroed;
3439
3440 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3441 if (!sbi)
3442 goto out_free_orig;
3443
3444 sbi->s_blockgroup_lock =
3445 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3446 if (!sbi->s_blockgroup_lock) {
3447 kfree(sbi);
3448 goto out_free_orig;
3449 }
3450 sb->s_fs_info = sbi;
3451 sbi->s_sb = sb;
3452 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3453 sbi->s_sb_block = sb_block;
3454 if (sb->s_bdev->bd_part)
3455 sbi->s_sectors_written_start =
3456 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3457
3458 /* Cleanup superblock name */
3459 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3460 *cp = '!';
3461
3462 /* -EINVAL is default */
3463 ret = -EINVAL;
3464 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3465 if (!blocksize) {
3466 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3467 goto out_fail;
3468 }
3469
3470 /*
3471 * The ext4 superblock will not be buffer aligned for other than 1kB
3472 * block sizes. We need to calculate the offset from buffer start.
3473 */
3474 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3475 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3476 offset = do_div(logical_sb_block, blocksize);
3477 } else {
3478 logical_sb_block = sb_block;
3479 }
3480
3481 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3482 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3483 goto out_fail;
3484 }
3485 /*
3486 * Note: s_es must be initialized as soon as possible because
3487 * some ext4 macro-instructions depend on its value
3488 */
3489 es = (struct ext4_super_block *) (bh->b_data + offset);
3490 sbi->s_es = es;
3491 sb->s_magic = le16_to_cpu(es->s_magic);
3492 if (sb->s_magic != EXT4_SUPER_MAGIC)
3493 goto cantfind_ext4;
3494 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3495
3496 /* Warn if metadata_csum and gdt_csum are both set. */
3497 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3498 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3499 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3500 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are "
3501 "redundant flags; please run fsck.");
3502
3503 /* Check for a known checksum algorithm */
3504 if (!ext4_verify_csum_type(sb, es)) {
3505 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3506 "unknown checksum algorithm.");
3507 silent = 1;
3508 goto cantfind_ext4;
3509 }
3510
3511 /* Load the checksum driver */
3512 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3513 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3514 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3515 if (IS_ERR(sbi->s_chksum_driver)) {
3516 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3517 ret = PTR_ERR(sbi->s_chksum_driver);
3518 sbi->s_chksum_driver = NULL;
3519 goto failed_mount;
3520 }
3521 }
3522
3523 /* Check superblock checksum */
3524 if (!ext4_superblock_csum_verify(sb, es)) {
3525 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3526 "invalid superblock checksum. Run e2fsck?");
3527 silent = 1;
3528 goto cantfind_ext4;
3529 }
3530
3531 /* Precompute checksum seed for all metadata */
3532 if (ext4_has_metadata_csum(sb))
3533 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3534 sizeof(es->s_uuid));
3535
3536 /* Set defaults before we parse the mount options */
3537 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3538 set_opt(sb, INIT_INODE_TABLE);
3539 if (def_mount_opts & EXT4_DEFM_DEBUG)
3540 set_opt(sb, DEBUG);
3541 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3542 set_opt(sb, GRPID);
3543 if (def_mount_opts & EXT4_DEFM_UID16)
3544 set_opt(sb, NO_UID32);
3545 /* xattr user namespace & acls are now defaulted on */
3546 set_opt(sb, XATTR_USER);
3547 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3548 set_opt(sb, POSIX_ACL);
3549 #endif
3550 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3551 if (ext4_has_metadata_csum(sb))
3552 set_opt(sb, JOURNAL_CHECKSUM);
3553
3554 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3555 set_opt(sb, JOURNAL_DATA);
3556 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3557 set_opt(sb, ORDERED_DATA);
3558 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3559 set_opt(sb, WRITEBACK_DATA);
3560
3561 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3562 set_opt(sb, ERRORS_PANIC);
3563 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3564 set_opt(sb, ERRORS_CONT);
3565 else
3566 set_opt(sb, ERRORS_RO);
3567 /* block_validity enabled by default; disable with noblock_validity */
3568 set_opt(sb, BLOCK_VALIDITY);
3569 if (def_mount_opts & EXT4_DEFM_DISCARD)
3570 set_opt(sb, DISCARD);
3571
3572 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3573 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3574 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3575 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3576 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3577
3578 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3579 set_opt(sb, BARRIER);
3580
3581 /*
3582 * enable delayed allocation by default
3583 * Use -o nodelalloc to turn it off
3584 */
3585 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3586 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3587 set_opt(sb, DELALLOC);
3588
3589 /*
3590 * set default s_li_wait_mult for lazyinit, for the case there is
3591 * no mount option specified.
3592 */
3593 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3594
3595 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3596 &journal_devnum, &journal_ioprio, 0)) {
3597 ext4_msg(sb, KERN_WARNING,
3598 "failed to parse options in superblock: %s",
3599 sbi->s_es->s_mount_opts);
3600 }
3601 sbi->s_def_mount_opt = sbi->s_mount_opt;
3602 if (!parse_options((char *) data, sb, &journal_devnum,
3603 &journal_ioprio, 0))
3604 goto failed_mount;
3605
3606 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3607 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3608 "with data=journal disables delayed "
3609 "allocation and O_DIRECT support!\n");
3610 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3611 ext4_msg(sb, KERN_ERR, "can't mount with "
3612 "both data=journal and delalloc");
3613 goto failed_mount;
3614 }
3615 if (test_opt(sb, DIOREAD_NOLOCK)) {
3616 ext4_msg(sb, KERN_ERR, "can't mount with "
3617 "both data=journal and dioread_nolock");
3618 goto failed_mount;
3619 }
3620 if (test_opt(sb, DELALLOC))
3621 clear_opt(sb, DELALLOC);
3622 }
3623
3624 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3625 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3626
3627 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3628 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3629 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3630 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3631 ext4_msg(sb, KERN_WARNING,
3632 "feature flags set on rev 0 fs, "
3633 "running e2fsck is recommended");
3634
3635 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3636 set_opt2(sb, HURD_COMPAT);
3637 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
3638 EXT4_FEATURE_INCOMPAT_64BIT)) {
3639 ext4_msg(sb, KERN_ERR,
3640 "The Hurd can't support 64-bit file systems");
3641 goto failed_mount;
3642 }
3643 }
3644
3645 if (IS_EXT2_SB(sb)) {
3646 if (ext2_feature_set_ok(sb))
3647 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3648 "using the ext4 subsystem");
3649 else {
3650 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3651 "to feature incompatibilities");
3652 goto failed_mount;
3653 }
3654 }
3655
3656 if (IS_EXT3_SB(sb)) {
3657 if (ext3_feature_set_ok(sb))
3658 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3659 "using the ext4 subsystem");
3660 else {
3661 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3662 "to feature incompatibilities");
3663 goto failed_mount;
3664 }
3665 }
3666
3667 /*
3668 * Check feature flags regardless of the revision level, since we
3669 * previously didn't change the revision level when setting the flags,
3670 * so there is a chance incompat flags are set on a rev 0 filesystem.
3671 */
3672 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3673 goto failed_mount;
3674
3675 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3676 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3677 blocksize > EXT4_MAX_BLOCK_SIZE) {
3678 ext4_msg(sb, KERN_ERR,
3679 "Unsupported filesystem blocksize %d", blocksize);
3680 goto failed_mount;
3681 }
3682
3683 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT) &&
3684 es->s_encryption_level) {
3685 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3686 es->s_encryption_level);
3687 goto failed_mount;
3688 }
3689
3690 if (sb->s_blocksize != blocksize) {
3691 /* Validate the filesystem blocksize */
3692 if (!sb_set_blocksize(sb, blocksize)) {
3693 ext4_msg(sb, KERN_ERR, "bad block size %d",
3694 blocksize);
3695 goto failed_mount;
3696 }
3697
3698 brelse(bh);
3699 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3700 offset = do_div(logical_sb_block, blocksize);
3701 bh = sb_bread_unmovable(sb, logical_sb_block);
3702 if (!bh) {
3703 ext4_msg(sb, KERN_ERR,
3704 "Can't read superblock on 2nd try");
3705 goto failed_mount;
3706 }
3707 es = (struct ext4_super_block *)(bh->b_data + offset);
3708 sbi->s_es = es;
3709 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3710 ext4_msg(sb, KERN_ERR,
3711 "Magic mismatch, very weird!");
3712 goto failed_mount;
3713 }
3714 }
3715
3716 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3717 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3718 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3719 has_huge_files);
3720 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3721
3722 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3723 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3724 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3725 } else {
3726 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3727 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3728 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3729 (!is_power_of_2(sbi->s_inode_size)) ||
3730 (sbi->s_inode_size > blocksize)) {
3731 ext4_msg(sb, KERN_ERR,
3732 "unsupported inode size: %d",
3733 sbi->s_inode_size);
3734 goto failed_mount;
3735 }
3736 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3737 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3738 }
3739
3740 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3741 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3742 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3743 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3744 !is_power_of_2(sbi->s_desc_size)) {
3745 ext4_msg(sb, KERN_ERR,
3746 "unsupported descriptor size %lu",
3747 sbi->s_desc_size);
3748 goto failed_mount;
3749 }
3750 } else
3751 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3752
3753 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3754 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3755 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3756 goto cantfind_ext4;
3757
3758 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3759 if (sbi->s_inodes_per_block == 0)
3760 goto cantfind_ext4;
3761 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3762 sbi->s_inodes_per_block;
3763 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3764 sbi->s_sbh = bh;
3765 sbi->s_mount_state = le16_to_cpu(es->s_state);
3766 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3767 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3768
3769 for (i = 0; i < 4; i++)
3770 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3771 sbi->s_def_hash_version = es->s_def_hash_version;
3772 if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) {
3773 i = le32_to_cpu(es->s_flags);
3774 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3775 sbi->s_hash_unsigned = 3;
3776 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3777 #ifdef __CHAR_UNSIGNED__
3778 if (!(sb->s_flags & MS_RDONLY))
3779 es->s_flags |=
3780 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3781 sbi->s_hash_unsigned = 3;
3782 #else
3783 if (!(sb->s_flags & MS_RDONLY))
3784 es->s_flags |=
3785 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3786 #endif
3787 }
3788 }
3789
3790 /* Handle clustersize */
3791 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3792 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3793 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3794 if (has_bigalloc) {
3795 if (clustersize < blocksize) {
3796 ext4_msg(sb, KERN_ERR,
3797 "cluster size (%d) smaller than "
3798 "block size (%d)", clustersize, blocksize);
3799 goto failed_mount;
3800 }
3801 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3802 le32_to_cpu(es->s_log_block_size);
3803 sbi->s_clusters_per_group =
3804 le32_to_cpu(es->s_clusters_per_group);
3805 if (sbi->s_clusters_per_group > blocksize * 8) {
3806 ext4_msg(sb, KERN_ERR,
3807 "#clusters per group too big: %lu",
3808 sbi->s_clusters_per_group);
3809 goto failed_mount;
3810 }
3811 if (sbi->s_blocks_per_group !=
3812 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3813 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3814 "clusters per group (%lu) inconsistent",
3815 sbi->s_blocks_per_group,
3816 sbi->s_clusters_per_group);
3817 goto failed_mount;
3818 }
3819 } else {
3820 if (clustersize != blocksize) {
3821 ext4_warning(sb, "fragment/cluster size (%d) != "
3822 "block size (%d)", clustersize,
3823 blocksize);
3824 clustersize = blocksize;
3825 }
3826 if (sbi->s_blocks_per_group > blocksize * 8) {
3827 ext4_msg(sb, KERN_ERR,
3828 "#blocks per group too big: %lu",
3829 sbi->s_blocks_per_group);
3830 goto failed_mount;
3831 }
3832 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3833 sbi->s_cluster_bits = 0;
3834 }
3835 sbi->s_cluster_ratio = clustersize / blocksize;
3836
3837 if (sbi->s_inodes_per_group > blocksize * 8) {
3838 ext4_msg(sb, KERN_ERR,
3839 "#inodes per group too big: %lu",
3840 sbi->s_inodes_per_group);
3841 goto failed_mount;
3842 }
3843
3844 /* Do we have standard group size of clustersize * 8 blocks ? */
3845 if (sbi->s_blocks_per_group == clustersize << 3)
3846 set_opt2(sb, STD_GROUP_SIZE);
3847
3848 /*
3849 * Test whether we have more sectors than will fit in sector_t,
3850 * and whether the max offset is addressable by the page cache.
3851 */
3852 err = generic_check_addressable(sb->s_blocksize_bits,
3853 ext4_blocks_count(es));
3854 if (err) {
3855 ext4_msg(sb, KERN_ERR, "filesystem"
3856 " too large to mount safely on this system");
3857 if (sizeof(sector_t) < 8)
3858 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3859 goto failed_mount;
3860 }
3861
3862 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3863 goto cantfind_ext4;
3864
3865 /* check blocks count against device size */
3866 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3867 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3868 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3869 "exceeds size of device (%llu blocks)",
3870 ext4_blocks_count(es), blocks_count);
3871 goto failed_mount;
3872 }
3873
3874 /*
3875 * It makes no sense for the first data block to be beyond the end
3876 * of the filesystem.
3877 */
3878 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3879 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3880 "block %u is beyond end of filesystem (%llu)",
3881 le32_to_cpu(es->s_first_data_block),
3882 ext4_blocks_count(es));
3883 goto failed_mount;
3884 }
3885 blocks_count = (ext4_blocks_count(es) -
3886 le32_to_cpu(es->s_first_data_block) +
3887 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3888 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3889 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3890 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3891 "(block count %llu, first data block %u, "
3892 "blocks per group %lu)", sbi->s_groups_count,
3893 ext4_blocks_count(es),
3894 le32_to_cpu(es->s_first_data_block),
3895 EXT4_BLOCKS_PER_GROUP(sb));
3896 goto failed_mount;
3897 }
3898 sbi->s_groups_count = blocks_count;
3899 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3900 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3901 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3902 EXT4_DESC_PER_BLOCK(sb);
3903 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG)) {
3904 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
3905 ext4_msg(sb, KERN_WARNING,
3906 "first meta block group too large: %u "
3907 "(group descriptor block count %u)",
3908 le32_to_cpu(es->s_first_meta_bg), db_count);
3909 goto failed_mount;
3910 }
3911 }
3912 sbi->s_group_desc = ext4_kvmalloc(db_count *
3913 sizeof(struct buffer_head *),
3914 GFP_KERNEL);
3915 if (sbi->s_group_desc == NULL) {
3916 ext4_msg(sb, KERN_ERR, "not enough memory");
3917 ret = -ENOMEM;
3918 goto failed_mount;
3919 }
3920
3921 if (ext4_proc_root)
3922 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3923
3924 if (sbi->s_proc)
3925 proc_create_data("options", S_IRUGO, sbi->s_proc,
3926 &ext4_seq_options_fops, sb);
3927
3928 bgl_lock_init(sbi->s_blockgroup_lock);
3929
3930 for (i = 0; i < db_count; i++) {
3931 block = descriptor_loc(sb, logical_sb_block, i);
3932 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3933 if (!sbi->s_group_desc[i]) {
3934 ext4_msg(sb, KERN_ERR,
3935 "can't read group descriptor %d", i);
3936 db_count = i;
3937 goto failed_mount2;
3938 }
3939 }
3940 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3941 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3942 goto failed_mount2;
3943 }
3944
3945 sbi->s_gdb_count = db_count;
3946 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3947 spin_lock_init(&sbi->s_next_gen_lock);
3948
3949 init_timer(&sbi->s_err_report);
3950 sbi->s_err_report.function = print_daily_error_info;
3951 sbi->s_err_report.data = (unsigned long) sb;
3952
3953 /* Register extent status tree shrinker */
3954 if (ext4_es_register_shrinker(sbi))
3955 goto failed_mount3;
3956
3957 sbi->s_stripe = ext4_get_stripe_size(sbi);
3958 sbi->s_extent_max_zeroout_kb = 32;
3959
3960 /*
3961 * set up enough so that it can read an inode
3962 */
3963 sb->s_op = &ext4_sops;
3964 sb->s_export_op = &ext4_export_ops;
3965 sb->s_xattr = ext4_xattr_handlers;
3966 #ifdef CONFIG_QUOTA
3967 sb->dq_op = &ext4_quota_operations;
3968 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
3969 sb->s_qcop = &ext4_qctl_sysfile_operations;
3970 else
3971 sb->s_qcop = &ext4_qctl_operations;
3972 #endif
3973 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3974
3975 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3976 mutex_init(&sbi->s_orphan_lock);
3977
3978 sb->s_root = NULL;
3979
3980 needs_recovery = (es->s_last_orphan != 0 ||
3981 EXT4_HAS_INCOMPAT_FEATURE(sb,
3982 EXT4_FEATURE_INCOMPAT_RECOVER));
3983
3984 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3985 !(sb->s_flags & MS_RDONLY))
3986 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3987 goto failed_mount3a;
3988
3989 /*
3990 * The first inode we look at is the journal inode. Don't try
3991 * root first: it may be modified in the journal!
3992 */
3993 if (!test_opt(sb, NOLOAD) &&
3994 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3995 if (ext4_load_journal(sb, es, journal_devnum))
3996 goto failed_mount3a;
3997 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3998 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3999 ext4_msg(sb, KERN_ERR, "required journal recovery "
4000 "suppressed and not mounted read-only");
4001 goto failed_mount_wq;
4002 } else {
4003 clear_opt(sb, DATA_FLAGS);
4004 sbi->s_journal = NULL;
4005 needs_recovery = 0;
4006 goto no_journal;
4007 }
4008
4009 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
4010 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4011 JBD2_FEATURE_INCOMPAT_64BIT)) {
4012 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4013 goto failed_mount_wq;
4014 }
4015
4016 if (!set_journal_csum_feature_set(sb)) {
4017 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4018 "feature set");
4019 goto failed_mount_wq;
4020 }
4021
4022 /* We have now updated the journal if required, so we can
4023 * validate the data journaling mode. */
4024 switch (test_opt(sb, DATA_FLAGS)) {
4025 case 0:
4026 /* No mode set, assume a default based on the journal
4027 * capabilities: ORDERED_DATA if the journal can
4028 * cope, else JOURNAL_DATA
4029 */
4030 if (jbd2_journal_check_available_features
4031 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
4032 set_opt(sb, ORDERED_DATA);
4033 else
4034 set_opt(sb, JOURNAL_DATA);
4035 break;
4036
4037 case EXT4_MOUNT_ORDERED_DATA:
4038 case EXT4_MOUNT_WRITEBACK_DATA:
4039 if (!jbd2_journal_check_available_features
4040 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4041 ext4_msg(sb, KERN_ERR, "Journal does not support "
4042 "requested data journaling mode");
4043 goto failed_mount_wq;
4044 }
4045 default:
4046 break;
4047 }
4048 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4049
4050 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4051
4052 no_journal:
4053 if (ext4_mballoc_ready) {
4054 sbi->s_mb_cache = ext4_xattr_create_cache(sb->s_id);
4055 if (!sbi->s_mb_cache) {
4056 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
4057 goto failed_mount_wq;
4058 }
4059 }
4060
4061 if (unlikely(sbi->s_mount_flags & EXT4_MF_TEST_DUMMY_ENCRYPTION) &&
4062 !(sb->s_flags & MS_RDONLY) &&
4063 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT)) {
4064 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT);
4065 ext4_commit_super(sb, 1);
4066 }
4067
4068 /*
4069 * Get the # of file system overhead blocks from the
4070 * superblock if present.
4071 */
4072 if (es->s_overhead_clusters)
4073 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4074 else {
4075 err = ext4_calculate_overhead(sb);
4076 if (err)
4077 goto failed_mount_wq;
4078 }
4079
4080 /*
4081 * The maximum number of concurrent works can be high and
4082 * concurrency isn't really necessary. Limit it to 1.
4083 */
4084 EXT4_SB(sb)->rsv_conversion_wq =
4085 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4086 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4087 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4088 ret = -ENOMEM;
4089 goto failed_mount4;
4090 }
4091
4092 /*
4093 * The jbd2_journal_load will have done any necessary log recovery,
4094 * so we can safely mount the rest of the filesystem now.
4095 */
4096
4097 root = ext4_iget(sb, EXT4_ROOT_INO);
4098 if (IS_ERR(root)) {
4099 ext4_msg(sb, KERN_ERR, "get root inode failed");
4100 ret = PTR_ERR(root);
4101 root = NULL;
4102 goto failed_mount4;
4103 }
4104 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4105 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4106 iput(root);
4107 goto failed_mount4;
4108 }
4109 sb->s_root = d_make_root(root);
4110 if (!sb->s_root) {
4111 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4112 ret = -ENOMEM;
4113 goto failed_mount4;
4114 }
4115
4116 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4117 sb->s_flags |= MS_RDONLY;
4118
4119 /* determine the minimum size of new large inodes, if present */
4120 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4121 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4122 EXT4_GOOD_OLD_INODE_SIZE;
4123 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4124 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
4125 if (sbi->s_want_extra_isize <
4126 le16_to_cpu(es->s_want_extra_isize))
4127 sbi->s_want_extra_isize =
4128 le16_to_cpu(es->s_want_extra_isize);
4129 if (sbi->s_want_extra_isize <
4130 le16_to_cpu(es->s_min_extra_isize))
4131 sbi->s_want_extra_isize =
4132 le16_to_cpu(es->s_min_extra_isize);
4133 }
4134 }
4135 /* Check if enough inode space is available */
4136 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4137 sbi->s_inode_size) {
4138 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4139 EXT4_GOOD_OLD_INODE_SIZE;
4140 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4141 "available");
4142 }
4143
4144 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sb));
4145 if (err) {
4146 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for "
4147 "reserved pool", ext4_calculate_resv_clusters(sb));
4148 goto failed_mount4a;
4149 }
4150
4151 err = ext4_setup_system_zone(sb);
4152 if (err) {
4153 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4154 "zone (%d)", err);
4155 goto failed_mount4a;
4156 }
4157
4158 ext4_ext_init(sb);
4159 err = ext4_mb_init(sb);
4160 if (err) {
4161 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4162 err);
4163 goto failed_mount5;
4164 }
4165
4166 block = ext4_count_free_clusters(sb);
4167 ext4_free_blocks_count_set(sbi->s_es,
4168 EXT4_C2B(sbi, block));
4169 err = percpu_counter_init(&sbi->s_freeclusters_counter, block);
4170 if (!err) {
4171 unsigned long freei = ext4_count_free_inodes(sb);
4172 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4173 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei);
4174 }
4175 if (!err)
4176 err = percpu_counter_init(&sbi->s_dirs_counter,
4177 ext4_count_dirs(sb));
4178 if (!err)
4179 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
4180 if (err) {
4181 ext4_msg(sb, KERN_ERR, "insufficient memory");
4182 goto failed_mount6;
4183 }
4184
4185 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
4186 if (!ext4_fill_flex_info(sb)) {
4187 ext4_msg(sb, KERN_ERR,
4188 "unable to initialize "
4189 "flex_bg meta info!");
4190 goto failed_mount6;
4191 }
4192
4193 err = ext4_register_li_request(sb, first_not_zeroed);
4194 if (err)
4195 goto failed_mount6;
4196
4197 sbi->s_kobj.kset = ext4_kset;
4198 init_completion(&sbi->s_kobj_unregister);
4199 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
4200 "%s", sb->s_id);
4201 if (err)
4202 goto failed_mount7;
4203
4204 #ifdef CONFIG_QUOTA
4205 /* Enable quota usage during mount. */
4206 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
4207 !(sb->s_flags & MS_RDONLY)) {
4208 err = ext4_enable_quotas(sb);
4209 if (err)
4210 goto failed_mount8;
4211 }
4212 #endif /* CONFIG_QUOTA */
4213
4214 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4215 ext4_orphan_cleanup(sb, es);
4216 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4217 if (needs_recovery) {
4218 ext4_msg(sb, KERN_INFO, "recovery complete");
4219 ext4_mark_recovery_complete(sb, es);
4220 }
4221 if (EXT4_SB(sb)->s_journal) {
4222 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4223 descr = " journalled data mode";
4224 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4225 descr = " ordered data mode";
4226 else
4227 descr = " writeback data mode";
4228 } else
4229 descr = "out journal";
4230
4231 if (test_opt(sb, DISCARD)) {
4232 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4233 if (!blk_queue_discard(q))
4234 ext4_msg(sb, KERN_WARNING,
4235 "mounting with \"discard\" option, but "
4236 "the device does not support discard");
4237 }
4238
4239 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4240 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4241 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4242
4243 if (es->s_error_count)
4244 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4245
4246 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4247 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4248 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4249 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4250
4251 kfree(orig_data);
4252 return 0;
4253
4254 cantfind_ext4:
4255 if (!silent)
4256 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4257 goto failed_mount;
4258
4259 #ifdef CONFIG_QUOTA
4260 failed_mount8:
4261 kobject_del(&sbi->s_kobj);
4262 #endif
4263 failed_mount7:
4264 ext4_unregister_li_request(sb);
4265 failed_mount6:
4266 ext4_mb_release(sb);
4267 if (sbi->s_flex_groups)
4268 ext4_kvfree(sbi->s_flex_groups);
4269 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4270 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4271 percpu_counter_destroy(&sbi->s_dirs_counter);
4272 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4273 failed_mount5:
4274 ext4_ext_release(sb);
4275 ext4_release_system_zone(sb);
4276 failed_mount4a:
4277 dput(sb->s_root);
4278 sb->s_root = NULL;
4279 failed_mount4:
4280 ext4_msg(sb, KERN_ERR, "mount failed");
4281 if (EXT4_SB(sb)->rsv_conversion_wq)
4282 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4283 failed_mount_wq:
4284 if (sbi->s_journal) {
4285 jbd2_journal_destroy(sbi->s_journal);
4286 sbi->s_journal = NULL;
4287 }
4288 failed_mount3a:
4289 ext4_es_unregister_shrinker(sbi);
4290 failed_mount3:
4291 del_timer_sync(&sbi->s_err_report);
4292 if (sbi->s_mmp_tsk)
4293 kthread_stop(sbi->s_mmp_tsk);
4294 failed_mount2:
4295 for (i = 0; i < db_count; i++)
4296 brelse(sbi->s_group_desc[i]);
4297 ext4_kvfree(sbi->s_group_desc);
4298 failed_mount:
4299 if (sbi->s_chksum_driver)
4300 crypto_free_shash(sbi->s_chksum_driver);
4301 if (sbi->s_proc) {
4302 remove_proc_entry("options", sbi->s_proc);
4303 remove_proc_entry(sb->s_id, ext4_proc_root);
4304 }
4305 #ifdef CONFIG_QUOTA
4306 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4307 kfree(sbi->s_qf_names[i]);
4308 #endif
4309 ext4_blkdev_remove(sbi);
4310 brelse(bh);
4311 out_fail:
4312 sb->s_fs_info = NULL;
4313 kfree(sbi->s_blockgroup_lock);
4314 kfree(sbi);
4315 out_free_orig:
4316 kfree(orig_data);
4317 return err ? err : ret;
4318 }
4319
4320 /*
4321 * Setup any per-fs journal parameters now. We'll do this both on
4322 * initial mount, once the journal has been initialised but before we've
4323 * done any recovery; and again on any subsequent remount.
4324 */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)4325 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4326 {
4327 struct ext4_sb_info *sbi = EXT4_SB(sb);
4328
4329 journal->j_commit_interval = sbi->s_commit_interval;
4330 journal->j_min_batch_time = sbi->s_min_batch_time;
4331 journal->j_max_batch_time = sbi->s_max_batch_time;
4332
4333 write_lock(&journal->j_state_lock);
4334 if (test_opt(sb, BARRIER))
4335 journal->j_flags |= JBD2_BARRIER;
4336 else
4337 journal->j_flags &= ~JBD2_BARRIER;
4338 if (test_opt(sb, DATA_ERR_ABORT))
4339 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4340 else
4341 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4342 write_unlock(&journal->j_state_lock);
4343 }
4344
ext4_get_journal(struct super_block * sb,unsigned int journal_inum)4345 static journal_t *ext4_get_journal(struct super_block *sb,
4346 unsigned int journal_inum)
4347 {
4348 struct inode *journal_inode;
4349 journal_t *journal;
4350
4351 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4352
4353 /* First, test for the existence of a valid inode on disk. Bad
4354 * things happen if we iget() an unused inode, as the subsequent
4355 * iput() will try to delete it. */
4356
4357 journal_inode = ext4_iget(sb, journal_inum);
4358 if (IS_ERR(journal_inode)) {
4359 ext4_msg(sb, KERN_ERR, "no journal found");
4360 return NULL;
4361 }
4362 if (!journal_inode->i_nlink) {
4363 make_bad_inode(journal_inode);
4364 iput(journal_inode);
4365 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4366 return NULL;
4367 }
4368
4369 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4370 journal_inode, journal_inode->i_size);
4371 if (!S_ISREG(journal_inode->i_mode)) {
4372 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4373 iput(journal_inode);
4374 return NULL;
4375 }
4376
4377 journal = jbd2_journal_init_inode(journal_inode);
4378 if (!journal) {
4379 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4380 iput(journal_inode);
4381 return NULL;
4382 }
4383 journal->j_private = sb;
4384 ext4_init_journal_params(sb, journal);
4385 return journal;
4386 }
4387
ext4_get_dev_journal(struct super_block * sb,dev_t j_dev)4388 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4389 dev_t j_dev)
4390 {
4391 struct buffer_head *bh;
4392 journal_t *journal;
4393 ext4_fsblk_t start;
4394 ext4_fsblk_t len;
4395 int hblock, blocksize;
4396 ext4_fsblk_t sb_block;
4397 unsigned long offset;
4398 struct ext4_super_block *es;
4399 struct block_device *bdev;
4400
4401 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4402
4403 bdev = ext4_blkdev_get(j_dev, sb);
4404 if (bdev == NULL)
4405 return NULL;
4406
4407 blocksize = sb->s_blocksize;
4408 hblock = bdev_logical_block_size(bdev);
4409 if (blocksize < hblock) {
4410 ext4_msg(sb, KERN_ERR,
4411 "blocksize too small for journal device");
4412 goto out_bdev;
4413 }
4414
4415 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4416 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4417 set_blocksize(bdev, blocksize);
4418 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4419 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4420 "external journal");
4421 goto out_bdev;
4422 }
4423
4424 es = (struct ext4_super_block *) (bh->b_data + offset);
4425 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4426 !(le32_to_cpu(es->s_feature_incompat) &
4427 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4428 ext4_msg(sb, KERN_ERR, "external journal has "
4429 "bad superblock");
4430 brelse(bh);
4431 goto out_bdev;
4432 }
4433
4434 if ((le32_to_cpu(es->s_feature_ro_compat) &
4435 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4436 es->s_checksum != ext4_superblock_csum(sb, es)) {
4437 ext4_msg(sb, KERN_ERR, "external journal has "
4438 "corrupt superblock");
4439 brelse(bh);
4440 goto out_bdev;
4441 }
4442
4443 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4444 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4445 brelse(bh);
4446 goto out_bdev;
4447 }
4448
4449 len = ext4_blocks_count(es);
4450 start = sb_block + 1;
4451 brelse(bh); /* we're done with the superblock */
4452
4453 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4454 start, len, blocksize);
4455 if (!journal) {
4456 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4457 goto out_bdev;
4458 }
4459 journal->j_private = sb;
4460 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4461 wait_on_buffer(journal->j_sb_buffer);
4462 if (!buffer_uptodate(journal->j_sb_buffer)) {
4463 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4464 goto out_journal;
4465 }
4466 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4467 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4468 "user (unsupported) - %d",
4469 be32_to_cpu(journal->j_superblock->s_nr_users));
4470 goto out_journal;
4471 }
4472 EXT4_SB(sb)->journal_bdev = bdev;
4473 ext4_init_journal_params(sb, journal);
4474 return journal;
4475
4476 out_journal:
4477 jbd2_journal_destroy(journal);
4478 out_bdev:
4479 ext4_blkdev_put(bdev);
4480 return NULL;
4481 }
4482
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)4483 static int ext4_load_journal(struct super_block *sb,
4484 struct ext4_super_block *es,
4485 unsigned long journal_devnum)
4486 {
4487 journal_t *journal;
4488 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4489 dev_t journal_dev;
4490 int err = 0;
4491 int really_read_only;
4492
4493 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4494
4495 if (journal_devnum &&
4496 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4497 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4498 "numbers have changed");
4499 journal_dev = new_decode_dev(journal_devnum);
4500 } else
4501 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4502
4503 really_read_only = bdev_read_only(sb->s_bdev);
4504
4505 /*
4506 * Are we loading a blank journal or performing recovery after a
4507 * crash? For recovery, we need to check in advance whether we
4508 * can get read-write access to the device.
4509 */
4510 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4511 if (sb->s_flags & MS_RDONLY) {
4512 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4513 "required on readonly filesystem");
4514 if (really_read_only) {
4515 ext4_msg(sb, KERN_ERR, "write access "
4516 "unavailable, cannot proceed");
4517 return -EROFS;
4518 }
4519 ext4_msg(sb, KERN_INFO, "write access will "
4520 "be enabled during recovery");
4521 }
4522 }
4523
4524 if (journal_inum && journal_dev) {
4525 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4526 "and inode journals!");
4527 return -EINVAL;
4528 }
4529
4530 if (journal_inum) {
4531 if (!(journal = ext4_get_journal(sb, journal_inum)))
4532 return -EINVAL;
4533 } else {
4534 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4535 return -EINVAL;
4536 }
4537
4538 if (!(journal->j_flags & JBD2_BARRIER))
4539 ext4_msg(sb, KERN_INFO, "barriers disabled");
4540
4541 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4542 err = jbd2_journal_wipe(journal, !really_read_only);
4543 if (!err) {
4544 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4545 if (save)
4546 memcpy(save, ((char *) es) +
4547 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4548 err = jbd2_journal_load(journal);
4549 if (save)
4550 memcpy(((char *) es) + EXT4_S_ERR_START,
4551 save, EXT4_S_ERR_LEN);
4552 kfree(save);
4553 }
4554
4555 if (err) {
4556 ext4_msg(sb, KERN_ERR, "error loading journal");
4557 jbd2_journal_destroy(journal);
4558 return err;
4559 }
4560
4561 EXT4_SB(sb)->s_journal = journal;
4562 ext4_clear_journal_err(sb, es);
4563
4564 if (!really_read_only && journal_devnum &&
4565 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4566 es->s_journal_dev = cpu_to_le32(journal_devnum);
4567
4568 /* Make sure we flush the recovery flag to disk. */
4569 ext4_commit_super(sb, 1);
4570 }
4571
4572 return 0;
4573 }
4574
ext4_commit_super(struct super_block * sb,int sync)4575 static int ext4_commit_super(struct super_block *sb, int sync)
4576 {
4577 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4578 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4579 int error = 0;
4580
4581 if (!sbh || block_device_ejected(sb))
4582 return error;
4583 if (buffer_write_io_error(sbh)) {
4584 /*
4585 * Oh, dear. A previous attempt to write the
4586 * superblock failed. This could happen because the
4587 * USB device was yanked out. Or it could happen to
4588 * be a transient write error and maybe the block will
4589 * be remapped. Nothing we can do but to retry the
4590 * write and hope for the best.
4591 */
4592 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4593 "superblock detected");
4594 clear_buffer_write_io_error(sbh);
4595 set_buffer_uptodate(sbh);
4596 }
4597 /*
4598 * If the file system is mounted read-only, don't update the
4599 * superblock write time. This avoids updating the superblock
4600 * write time when we are mounting the root file system
4601 * read/only but we need to replay the journal; at that point,
4602 * for people who are east of GMT and who make their clock
4603 * tick in localtime for Windows bug-for-bug compatibility,
4604 * the clock is set in the future, and this will cause e2fsck
4605 * to complain and force a full file system check.
4606 */
4607 if (!(sb->s_flags & MS_RDONLY))
4608 es->s_wtime = cpu_to_le32(get_seconds());
4609 if (sb->s_bdev->bd_part)
4610 es->s_kbytes_written =
4611 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4612 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4613 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4614 else
4615 es->s_kbytes_written =
4616 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4617 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4618 ext4_free_blocks_count_set(es,
4619 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4620 &EXT4_SB(sb)->s_freeclusters_counter)));
4621 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4622 es->s_free_inodes_count =
4623 cpu_to_le32(percpu_counter_sum_positive(
4624 &EXT4_SB(sb)->s_freeinodes_counter));
4625 BUFFER_TRACE(sbh, "marking dirty");
4626 ext4_superblock_csum_set(sb);
4627 mark_buffer_dirty(sbh);
4628 if (sync) {
4629 error = sync_dirty_buffer(sbh);
4630 if (error)
4631 return error;
4632
4633 error = buffer_write_io_error(sbh);
4634 if (error) {
4635 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4636 "superblock");
4637 clear_buffer_write_io_error(sbh);
4638 set_buffer_uptodate(sbh);
4639 }
4640 }
4641 return error;
4642 }
4643
4644 /*
4645 * Have we just finished recovery? If so, and if we are mounting (or
4646 * remounting) the filesystem readonly, then we will end up with a
4647 * consistent fs on disk. Record that fact.
4648 */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)4649 static void ext4_mark_recovery_complete(struct super_block *sb,
4650 struct ext4_super_block *es)
4651 {
4652 journal_t *journal = EXT4_SB(sb)->s_journal;
4653
4654 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4655 BUG_ON(journal != NULL);
4656 return;
4657 }
4658 jbd2_journal_lock_updates(journal);
4659 if (jbd2_journal_flush(journal) < 0)
4660 goto out;
4661
4662 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4663 sb->s_flags & MS_RDONLY) {
4664 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4665 ext4_commit_super(sb, 1);
4666 }
4667
4668 out:
4669 jbd2_journal_unlock_updates(journal);
4670 }
4671
4672 /*
4673 * If we are mounting (or read-write remounting) a filesystem whose journal
4674 * has recorded an error from a previous lifetime, move that error to the
4675 * main filesystem now.
4676 */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)4677 static void ext4_clear_journal_err(struct super_block *sb,
4678 struct ext4_super_block *es)
4679 {
4680 journal_t *journal;
4681 int j_errno;
4682 const char *errstr;
4683
4684 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4685
4686 journal = EXT4_SB(sb)->s_journal;
4687
4688 /*
4689 * Now check for any error status which may have been recorded in the
4690 * journal by a prior ext4_error() or ext4_abort()
4691 */
4692
4693 j_errno = jbd2_journal_errno(journal);
4694 if (j_errno) {
4695 char nbuf[16];
4696
4697 errstr = ext4_decode_error(sb, j_errno, nbuf);
4698 ext4_warning(sb, "Filesystem error recorded "
4699 "from previous mount: %s", errstr);
4700 ext4_warning(sb, "Marking fs in need of filesystem check.");
4701
4702 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4703 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4704 ext4_commit_super(sb, 1);
4705
4706 jbd2_journal_clear_err(journal);
4707 jbd2_journal_update_sb_errno(journal);
4708 }
4709 }
4710
4711 /*
4712 * Force the running and committing transactions to commit,
4713 * and wait on the commit.
4714 */
ext4_force_commit(struct super_block * sb)4715 int ext4_force_commit(struct super_block *sb)
4716 {
4717 journal_t *journal;
4718
4719 if (sb->s_flags & MS_RDONLY)
4720 return 0;
4721
4722 journal = EXT4_SB(sb)->s_journal;
4723 return ext4_journal_force_commit(journal);
4724 }
4725
ext4_sync_fs(struct super_block * sb,int wait)4726 static int ext4_sync_fs(struct super_block *sb, int wait)
4727 {
4728 int ret = 0;
4729 tid_t target;
4730 bool needs_barrier = false;
4731 struct ext4_sb_info *sbi = EXT4_SB(sb);
4732
4733 trace_ext4_sync_fs(sb, wait);
4734 flush_workqueue(sbi->rsv_conversion_wq);
4735 /*
4736 * Writeback quota in non-journalled quota case - journalled quota has
4737 * no dirty dquots
4738 */
4739 dquot_writeback_dquots(sb, -1);
4740 /*
4741 * Data writeback is possible w/o journal transaction, so barrier must
4742 * being sent at the end of the function. But we can skip it if
4743 * transaction_commit will do it for us.
4744 */
4745 if (sbi->s_journal) {
4746 target = jbd2_get_latest_transaction(sbi->s_journal);
4747 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4748 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4749 needs_barrier = true;
4750
4751 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4752 if (wait)
4753 ret = jbd2_log_wait_commit(sbi->s_journal,
4754 target);
4755 }
4756 } else if (wait && test_opt(sb, BARRIER))
4757 needs_barrier = true;
4758 if (needs_barrier) {
4759 int err;
4760 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4761 if (!ret)
4762 ret = err;
4763 }
4764
4765 return ret;
4766 }
4767
4768 /*
4769 * LVM calls this function before a (read-only) snapshot is created. This
4770 * gives us a chance to flush the journal completely and mark the fs clean.
4771 *
4772 * Note that only this function cannot bring a filesystem to be in a clean
4773 * state independently. It relies on upper layer to stop all data & metadata
4774 * modifications.
4775 */
ext4_freeze(struct super_block * sb)4776 static int ext4_freeze(struct super_block *sb)
4777 {
4778 int error = 0;
4779 journal_t *journal;
4780
4781 if (sb->s_flags & MS_RDONLY)
4782 return 0;
4783
4784 journal = EXT4_SB(sb)->s_journal;
4785
4786 if (journal) {
4787 /* Now we set up the journal barrier. */
4788 jbd2_journal_lock_updates(journal);
4789
4790 /*
4791 * Don't clear the needs_recovery flag if we failed to
4792 * flush the journal.
4793 */
4794 error = jbd2_journal_flush(journal);
4795 if (error < 0)
4796 goto out;
4797 }
4798
4799 /* Journal blocked and flushed, clear needs_recovery flag. */
4800 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4801 error = ext4_commit_super(sb, 1);
4802 out:
4803 if (journal)
4804 /* we rely on upper layer to stop further updates */
4805 jbd2_journal_unlock_updates(journal);
4806 return error;
4807 }
4808
4809 /*
4810 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4811 * flag here, even though the filesystem is not technically dirty yet.
4812 */
ext4_unfreeze(struct super_block * sb)4813 static int ext4_unfreeze(struct super_block *sb)
4814 {
4815 if (sb->s_flags & MS_RDONLY)
4816 return 0;
4817
4818 /* Reset the needs_recovery flag before the fs is unlocked. */
4819 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4820 ext4_commit_super(sb, 1);
4821 return 0;
4822 }
4823
4824 /*
4825 * Structure to save mount options for ext4_remount's benefit
4826 */
4827 struct ext4_mount_options {
4828 unsigned long s_mount_opt;
4829 unsigned long s_mount_opt2;
4830 kuid_t s_resuid;
4831 kgid_t s_resgid;
4832 unsigned long s_commit_interval;
4833 u32 s_min_batch_time, s_max_batch_time;
4834 #ifdef CONFIG_QUOTA
4835 int s_jquota_fmt;
4836 char *s_qf_names[EXT4_MAXQUOTAS];
4837 #endif
4838 };
4839
ext4_remount(struct super_block * sb,int * flags,char * data)4840 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4841 {
4842 struct ext4_super_block *es;
4843 struct ext4_sb_info *sbi = EXT4_SB(sb);
4844 unsigned long old_sb_flags;
4845 struct ext4_mount_options old_opts;
4846 int enable_quota = 0;
4847 ext4_group_t g;
4848 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4849 int err = 0;
4850 #ifdef CONFIG_QUOTA
4851 int i, j;
4852 #endif
4853 char *orig_data = kstrdup(data, GFP_KERNEL);
4854
4855 /* Store the original options */
4856 old_sb_flags = sb->s_flags;
4857 old_opts.s_mount_opt = sbi->s_mount_opt;
4858 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4859 old_opts.s_resuid = sbi->s_resuid;
4860 old_opts.s_resgid = sbi->s_resgid;
4861 old_opts.s_commit_interval = sbi->s_commit_interval;
4862 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4863 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4864 #ifdef CONFIG_QUOTA
4865 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4866 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4867 if (sbi->s_qf_names[i]) {
4868 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4869 GFP_KERNEL);
4870 if (!old_opts.s_qf_names[i]) {
4871 for (j = 0; j < i; j++)
4872 kfree(old_opts.s_qf_names[j]);
4873 kfree(orig_data);
4874 return -ENOMEM;
4875 }
4876 } else
4877 old_opts.s_qf_names[i] = NULL;
4878 #endif
4879 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4880 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4881
4882 /*
4883 * Allow the "check" option to be passed as a remount option.
4884 */
4885 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4886 err = -EINVAL;
4887 goto restore_opts;
4888 }
4889
4890 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4891 test_opt(sb, JOURNAL_CHECKSUM)) {
4892 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4893 "during remount not supported");
4894 err = -EINVAL;
4895 goto restore_opts;
4896 }
4897
4898 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4899 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4900 ext4_msg(sb, KERN_ERR, "can't mount with "
4901 "both data=journal and delalloc");
4902 err = -EINVAL;
4903 goto restore_opts;
4904 }
4905 if (test_opt(sb, DIOREAD_NOLOCK)) {
4906 ext4_msg(sb, KERN_ERR, "can't mount with "
4907 "both data=journal and dioread_nolock");
4908 err = -EINVAL;
4909 goto restore_opts;
4910 }
4911 }
4912
4913 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4914 ext4_abort(sb, "Abort forced by user");
4915
4916 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4917 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4918
4919 es = sbi->s_es;
4920
4921 if (sbi->s_journal) {
4922 ext4_init_journal_params(sb, sbi->s_journal);
4923 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4924 }
4925
4926 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4927 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4928 err = -EROFS;
4929 goto restore_opts;
4930 }
4931
4932 if (*flags & MS_RDONLY) {
4933 err = sync_filesystem(sb);
4934 if (err < 0)
4935 goto restore_opts;
4936 err = dquot_suspend(sb, -1);
4937 if (err < 0)
4938 goto restore_opts;
4939
4940 /*
4941 * First of all, the unconditional stuff we have to do
4942 * to disable replay of the journal when we next remount
4943 */
4944 sb->s_flags |= MS_RDONLY;
4945
4946 /*
4947 * OK, test if we are remounting a valid rw partition
4948 * readonly, and if so set the rdonly flag and then
4949 * mark the partition as valid again.
4950 */
4951 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4952 (sbi->s_mount_state & EXT4_VALID_FS))
4953 es->s_state = cpu_to_le16(sbi->s_mount_state);
4954
4955 if (sbi->s_journal)
4956 ext4_mark_recovery_complete(sb, es);
4957 } else {
4958 /* Make sure we can mount this feature set readwrite */
4959 if (!ext4_feature_set_ok(sb, 0)) {
4960 err = -EROFS;
4961 goto restore_opts;
4962 }
4963 /*
4964 * Make sure the group descriptor checksums
4965 * are sane. If they aren't, refuse to remount r/w.
4966 */
4967 for (g = 0; g < sbi->s_groups_count; g++) {
4968 struct ext4_group_desc *gdp =
4969 ext4_get_group_desc(sb, g, NULL);
4970
4971 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4972 ext4_msg(sb, KERN_ERR,
4973 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4974 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4975 le16_to_cpu(gdp->bg_checksum));
4976 err = -EINVAL;
4977 goto restore_opts;
4978 }
4979 }
4980
4981 /*
4982 * If we have an unprocessed orphan list hanging
4983 * around from a previously readonly bdev mount,
4984 * require a full umount/remount for now.
4985 */
4986 if (es->s_last_orphan) {
4987 ext4_msg(sb, KERN_WARNING, "Couldn't "
4988 "remount RDWR because of unprocessed "
4989 "orphan inode list. Please "
4990 "umount/remount instead");
4991 err = -EINVAL;
4992 goto restore_opts;
4993 }
4994
4995 /*
4996 * Mounting a RDONLY partition read-write, so reread
4997 * and store the current valid flag. (It may have
4998 * been changed by e2fsck since we originally mounted
4999 * the partition.)
5000 */
5001 if (sbi->s_journal)
5002 ext4_clear_journal_err(sb, es);
5003 sbi->s_mount_state = le16_to_cpu(es->s_state);
5004 if (!ext4_setup_super(sb, es, 0))
5005 sb->s_flags &= ~MS_RDONLY;
5006 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
5007 EXT4_FEATURE_INCOMPAT_MMP))
5008 if (ext4_multi_mount_protect(sb,
5009 le64_to_cpu(es->s_mmp_block))) {
5010 err = -EROFS;
5011 goto restore_opts;
5012 }
5013 enable_quota = 1;
5014 }
5015 }
5016
5017 /*
5018 * Reinitialize lazy itable initialization thread based on
5019 * current settings
5020 */
5021 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
5022 ext4_unregister_li_request(sb);
5023 else {
5024 ext4_group_t first_not_zeroed;
5025 first_not_zeroed = ext4_has_uninit_itable(sb);
5026 ext4_register_li_request(sb, first_not_zeroed);
5027 }
5028
5029 ext4_setup_system_zone(sb);
5030 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
5031 ext4_commit_super(sb, 1);
5032
5033 #ifdef CONFIG_QUOTA
5034 /* Release old quota file names */
5035 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5036 kfree(old_opts.s_qf_names[i]);
5037 if (enable_quota) {
5038 if (sb_any_quota_suspended(sb))
5039 dquot_resume(sb, -1);
5040 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
5041 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
5042 err = ext4_enable_quotas(sb);
5043 if (err)
5044 goto restore_opts;
5045 }
5046 }
5047 #endif
5048
5049 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5050 kfree(orig_data);
5051 return 0;
5052
5053 restore_opts:
5054 sb->s_flags = old_sb_flags;
5055 sbi->s_mount_opt = old_opts.s_mount_opt;
5056 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5057 sbi->s_resuid = old_opts.s_resuid;
5058 sbi->s_resgid = old_opts.s_resgid;
5059 sbi->s_commit_interval = old_opts.s_commit_interval;
5060 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5061 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5062 #ifdef CONFIG_QUOTA
5063 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5064 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5065 kfree(sbi->s_qf_names[i]);
5066 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5067 }
5068 #endif
5069 kfree(orig_data);
5070 return err;
5071 }
5072
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)5073 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5074 {
5075 struct super_block *sb = dentry->d_sb;
5076 struct ext4_sb_info *sbi = EXT4_SB(sb);
5077 struct ext4_super_block *es = sbi->s_es;
5078 ext4_fsblk_t overhead = 0, resv_blocks;
5079 u64 fsid;
5080 s64 bfree;
5081 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5082
5083 if (!test_opt(sb, MINIX_DF))
5084 overhead = sbi->s_overhead;
5085
5086 buf->f_type = EXT4_SUPER_MAGIC;
5087 buf->f_bsize = sb->s_blocksize;
5088 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5089 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5090 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5091 /* prevent underflow in case that few free space is available */
5092 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5093 buf->f_bavail = buf->f_bfree -
5094 (ext4_r_blocks_count(es) + resv_blocks);
5095 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5096 buf->f_bavail = 0;
5097 buf->f_files = le32_to_cpu(es->s_inodes_count);
5098 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5099 buf->f_namelen = EXT4_NAME_LEN;
5100 fsid = le64_to_cpup((void *)es->s_uuid) ^
5101 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5102 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5103 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5104
5105 return 0;
5106 }
5107
5108 /* Helper function for writing quotas on sync - we need to start transaction
5109 * before quota file is locked for write. Otherwise the are possible deadlocks:
5110 * Process 1 Process 2
5111 * ext4_create() quota_sync()
5112 * jbd2_journal_start() write_dquot()
5113 * dquot_initialize() down(dqio_mutex)
5114 * down(dqio_mutex) jbd2_journal_start()
5115 *
5116 */
5117
5118 #ifdef CONFIG_QUOTA
5119
dquot_to_inode(struct dquot * dquot)5120 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5121 {
5122 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5123 }
5124
ext4_write_dquot(struct dquot * dquot)5125 static int ext4_write_dquot(struct dquot *dquot)
5126 {
5127 int ret, err;
5128 handle_t *handle;
5129 struct inode *inode;
5130
5131 inode = dquot_to_inode(dquot);
5132 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5133 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5134 if (IS_ERR(handle))
5135 return PTR_ERR(handle);
5136 ret = dquot_commit(dquot);
5137 err = ext4_journal_stop(handle);
5138 if (!ret)
5139 ret = err;
5140 return ret;
5141 }
5142
ext4_acquire_dquot(struct dquot * dquot)5143 static int ext4_acquire_dquot(struct dquot *dquot)
5144 {
5145 int ret, err;
5146 handle_t *handle;
5147
5148 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5149 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5150 if (IS_ERR(handle))
5151 return PTR_ERR(handle);
5152 ret = dquot_acquire(dquot);
5153 err = ext4_journal_stop(handle);
5154 if (!ret)
5155 ret = err;
5156 return ret;
5157 }
5158
ext4_release_dquot(struct dquot * dquot)5159 static int ext4_release_dquot(struct dquot *dquot)
5160 {
5161 int ret, err;
5162 handle_t *handle;
5163
5164 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5165 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5166 if (IS_ERR(handle)) {
5167 /* Release dquot anyway to avoid endless cycle in dqput() */
5168 dquot_release(dquot);
5169 return PTR_ERR(handle);
5170 }
5171 ret = dquot_release(dquot);
5172 err = ext4_journal_stop(handle);
5173 if (!ret)
5174 ret = err;
5175 return ret;
5176 }
5177
ext4_mark_dquot_dirty(struct dquot * dquot)5178 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5179 {
5180 struct super_block *sb = dquot->dq_sb;
5181 struct ext4_sb_info *sbi = EXT4_SB(sb);
5182
5183 /* Are we journaling quotas? */
5184 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) ||
5185 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5186 dquot_mark_dquot_dirty(dquot);
5187 return ext4_write_dquot(dquot);
5188 } else {
5189 return dquot_mark_dquot_dirty(dquot);
5190 }
5191 }
5192
ext4_write_info(struct super_block * sb,int type)5193 static int ext4_write_info(struct super_block *sb, int type)
5194 {
5195 int ret, err;
5196 handle_t *handle;
5197
5198 /* Data block + inode block */
5199 handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2);
5200 if (IS_ERR(handle))
5201 return PTR_ERR(handle);
5202 ret = dquot_commit_info(sb, type);
5203 err = ext4_journal_stop(handle);
5204 if (!ret)
5205 ret = err;
5206 return ret;
5207 }
5208
5209 /*
5210 * Turn on quotas during mount time - we need to find
5211 * the quota file and such...
5212 */
ext4_quota_on_mount(struct super_block * sb,int type)5213 static int ext4_quota_on_mount(struct super_block *sb, int type)
5214 {
5215 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5216 EXT4_SB(sb)->s_jquota_fmt, type);
5217 }
5218
5219 /*
5220 * Standard function to be called on quota_on
5221 */
ext4_quota_on(struct super_block * sb,int type,int format_id,struct path * path)5222 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5223 struct path *path)
5224 {
5225 int err;
5226
5227 if (!test_opt(sb, QUOTA))
5228 return -EINVAL;
5229
5230 /* Quotafile not on the same filesystem? */
5231 if (path->dentry->d_sb != sb)
5232 return -EXDEV;
5233 /* Journaling quota? */
5234 if (EXT4_SB(sb)->s_qf_names[type]) {
5235 /* Quotafile not in fs root? */
5236 if (path->dentry->d_parent != sb->s_root)
5237 ext4_msg(sb, KERN_WARNING,
5238 "Quota file not on filesystem root. "
5239 "Journaled quota will not work");
5240 }
5241
5242 /*
5243 * When we journal data on quota file, we have to flush journal to see
5244 * all updates to the file when we bypass pagecache...
5245 */
5246 if (EXT4_SB(sb)->s_journal &&
5247 ext4_should_journal_data(path->dentry->d_inode)) {
5248 /*
5249 * We don't need to lock updates but journal_flush() could
5250 * otherwise be livelocked...
5251 */
5252 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5253 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5254 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5255 if (err)
5256 return err;
5257 }
5258
5259 return dquot_quota_on(sb, type, format_id, path);
5260 }
5261
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)5262 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5263 unsigned int flags)
5264 {
5265 int err;
5266 struct inode *qf_inode;
5267 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5268 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5269 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5270 };
5271
5272 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
5273
5274 if (!qf_inums[type])
5275 return -EPERM;
5276
5277 qf_inode = ext4_iget(sb, qf_inums[type]);
5278 if (IS_ERR(qf_inode)) {
5279 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5280 return PTR_ERR(qf_inode);
5281 }
5282
5283 /* Don't account quota for quota files to avoid recursion */
5284 qf_inode->i_flags |= S_NOQUOTA;
5285 err = dquot_enable(qf_inode, type, format_id, flags);
5286 iput(qf_inode);
5287
5288 return err;
5289 }
5290
5291 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)5292 static int ext4_enable_quotas(struct super_block *sb)
5293 {
5294 int type, err = 0;
5295 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5296 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5297 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5298 };
5299
5300 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5301 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5302 if (qf_inums[type]) {
5303 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5304 DQUOT_USAGE_ENABLED);
5305 if (err) {
5306 ext4_warning(sb,
5307 "Failed to enable quota tracking "
5308 "(type=%d, err=%d). Please run "
5309 "e2fsck to fix.", type, err);
5310 return err;
5311 }
5312 }
5313 }
5314 return 0;
5315 }
5316
5317 /*
5318 * quota_on function that is used when QUOTA feature is set.
5319 */
ext4_quota_on_sysfile(struct super_block * sb,int type,int format_id)5320 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
5321 int format_id)
5322 {
5323 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5324 return -EINVAL;
5325
5326 /*
5327 * USAGE was enabled at mount time. Only need to enable LIMITS now.
5328 */
5329 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED);
5330 }
5331
ext4_quota_off(struct super_block * sb,int type)5332 static int ext4_quota_off(struct super_block *sb, int type)
5333 {
5334 struct inode *inode = sb_dqopt(sb)->files[type];
5335 handle_t *handle;
5336
5337 /* Force all delayed allocation blocks to be allocated.
5338 * Caller already holds s_umount sem */
5339 if (test_opt(sb, DELALLOC))
5340 sync_filesystem(sb);
5341
5342 if (!inode)
5343 goto out;
5344
5345 /* Update modification times of quota files when userspace can
5346 * start looking at them */
5347 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5348 if (IS_ERR(handle))
5349 goto out;
5350 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5351 ext4_mark_inode_dirty(handle, inode);
5352 ext4_journal_stop(handle);
5353
5354 out:
5355 return dquot_quota_off(sb, type);
5356 }
5357
5358 /*
5359 * quota_off function that is used when QUOTA feature is set.
5360 */
ext4_quota_off_sysfile(struct super_block * sb,int type)5361 static int ext4_quota_off_sysfile(struct super_block *sb, int type)
5362 {
5363 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5364 return -EINVAL;
5365
5366 /* Disable only the limits. */
5367 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED);
5368 }
5369
5370 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5371 * acquiring the locks... As quota files are never truncated and quota code
5372 * itself serializes the operations (and no one else should touch the files)
5373 * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)5374 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5375 size_t len, loff_t off)
5376 {
5377 struct inode *inode = sb_dqopt(sb)->files[type];
5378 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5379 int offset = off & (sb->s_blocksize - 1);
5380 int tocopy;
5381 size_t toread;
5382 struct buffer_head *bh;
5383 loff_t i_size = i_size_read(inode);
5384
5385 if (off > i_size)
5386 return 0;
5387 if (off+len > i_size)
5388 len = i_size-off;
5389 toread = len;
5390 while (toread > 0) {
5391 tocopy = sb->s_blocksize - offset < toread ?
5392 sb->s_blocksize - offset : toread;
5393 bh = ext4_bread(NULL, inode, blk, 0);
5394 if (IS_ERR(bh))
5395 return PTR_ERR(bh);
5396 if (!bh) /* A hole? */
5397 memset(data, 0, tocopy);
5398 else
5399 memcpy(data, bh->b_data+offset, tocopy);
5400 brelse(bh);
5401 offset = 0;
5402 toread -= tocopy;
5403 data += tocopy;
5404 blk++;
5405 }
5406 return len;
5407 }
5408
5409 /* Write to quotafile (we know the transaction is already started and has
5410 * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)5411 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5412 const char *data, size_t len, loff_t off)
5413 {
5414 struct inode *inode = sb_dqopt(sb)->files[type];
5415 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5416 int err, offset = off & (sb->s_blocksize - 1);
5417 struct buffer_head *bh;
5418 handle_t *handle = journal_current_handle();
5419
5420 if (EXT4_SB(sb)->s_journal && !handle) {
5421 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5422 " cancelled because transaction is not started",
5423 (unsigned long long)off, (unsigned long long)len);
5424 return -EIO;
5425 }
5426 /*
5427 * Since we account only one data block in transaction credits,
5428 * then it is impossible to cross a block boundary.
5429 */
5430 if (sb->s_blocksize - offset < len) {
5431 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5432 " cancelled because not block aligned",
5433 (unsigned long long)off, (unsigned long long)len);
5434 return -EIO;
5435 }
5436
5437 bh = ext4_bread(handle, inode, blk, 1);
5438 if (IS_ERR(bh))
5439 return PTR_ERR(bh);
5440 if (!bh)
5441 goto out;
5442 BUFFER_TRACE(bh, "get write access");
5443 err = ext4_journal_get_write_access(handle, bh);
5444 if (err) {
5445 brelse(bh);
5446 return err;
5447 }
5448 lock_buffer(bh);
5449 memcpy(bh->b_data+offset, data, len);
5450 flush_dcache_page(bh->b_page);
5451 unlock_buffer(bh);
5452 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5453 brelse(bh);
5454 out:
5455 if (inode->i_size < off + len) {
5456 i_size_write(inode, off + len);
5457 EXT4_I(inode)->i_disksize = inode->i_size;
5458 ext4_mark_inode_dirty(handle, inode);
5459 }
5460 return len;
5461 }
5462
5463 #endif
5464
ext4_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)5465 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5466 const char *dev_name, void *data)
5467 {
5468 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5469 }
5470
5471 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
register_as_ext2(void)5472 static inline void register_as_ext2(void)
5473 {
5474 int err = register_filesystem(&ext2_fs_type);
5475 if (err)
5476 printk(KERN_WARNING
5477 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5478 }
5479
unregister_as_ext2(void)5480 static inline void unregister_as_ext2(void)
5481 {
5482 unregister_filesystem(&ext2_fs_type);
5483 }
5484
ext2_feature_set_ok(struct super_block * sb)5485 static inline int ext2_feature_set_ok(struct super_block *sb)
5486 {
5487 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5488 return 0;
5489 if (sb->s_flags & MS_RDONLY)
5490 return 1;
5491 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5492 return 0;
5493 return 1;
5494 }
5495 #else
register_as_ext2(void)5496 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)5497 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)5498 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5499 #endif
5500
5501 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
register_as_ext3(void)5502 static inline void register_as_ext3(void)
5503 {
5504 int err = register_filesystem(&ext3_fs_type);
5505 if (err)
5506 printk(KERN_WARNING
5507 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5508 }
5509
unregister_as_ext3(void)5510 static inline void unregister_as_ext3(void)
5511 {
5512 unregister_filesystem(&ext3_fs_type);
5513 }
5514
ext3_feature_set_ok(struct super_block * sb)5515 static inline int ext3_feature_set_ok(struct super_block *sb)
5516 {
5517 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5518 return 0;
5519 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5520 return 0;
5521 if (sb->s_flags & MS_RDONLY)
5522 return 1;
5523 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5524 return 0;
5525 return 1;
5526 }
5527 #else
register_as_ext3(void)5528 static inline void register_as_ext3(void) { }
unregister_as_ext3(void)5529 static inline void unregister_as_ext3(void) { }
ext3_feature_set_ok(struct super_block * sb)5530 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5531 #endif
5532
5533 static struct file_system_type ext4_fs_type = {
5534 .owner = THIS_MODULE,
5535 .name = "ext4",
5536 .mount = ext4_mount,
5537 .kill_sb = kill_block_super,
5538 .fs_flags = FS_REQUIRES_DEV,
5539 };
5540 MODULE_ALIAS_FS("ext4");
5541
ext4_init_feat_adverts(void)5542 static int __init ext4_init_feat_adverts(void)
5543 {
5544 struct ext4_features *ef;
5545 int ret = -ENOMEM;
5546
5547 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5548 if (!ef)
5549 goto out;
5550
5551 ef->f_kobj.kset = ext4_kset;
5552 init_completion(&ef->f_kobj_unregister);
5553 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5554 "features");
5555 if (ret) {
5556 kfree(ef);
5557 goto out;
5558 }
5559
5560 ext4_feat = ef;
5561 ret = 0;
5562 out:
5563 return ret;
5564 }
5565
ext4_exit_feat_adverts(void)5566 static void ext4_exit_feat_adverts(void)
5567 {
5568 kobject_put(&ext4_feat->f_kobj);
5569 wait_for_completion(&ext4_feat->f_kobj_unregister);
5570 kfree(ext4_feat);
5571 }
5572
5573 /* Shared across all ext4 file systems */
5574 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5575 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5576
ext4_init_fs(void)5577 static int __init ext4_init_fs(void)
5578 {
5579 int i, err;
5580
5581 ext4_li_info = NULL;
5582 mutex_init(&ext4_li_mtx);
5583
5584 /* Build-time check for flags consistency */
5585 ext4_check_flag_values();
5586
5587 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5588 mutex_init(&ext4__aio_mutex[i]);
5589 init_waitqueue_head(&ext4__ioend_wq[i]);
5590 }
5591
5592 err = ext4_init_es();
5593 if (err)
5594 return err;
5595
5596 err = ext4_init_pageio();
5597 if (err)
5598 goto out7;
5599
5600 err = ext4_init_system_zone();
5601 if (err)
5602 goto out6;
5603 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5604 if (!ext4_kset) {
5605 err = -ENOMEM;
5606 goto out5;
5607 }
5608 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5609
5610 err = ext4_init_feat_adverts();
5611 if (err)
5612 goto out4;
5613
5614 err = ext4_init_mballoc();
5615 if (err)
5616 goto out2;
5617 else
5618 ext4_mballoc_ready = 1;
5619 err = init_inodecache();
5620 if (err)
5621 goto out1;
5622 register_as_ext3();
5623 register_as_ext2();
5624 err = register_filesystem(&ext4_fs_type);
5625 if (err)
5626 goto out;
5627
5628 return 0;
5629 out:
5630 unregister_as_ext2();
5631 unregister_as_ext3();
5632 destroy_inodecache();
5633 out1:
5634 ext4_mballoc_ready = 0;
5635 ext4_exit_mballoc();
5636 out2:
5637 ext4_exit_feat_adverts();
5638 out4:
5639 if (ext4_proc_root)
5640 remove_proc_entry("fs/ext4", NULL);
5641 kset_unregister(ext4_kset);
5642 out5:
5643 ext4_exit_system_zone();
5644 out6:
5645 ext4_exit_pageio();
5646 out7:
5647 ext4_exit_es();
5648
5649 return err;
5650 }
5651
ext4_exit_fs(void)5652 static void __exit ext4_exit_fs(void)
5653 {
5654 ext4_exit_crypto();
5655 ext4_destroy_lazyinit_thread();
5656 unregister_as_ext2();
5657 unregister_as_ext3();
5658 unregister_filesystem(&ext4_fs_type);
5659 destroy_inodecache();
5660 ext4_exit_mballoc();
5661 ext4_exit_feat_adverts();
5662 remove_proc_entry("fs/ext4", NULL);
5663 kset_unregister(ext4_kset);
5664 ext4_exit_system_zone();
5665 ext4_exit_pageio();
5666 ext4_exit_es();
5667 }
5668
5669 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5670 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5671 MODULE_LICENSE("GPL");
5672 module_init(ext4_init_fs)
5673 module_exit(ext4_exit_fs)
5674