1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
ext4_inode_csum(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
54 {
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 __u16 csum_lo;
57 __u16 csum_hi = 0;
58 __u32 csum;
59
60 csum_lo = le16_to_cpu(raw->i_checksum_lo);
61 raw->i_checksum_lo = 0;
62 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
64 csum_hi = le16_to_cpu(raw->i_checksum_hi);
65 raw->i_checksum_hi = 0;
66 }
67
68 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69 EXT4_INODE_SIZE(inode->i_sb));
70
71 raw->i_checksum_lo = cpu_to_le16(csum_lo);
72 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
74 raw->i_checksum_hi = cpu_to_le16(csum_hi);
75
76 return csum;
77 }
78
ext4_inode_csum_verify(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80 struct ext4_inode_info *ei)
81 {
82 __u32 provided, calculated;
83
84 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85 cpu_to_le32(EXT4_OS_LINUX) ||
86 !ext4_has_metadata_csum(inode->i_sb))
87 return 1;
88
89 provided = le16_to_cpu(raw->i_checksum_lo);
90 calculated = ext4_inode_csum(inode, raw, ei);
91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 else
95 calculated &= 0xFFFF;
96
97 return provided == calculated;
98 }
99
ext4_inode_csum_set(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 struct ext4_inode_info *ei)
102 {
103 __u32 csum;
104
105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 cpu_to_le32(EXT4_OS_LINUX) ||
107 !ext4_has_metadata_csum(inode->i_sb))
108 return;
109
110 csum = ext4_inode_csum(inode, raw, ei);
111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116
ext4_begin_ordered_truncate(struct inode * inode,loff_t new_size)117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 loff_t new_size)
119 {
120 trace_ext4_begin_ordered_truncate(inode, new_size);
121 /*
122 * If jinode is zero, then we never opened the file for
123 * writing, so there's no need to call
124 * jbd2_journal_begin_ordered_truncate() since there's no
125 * outstanding writes we need to flush.
126 */
127 if (!EXT4_I(inode)->jinode)
128 return 0;
129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 EXT4_I(inode)->jinode,
131 new_size);
132 }
133
134 static void ext4_invalidatepage(struct page *page, unsigned int offset,
135 unsigned int length);
136 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
137 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
138 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
139 int pextents);
140
141 /*
142 * Test whether an inode is a fast symlink.
143 */
ext4_inode_is_fast_symlink(struct inode * inode)144 int ext4_inode_is_fast_symlink(struct inode *inode)
145 {
146 int ea_blocks = EXT4_I(inode)->i_file_acl ?
147 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
148
149 if (ext4_has_inline_data(inode))
150 return 0;
151
152 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
153 }
154
155 /*
156 * Restart the transaction associated with *handle. This does a commit,
157 * so before we call here everything must be consistently dirtied against
158 * this transaction.
159 */
ext4_truncate_restart_trans(handle_t * handle,struct inode * inode,int nblocks)160 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
161 int nblocks)
162 {
163 int ret;
164
165 /*
166 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
167 * moment, get_block can be called only for blocks inside i_size since
168 * page cache has been already dropped and writes are blocked by
169 * i_mutex. So we can safely drop the i_data_sem here.
170 */
171 BUG_ON(EXT4_JOURNAL(inode) == NULL);
172 jbd_debug(2, "restarting handle %p\n", handle);
173 up_write(&EXT4_I(inode)->i_data_sem);
174 ret = ext4_journal_restart(handle, nblocks);
175 down_write(&EXT4_I(inode)->i_data_sem);
176 ext4_discard_preallocations(inode);
177
178 return ret;
179 }
180
181 /*
182 * Called at the last iput() if i_nlink is zero.
183 */
ext4_evict_inode(struct inode * inode)184 void ext4_evict_inode(struct inode *inode)
185 {
186 handle_t *handle;
187 int err;
188
189 trace_ext4_evict_inode(inode);
190
191 if (inode->i_nlink) {
192 /*
193 * When journalling data dirty buffers are tracked only in the
194 * journal. So although mm thinks everything is clean and
195 * ready for reaping the inode might still have some pages to
196 * write in the running transaction or waiting to be
197 * checkpointed. Thus calling jbd2_journal_invalidatepage()
198 * (via truncate_inode_pages()) to discard these buffers can
199 * cause data loss. Also even if we did not discard these
200 * buffers, we would have no way to find them after the inode
201 * is reaped and thus user could see stale data if he tries to
202 * read them before the transaction is checkpointed. So be
203 * careful and force everything to disk here... We use
204 * ei->i_datasync_tid to store the newest transaction
205 * containing inode's data.
206 *
207 * Note that directories do not have this problem because they
208 * don't use page cache.
209 */
210 if (ext4_should_journal_data(inode) &&
211 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
212 inode->i_ino != EXT4_JOURNAL_INO) {
213 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
214 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
215
216 jbd2_complete_transaction(journal, commit_tid);
217 filemap_write_and_wait(&inode->i_data);
218 }
219 truncate_inode_pages_final(&inode->i_data);
220
221 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
222 goto no_delete;
223 }
224
225 if (is_bad_inode(inode))
226 goto no_delete;
227 dquot_initialize(inode);
228
229 if (ext4_should_order_data(inode))
230 ext4_begin_ordered_truncate(inode, 0);
231 truncate_inode_pages_final(&inode->i_data);
232
233 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
234
235 /*
236 * Protect us against freezing - iput() caller didn't have to have any
237 * protection against it
238 */
239 sb_start_intwrite(inode->i_sb);
240 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
241 ext4_blocks_for_truncate(inode)+3);
242 if (IS_ERR(handle)) {
243 ext4_std_error(inode->i_sb, PTR_ERR(handle));
244 /*
245 * If we're going to skip the normal cleanup, we still need to
246 * make sure that the in-core orphan linked list is properly
247 * cleaned up.
248 */
249 ext4_orphan_del(NULL, inode);
250 sb_end_intwrite(inode->i_sb);
251 goto no_delete;
252 }
253
254 if (IS_SYNC(inode))
255 ext4_handle_sync(handle);
256 inode->i_size = 0;
257 err = ext4_mark_inode_dirty(handle, inode);
258 if (err) {
259 ext4_warning(inode->i_sb,
260 "couldn't mark inode dirty (err %d)", err);
261 goto stop_handle;
262 }
263 if (inode->i_blocks)
264 ext4_truncate(inode);
265
266 /*
267 * ext4_ext_truncate() doesn't reserve any slop when it
268 * restarts journal transactions; therefore there may not be
269 * enough credits left in the handle to remove the inode from
270 * the orphan list and set the dtime field.
271 */
272 if (!ext4_handle_has_enough_credits(handle, 3)) {
273 err = ext4_journal_extend(handle, 3);
274 if (err > 0)
275 err = ext4_journal_restart(handle, 3);
276 if (err != 0) {
277 ext4_warning(inode->i_sb,
278 "couldn't extend journal (err %d)", err);
279 stop_handle:
280 ext4_journal_stop(handle);
281 ext4_orphan_del(NULL, inode);
282 sb_end_intwrite(inode->i_sb);
283 goto no_delete;
284 }
285 }
286
287 /*
288 * Kill off the orphan record which ext4_truncate created.
289 * AKPM: I think this can be inside the above `if'.
290 * Note that ext4_orphan_del() has to be able to cope with the
291 * deletion of a non-existent orphan - this is because we don't
292 * know if ext4_truncate() actually created an orphan record.
293 * (Well, we could do this if we need to, but heck - it works)
294 */
295 ext4_orphan_del(handle, inode);
296 EXT4_I(inode)->i_dtime = get_seconds();
297
298 /*
299 * One subtle ordering requirement: if anything has gone wrong
300 * (transaction abort, IO errors, whatever), then we can still
301 * do these next steps (the fs will already have been marked as
302 * having errors), but we can't free the inode if the mark_dirty
303 * fails.
304 */
305 if (ext4_mark_inode_dirty(handle, inode))
306 /* If that failed, just do the required in-core inode clear. */
307 ext4_clear_inode(inode);
308 else
309 ext4_free_inode(handle, inode);
310 ext4_journal_stop(handle);
311 sb_end_intwrite(inode->i_sb);
312 return;
313 no_delete:
314 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
315 }
316
317 #ifdef CONFIG_QUOTA
ext4_get_reserved_space(struct inode * inode)318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320 return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323
324 /*
325 * Called with i_data_sem down, which is important since we can call
326 * ext4_discard_preallocations() from here.
327 */
ext4_da_update_reserve_space(struct inode * inode,int used,int quota_claim)328 void ext4_da_update_reserve_space(struct inode *inode,
329 int used, int quota_claim)
330 {
331 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
332 struct ext4_inode_info *ei = EXT4_I(inode);
333
334 spin_lock(&ei->i_block_reservation_lock);
335 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
336 if (unlikely(used > ei->i_reserved_data_blocks)) {
337 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
338 "with only %d reserved data blocks",
339 __func__, inode->i_ino, used,
340 ei->i_reserved_data_blocks);
341 WARN_ON(1);
342 used = ei->i_reserved_data_blocks;
343 }
344
345 /* Update per-inode reservations */
346 ei->i_reserved_data_blocks -= used;
347 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
348
349 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
350
351 /* Update quota subsystem for data blocks */
352 if (quota_claim)
353 dquot_claim_block(inode, EXT4_C2B(sbi, used));
354 else {
355 /*
356 * We did fallocate with an offset that is already delayed
357 * allocated. So on delayed allocated writeback we should
358 * not re-claim the quota for fallocated blocks.
359 */
360 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
361 }
362
363 /*
364 * If we have done all the pending block allocations and if
365 * there aren't any writers on the inode, we can discard the
366 * inode's preallocations.
367 */
368 if ((ei->i_reserved_data_blocks == 0) &&
369 (atomic_read(&inode->i_writecount) == 0))
370 ext4_discard_preallocations(inode);
371 }
372
__check_block_validity(struct inode * inode,const char * func,unsigned int line,struct ext4_map_blocks * map)373 static int __check_block_validity(struct inode *inode, const char *func,
374 unsigned int line,
375 struct ext4_map_blocks *map)
376 {
377 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
378 map->m_len)) {
379 ext4_error_inode(inode, func, line, map->m_pblk,
380 "lblock %lu mapped to illegal pblock "
381 "(length %d)", (unsigned long) map->m_lblk,
382 map->m_len);
383 return -EIO;
384 }
385 return 0;
386 }
387
388 #define check_block_validity(inode, map) \
389 __check_block_validity((inode), __func__, __LINE__, (map))
390
391 #ifdef ES_AGGRESSIVE_TEST
ext4_map_blocks_es_recheck(handle_t * handle,struct inode * inode,struct ext4_map_blocks * es_map,struct ext4_map_blocks * map,int flags)392 static void ext4_map_blocks_es_recheck(handle_t *handle,
393 struct inode *inode,
394 struct ext4_map_blocks *es_map,
395 struct ext4_map_blocks *map,
396 int flags)
397 {
398 int retval;
399
400 map->m_flags = 0;
401 /*
402 * There is a race window that the result is not the same.
403 * e.g. xfstests #223 when dioread_nolock enables. The reason
404 * is that we lookup a block mapping in extent status tree with
405 * out taking i_data_sem. So at the time the unwritten extent
406 * could be converted.
407 */
408 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
409 down_read(&EXT4_I(inode)->i_data_sem);
410 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
411 retval = ext4_ext_map_blocks(handle, inode, map, flags &
412 EXT4_GET_BLOCKS_KEEP_SIZE);
413 } else {
414 retval = ext4_ind_map_blocks(handle, inode, map, flags &
415 EXT4_GET_BLOCKS_KEEP_SIZE);
416 }
417 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
418 up_read((&EXT4_I(inode)->i_data_sem));
419 /*
420 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
421 * because it shouldn't be marked in es_map->m_flags.
422 */
423 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
424
425 /*
426 * We don't check m_len because extent will be collpased in status
427 * tree. So the m_len might not equal.
428 */
429 if (es_map->m_lblk != map->m_lblk ||
430 es_map->m_flags != map->m_flags ||
431 es_map->m_pblk != map->m_pblk) {
432 printk("ES cache assertion failed for inode: %lu "
433 "es_cached ex [%d/%d/%llu/%x] != "
434 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
435 inode->i_ino, es_map->m_lblk, es_map->m_len,
436 es_map->m_pblk, es_map->m_flags, map->m_lblk,
437 map->m_len, map->m_pblk, map->m_flags,
438 retval, flags);
439 }
440 }
441 #endif /* ES_AGGRESSIVE_TEST */
442
443 /*
444 * The ext4_map_blocks() function tries to look up the requested blocks,
445 * and returns if the blocks are already mapped.
446 *
447 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
448 * and store the allocated blocks in the result buffer head and mark it
449 * mapped.
450 *
451 * If file type is extents based, it will call ext4_ext_map_blocks(),
452 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
453 * based files
454 *
455 * On success, it returns the number of blocks being mapped or allocated.
456 * if create==0 and the blocks are pre-allocated and unwritten block,
457 * the result buffer head is unmapped. If the create ==1, it will make sure
458 * the buffer head is mapped.
459 *
460 * It returns 0 if plain look up failed (blocks have not been allocated), in
461 * that case, buffer head is unmapped
462 *
463 * It returns the error in case of allocation failure.
464 */
ext4_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)465 int ext4_map_blocks(handle_t *handle, struct inode *inode,
466 struct ext4_map_blocks *map, int flags)
467 {
468 struct extent_status es;
469 int retval;
470 int ret = 0;
471 #ifdef ES_AGGRESSIVE_TEST
472 struct ext4_map_blocks orig_map;
473
474 memcpy(&orig_map, map, sizeof(*map));
475 #endif
476
477 map->m_flags = 0;
478 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
479 "logical block %lu\n", inode->i_ino, flags, map->m_len,
480 (unsigned long) map->m_lblk);
481
482 /*
483 * ext4_map_blocks returns an int, and m_len is an unsigned int
484 */
485 if (unlikely(map->m_len > INT_MAX))
486 map->m_len = INT_MAX;
487
488 /* We can handle the block number less than EXT_MAX_BLOCKS */
489 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
490 return -EIO;
491
492 /* Lookup extent status tree firstly */
493 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
494 ext4_es_lru_add(inode);
495 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
496 map->m_pblk = ext4_es_pblock(&es) +
497 map->m_lblk - es.es_lblk;
498 map->m_flags |= ext4_es_is_written(&es) ?
499 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
500 retval = es.es_len - (map->m_lblk - es.es_lblk);
501 if (retval > map->m_len)
502 retval = map->m_len;
503 map->m_len = retval;
504 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
505 retval = 0;
506 } else {
507 BUG_ON(1);
508 }
509 #ifdef ES_AGGRESSIVE_TEST
510 ext4_map_blocks_es_recheck(handle, inode, map,
511 &orig_map, flags);
512 #endif
513 goto found;
514 }
515
516 /*
517 * Try to see if we can get the block without requesting a new
518 * file system block.
519 */
520 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
521 down_read(&EXT4_I(inode)->i_data_sem);
522 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
523 retval = ext4_ext_map_blocks(handle, inode, map, flags &
524 EXT4_GET_BLOCKS_KEEP_SIZE);
525 } else {
526 retval = ext4_ind_map_blocks(handle, inode, map, flags &
527 EXT4_GET_BLOCKS_KEEP_SIZE);
528 }
529 if (retval > 0) {
530 unsigned int status;
531
532 if (unlikely(retval != map->m_len)) {
533 ext4_warning(inode->i_sb,
534 "ES len assertion failed for inode "
535 "%lu: retval %d != map->m_len %d",
536 inode->i_ino, retval, map->m_len);
537 WARN_ON(1);
538 }
539
540 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
541 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
542 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
543 ext4_find_delalloc_range(inode, map->m_lblk,
544 map->m_lblk + map->m_len - 1))
545 status |= EXTENT_STATUS_DELAYED;
546 ret = ext4_es_insert_extent(inode, map->m_lblk,
547 map->m_len, map->m_pblk, status);
548 if (ret < 0)
549 retval = ret;
550 }
551 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
552 up_read((&EXT4_I(inode)->i_data_sem));
553
554 found:
555 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
556 ret = check_block_validity(inode, map);
557 if (ret != 0)
558 return ret;
559 }
560
561 /* If it is only a block(s) look up */
562 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
563 return retval;
564
565 /*
566 * Returns if the blocks have already allocated
567 *
568 * Note that if blocks have been preallocated
569 * ext4_ext_get_block() returns the create = 0
570 * with buffer head unmapped.
571 */
572 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
573 /*
574 * If we need to convert extent to unwritten
575 * we continue and do the actual work in
576 * ext4_ext_map_blocks()
577 */
578 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
579 return retval;
580
581 /*
582 * Here we clear m_flags because after allocating an new extent,
583 * it will be set again.
584 */
585 map->m_flags &= ~EXT4_MAP_FLAGS;
586
587 /*
588 * New blocks allocate and/or writing to unwritten extent
589 * will possibly result in updating i_data, so we take
590 * the write lock of i_data_sem, and call get_block()
591 * with create == 1 flag.
592 */
593 down_write(&EXT4_I(inode)->i_data_sem);
594
595 /*
596 * We need to check for EXT4 here because migrate
597 * could have changed the inode type in between
598 */
599 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
600 retval = ext4_ext_map_blocks(handle, inode, map, flags);
601 } else {
602 retval = ext4_ind_map_blocks(handle, inode, map, flags);
603
604 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
605 /*
606 * We allocated new blocks which will result in
607 * i_data's format changing. Force the migrate
608 * to fail by clearing migrate flags
609 */
610 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
611 }
612
613 /*
614 * Update reserved blocks/metadata blocks after successful
615 * block allocation which had been deferred till now. We don't
616 * support fallocate for non extent files. So we can update
617 * reserve space here.
618 */
619 if ((retval > 0) &&
620 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
621 ext4_da_update_reserve_space(inode, retval, 1);
622 }
623
624 if (retval > 0) {
625 unsigned int status;
626
627 if (unlikely(retval != map->m_len)) {
628 ext4_warning(inode->i_sb,
629 "ES len assertion failed for inode "
630 "%lu: retval %d != map->m_len %d",
631 inode->i_ino, retval, map->m_len);
632 WARN_ON(1);
633 }
634
635 /*
636 * If the extent has been zeroed out, we don't need to update
637 * extent status tree.
638 */
639 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
640 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
641 if (ext4_es_is_written(&es))
642 goto has_zeroout;
643 }
644 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
645 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
646 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
647 ext4_find_delalloc_range(inode, map->m_lblk,
648 map->m_lblk + map->m_len - 1))
649 status |= EXTENT_STATUS_DELAYED;
650 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
651 map->m_pblk, status);
652 if (ret < 0)
653 retval = ret;
654 }
655
656 has_zeroout:
657 up_write((&EXT4_I(inode)->i_data_sem));
658 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
659 ret = check_block_validity(inode, map);
660 if (ret != 0)
661 return ret;
662
663 /*
664 * Inodes with freshly allocated blocks where contents will be
665 * visible after transaction commit must be on transaction's
666 * ordered data list.
667 */
668 if (map->m_flags & EXT4_MAP_NEW &&
669 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
670 !IS_NOQUOTA(inode) &&
671 ext4_should_order_data(inode)) {
672 ret = ext4_jbd2_file_inode(handle, inode);
673 if (ret)
674 return ret;
675 }
676 }
677 return retval;
678 }
679
680 /* Maximum number of blocks we map for direct IO at once. */
681 #define DIO_MAX_BLOCKS 4096
682
_ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int flags)683 static int _ext4_get_block(struct inode *inode, sector_t iblock,
684 struct buffer_head *bh, int flags)
685 {
686 handle_t *handle = ext4_journal_current_handle();
687 struct ext4_map_blocks map;
688 int ret = 0, started = 0;
689 int dio_credits;
690
691 if (ext4_has_inline_data(inode))
692 return -ERANGE;
693
694 map.m_lblk = iblock;
695 map.m_len = bh->b_size >> inode->i_blkbits;
696
697 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
698 /* Direct IO write... */
699 if (map.m_len > DIO_MAX_BLOCKS)
700 map.m_len = DIO_MAX_BLOCKS;
701 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
702 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
703 dio_credits);
704 if (IS_ERR(handle)) {
705 ret = PTR_ERR(handle);
706 return ret;
707 }
708 started = 1;
709 }
710
711 ret = ext4_map_blocks(handle, inode, &map, flags);
712 if (ret > 0) {
713 ext4_io_end_t *io_end = ext4_inode_aio(inode);
714
715 map_bh(bh, inode->i_sb, map.m_pblk);
716 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
717 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
718 set_buffer_defer_completion(bh);
719 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
720 ret = 0;
721 }
722 if (started)
723 ext4_journal_stop(handle);
724 return ret;
725 }
726
ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)727 int ext4_get_block(struct inode *inode, sector_t iblock,
728 struct buffer_head *bh, int create)
729 {
730 return _ext4_get_block(inode, iblock, bh,
731 create ? EXT4_GET_BLOCKS_CREATE : 0);
732 }
733
734 /*
735 * `handle' can be NULL if create is zero
736 */
ext4_getblk(handle_t * handle,struct inode * inode,ext4_lblk_t block,int create)737 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
738 ext4_lblk_t block, int create)
739 {
740 struct ext4_map_blocks map;
741 struct buffer_head *bh;
742 int err;
743
744 J_ASSERT(handle != NULL || create == 0);
745
746 map.m_lblk = block;
747 map.m_len = 1;
748 err = ext4_map_blocks(handle, inode, &map,
749 create ? EXT4_GET_BLOCKS_CREATE : 0);
750
751 if (err == 0)
752 return create ? ERR_PTR(-ENOSPC) : NULL;
753 if (err < 0)
754 return ERR_PTR(err);
755
756 bh = sb_getblk(inode->i_sb, map.m_pblk);
757 if (unlikely(!bh))
758 return ERR_PTR(-ENOMEM);
759 if (map.m_flags & EXT4_MAP_NEW) {
760 J_ASSERT(create != 0);
761 J_ASSERT(handle != NULL);
762
763 /*
764 * Now that we do not always journal data, we should
765 * keep in mind whether this should always journal the
766 * new buffer as metadata. For now, regular file
767 * writes use ext4_get_block instead, so it's not a
768 * problem.
769 */
770 lock_buffer(bh);
771 BUFFER_TRACE(bh, "call get_create_access");
772 err = ext4_journal_get_create_access(handle, bh);
773 if (unlikely(err)) {
774 unlock_buffer(bh);
775 goto errout;
776 }
777 if (!buffer_uptodate(bh)) {
778 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
779 set_buffer_uptodate(bh);
780 }
781 unlock_buffer(bh);
782 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
783 err = ext4_handle_dirty_metadata(handle, inode, bh);
784 if (unlikely(err))
785 goto errout;
786 } else
787 BUFFER_TRACE(bh, "not a new buffer");
788 return bh;
789 errout:
790 brelse(bh);
791 return ERR_PTR(err);
792 }
793
ext4_bread(handle_t * handle,struct inode * inode,ext4_lblk_t block,int create)794 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
795 ext4_lblk_t block, int create)
796 {
797 struct buffer_head *bh;
798
799 bh = ext4_getblk(handle, inode, block, create);
800 if (IS_ERR(bh))
801 return bh;
802 if (!bh || buffer_uptodate(bh))
803 return bh;
804 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
805 wait_on_buffer(bh);
806 if (buffer_uptodate(bh))
807 return bh;
808 put_bh(bh);
809 return ERR_PTR(-EIO);
810 }
811
ext4_walk_page_buffers(handle_t * handle,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct buffer_head * bh))812 int ext4_walk_page_buffers(handle_t *handle,
813 struct buffer_head *head,
814 unsigned from,
815 unsigned to,
816 int *partial,
817 int (*fn)(handle_t *handle,
818 struct buffer_head *bh))
819 {
820 struct buffer_head *bh;
821 unsigned block_start, block_end;
822 unsigned blocksize = head->b_size;
823 int err, ret = 0;
824 struct buffer_head *next;
825
826 for (bh = head, block_start = 0;
827 ret == 0 && (bh != head || !block_start);
828 block_start = block_end, bh = next) {
829 next = bh->b_this_page;
830 block_end = block_start + blocksize;
831 if (block_end <= from || block_start >= to) {
832 if (partial && !buffer_uptodate(bh))
833 *partial = 1;
834 continue;
835 }
836 err = (*fn)(handle, bh);
837 if (!ret)
838 ret = err;
839 }
840 return ret;
841 }
842
843 /*
844 * To preserve ordering, it is essential that the hole instantiation and
845 * the data write be encapsulated in a single transaction. We cannot
846 * close off a transaction and start a new one between the ext4_get_block()
847 * and the commit_write(). So doing the jbd2_journal_start at the start of
848 * prepare_write() is the right place.
849 *
850 * Also, this function can nest inside ext4_writepage(). In that case, we
851 * *know* that ext4_writepage() has generated enough buffer credits to do the
852 * whole page. So we won't block on the journal in that case, which is good,
853 * because the caller may be PF_MEMALLOC.
854 *
855 * By accident, ext4 can be reentered when a transaction is open via
856 * quota file writes. If we were to commit the transaction while thus
857 * reentered, there can be a deadlock - we would be holding a quota
858 * lock, and the commit would never complete if another thread had a
859 * transaction open and was blocking on the quota lock - a ranking
860 * violation.
861 *
862 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
863 * will _not_ run commit under these circumstances because handle->h_ref
864 * is elevated. We'll still have enough credits for the tiny quotafile
865 * write.
866 */
do_journal_get_write_access(handle_t * handle,struct buffer_head * bh)867 int do_journal_get_write_access(handle_t *handle,
868 struct buffer_head *bh)
869 {
870 int dirty = buffer_dirty(bh);
871 int ret;
872
873 if (!buffer_mapped(bh) || buffer_freed(bh))
874 return 0;
875 /*
876 * __block_write_begin() could have dirtied some buffers. Clean
877 * the dirty bit as jbd2_journal_get_write_access() could complain
878 * otherwise about fs integrity issues. Setting of the dirty bit
879 * by __block_write_begin() isn't a real problem here as we clear
880 * the bit before releasing a page lock and thus writeback cannot
881 * ever write the buffer.
882 */
883 if (dirty)
884 clear_buffer_dirty(bh);
885 BUFFER_TRACE(bh, "get write access");
886 ret = ext4_journal_get_write_access(handle, bh);
887 if (!ret && dirty)
888 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
889 return ret;
890 }
891
892 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
893 struct buffer_head *bh_result, int create);
894
895 #ifdef CONFIG_EXT4_FS_ENCRYPTION
ext4_block_write_begin(struct page * page,loff_t pos,unsigned len,get_block_t * get_block)896 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
897 get_block_t *get_block)
898 {
899 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
900 unsigned to = from + len;
901 struct inode *inode = page->mapping->host;
902 unsigned block_start, block_end;
903 sector_t block;
904 int err = 0;
905 unsigned blocksize = inode->i_sb->s_blocksize;
906 unsigned bbits;
907 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
908 bool decrypt = false;
909
910 BUG_ON(!PageLocked(page));
911 BUG_ON(from > PAGE_CACHE_SIZE);
912 BUG_ON(to > PAGE_CACHE_SIZE);
913 BUG_ON(from > to);
914
915 if (!page_has_buffers(page))
916 create_empty_buffers(page, blocksize, 0);
917 head = page_buffers(page);
918 bbits = ilog2(blocksize);
919 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
920
921 for (bh = head, block_start = 0; bh != head || !block_start;
922 block++, block_start = block_end, bh = bh->b_this_page) {
923 block_end = block_start + blocksize;
924 if (block_end <= from || block_start >= to) {
925 if (PageUptodate(page)) {
926 if (!buffer_uptodate(bh))
927 set_buffer_uptodate(bh);
928 }
929 continue;
930 }
931 if (buffer_new(bh))
932 clear_buffer_new(bh);
933 if (!buffer_mapped(bh)) {
934 WARN_ON(bh->b_size != blocksize);
935 err = get_block(inode, block, bh, 1);
936 if (err)
937 break;
938 if (buffer_new(bh)) {
939 unmap_underlying_metadata(bh->b_bdev,
940 bh->b_blocknr);
941 if (PageUptodate(page)) {
942 clear_buffer_new(bh);
943 set_buffer_uptodate(bh);
944 mark_buffer_dirty(bh);
945 continue;
946 }
947 if (block_end > to || block_start < from)
948 zero_user_segments(page, to, block_end,
949 block_start, from);
950 continue;
951 }
952 }
953 if (PageUptodate(page)) {
954 if (!buffer_uptodate(bh))
955 set_buffer_uptodate(bh);
956 continue;
957 }
958 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
959 !buffer_unwritten(bh) &&
960 (block_start < from || block_end > to)) {
961 ll_rw_block(READ, 1, &bh);
962 *wait_bh++ = bh;
963 decrypt = ext4_encrypted_inode(inode) &&
964 S_ISREG(inode->i_mode);
965 }
966 }
967 /*
968 * If we issued read requests, let them complete.
969 */
970 while (wait_bh > wait) {
971 wait_on_buffer(*--wait_bh);
972 if (!buffer_uptodate(*wait_bh))
973 err = -EIO;
974 }
975 if (unlikely(err))
976 page_zero_new_buffers(page, from, to);
977 else if (decrypt)
978 err = ext4_decrypt_one(inode, page);
979 return err;
980 }
981 #endif
982
ext4_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)983 static int ext4_write_begin(struct file *file, struct address_space *mapping,
984 loff_t pos, unsigned len, unsigned flags,
985 struct page **pagep, void **fsdata)
986 {
987 struct inode *inode = mapping->host;
988 int ret, needed_blocks;
989 handle_t *handle;
990 int retries = 0;
991 struct page *page;
992 pgoff_t index;
993 unsigned from, to;
994
995 trace_ext4_write_begin(inode, pos, len, flags);
996 /*
997 * Reserve one block more for addition to orphan list in case
998 * we allocate blocks but write fails for some reason
999 */
1000 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1001 index = pos >> PAGE_CACHE_SHIFT;
1002 from = pos & (PAGE_CACHE_SIZE - 1);
1003 to = from + len;
1004
1005 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1006 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1007 flags, pagep);
1008 if (ret < 0)
1009 return ret;
1010 if (ret == 1)
1011 return 0;
1012 }
1013
1014 /*
1015 * grab_cache_page_write_begin() can take a long time if the
1016 * system is thrashing due to memory pressure, or if the page
1017 * is being written back. So grab it first before we start
1018 * the transaction handle. This also allows us to allocate
1019 * the page (if needed) without using GFP_NOFS.
1020 */
1021 retry_grab:
1022 page = grab_cache_page_write_begin(mapping, index, flags);
1023 if (!page)
1024 return -ENOMEM;
1025 unlock_page(page);
1026
1027 retry_journal:
1028 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1029 if (IS_ERR(handle)) {
1030 page_cache_release(page);
1031 return PTR_ERR(handle);
1032 }
1033
1034 lock_page(page);
1035 if (page->mapping != mapping) {
1036 /* The page got truncated from under us */
1037 unlock_page(page);
1038 page_cache_release(page);
1039 ext4_journal_stop(handle);
1040 goto retry_grab;
1041 }
1042 /* In case writeback began while the page was unlocked */
1043 wait_for_stable_page(page);
1044
1045 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1046 if (ext4_should_dioread_nolock(inode))
1047 ret = ext4_block_write_begin(page, pos, len,
1048 ext4_get_block_write);
1049 else
1050 ret = ext4_block_write_begin(page, pos, len,
1051 ext4_get_block);
1052 #else
1053 if (ext4_should_dioread_nolock(inode))
1054 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1055 else
1056 ret = __block_write_begin(page, pos, len, ext4_get_block);
1057 #endif
1058 if (!ret && ext4_should_journal_data(inode)) {
1059 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1060 from, to, NULL,
1061 do_journal_get_write_access);
1062 }
1063
1064 if (ret) {
1065 unlock_page(page);
1066 /*
1067 * __block_write_begin may have instantiated a few blocks
1068 * outside i_size. Trim these off again. Don't need
1069 * i_size_read because we hold i_mutex.
1070 *
1071 * Add inode to orphan list in case we crash before
1072 * truncate finishes
1073 */
1074 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1075 ext4_orphan_add(handle, inode);
1076
1077 ext4_journal_stop(handle);
1078 if (pos + len > inode->i_size) {
1079 ext4_truncate_failed_write(inode);
1080 /*
1081 * If truncate failed early the inode might
1082 * still be on the orphan list; we need to
1083 * make sure the inode is removed from the
1084 * orphan list in that case.
1085 */
1086 if (inode->i_nlink)
1087 ext4_orphan_del(NULL, inode);
1088 }
1089
1090 if (ret == -ENOSPC &&
1091 ext4_should_retry_alloc(inode->i_sb, &retries))
1092 goto retry_journal;
1093 page_cache_release(page);
1094 return ret;
1095 }
1096 *pagep = page;
1097 return ret;
1098 }
1099
1100 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct buffer_head * bh)1101 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1102 {
1103 int ret;
1104 if (!buffer_mapped(bh) || buffer_freed(bh))
1105 return 0;
1106 set_buffer_uptodate(bh);
1107 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1108 clear_buffer_meta(bh);
1109 clear_buffer_prio(bh);
1110 return ret;
1111 }
1112
1113 /*
1114 * We need to pick up the new inode size which generic_commit_write gave us
1115 * `file' can be NULL - eg, when called from page_symlink().
1116 *
1117 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1118 * buffers are managed internally.
1119 */
ext4_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1120 static int ext4_write_end(struct file *file,
1121 struct address_space *mapping,
1122 loff_t pos, unsigned len, unsigned copied,
1123 struct page *page, void *fsdata)
1124 {
1125 handle_t *handle = ext4_journal_current_handle();
1126 struct inode *inode = mapping->host;
1127 int ret = 0, ret2;
1128 int i_size_changed = 0;
1129
1130 trace_ext4_write_end(inode, pos, len, copied);
1131 if (ext4_has_inline_data(inode)) {
1132 ret = ext4_write_inline_data_end(inode, pos, len,
1133 copied, page);
1134 if (ret < 0)
1135 goto errout;
1136 copied = ret;
1137 } else
1138 copied = block_write_end(file, mapping, pos,
1139 len, copied, page, fsdata);
1140 /*
1141 * it's important to update i_size while still holding page lock:
1142 * page writeout could otherwise come in and zero beyond i_size.
1143 */
1144 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1145 unlock_page(page);
1146 page_cache_release(page);
1147
1148 /*
1149 * Don't mark the inode dirty under page lock. First, it unnecessarily
1150 * makes the holding time of page lock longer. Second, it forces lock
1151 * ordering of page lock and transaction start for journaling
1152 * filesystems.
1153 */
1154 if (i_size_changed)
1155 ext4_mark_inode_dirty(handle, inode);
1156
1157 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1158 /* if we have allocated more blocks and copied
1159 * less. We will have blocks allocated outside
1160 * inode->i_size. So truncate them
1161 */
1162 ext4_orphan_add(handle, inode);
1163 errout:
1164 ret2 = ext4_journal_stop(handle);
1165 if (!ret)
1166 ret = ret2;
1167
1168 if (pos + len > inode->i_size) {
1169 ext4_truncate_failed_write(inode);
1170 /*
1171 * If truncate failed early the inode might still be
1172 * on the orphan list; we need to make sure the inode
1173 * is removed from the orphan list in that case.
1174 */
1175 if (inode->i_nlink)
1176 ext4_orphan_del(NULL, inode);
1177 }
1178
1179 return ret ? ret : copied;
1180 }
1181
ext4_journalled_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1182 static int ext4_journalled_write_end(struct file *file,
1183 struct address_space *mapping,
1184 loff_t pos, unsigned len, unsigned copied,
1185 struct page *page, void *fsdata)
1186 {
1187 handle_t *handle = ext4_journal_current_handle();
1188 struct inode *inode = mapping->host;
1189 int ret = 0, ret2;
1190 int partial = 0;
1191 unsigned from, to;
1192 int size_changed = 0;
1193
1194 trace_ext4_journalled_write_end(inode, pos, len, copied);
1195 from = pos & (PAGE_CACHE_SIZE - 1);
1196 to = from + len;
1197
1198 BUG_ON(!ext4_handle_valid(handle));
1199
1200 if (ext4_has_inline_data(inode))
1201 copied = ext4_write_inline_data_end(inode, pos, len,
1202 copied, page);
1203 else {
1204 if (copied < len) {
1205 if (!PageUptodate(page))
1206 copied = 0;
1207 page_zero_new_buffers(page, from+copied, to);
1208 }
1209
1210 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1211 to, &partial, write_end_fn);
1212 if (!partial)
1213 SetPageUptodate(page);
1214 }
1215 size_changed = ext4_update_inode_size(inode, pos + copied);
1216 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1217 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1218 unlock_page(page);
1219 page_cache_release(page);
1220
1221 if (size_changed) {
1222 ret2 = ext4_mark_inode_dirty(handle, inode);
1223 if (!ret)
1224 ret = ret2;
1225 }
1226
1227 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1228 /* if we have allocated more blocks and copied
1229 * less. We will have blocks allocated outside
1230 * inode->i_size. So truncate them
1231 */
1232 ext4_orphan_add(handle, inode);
1233
1234 ret2 = ext4_journal_stop(handle);
1235 if (!ret)
1236 ret = ret2;
1237 if (pos + len > inode->i_size) {
1238 ext4_truncate_failed_write(inode);
1239 /*
1240 * If truncate failed early the inode might still be
1241 * on the orphan list; we need to make sure the inode
1242 * is removed from the orphan list in that case.
1243 */
1244 if (inode->i_nlink)
1245 ext4_orphan_del(NULL, inode);
1246 }
1247
1248 return ret ? ret : copied;
1249 }
1250
1251 /*
1252 * Reserve a single cluster located at lblock
1253 */
ext4_da_reserve_space(struct inode * inode,ext4_lblk_t lblock)1254 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1255 {
1256 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1257 struct ext4_inode_info *ei = EXT4_I(inode);
1258 unsigned int md_needed;
1259 int ret;
1260
1261 /*
1262 * We will charge metadata quota at writeout time; this saves
1263 * us from metadata over-estimation, though we may go over by
1264 * a small amount in the end. Here we just reserve for data.
1265 */
1266 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1267 if (ret)
1268 return ret;
1269
1270 /*
1271 * recalculate the amount of metadata blocks to reserve
1272 * in order to allocate nrblocks
1273 * worse case is one extent per block
1274 */
1275 spin_lock(&ei->i_block_reservation_lock);
1276 /*
1277 * ext4_calc_metadata_amount() has side effects, which we have
1278 * to be prepared undo if we fail to claim space.
1279 */
1280 md_needed = 0;
1281 trace_ext4_da_reserve_space(inode, 0);
1282
1283 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1284 spin_unlock(&ei->i_block_reservation_lock);
1285 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1286 return -ENOSPC;
1287 }
1288 ei->i_reserved_data_blocks++;
1289 spin_unlock(&ei->i_block_reservation_lock);
1290
1291 return 0; /* success */
1292 }
1293
ext4_da_release_space(struct inode * inode,int to_free)1294 static void ext4_da_release_space(struct inode *inode, int to_free)
1295 {
1296 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1297 struct ext4_inode_info *ei = EXT4_I(inode);
1298
1299 if (!to_free)
1300 return; /* Nothing to release, exit */
1301
1302 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1303
1304 trace_ext4_da_release_space(inode, to_free);
1305 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1306 /*
1307 * if there aren't enough reserved blocks, then the
1308 * counter is messed up somewhere. Since this
1309 * function is called from invalidate page, it's
1310 * harmless to return without any action.
1311 */
1312 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1313 "ino %lu, to_free %d with only %d reserved "
1314 "data blocks", inode->i_ino, to_free,
1315 ei->i_reserved_data_blocks);
1316 WARN_ON(1);
1317 to_free = ei->i_reserved_data_blocks;
1318 }
1319 ei->i_reserved_data_blocks -= to_free;
1320
1321 /* update fs dirty data blocks counter */
1322 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1323
1324 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1325
1326 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1327 }
1328
ext4_da_page_release_reservation(struct page * page,unsigned int offset,unsigned int length)1329 static void ext4_da_page_release_reservation(struct page *page,
1330 unsigned int offset,
1331 unsigned int length)
1332 {
1333 int to_release = 0;
1334 struct buffer_head *head, *bh;
1335 unsigned int curr_off = 0;
1336 struct inode *inode = page->mapping->host;
1337 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1338 unsigned int stop = offset + length;
1339 int num_clusters;
1340 ext4_fsblk_t lblk;
1341
1342 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1343
1344 head = page_buffers(page);
1345 bh = head;
1346 do {
1347 unsigned int next_off = curr_off + bh->b_size;
1348
1349 if (next_off > stop)
1350 break;
1351
1352 if ((offset <= curr_off) && (buffer_delay(bh))) {
1353 to_release++;
1354 clear_buffer_delay(bh);
1355 }
1356 curr_off = next_off;
1357 } while ((bh = bh->b_this_page) != head);
1358
1359 if (to_release) {
1360 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1361 ext4_es_remove_extent(inode, lblk, to_release);
1362 }
1363
1364 /* If we have released all the blocks belonging to a cluster, then we
1365 * need to release the reserved space for that cluster. */
1366 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1367 while (num_clusters > 0) {
1368 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1369 ((num_clusters - 1) << sbi->s_cluster_bits);
1370 if (sbi->s_cluster_ratio == 1 ||
1371 !ext4_find_delalloc_cluster(inode, lblk))
1372 ext4_da_release_space(inode, 1);
1373
1374 num_clusters--;
1375 }
1376 }
1377
1378 /*
1379 * Delayed allocation stuff
1380 */
1381
1382 struct mpage_da_data {
1383 struct inode *inode;
1384 struct writeback_control *wbc;
1385
1386 pgoff_t first_page; /* The first page to write */
1387 pgoff_t next_page; /* Current page to examine */
1388 pgoff_t last_page; /* Last page to examine */
1389 /*
1390 * Extent to map - this can be after first_page because that can be
1391 * fully mapped. We somewhat abuse m_flags to store whether the extent
1392 * is delalloc or unwritten.
1393 */
1394 struct ext4_map_blocks map;
1395 struct ext4_io_submit io_submit; /* IO submission data */
1396 };
1397
mpage_release_unused_pages(struct mpage_da_data * mpd,bool invalidate)1398 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1399 bool invalidate)
1400 {
1401 int nr_pages, i;
1402 pgoff_t index, end;
1403 struct pagevec pvec;
1404 struct inode *inode = mpd->inode;
1405 struct address_space *mapping = inode->i_mapping;
1406
1407 /* This is necessary when next_page == 0. */
1408 if (mpd->first_page >= mpd->next_page)
1409 return;
1410
1411 index = mpd->first_page;
1412 end = mpd->next_page - 1;
1413 if (invalidate) {
1414 ext4_lblk_t start, last;
1415 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1416 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1417 ext4_es_remove_extent(inode, start, last - start + 1);
1418 }
1419
1420 pagevec_init(&pvec, 0);
1421 while (index <= end) {
1422 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1423 if (nr_pages == 0)
1424 break;
1425 for (i = 0; i < nr_pages; i++) {
1426 struct page *page = pvec.pages[i];
1427 if (page->index > end)
1428 break;
1429 BUG_ON(!PageLocked(page));
1430 BUG_ON(PageWriteback(page));
1431 if (invalidate) {
1432 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1433 ClearPageUptodate(page);
1434 }
1435 unlock_page(page);
1436 }
1437 index = pvec.pages[nr_pages - 1]->index + 1;
1438 pagevec_release(&pvec);
1439 }
1440 }
1441
ext4_print_free_blocks(struct inode * inode)1442 static void ext4_print_free_blocks(struct inode *inode)
1443 {
1444 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1445 struct super_block *sb = inode->i_sb;
1446 struct ext4_inode_info *ei = EXT4_I(inode);
1447
1448 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1449 EXT4_C2B(EXT4_SB(inode->i_sb),
1450 ext4_count_free_clusters(sb)));
1451 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1452 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1453 (long long) EXT4_C2B(EXT4_SB(sb),
1454 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1455 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1456 (long long) EXT4_C2B(EXT4_SB(sb),
1457 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1458 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1459 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1460 ei->i_reserved_data_blocks);
1461 return;
1462 }
1463
ext4_bh_delay_or_unwritten(handle_t * handle,struct buffer_head * bh)1464 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1465 {
1466 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1467 }
1468
1469 /*
1470 * This function is grabs code from the very beginning of
1471 * ext4_map_blocks, but assumes that the caller is from delayed write
1472 * time. This function looks up the requested blocks and sets the
1473 * buffer delay bit under the protection of i_data_sem.
1474 */
ext4_da_map_blocks(struct inode * inode,sector_t iblock,struct ext4_map_blocks * map,struct buffer_head * bh)1475 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1476 struct ext4_map_blocks *map,
1477 struct buffer_head *bh)
1478 {
1479 struct extent_status es;
1480 int retval;
1481 sector_t invalid_block = ~((sector_t) 0xffff);
1482 #ifdef ES_AGGRESSIVE_TEST
1483 struct ext4_map_blocks orig_map;
1484
1485 memcpy(&orig_map, map, sizeof(*map));
1486 #endif
1487
1488 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1489 invalid_block = ~0;
1490
1491 map->m_flags = 0;
1492 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1493 "logical block %lu\n", inode->i_ino, map->m_len,
1494 (unsigned long) map->m_lblk);
1495
1496 /* Lookup extent status tree firstly */
1497 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1498 ext4_es_lru_add(inode);
1499 if (ext4_es_is_hole(&es)) {
1500 retval = 0;
1501 down_read(&EXT4_I(inode)->i_data_sem);
1502 goto add_delayed;
1503 }
1504
1505 /*
1506 * Delayed extent could be allocated by fallocate.
1507 * So we need to check it.
1508 */
1509 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1510 map_bh(bh, inode->i_sb, invalid_block);
1511 set_buffer_new(bh);
1512 set_buffer_delay(bh);
1513 return 0;
1514 }
1515
1516 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1517 retval = es.es_len - (iblock - es.es_lblk);
1518 if (retval > map->m_len)
1519 retval = map->m_len;
1520 map->m_len = retval;
1521 if (ext4_es_is_written(&es))
1522 map->m_flags |= EXT4_MAP_MAPPED;
1523 else if (ext4_es_is_unwritten(&es))
1524 map->m_flags |= EXT4_MAP_UNWRITTEN;
1525 else
1526 BUG_ON(1);
1527
1528 #ifdef ES_AGGRESSIVE_TEST
1529 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1530 #endif
1531 return retval;
1532 }
1533
1534 /*
1535 * Try to see if we can get the block without requesting a new
1536 * file system block.
1537 */
1538 down_read(&EXT4_I(inode)->i_data_sem);
1539 if (ext4_has_inline_data(inode)) {
1540 /*
1541 * We will soon create blocks for this page, and let
1542 * us pretend as if the blocks aren't allocated yet.
1543 * In case of clusters, we have to handle the work
1544 * of mapping from cluster so that the reserved space
1545 * is calculated properly.
1546 */
1547 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1548 ext4_find_delalloc_cluster(inode, map->m_lblk))
1549 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1550 retval = 0;
1551 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1552 retval = ext4_ext_map_blocks(NULL, inode, map,
1553 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1554 else
1555 retval = ext4_ind_map_blocks(NULL, inode, map,
1556 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1557
1558 add_delayed:
1559 if (retval == 0) {
1560 int ret;
1561 /*
1562 * XXX: __block_prepare_write() unmaps passed block,
1563 * is it OK?
1564 */
1565 /*
1566 * If the block was allocated from previously allocated cluster,
1567 * then we don't need to reserve it again. However we still need
1568 * to reserve metadata for every block we're going to write.
1569 */
1570 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1571 ret = ext4_da_reserve_space(inode, iblock);
1572 if (ret) {
1573 /* not enough space to reserve */
1574 retval = ret;
1575 goto out_unlock;
1576 }
1577 }
1578
1579 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1580 ~0, EXTENT_STATUS_DELAYED);
1581 if (ret) {
1582 retval = ret;
1583 goto out_unlock;
1584 }
1585
1586 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1587 * and it should not appear on the bh->b_state.
1588 */
1589 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1590
1591 map_bh(bh, inode->i_sb, invalid_block);
1592 set_buffer_new(bh);
1593 set_buffer_delay(bh);
1594 } else if (retval > 0) {
1595 int ret;
1596 unsigned int status;
1597
1598 if (unlikely(retval != map->m_len)) {
1599 ext4_warning(inode->i_sb,
1600 "ES len assertion failed for inode "
1601 "%lu: retval %d != map->m_len %d",
1602 inode->i_ino, retval, map->m_len);
1603 WARN_ON(1);
1604 }
1605
1606 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1607 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1608 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1609 map->m_pblk, status);
1610 if (ret != 0)
1611 retval = ret;
1612 }
1613
1614 out_unlock:
1615 up_read((&EXT4_I(inode)->i_data_sem));
1616
1617 return retval;
1618 }
1619
1620 /*
1621 * This is a special get_block_t callback which is used by
1622 * ext4_da_write_begin(). It will either return mapped block or
1623 * reserve space for a single block.
1624 *
1625 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1626 * We also have b_blocknr = -1 and b_bdev initialized properly
1627 *
1628 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1629 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1630 * initialized properly.
1631 */
ext4_da_get_block_prep(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)1632 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1633 struct buffer_head *bh, int create)
1634 {
1635 struct ext4_map_blocks map;
1636 int ret = 0;
1637
1638 BUG_ON(create == 0);
1639 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1640
1641 map.m_lblk = iblock;
1642 map.m_len = 1;
1643
1644 /*
1645 * first, we need to know whether the block is allocated already
1646 * preallocated blocks are unmapped but should treated
1647 * the same as allocated blocks.
1648 */
1649 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1650 if (ret <= 0)
1651 return ret;
1652
1653 map_bh(bh, inode->i_sb, map.m_pblk);
1654 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1655
1656 if (buffer_unwritten(bh)) {
1657 /* A delayed write to unwritten bh should be marked
1658 * new and mapped. Mapped ensures that we don't do
1659 * get_block multiple times when we write to the same
1660 * offset and new ensures that we do proper zero out
1661 * for partial write.
1662 */
1663 set_buffer_new(bh);
1664 set_buffer_mapped(bh);
1665 }
1666 return 0;
1667 }
1668
bget_one(handle_t * handle,struct buffer_head * bh)1669 static int bget_one(handle_t *handle, struct buffer_head *bh)
1670 {
1671 get_bh(bh);
1672 return 0;
1673 }
1674
bput_one(handle_t * handle,struct buffer_head * bh)1675 static int bput_one(handle_t *handle, struct buffer_head *bh)
1676 {
1677 put_bh(bh);
1678 return 0;
1679 }
1680
__ext4_journalled_writepage(struct page * page,unsigned int len)1681 static int __ext4_journalled_writepage(struct page *page,
1682 unsigned int len)
1683 {
1684 struct address_space *mapping = page->mapping;
1685 struct inode *inode = mapping->host;
1686 struct buffer_head *page_bufs = NULL;
1687 handle_t *handle = NULL;
1688 int ret = 0, err = 0;
1689 int inline_data = ext4_has_inline_data(inode);
1690 struct buffer_head *inode_bh = NULL;
1691
1692 ClearPageChecked(page);
1693
1694 if (inline_data) {
1695 BUG_ON(page->index != 0);
1696 BUG_ON(len > ext4_get_max_inline_size(inode));
1697 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1698 if (inode_bh == NULL)
1699 goto out;
1700 } else {
1701 page_bufs = page_buffers(page);
1702 if (!page_bufs) {
1703 BUG();
1704 goto out;
1705 }
1706 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1707 NULL, bget_one);
1708 }
1709 /* As soon as we unlock the page, it can go away, but we have
1710 * references to buffers so we are safe */
1711 unlock_page(page);
1712
1713 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1714 ext4_writepage_trans_blocks(inode));
1715 if (IS_ERR(handle)) {
1716 ret = PTR_ERR(handle);
1717 goto out;
1718 }
1719
1720 BUG_ON(!ext4_handle_valid(handle));
1721
1722 if (inline_data) {
1723 BUFFER_TRACE(inode_bh, "get write access");
1724 ret = ext4_journal_get_write_access(handle, inode_bh);
1725
1726 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1727
1728 } else {
1729 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1730 do_journal_get_write_access);
1731
1732 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1733 write_end_fn);
1734 }
1735 if (ret == 0)
1736 ret = err;
1737 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1738 err = ext4_journal_stop(handle);
1739 if (!ret)
1740 ret = err;
1741
1742 if (!ext4_has_inline_data(inode))
1743 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1744 NULL, bput_one);
1745 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1746 out:
1747 brelse(inode_bh);
1748 return ret;
1749 }
1750
1751 /*
1752 * Note that we don't need to start a transaction unless we're journaling data
1753 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1754 * need to file the inode to the transaction's list in ordered mode because if
1755 * we are writing back data added by write(), the inode is already there and if
1756 * we are writing back data modified via mmap(), no one guarantees in which
1757 * transaction the data will hit the disk. In case we are journaling data, we
1758 * cannot start transaction directly because transaction start ranks above page
1759 * lock so we have to do some magic.
1760 *
1761 * This function can get called via...
1762 * - ext4_writepages after taking page lock (have journal handle)
1763 * - journal_submit_inode_data_buffers (no journal handle)
1764 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1765 * - grab_page_cache when doing write_begin (have journal handle)
1766 *
1767 * We don't do any block allocation in this function. If we have page with
1768 * multiple blocks we need to write those buffer_heads that are mapped. This
1769 * is important for mmaped based write. So if we do with blocksize 1K
1770 * truncate(f, 1024);
1771 * a = mmap(f, 0, 4096);
1772 * a[0] = 'a';
1773 * truncate(f, 4096);
1774 * we have in the page first buffer_head mapped via page_mkwrite call back
1775 * but other buffer_heads would be unmapped but dirty (dirty done via the
1776 * do_wp_page). So writepage should write the first block. If we modify
1777 * the mmap area beyond 1024 we will again get a page_fault and the
1778 * page_mkwrite callback will do the block allocation and mark the
1779 * buffer_heads mapped.
1780 *
1781 * We redirty the page if we have any buffer_heads that is either delay or
1782 * unwritten in the page.
1783 *
1784 * We can get recursively called as show below.
1785 *
1786 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1787 * ext4_writepage()
1788 *
1789 * But since we don't do any block allocation we should not deadlock.
1790 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1791 */
ext4_writepage(struct page * page,struct writeback_control * wbc)1792 static int ext4_writepage(struct page *page,
1793 struct writeback_control *wbc)
1794 {
1795 int ret = 0;
1796 loff_t size;
1797 unsigned int len;
1798 struct buffer_head *page_bufs = NULL;
1799 struct inode *inode = page->mapping->host;
1800 struct ext4_io_submit io_submit;
1801 bool keep_towrite = false;
1802
1803 trace_ext4_writepage(page);
1804 size = i_size_read(inode);
1805 if (page->index == size >> PAGE_CACHE_SHIFT)
1806 len = size & ~PAGE_CACHE_MASK;
1807 else
1808 len = PAGE_CACHE_SIZE;
1809
1810 page_bufs = page_buffers(page);
1811 /*
1812 * We cannot do block allocation or other extent handling in this
1813 * function. If there are buffers needing that, we have to redirty
1814 * the page. But we may reach here when we do a journal commit via
1815 * journal_submit_inode_data_buffers() and in that case we must write
1816 * allocated buffers to achieve data=ordered mode guarantees.
1817 */
1818 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1819 ext4_bh_delay_or_unwritten)) {
1820 redirty_page_for_writepage(wbc, page);
1821 if (current->flags & PF_MEMALLOC) {
1822 /*
1823 * For memory cleaning there's no point in writing only
1824 * some buffers. So just bail out. Warn if we came here
1825 * from direct reclaim.
1826 */
1827 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1828 == PF_MEMALLOC);
1829 unlock_page(page);
1830 return 0;
1831 }
1832 keep_towrite = true;
1833 }
1834
1835 if (PageChecked(page) && ext4_should_journal_data(inode))
1836 /*
1837 * It's mmapped pagecache. Add buffers and journal it. There
1838 * doesn't seem much point in redirtying the page here.
1839 */
1840 return __ext4_journalled_writepage(page, len);
1841
1842 ext4_io_submit_init(&io_submit, wbc);
1843 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1844 if (!io_submit.io_end) {
1845 redirty_page_for_writepage(wbc, page);
1846 unlock_page(page);
1847 return -ENOMEM;
1848 }
1849 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1850 ext4_io_submit(&io_submit);
1851 /* Drop io_end reference we got from init */
1852 ext4_put_io_end_defer(io_submit.io_end);
1853 return ret;
1854 }
1855
mpage_submit_page(struct mpage_da_data * mpd,struct page * page)1856 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1857 {
1858 int len;
1859 loff_t size = i_size_read(mpd->inode);
1860 int err;
1861
1862 BUG_ON(page->index != mpd->first_page);
1863 if (page->index == size >> PAGE_CACHE_SHIFT)
1864 len = size & ~PAGE_CACHE_MASK;
1865 else
1866 len = PAGE_CACHE_SIZE;
1867 clear_page_dirty_for_io(page);
1868 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1869 if (!err)
1870 mpd->wbc->nr_to_write--;
1871 mpd->first_page++;
1872
1873 return err;
1874 }
1875
1876 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1877
1878 /*
1879 * mballoc gives us at most this number of blocks...
1880 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1881 * The rest of mballoc seems to handle chunks up to full group size.
1882 */
1883 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1884
1885 /*
1886 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1887 *
1888 * @mpd - extent of blocks
1889 * @lblk - logical number of the block in the file
1890 * @bh - buffer head we want to add to the extent
1891 *
1892 * The function is used to collect contig. blocks in the same state. If the
1893 * buffer doesn't require mapping for writeback and we haven't started the
1894 * extent of buffers to map yet, the function returns 'true' immediately - the
1895 * caller can write the buffer right away. Otherwise the function returns true
1896 * if the block has been added to the extent, false if the block couldn't be
1897 * added.
1898 */
mpage_add_bh_to_extent(struct mpage_da_data * mpd,ext4_lblk_t lblk,struct buffer_head * bh)1899 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1900 struct buffer_head *bh)
1901 {
1902 struct ext4_map_blocks *map = &mpd->map;
1903
1904 /* Buffer that doesn't need mapping for writeback? */
1905 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1906 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1907 /* So far no extent to map => we write the buffer right away */
1908 if (map->m_len == 0)
1909 return true;
1910 return false;
1911 }
1912
1913 /* First block in the extent? */
1914 if (map->m_len == 0) {
1915 map->m_lblk = lblk;
1916 map->m_len = 1;
1917 map->m_flags = bh->b_state & BH_FLAGS;
1918 return true;
1919 }
1920
1921 /* Don't go larger than mballoc is willing to allocate */
1922 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1923 return false;
1924
1925 /* Can we merge the block to our big extent? */
1926 if (lblk == map->m_lblk + map->m_len &&
1927 (bh->b_state & BH_FLAGS) == map->m_flags) {
1928 map->m_len++;
1929 return true;
1930 }
1931 return false;
1932 }
1933
1934 /*
1935 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1936 *
1937 * @mpd - extent of blocks for mapping
1938 * @head - the first buffer in the page
1939 * @bh - buffer we should start processing from
1940 * @lblk - logical number of the block in the file corresponding to @bh
1941 *
1942 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1943 * the page for IO if all buffers in this page were mapped and there's no
1944 * accumulated extent of buffers to map or add buffers in the page to the
1945 * extent of buffers to map. The function returns 1 if the caller can continue
1946 * by processing the next page, 0 if it should stop adding buffers to the
1947 * extent to map because we cannot extend it anymore. It can also return value
1948 * < 0 in case of error during IO submission.
1949 */
mpage_process_page_bufs(struct mpage_da_data * mpd,struct buffer_head * head,struct buffer_head * bh,ext4_lblk_t lblk)1950 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1951 struct buffer_head *head,
1952 struct buffer_head *bh,
1953 ext4_lblk_t lblk)
1954 {
1955 struct inode *inode = mpd->inode;
1956 int err;
1957 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1958 >> inode->i_blkbits;
1959
1960 do {
1961 BUG_ON(buffer_locked(bh));
1962
1963 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1964 /* Found extent to map? */
1965 if (mpd->map.m_len)
1966 return 0;
1967 /* Everything mapped so far and we hit EOF */
1968 break;
1969 }
1970 } while (lblk++, (bh = bh->b_this_page) != head);
1971 /* So far everything mapped? Submit the page for IO. */
1972 if (mpd->map.m_len == 0) {
1973 err = mpage_submit_page(mpd, head->b_page);
1974 if (err < 0)
1975 return err;
1976 }
1977 return lblk < blocks;
1978 }
1979
1980 /*
1981 * mpage_map_buffers - update buffers corresponding to changed extent and
1982 * submit fully mapped pages for IO
1983 *
1984 * @mpd - description of extent to map, on return next extent to map
1985 *
1986 * Scan buffers corresponding to changed extent (we expect corresponding pages
1987 * to be already locked) and update buffer state according to new extent state.
1988 * We map delalloc buffers to their physical location, clear unwritten bits,
1989 * and mark buffers as uninit when we perform writes to unwritten extents
1990 * and do extent conversion after IO is finished. If the last page is not fully
1991 * mapped, we update @map to the next extent in the last page that needs
1992 * mapping. Otherwise we submit the page for IO.
1993 */
mpage_map_and_submit_buffers(struct mpage_da_data * mpd)1994 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1995 {
1996 struct pagevec pvec;
1997 int nr_pages, i;
1998 struct inode *inode = mpd->inode;
1999 struct buffer_head *head, *bh;
2000 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2001 pgoff_t start, end;
2002 ext4_lblk_t lblk;
2003 sector_t pblock;
2004 int err;
2005
2006 start = mpd->map.m_lblk >> bpp_bits;
2007 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2008 lblk = start << bpp_bits;
2009 pblock = mpd->map.m_pblk;
2010
2011 pagevec_init(&pvec, 0);
2012 while (start <= end) {
2013 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2014 PAGEVEC_SIZE);
2015 if (nr_pages == 0)
2016 break;
2017 for (i = 0; i < nr_pages; i++) {
2018 struct page *page = pvec.pages[i];
2019
2020 if (page->index > end)
2021 break;
2022 /* Up to 'end' pages must be contiguous */
2023 BUG_ON(page->index != start);
2024 bh = head = page_buffers(page);
2025 do {
2026 if (lblk < mpd->map.m_lblk)
2027 continue;
2028 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2029 /*
2030 * Buffer after end of mapped extent.
2031 * Find next buffer in the page to map.
2032 */
2033 mpd->map.m_len = 0;
2034 mpd->map.m_flags = 0;
2035 /*
2036 * FIXME: If dioread_nolock supports
2037 * blocksize < pagesize, we need to make
2038 * sure we add size mapped so far to
2039 * io_end->size as the following call
2040 * can submit the page for IO.
2041 */
2042 err = mpage_process_page_bufs(mpd, head,
2043 bh, lblk);
2044 pagevec_release(&pvec);
2045 if (err > 0)
2046 err = 0;
2047 return err;
2048 }
2049 if (buffer_delay(bh)) {
2050 clear_buffer_delay(bh);
2051 bh->b_blocknr = pblock++;
2052 }
2053 clear_buffer_unwritten(bh);
2054 } while (lblk++, (bh = bh->b_this_page) != head);
2055
2056 /*
2057 * FIXME: This is going to break if dioread_nolock
2058 * supports blocksize < pagesize as we will try to
2059 * convert potentially unmapped parts of inode.
2060 */
2061 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2062 /* Page fully mapped - let IO run! */
2063 err = mpage_submit_page(mpd, page);
2064 if (err < 0) {
2065 pagevec_release(&pvec);
2066 return err;
2067 }
2068 start++;
2069 }
2070 pagevec_release(&pvec);
2071 }
2072 /* Extent fully mapped and matches with page boundary. We are done. */
2073 mpd->map.m_len = 0;
2074 mpd->map.m_flags = 0;
2075 return 0;
2076 }
2077
mpage_map_one_extent(handle_t * handle,struct mpage_da_data * mpd)2078 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2079 {
2080 struct inode *inode = mpd->inode;
2081 struct ext4_map_blocks *map = &mpd->map;
2082 int get_blocks_flags;
2083 int err, dioread_nolock;
2084
2085 trace_ext4_da_write_pages_extent(inode, map);
2086 /*
2087 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2088 * to convert an unwritten extent to be initialized (in the case
2089 * where we have written into one or more preallocated blocks). It is
2090 * possible that we're going to need more metadata blocks than
2091 * previously reserved. However we must not fail because we're in
2092 * writeback and there is nothing we can do about it so it might result
2093 * in data loss. So use reserved blocks to allocate metadata if
2094 * possible.
2095 *
2096 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2097 * the blocks in question are delalloc blocks. This indicates
2098 * that the blocks and quotas has already been checked when
2099 * the data was copied into the page cache.
2100 */
2101 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2102 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2103 dioread_nolock = ext4_should_dioread_nolock(inode);
2104 if (dioread_nolock)
2105 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2106 if (map->m_flags & (1 << BH_Delay))
2107 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2108
2109 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2110 if (err < 0)
2111 return err;
2112 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2113 if (!mpd->io_submit.io_end->handle &&
2114 ext4_handle_valid(handle)) {
2115 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2116 handle->h_rsv_handle = NULL;
2117 }
2118 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2119 }
2120
2121 BUG_ON(map->m_len == 0);
2122 if (map->m_flags & EXT4_MAP_NEW) {
2123 struct block_device *bdev = inode->i_sb->s_bdev;
2124 int i;
2125
2126 for (i = 0; i < map->m_len; i++)
2127 unmap_underlying_metadata(bdev, map->m_pblk + i);
2128 }
2129 return 0;
2130 }
2131
2132 /*
2133 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2134 * mpd->len and submit pages underlying it for IO
2135 *
2136 * @handle - handle for journal operations
2137 * @mpd - extent to map
2138 * @give_up_on_write - we set this to true iff there is a fatal error and there
2139 * is no hope of writing the data. The caller should discard
2140 * dirty pages to avoid infinite loops.
2141 *
2142 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2143 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2144 * them to initialized or split the described range from larger unwritten
2145 * extent. Note that we need not map all the described range since allocation
2146 * can return less blocks or the range is covered by more unwritten extents. We
2147 * cannot map more because we are limited by reserved transaction credits. On
2148 * the other hand we always make sure that the last touched page is fully
2149 * mapped so that it can be written out (and thus forward progress is
2150 * guaranteed). After mapping we submit all mapped pages for IO.
2151 */
mpage_map_and_submit_extent(handle_t * handle,struct mpage_da_data * mpd,bool * give_up_on_write)2152 static int mpage_map_and_submit_extent(handle_t *handle,
2153 struct mpage_da_data *mpd,
2154 bool *give_up_on_write)
2155 {
2156 struct inode *inode = mpd->inode;
2157 struct ext4_map_blocks *map = &mpd->map;
2158 int err;
2159 loff_t disksize;
2160 int progress = 0;
2161
2162 mpd->io_submit.io_end->offset =
2163 ((loff_t)map->m_lblk) << inode->i_blkbits;
2164 do {
2165 err = mpage_map_one_extent(handle, mpd);
2166 if (err < 0) {
2167 struct super_block *sb = inode->i_sb;
2168
2169 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2170 goto invalidate_dirty_pages;
2171 /*
2172 * Let the uper layers retry transient errors.
2173 * In the case of ENOSPC, if ext4_count_free_blocks()
2174 * is non-zero, a commit should free up blocks.
2175 */
2176 if ((err == -ENOMEM) ||
2177 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2178 if (progress)
2179 goto update_disksize;
2180 return err;
2181 }
2182 ext4_msg(sb, KERN_CRIT,
2183 "Delayed block allocation failed for "
2184 "inode %lu at logical offset %llu with"
2185 " max blocks %u with error %d",
2186 inode->i_ino,
2187 (unsigned long long)map->m_lblk,
2188 (unsigned)map->m_len, -err);
2189 ext4_msg(sb, KERN_CRIT,
2190 "This should not happen!! Data will "
2191 "be lost\n");
2192 if (err == -ENOSPC)
2193 ext4_print_free_blocks(inode);
2194 invalidate_dirty_pages:
2195 *give_up_on_write = true;
2196 return err;
2197 }
2198 progress = 1;
2199 /*
2200 * Update buffer state, submit mapped pages, and get us new
2201 * extent to map
2202 */
2203 err = mpage_map_and_submit_buffers(mpd);
2204 if (err < 0)
2205 goto update_disksize;
2206 } while (map->m_len);
2207
2208 update_disksize:
2209 /*
2210 * Update on-disk size after IO is submitted. Races with
2211 * truncate are avoided by checking i_size under i_data_sem.
2212 */
2213 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2214 if (disksize > EXT4_I(inode)->i_disksize) {
2215 int err2;
2216 loff_t i_size;
2217
2218 down_write(&EXT4_I(inode)->i_data_sem);
2219 i_size = i_size_read(inode);
2220 if (disksize > i_size)
2221 disksize = i_size;
2222 if (disksize > EXT4_I(inode)->i_disksize)
2223 EXT4_I(inode)->i_disksize = disksize;
2224 err2 = ext4_mark_inode_dirty(handle, inode);
2225 up_write(&EXT4_I(inode)->i_data_sem);
2226 if (err2)
2227 ext4_error(inode->i_sb,
2228 "Failed to mark inode %lu dirty",
2229 inode->i_ino);
2230 if (!err)
2231 err = err2;
2232 }
2233 return err;
2234 }
2235
2236 /*
2237 * Calculate the total number of credits to reserve for one writepages
2238 * iteration. This is called from ext4_writepages(). We map an extent of
2239 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2240 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2241 * bpp - 1 blocks in bpp different extents.
2242 */
ext4_da_writepages_trans_blocks(struct inode * inode)2243 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2244 {
2245 int bpp = ext4_journal_blocks_per_page(inode);
2246
2247 return ext4_meta_trans_blocks(inode,
2248 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2249 }
2250
2251 /*
2252 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2253 * and underlying extent to map
2254 *
2255 * @mpd - where to look for pages
2256 *
2257 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2258 * IO immediately. When we find a page which isn't mapped we start accumulating
2259 * extent of buffers underlying these pages that needs mapping (formed by
2260 * either delayed or unwritten buffers). We also lock the pages containing
2261 * these buffers. The extent found is returned in @mpd structure (starting at
2262 * mpd->lblk with length mpd->len blocks).
2263 *
2264 * Note that this function can attach bios to one io_end structure which are
2265 * neither logically nor physically contiguous. Although it may seem as an
2266 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2267 * case as we need to track IO to all buffers underlying a page in one io_end.
2268 */
mpage_prepare_extent_to_map(struct mpage_da_data * mpd)2269 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2270 {
2271 struct address_space *mapping = mpd->inode->i_mapping;
2272 struct pagevec pvec;
2273 unsigned int nr_pages;
2274 long left = mpd->wbc->nr_to_write;
2275 pgoff_t index = mpd->first_page;
2276 pgoff_t end = mpd->last_page;
2277 int tag;
2278 int i, err = 0;
2279 int blkbits = mpd->inode->i_blkbits;
2280 ext4_lblk_t lblk;
2281 struct buffer_head *head;
2282
2283 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2284 tag = PAGECACHE_TAG_TOWRITE;
2285 else
2286 tag = PAGECACHE_TAG_DIRTY;
2287
2288 pagevec_init(&pvec, 0);
2289 mpd->map.m_len = 0;
2290 mpd->next_page = index;
2291 while (index <= end) {
2292 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2293 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2294 if (nr_pages == 0)
2295 goto out;
2296
2297 for (i = 0; i < nr_pages; i++) {
2298 struct page *page = pvec.pages[i];
2299
2300 /*
2301 * At this point, the page may be truncated or
2302 * invalidated (changing page->mapping to NULL), or
2303 * even swizzled back from swapper_space to tmpfs file
2304 * mapping. However, page->index will not change
2305 * because we have a reference on the page.
2306 */
2307 if (page->index > end)
2308 goto out;
2309
2310 /*
2311 * Accumulated enough dirty pages? This doesn't apply
2312 * to WB_SYNC_ALL mode. For integrity sync we have to
2313 * keep going because someone may be concurrently
2314 * dirtying pages, and we might have synced a lot of
2315 * newly appeared dirty pages, but have not synced all
2316 * of the old dirty pages.
2317 */
2318 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2319 goto out;
2320
2321 /* If we can't merge this page, we are done. */
2322 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2323 goto out;
2324
2325 lock_page(page);
2326 /*
2327 * If the page is no longer dirty, or its mapping no
2328 * longer corresponds to inode we are writing (which
2329 * means it has been truncated or invalidated), or the
2330 * page is already under writeback and we are not doing
2331 * a data integrity writeback, skip the page
2332 */
2333 if (!PageDirty(page) ||
2334 (PageWriteback(page) &&
2335 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2336 unlikely(page->mapping != mapping)) {
2337 unlock_page(page);
2338 continue;
2339 }
2340
2341 wait_on_page_writeback(page);
2342 BUG_ON(PageWriteback(page));
2343
2344 if (mpd->map.m_len == 0)
2345 mpd->first_page = page->index;
2346 mpd->next_page = page->index + 1;
2347 /* Add all dirty buffers to mpd */
2348 lblk = ((ext4_lblk_t)page->index) <<
2349 (PAGE_CACHE_SHIFT - blkbits);
2350 head = page_buffers(page);
2351 err = mpage_process_page_bufs(mpd, head, head, lblk);
2352 if (err <= 0)
2353 goto out;
2354 err = 0;
2355 left--;
2356 }
2357 pagevec_release(&pvec);
2358 cond_resched();
2359 }
2360 return 0;
2361 out:
2362 pagevec_release(&pvec);
2363 return err;
2364 }
2365
__writepage(struct page * page,struct writeback_control * wbc,void * data)2366 static int __writepage(struct page *page, struct writeback_control *wbc,
2367 void *data)
2368 {
2369 struct address_space *mapping = data;
2370 int ret = ext4_writepage(page, wbc);
2371 mapping_set_error(mapping, ret);
2372 return ret;
2373 }
2374
ext4_writepages(struct address_space * mapping,struct writeback_control * wbc)2375 static int ext4_writepages(struct address_space *mapping,
2376 struct writeback_control *wbc)
2377 {
2378 pgoff_t writeback_index = 0;
2379 long nr_to_write = wbc->nr_to_write;
2380 int range_whole = 0;
2381 int cycled = 1;
2382 handle_t *handle = NULL;
2383 struct mpage_da_data mpd;
2384 struct inode *inode = mapping->host;
2385 int needed_blocks, rsv_blocks = 0, ret = 0;
2386 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2387 bool done;
2388 struct blk_plug plug;
2389 bool give_up_on_write = false;
2390
2391 trace_ext4_writepages(inode, wbc);
2392
2393 /*
2394 * No pages to write? This is mainly a kludge to avoid starting
2395 * a transaction for special inodes like journal inode on last iput()
2396 * because that could violate lock ordering on umount
2397 */
2398 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2399 goto out_writepages;
2400
2401 if (ext4_should_journal_data(inode)) {
2402 struct blk_plug plug;
2403
2404 blk_start_plug(&plug);
2405 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2406 blk_finish_plug(&plug);
2407 goto out_writepages;
2408 }
2409
2410 /*
2411 * If the filesystem has aborted, it is read-only, so return
2412 * right away instead of dumping stack traces later on that
2413 * will obscure the real source of the problem. We test
2414 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2415 * the latter could be true if the filesystem is mounted
2416 * read-only, and in that case, ext4_writepages should
2417 * *never* be called, so if that ever happens, we would want
2418 * the stack trace.
2419 */
2420 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2421 ret = -EROFS;
2422 goto out_writepages;
2423 }
2424
2425 if (ext4_should_dioread_nolock(inode)) {
2426 /*
2427 * We may need to convert up to one extent per block in
2428 * the page and we may dirty the inode.
2429 */
2430 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2431 }
2432
2433 /*
2434 * If we have inline data and arrive here, it means that
2435 * we will soon create the block for the 1st page, so
2436 * we'd better clear the inline data here.
2437 */
2438 if (ext4_has_inline_data(inode)) {
2439 /* Just inode will be modified... */
2440 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2441 if (IS_ERR(handle)) {
2442 ret = PTR_ERR(handle);
2443 goto out_writepages;
2444 }
2445 BUG_ON(ext4_test_inode_state(inode,
2446 EXT4_STATE_MAY_INLINE_DATA));
2447 ext4_destroy_inline_data(handle, inode);
2448 ext4_journal_stop(handle);
2449 }
2450
2451 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2452 range_whole = 1;
2453
2454 if (wbc->range_cyclic) {
2455 writeback_index = mapping->writeback_index;
2456 if (writeback_index)
2457 cycled = 0;
2458 mpd.first_page = writeback_index;
2459 mpd.last_page = -1;
2460 } else {
2461 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2462 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2463 }
2464
2465 mpd.inode = inode;
2466 mpd.wbc = wbc;
2467 ext4_io_submit_init(&mpd.io_submit, wbc);
2468 retry:
2469 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2470 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2471 done = false;
2472 blk_start_plug(&plug);
2473 while (!done && mpd.first_page <= mpd.last_page) {
2474 /* For each extent of pages we use new io_end */
2475 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2476 if (!mpd.io_submit.io_end) {
2477 ret = -ENOMEM;
2478 break;
2479 }
2480
2481 /*
2482 * We have two constraints: We find one extent to map and we
2483 * must always write out whole page (makes a difference when
2484 * blocksize < pagesize) so that we don't block on IO when we
2485 * try to write out the rest of the page. Journalled mode is
2486 * not supported by delalloc.
2487 */
2488 BUG_ON(ext4_should_journal_data(inode));
2489 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2490
2491 /* start a new transaction */
2492 handle = ext4_journal_start_with_reserve(inode,
2493 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2494 if (IS_ERR(handle)) {
2495 ret = PTR_ERR(handle);
2496 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2497 "%ld pages, ino %lu; err %d", __func__,
2498 wbc->nr_to_write, inode->i_ino, ret);
2499 /* Release allocated io_end */
2500 ext4_put_io_end(mpd.io_submit.io_end);
2501 break;
2502 }
2503
2504 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2505 ret = mpage_prepare_extent_to_map(&mpd);
2506 if (!ret) {
2507 if (mpd.map.m_len)
2508 ret = mpage_map_and_submit_extent(handle, &mpd,
2509 &give_up_on_write);
2510 else {
2511 /*
2512 * We scanned the whole range (or exhausted
2513 * nr_to_write), submitted what was mapped and
2514 * didn't find anything needing mapping. We are
2515 * done.
2516 */
2517 done = true;
2518 }
2519 }
2520 ext4_journal_stop(handle);
2521 /* Submit prepared bio */
2522 ext4_io_submit(&mpd.io_submit);
2523 /* Unlock pages we didn't use */
2524 mpage_release_unused_pages(&mpd, give_up_on_write);
2525 /* Drop our io_end reference we got from init */
2526 ext4_put_io_end(mpd.io_submit.io_end);
2527
2528 if (ret == -ENOSPC && sbi->s_journal) {
2529 /*
2530 * Commit the transaction which would
2531 * free blocks released in the transaction
2532 * and try again
2533 */
2534 jbd2_journal_force_commit_nested(sbi->s_journal);
2535 ret = 0;
2536 continue;
2537 }
2538 /* Fatal error - ENOMEM, EIO... */
2539 if (ret)
2540 break;
2541 }
2542 blk_finish_plug(&plug);
2543 if (!ret && !cycled && wbc->nr_to_write > 0) {
2544 cycled = 1;
2545 mpd.last_page = writeback_index - 1;
2546 mpd.first_page = 0;
2547 goto retry;
2548 }
2549
2550 /* Update index */
2551 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2552 /*
2553 * Set the writeback_index so that range_cyclic
2554 * mode will write it back later
2555 */
2556 mapping->writeback_index = mpd.first_page;
2557
2558 out_writepages:
2559 trace_ext4_writepages_result(inode, wbc, ret,
2560 nr_to_write - wbc->nr_to_write);
2561 return ret;
2562 }
2563
ext4_nonda_switch(struct super_block * sb)2564 static int ext4_nonda_switch(struct super_block *sb)
2565 {
2566 s64 free_clusters, dirty_clusters;
2567 struct ext4_sb_info *sbi = EXT4_SB(sb);
2568
2569 /*
2570 * switch to non delalloc mode if we are running low
2571 * on free block. The free block accounting via percpu
2572 * counters can get slightly wrong with percpu_counter_batch getting
2573 * accumulated on each CPU without updating global counters
2574 * Delalloc need an accurate free block accounting. So switch
2575 * to non delalloc when we are near to error range.
2576 */
2577 free_clusters =
2578 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2579 dirty_clusters =
2580 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2581 /*
2582 * Start pushing delalloc when 1/2 of free blocks are dirty.
2583 */
2584 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2585 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2586
2587 if (2 * free_clusters < 3 * dirty_clusters ||
2588 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2589 /*
2590 * free block count is less than 150% of dirty blocks
2591 * or free blocks is less than watermark
2592 */
2593 return 1;
2594 }
2595 return 0;
2596 }
2597
2598 /* We always reserve for an inode update; the superblock could be there too */
ext4_da_write_credits(struct inode * inode,loff_t pos,unsigned len)2599 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2600 {
2601 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2602 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2603 return 1;
2604
2605 if (pos + len <= 0x7fffffffULL)
2606 return 1;
2607
2608 /* We might need to update the superblock to set LARGE_FILE */
2609 return 2;
2610 }
2611
ext4_da_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2612 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2613 loff_t pos, unsigned len, unsigned flags,
2614 struct page **pagep, void **fsdata)
2615 {
2616 int ret, retries = 0;
2617 struct page *page;
2618 pgoff_t index;
2619 struct inode *inode = mapping->host;
2620 handle_t *handle;
2621
2622 index = pos >> PAGE_CACHE_SHIFT;
2623
2624 if (ext4_nonda_switch(inode->i_sb)) {
2625 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2626 return ext4_write_begin(file, mapping, pos,
2627 len, flags, pagep, fsdata);
2628 }
2629 *fsdata = (void *)0;
2630 trace_ext4_da_write_begin(inode, pos, len, flags);
2631
2632 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2633 ret = ext4_da_write_inline_data_begin(mapping, inode,
2634 pos, len, flags,
2635 pagep, fsdata);
2636 if (ret < 0)
2637 return ret;
2638 if (ret == 1)
2639 return 0;
2640 }
2641
2642 /*
2643 * grab_cache_page_write_begin() can take a long time if the
2644 * system is thrashing due to memory pressure, or if the page
2645 * is being written back. So grab it first before we start
2646 * the transaction handle. This also allows us to allocate
2647 * the page (if needed) without using GFP_NOFS.
2648 */
2649 retry_grab:
2650 page = grab_cache_page_write_begin(mapping, index, flags);
2651 if (!page)
2652 return -ENOMEM;
2653 unlock_page(page);
2654
2655 /*
2656 * With delayed allocation, we don't log the i_disksize update
2657 * if there is delayed block allocation. But we still need
2658 * to journalling the i_disksize update if writes to the end
2659 * of file which has an already mapped buffer.
2660 */
2661 retry_journal:
2662 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2663 ext4_da_write_credits(inode, pos, len));
2664 if (IS_ERR(handle)) {
2665 page_cache_release(page);
2666 return PTR_ERR(handle);
2667 }
2668
2669 lock_page(page);
2670 if (page->mapping != mapping) {
2671 /* The page got truncated from under us */
2672 unlock_page(page);
2673 page_cache_release(page);
2674 ext4_journal_stop(handle);
2675 goto retry_grab;
2676 }
2677 /* In case writeback began while the page was unlocked */
2678 wait_for_stable_page(page);
2679
2680 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2681 ret = ext4_block_write_begin(page, pos, len,
2682 ext4_da_get_block_prep);
2683 #else
2684 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2685 #endif
2686 if (ret < 0) {
2687 unlock_page(page);
2688 ext4_journal_stop(handle);
2689 /*
2690 * block_write_begin may have instantiated a few blocks
2691 * outside i_size. Trim these off again. Don't need
2692 * i_size_read because we hold i_mutex.
2693 */
2694 if (pos + len > inode->i_size)
2695 ext4_truncate_failed_write(inode);
2696
2697 if (ret == -ENOSPC &&
2698 ext4_should_retry_alloc(inode->i_sb, &retries))
2699 goto retry_journal;
2700
2701 page_cache_release(page);
2702 return ret;
2703 }
2704
2705 *pagep = page;
2706 return ret;
2707 }
2708
2709 /*
2710 * Check if we should update i_disksize
2711 * when write to the end of file but not require block allocation
2712 */
ext4_da_should_update_i_disksize(struct page * page,unsigned long offset)2713 static int ext4_da_should_update_i_disksize(struct page *page,
2714 unsigned long offset)
2715 {
2716 struct buffer_head *bh;
2717 struct inode *inode = page->mapping->host;
2718 unsigned int idx;
2719 int i;
2720
2721 bh = page_buffers(page);
2722 idx = offset >> inode->i_blkbits;
2723
2724 for (i = 0; i < idx; i++)
2725 bh = bh->b_this_page;
2726
2727 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2728 return 0;
2729 return 1;
2730 }
2731
ext4_da_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2732 static int ext4_da_write_end(struct file *file,
2733 struct address_space *mapping,
2734 loff_t pos, unsigned len, unsigned copied,
2735 struct page *page, void *fsdata)
2736 {
2737 struct inode *inode = mapping->host;
2738 int ret = 0, ret2;
2739 handle_t *handle = ext4_journal_current_handle();
2740 loff_t new_i_size;
2741 unsigned long start, end;
2742 int write_mode = (int)(unsigned long)fsdata;
2743
2744 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2745 return ext4_write_end(file, mapping, pos,
2746 len, copied, page, fsdata);
2747
2748 trace_ext4_da_write_end(inode, pos, len, copied);
2749 start = pos & (PAGE_CACHE_SIZE - 1);
2750 end = start + copied - 1;
2751
2752 /*
2753 * generic_write_end() will run mark_inode_dirty() if i_size
2754 * changes. So let's piggyback the i_disksize mark_inode_dirty
2755 * into that.
2756 */
2757 new_i_size = pos + copied;
2758 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2759 if (ext4_has_inline_data(inode) ||
2760 ext4_da_should_update_i_disksize(page, end)) {
2761 ext4_update_i_disksize(inode, new_i_size);
2762 /* We need to mark inode dirty even if
2763 * new_i_size is less that inode->i_size
2764 * bu greater than i_disksize.(hint delalloc)
2765 */
2766 ext4_mark_inode_dirty(handle, inode);
2767 }
2768 }
2769
2770 if (write_mode != CONVERT_INLINE_DATA &&
2771 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2772 ext4_has_inline_data(inode))
2773 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2774 page);
2775 else
2776 ret2 = generic_write_end(file, mapping, pos, len, copied,
2777 page, fsdata);
2778
2779 copied = ret2;
2780 if (ret2 < 0)
2781 ret = ret2;
2782 ret2 = ext4_journal_stop(handle);
2783 if (!ret)
2784 ret = ret2;
2785
2786 return ret ? ret : copied;
2787 }
2788
ext4_da_invalidatepage(struct page * page,unsigned int offset,unsigned int length)2789 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2790 unsigned int length)
2791 {
2792 /*
2793 * Drop reserved blocks
2794 */
2795 BUG_ON(!PageLocked(page));
2796 if (!page_has_buffers(page))
2797 goto out;
2798
2799 ext4_da_page_release_reservation(page, offset, length);
2800
2801 out:
2802 ext4_invalidatepage(page, offset, length);
2803
2804 return;
2805 }
2806
2807 /*
2808 * Force all delayed allocation blocks to be allocated for a given inode.
2809 */
ext4_alloc_da_blocks(struct inode * inode)2810 int ext4_alloc_da_blocks(struct inode *inode)
2811 {
2812 trace_ext4_alloc_da_blocks(inode);
2813
2814 if (!EXT4_I(inode)->i_reserved_data_blocks)
2815 return 0;
2816
2817 /*
2818 * We do something simple for now. The filemap_flush() will
2819 * also start triggering a write of the data blocks, which is
2820 * not strictly speaking necessary (and for users of
2821 * laptop_mode, not even desirable). However, to do otherwise
2822 * would require replicating code paths in:
2823 *
2824 * ext4_writepages() ->
2825 * write_cache_pages() ---> (via passed in callback function)
2826 * __mpage_da_writepage() -->
2827 * mpage_add_bh_to_extent()
2828 * mpage_da_map_blocks()
2829 *
2830 * The problem is that write_cache_pages(), located in
2831 * mm/page-writeback.c, marks pages clean in preparation for
2832 * doing I/O, which is not desirable if we're not planning on
2833 * doing I/O at all.
2834 *
2835 * We could call write_cache_pages(), and then redirty all of
2836 * the pages by calling redirty_page_for_writepage() but that
2837 * would be ugly in the extreme. So instead we would need to
2838 * replicate parts of the code in the above functions,
2839 * simplifying them because we wouldn't actually intend to
2840 * write out the pages, but rather only collect contiguous
2841 * logical block extents, call the multi-block allocator, and
2842 * then update the buffer heads with the block allocations.
2843 *
2844 * For now, though, we'll cheat by calling filemap_flush(),
2845 * which will map the blocks, and start the I/O, but not
2846 * actually wait for the I/O to complete.
2847 */
2848 return filemap_flush(inode->i_mapping);
2849 }
2850
2851 /*
2852 * bmap() is special. It gets used by applications such as lilo and by
2853 * the swapper to find the on-disk block of a specific piece of data.
2854 *
2855 * Naturally, this is dangerous if the block concerned is still in the
2856 * journal. If somebody makes a swapfile on an ext4 data-journaling
2857 * filesystem and enables swap, then they may get a nasty shock when the
2858 * data getting swapped to that swapfile suddenly gets overwritten by
2859 * the original zero's written out previously to the journal and
2860 * awaiting writeback in the kernel's buffer cache.
2861 *
2862 * So, if we see any bmap calls here on a modified, data-journaled file,
2863 * take extra steps to flush any blocks which might be in the cache.
2864 */
ext4_bmap(struct address_space * mapping,sector_t block)2865 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2866 {
2867 struct inode *inode = mapping->host;
2868 journal_t *journal;
2869 int err;
2870
2871 /*
2872 * We can get here for an inline file via the FIBMAP ioctl
2873 */
2874 if (ext4_has_inline_data(inode))
2875 return 0;
2876
2877 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2878 test_opt(inode->i_sb, DELALLOC)) {
2879 /*
2880 * With delalloc we want to sync the file
2881 * so that we can make sure we allocate
2882 * blocks for file
2883 */
2884 filemap_write_and_wait(mapping);
2885 }
2886
2887 if (EXT4_JOURNAL(inode) &&
2888 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2889 /*
2890 * This is a REALLY heavyweight approach, but the use of
2891 * bmap on dirty files is expected to be extremely rare:
2892 * only if we run lilo or swapon on a freshly made file
2893 * do we expect this to happen.
2894 *
2895 * (bmap requires CAP_SYS_RAWIO so this does not
2896 * represent an unprivileged user DOS attack --- we'd be
2897 * in trouble if mortal users could trigger this path at
2898 * will.)
2899 *
2900 * NB. EXT4_STATE_JDATA is not set on files other than
2901 * regular files. If somebody wants to bmap a directory
2902 * or symlink and gets confused because the buffer
2903 * hasn't yet been flushed to disk, they deserve
2904 * everything they get.
2905 */
2906
2907 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2908 journal = EXT4_JOURNAL(inode);
2909 jbd2_journal_lock_updates(journal);
2910 err = jbd2_journal_flush(journal);
2911 jbd2_journal_unlock_updates(journal);
2912
2913 if (err)
2914 return 0;
2915 }
2916
2917 return generic_block_bmap(mapping, block, ext4_get_block);
2918 }
2919
ext4_readpage(struct file * file,struct page * page)2920 static int ext4_readpage(struct file *file, struct page *page)
2921 {
2922 int ret = -EAGAIN;
2923 struct inode *inode = page->mapping->host;
2924
2925 trace_ext4_readpage(page);
2926
2927 if (ext4_has_inline_data(inode))
2928 ret = ext4_readpage_inline(inode, page);
2929
2930 if (ret == -EAGAIN)
2931 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
2932
2933 return ret;
2934 }
2935
2936 static int
ext4_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)2937 ext4_readpages(struct file *file, struct address_space *mapping,
2938 struct list_head *pages, unsigned nr_pages)
2939 {
2940 struct inode *inode = mapping->host;
2941
2942 /* If the file has inline data, no need to do readpages. */
2943 if (ext4_has_inline_data(inode))
2944 return 0;
2945
2946 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
2947 }
2948
ext4_invalidatepage(struct page * page,unsigned int offset,unsigned int length)2949 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2950 unsigned int length)
2951 {
2952 trace_ext4_invalidatepage(page, offset, length);
2953
2954 /* No journalling happens on data buffers when this function is used */
2955 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2956
2957 block_invalidatepage(page, offset, length);
2958 }
2959
__ext4_journalled_invalidatepage(struct page * page,unsigned int offset,unsigned int length)2960 static int __ext4_journalled_invalidatepage(struct page *page,
2961 unsigned int offset,
2962 unsigned int length)
2963 {
2964 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2965
2966 trace_ext4_journalled_invalidatepage(page, offset, length);
2967
2968 /*
2969 * If it's a full truncate we just forget about the pending dirtying
2970 */
2971 if (offset == 0 && length == PAGE_CACHE_SIZE)
2972 ClearPageChecked(page);
2973
2974 return jbd2_journal_invalidatepage(journal, page, offset, length);
2975 }
2976
2977 /* Wrapper for aops... */
ext4_journalled_invalidatepage(struct page * page,unsigned int offset,unsigned int length)2978 static void ext4_journalled_invalidatepage(struct page *page,
2979 unsigned int offset,
2980 unsigned int length)
2981 {
2982 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2983 }
2984
ext4_releasepage(struct page * page,gfp_t wait)2985 static int ext4_releasepage(struct page *page, gfp_t wait)
2986 {
2987 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2988
2989 trace_ext4_releasepage(page);
2990
2991 /* Page has dirty journalled data -> cannot release */
2992 if (PageChecked(page))
2993 return 0;
2994 if (journal)
2995 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2996 else
2997 return try_to_free_buffers(page);
2998 }
2999
3000 /*
3001 * ext4_get_block used when preparing for a DIO write or buffer write.
3002 * We allocate an uinitialized extent if blocks haven't been allocated.
3003 * The extent will be converted to initialized after the IO is complete.
3004 */
ext4_get_block_write(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)3005 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3006 struct buffer_head *bh_result, int create)
3007 {
3008 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3009 inode->i_ino, create);
3010 return _ext4_get_block(inode, iblock, bh_result,
3011 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3012 }
3013
ext4_get_block_write_nolock(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)3014 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3015 struct buffer_head *bh_result, int create)
3016 {
3017 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3018 inode->i_ino, create);
3019 return _ext4_get_block(inode, iblock, bh_result,
3020 EXT4_GET_BLOCKS_NO_LOCK);
3021 }
3022
ext4_end_io_dio(struct kiocb * iocb,loff_t offset,ssize_t size,void * private)3023 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3024 ssize_t size, void *private)
3025 {
3026 ext4_io_end_t *io_end = iocb->private;
3027
3028 /* if not async direct IO just return */
3029 if (!io_end)
3030 return;
3031
3032 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3033 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3034 iocb->private, io_end->inode->i_ino, iocb, offset,
3035 size);
3036
3037 iocb->private = NULL;
3038 io_end->offset = offset;
3039 io_end->size = size;
3040 ext4_put_io_end(io_end);
3041 }
3042
3043 /*
3044 * For ext4 extent files, ext4 will do direct-io write to holes,
3045 * preallocated extents, and those write extend the file, no need to
3046 * fall back to buffered IO.
3047 *
3048 * For holes, we fallocate those blocks, mark them as unwritten
3049 * If those blocks were preallocated, we mark sure they are split, but
3050 * still keep the range to write as unwritten.
3051 *
3052 * The unwritten extents will be converted to written when DIO is completed.
3053 * For async direct IO, since the IO may still pending when return, we
3054 * set up an end_io call back function, which will do the conversion
3055 * when async direct IO completed.
3056 *
3057 * If the O_DIRECT write will extend the file then add this inode to the
3058 * orphan list. So recovery will truncate it back to the original size
3059 * if the machine crashes during the write.
3060 *
3061 */
ext4_ext_direct_IO(int rw,struct kiocb * iocb,const struct iovec * iov,loff_t offset,unsigned long nr_segs)3062 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3063 const struct iovec *iov, loff_t offset,
3064 unsigned long nr_segs)
3065 {
3066 struct file *file = iocb->ki_filp;
3067 struct inode *inode = file->f_mapping->host;
3068 ssize_t ret;
3069 size_t count = iov_length(iov, nr_segs);
3070 int overwrite = 0;
3071 get_block_t *get_block_func = NULL;
3072 int dio_flags = 0;
3073 loff_t final_size = offset + count;
3074 ext4_io_end_t *io_end = NULL;
3075
3076 /* Use the old path for reads and writes beyond i_size. */
3077 if (rw != WRITE || final_size > inode->i_size)
3078 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3079
3080 BUG_ON(iocb->private == NULL);
3081
3082 /*
3083 * Make all waiters for direct IO properly wait also for extent
3084 * conversion. This also disallows race between truncate() and
3085 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3086 */
3087 if (rw == WRITE)
3088 atomic_inc(&inode->i_dio_count);
3089
3090 /* If we do a overwrite dio, i_mutex locking can be released */
3091 overwrite = *((int *)iocb->private);
3092
3093 if (overwrite) {
3094 down_read(&EXT4_I(inode)->i_data_sem);
3095 mutex_unlock(&inode->i_mutex);
3096 }
3097
3098 /*
3099 * We could direct write to holes and fallocate.
3100 *
3101 * Allocated blocks to fill the hole are marked as
3102 * unwritten to prevent parallel buffered read to expose
3103 * the stale data before DIO complete the data IO.
3104 *
3105 * As to previously fallocated extents, ext4 get_block will
3106 * just simply mark the buffer mapped but still keep the
3107 * extents unwritten.
3108 *
3109 * For non AIO case, we will convert those unwritten extents
3110 * to written after return back from blockdev_direct_IO.
3111 *
3112 * For async DIO, the conversion needs to be deferred when the
3113 * IO is completed. The ext4 end_io callback function will be
3114 * called to take care of the conversion work. Here for async
3115 * case, we allocate an io_end structure to hook to the iocb.
3116 */
3117 iocb->private = NULL;
3118 ext4_inode_aio_set(inode, NULL);
3119 if (!is_sync_kiocb(iocb)) {
3120 io_end = ext4_init_io_end(inode, GFP_NOFS);
3121 if (!io_end) {
3122 ret = -ENOMEM;
3123 goto retake_lock;
3124 }
3125 /*
3126 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3127 */
3128 iocb->private = ext4_get_io_end(io_end);
3129 /*
3130 * we save the io structure for current async direct
3131 * IO, so that later ext4_map_blocks() could flag the
3132 * io structure whether there is a unwritten extents
3133 * needs to be converted when IO is completed.
3134 */
3135 ext4_inode_aio_set(inode, io_end);
3136 }
3137
3138 if (overwrite) {
3139 get_block_func = ext4_get_block_write_nolock;
3140 } else {
3141 get_block_func = ext4_get_block_write;
3142 dio_flags = DIO_LOCKING;
3143 }
3144 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3145 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3146 #endif
3147 ret = __blockdev_direct_IO(rw, iocb, inode,
3148 inode->i_sb->s_bdev, iov,
3149 offset, nr_segs,
3150 get_block_func,
3151 ext4_end_io_dio,
3152 NULL,
3153 dio_flags);
3154
3155 /*
3156 * Put our reference to io_end. This can free the io_end structure e.g.
3157 * in sync IO case or in case of error. It can even perform extent
3158 * conversion if all bios we submitted finished before we got here.
3159 * Note that in that case iocb->private can be already set to NULL
3160 * here.
3161 */
3162 if (io_end) {
3163 ext4_inode_aio_set(inode, NULL);
3164 ext4_put_io_end(io_end);
3165 /*
3166 * When no IO was submitted ext4_end_io_dio() was not
3167 * called so we have to put iocb's reference.
3168 */
3169 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3170 WARN_ON(iocb->private != io_end);
3171 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3172 ext4_put_io_end(io_end);
3173 iocb->private = NULL;
3174 }
3175 }
3176 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3177 EXT4_STATE_DIO_UNWRITTEN)) {
3178 int err;
3179 /*
3180 * for non AIO case, since the IO is already
3181 * completed, we could do the conversion right here
3182 */
3183 err = ext4_convert_unwritten_extents(NULL, inode,
3184 offset, ret);
3185 if (err < 0)
3186 ret = err;
3187 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3188 }
3189
3190 retake_lock:
3191 if (rw == WRITE)
3192 inode_dio_done(inode);
3193 /* take i_mutex locking again if we do a ovewrite dio */
3194 if (overwrite) {
3195 up_read(&EXT4_I(inode)->i_data_sem);
3196 mutex_lock(&inode->i_mutex);
3197 }
3198
3199 return ret;
3200 }
3201
ext4_direct_IO(int rw,struct kiocb * iocb,const struct iovec * iov,loff_t offset,unsigned long nr_segs)3202 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3203 const struct iovec *iov, loff_t offset,
3204 unsigned long nr_segs)
3205 {
3206 struct file *file = iocb->ki_filp;
3207 struct inode *inode = file->f_mapping->host;
3208 size_t count = iov_length(iov, nr_segs);
3209 ssize_t ret;
3210
3211 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3212 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3213 return 0;
3214 #endif
3215
3216 /*
3217 * If we are doing data journalling we don't support O_DIRECT
3218 */
3219 if (ext4_should_journal_data(inode))
3220 return 0;
3221
3222 /* Let buffer I/O handle the inline data case. */
3223 if (ext4_has_inline_data(inode))
3224 return 0;
3225
3226 trace_ext4_direct_IO_enter(inode, offset, count, rw);
3227 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3228 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3229 else
3230 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3231 trace_ext4_direct_IO_exit(inode, offset, count, rw, ret);
3232 return ret;
3233 }
3234
3235 /*
3236 * Pages can be marked dirty completely asynchronously from ext4's journalling
3237 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3238 * much here because ->set_page_dirty is called under VFS locks. The page is
3239 * not necessarily locked.
3240 *
3241 * We cannot just dirty the page and leave attached buffers clean, because the
3242 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3243 * or jbddirty because all the journalling code will explode.
3244 *
3245 * So what we do is to mark the page "pending dirty" and next time writepage
3246 * is called, propagate that into the buffers appropriately.
3247 */
ext4_journalled_set_page_dirty(struct page * page)3248 static int ext4_journalled_set_page_dirty(struct page *page)
3249 {
3250 SetPageChecked(page);
3251 return __set_page_dirty_nobuffers(page);
3252 }
3253
3254 static const struct address_space_operations ext4_aops = {
3255 .readpage = ext4_readpage,
3256 .readpages = ext4_readpages,
3257 .writepage = ext4_writepage,
3258 .writepages = ext4_writepages,
3259 .write_begin = ext4_write_begin,
3260 .write_end = ext4_write_end,
3261 .bmap = ext4_bmap,
3262 .invalidatepage = ext4_invalidatepage,
3263 .releasepage = ext4_releasepage,
3264 .direct_IO = ext4_direct_IO,
3265 .migratepage = buffer_migrate_page,
3266 .is_partially_uptodate = block_is_partially_uptodate,
3267 .error_remove_page = generic_error_remove_page,
3268 };
3269
3270 static const struct address_space_operations ext4_journalled_aops = {
3271 .readpage = ext4_readpage,
3272 .readpages = ext4_readpages,
3273 .writepage = ext4_writepage,
3274 .writepages = ext4_writepages,
3275 .write_begin = ext4_write_begin,
3276 .write_end = ext4_journalled_write_end,
3277 .set_page_dirty = ext4_journalled_set_page_dirty,
3278 .bmap = ext4_bmap,
3279 .invalidatepage = ext4_journalled_invalidatepage,
3280 .releasepage = ext4_releasepage,
3281 .direct_IO = ext4_direct_IO,
3282 .is_partially_uptodate = block_is_partially_uptodate,
3283 .error_remove_page = generic_error_remove_page,
3284 };
3285
3286 static const struct address_space_operations ext4_da_aops = {
3287 .readpage = ext4_readpage,
3288 .readpages = ext4_readpages,
3289 .writepage = ext4_writepage,
3290 .writepages = ext4_writepages,
3291 .write_begin = ext4_da_write_begin,
3292 .write_end = ext4_da_write_end,
3293 .bmap = ext4_bmap,
3294 .invalidatepage = ext4_da_invalidatepage,
3295 .releasepage = ext4_releasepage,
3296 .direct_IO = ext4_direct_IO,
3297 .migratepage = buffer_migrate_page,
3298 .is_partially_uptodate = block_is_partially_uptodate,
3299 .error_remove_page = generic_error_remove_page,
3300 };
3301
ext4_set_aops(struct inode * inode)3302 void ext4_set_aops(struct inode *inode)
3303 {
3304 switch (ext4_inode_journal_mode(inode)) {
3305 case EXT4_INODE_ORDERED_DATA_MODE:
3306 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3307 break;
3308 case EXT4_INODE_WRITEBACK_DATA_MODE:
3309 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3310 break;
3311 case EXT4_INODE_JOURNAL_DATA_MODE:
3312 inode->i_mapping->a_ops = &ext4_journalled_aops;
3313 return;
3314 default:
3315 BUG();
3316 }
3317 if (test_opt(inode->i_sb, DELALLOC))
3318 inode->i_mapping->a_ops = &ext4_da_aops;
3319 else
3320 inode->i_mapping->a_ops = &ext4_aops;
3321 }
3322
3323 /*
3324 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3325 * starting from file offset 'from'. The range to be zero'd must
3326 * be contained with in one block. If the specified range exceeds
3327 * the end of the block it will be shortened to end of the block
3328 * that cooresponds to 'from'
3329 */
ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3330 static int ext4_block_zero_page_range(handle_t *handle,
3331 struct address_space *mapping, loff_t from, loff_t length)
3332 {
3333 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3334 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3335 unsigned blocksize, max, pos;
3336 ext4_lblk_t iblock;
3337 struct inode *inode = mapping->host;
3338 struct buffer_head *bh;
3339 struct page *page;
3340 int err = 0;
3341
3342 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3343 mapping_gfp_mask(mapping) & ~__GFP_FS);
3344 if (!page)
3345 return -ENOMEM;
3346
3347 blocksize = inode->i_sb->s_blocksize;
3348 max = blocksize - (offset & (blocksize - 1));
3349
3350 /*
3351 * correct length if it does not fall between
3352 * 'from' and the end of the block
3353 */
3354 if (length > max || length < 0)
3355 length = max;
3356
3357 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3358
3359 if (!page_has_buffers(page))
3360 create_empty_buffers(page, blocksize, 0);
3361
3362 /* Find the buffer that contains "offset" */
3363 bh = page_buffers(page);
3364 pos = blocksize;
3365 while (offset >= pos) {
3366 bh = bh->b_this_page;
3367 iblock++;
3368 pos += blocksize;
3369 }
3370 if (buffer_freed(bh)) {
3371 BUFFER_TRACE(bh, "freed: skip");
3372 goto unlock;
3373 }
3374 if (!buffer_mapped(bh)) {
3375 BUFFER_TRACE(bh, "unmapped");
3376 ext4_get_block(inode, iblock, bh, 0);
3377 /* unmapped? It's a hole - nothing to do */
3378 if (!buffer_mapped(bh)) {
3379 BUFFER_TRACE(bh, "still unmapped");
3380 goto unlock;
3381 }
3382 }
3383
3384 /* Ok, it's mapped. Make sure it's up-to-date */
3385 if (PageUptodate(page))
3386 set_buffer_uptodate(bh);
3387
3388 if (!buffer_uptodate(bh)) {
3389 err = -EIO;
3390 ll_rw_block(READ, 1, &bh);
3391 wait_on_buffer(bh);
3392 /* Uhhuh. Read error. Complain and punt. */
3393 if (!buffer_uptodate(bh))
3394 goto unlock;
3395 if (S_ISREG(inode->i_mode) &&
3396 ext4_encrypted_inode(inode)) {
3397 /* We expect the key to be set. */
3398 BUG_ON(!ext4_has_encryption_key(inode));
3399 BUG_ON(blocksize != PAGE_CACHE_SIZE);
3400 WARN_ON_ONCE(ext4_decrypt_one(inode, page));
3401 }
3402 }
3403 if (ext4_should_journal_data(inode)) {
3404 BUFFER_TRACE(bh, "get write access");
3405 err = ext4_journal_get_write_access(handle, bh);
3406 if (err)
3407 goto unlock;
3408 }
3409 zero_user(page, offset, length);
3410 BUFFER_TRACE(bh, "zeroed end of block");
3411
3412 if (ext4_should_journal_data(inode)) {
3413 err = ext4_handle_dirty_metadata(handle, inode, bh);
3414 } else {
3415 err = 0;
3416 mark_buffer_dirty(bh);
3417 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3418 err = ext4_jbd2_file_inode(handle, inode);
3419 }
3420
3421 unlock:
3422 unlock_page(page);
3423 page_cache_release(page);
3424 return err;
3425 }
3426
3427 /*
3428 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3429 * up to the end of the block which corresponds to `from'.
3430 * This required during truncate. We need to physically zero the tail end
3431 * of that block so it doesn't yield old data if the file is later grown.
3432 */
ext4_block_truncate_page(handle_t * handle,struct address_space * mapping,loff_t from)3433 static int ext4_block_truncate_page(handle_t *handle,
3434 struct address_space *mapping, loff_t from)
3435 {
3436 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3437 unsigned length;
3438 unsigned blocksize;
3439 struct inode *inode = mapping->host;
3440
3441 /* If we are processing an encrypted inode during orphan list
3442 * handling */
3443 if (ext4_encrypted_inode(inode) && !ext4_has_encryption_key(inode))
3444 return 0;
3445
3446 blocksize = inode->i_sb->s_blocksize;
3447 length = blocksize - (offset & (blocksize - 1));
3448
3449 return ext4_block_zero_page_range(handle, mapping, from, length);
3450 }
3451
ext4_zero_partial_blocks(handle_t * handle,struct inode * inode,loff_t lstart,loff_t length)3452 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3453 loff_t lstart, loff_t length)
3454 {
3455 struct super_block *sb = inode->i_sb;
3456 struct address_space *mapping = inode->i_mapping;
3457 unsigned partial_start, partial_end;
3458 ext4_fsblk_t start, end;
3459 loff_t byte_end = (lstart + length - 1);
3460 int err = 0;
3461
3462 partial_start = lstart & (sb->s_blocksize - 1);
3463 partial_end = byte_end & (sb->s_blocksize - 1);
3464
3465 start = lstart >> sb->s_blocksize_bits;
3466 end = byte_end >> sb->s_blocksize_bits;
3467
3468 /* Handle partial zero within the single block */
3469 if (start == end &&
3470 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3471 err = ext4_block_zero_page_range(handle, mapping,
3472 lstart, length);
3473 return err;
3474 }
3475 /* Handle partial zero out on the start of the range */
3476 if (partial_start) {
3477 err = ext4_block_zero_page_range(handle, mapping,
3478 lstart, sb->s_blocksize);
3479 if (err)
3480 return err;
3481 }
3482 /* Handle partial zero out on the end of the range */
3483 if (partial_end != sb->s_blocksize - 1)
3484 err = ext4_block_zero_page_range(handle, mapping,
3485 byte_end - partial_end,
3486 partial_end + 1);
3487 return err;
3488 }
3489
ext4_can_truncate(struct inode * inode)3490 int ext4_can_truncate(struct inode *inode)
3491 {
3492 if (S_ISREG(inode->i_mode))
3493 return 1;
3494 if (S_ISDIR(inode->i_mode))
3495 return 1;
3496 if (S_ISLNK(inode->i_mode))
3497 return !ext4_inode_is_fast_symlink(inode);
3498 return 0;
3499 }
3500
3501 /*
3502 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3503 * associated with the given offset and length
3504 *
3505 * @inode: File inode
3506 * @offset: The offset where the hole will begin
3507 * @len: The length of the hole
3508 *
3509 * Returns: 0 on success or negative on failure
3510 */
3511
ext4_punch_hole(struct inode * inode,loff_t offset,loff_t length)3512 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3513 {
3514 struct super_block *sb = inode->i_sb;
3515 ext4_lblk_t first_block, stop_block;
3516 struct address_space *mapping = inode->i_mapping;
3517 loff_t first_block_offset, last_block_offset;
3518 handle_t *handle;
3519 unsigned int credits;
3520 int ret = 0;
3521
3522 if (!S_ISREG(inode->i_mode))
3523 return -EOPNOTSUPP;
3524
3525 trace_ext4_punch_hole(inode, offset, length, 0);
3526
3527 /*
3528 * Write out all dirty pages to avoid race conditions
3529 * Then release them.
3530 */
3531 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3532 ret = filemap_write_and_wait_range(mapping, offset,
3533 offset + length - 1);
3534 if (ret)
3535 return ret;
3536 }
3537
3538 mutex_lock(&inode->i_mutex);
3539
3540 /* No need to punch hole beyond i_size */
3541 if (offset >= inode->i_size)
3542 goto out_mutex;
3543
3544 /*
3545 * If the hole extends beyond i_size, set the hole
3546 * to end after the page that contains i_size
3547 */
3548 if (offset + length > inode->i_size) {
3549 length = inode->i_size +
3550 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3551 offset;
3552 }
3553
3554 if (offset & (sb->s_blocksize - 1) ||
3555 (offset + length) & (sb->s_blocksize - 1)) {
3556 /*
3557 * Attach jinode to inode for jbd2 if we do any zeroing of
3558 * partial block
3559 */
3560 ret = ext4_inode_attach_jinode(inode);
3561 if (ret < 0)
3562 goto out_mutex;
3563
3564 }
3565
3566 first_block_offset = round_up(offset, sb->s_blocksize);
3567 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3568
3569 /* Now release the pages and zero block aligned part of pages*/
3570 if (last_block_offset > first_block_offset)
3571 truncate_pagecache_range(inode, first_block_offset,
3572 last_block_offset);
3573
3574 /* Wait all existing dio workers, newcomers will block on i_mutex */
3575 ext4_inode_block_unlocked_dio(inode);
3576 inode_dio_wait(inode);
3577
3578 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3579 credits = ext4_writepage_trans_blocks(inode);
3580 else
3581 credits = ext4_blocks_for_truncate(inode);
3582 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3583 if (IS_ERR(handle)) {
3584 ret = PTR_ERR(handle);
3585 ext4_std_error(sb, ret);
3586 goto out_dio;
3587 }
3588
3589 ret = ext4_zero_partial_blocks(handle, inode, offset,
3590 length);
3591 if (ret)
3592 goto out_stop;
3593
3594 first_block = (offset + sb->s_blocksize - 1) >>
3595 EXT4_BLOCK_SIZE_BITS(sb);
3596 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3597
3598 /* If there are no blocks to remove, return now */
3599 if (first_block >= stop_block)
3600 goto out_stop;
3601
3602 down_write(&EXT4_I(inode)->i_data_sem);
3603 ext4_discard_preallocations(inode);
3604
3605 ret = ext4_es_remove_extent(inode, first_block,
3606 stop_block - first_block);
3607 if (ret) {
3608 up_write(&EXT4_I(inode)->i_data_sem);
3609 goto out_stop;
3610 }
3611
3612 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3613 ret = ext4_ext_remove_space(inode, first_block,
3614 stop_block - 1);
3615 else
3616 ret = ext4_ind_remove_space(handle, inode, first_block,
3617 stop_block);
3618
3619 up_write(&EXT4_I(inode)->i_data_sem);
3620 if (IS_SYNC(inode))
3621 ext4_handle_sync(handle);
3622
3623 /* Now release the pages again to reduce race window */
3624 if (last_block_offset > first_block_offset)
3625 truncate_pagecache_range(inode, first_block_offset,
3626 last_block_offset);
3627
3628 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3629 ext4_mark_inode_dirty(handle, inode);
3630 out_stop:
3631 ext4_journal_stop(handle);
3632 out_dio:
3633 ext4_inode_resume_unlocked_dio(inode);
3634 out_mutex:
3635 mutex_unlock(&inode->i_mutex);
3636 return ret;
3637 }
3638
ext4_inode_attach_jinode(struct inode * inode)3639 int ext4_inode_attach_jinode(struct inode *inode)
3640 {
3641 struct ext4_inode_info *ei = EXT4_I(inode);
3642 struct jbd2_inode *jinode;
3643
3644 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3645 return 0;
3646
3647 jinode = jbd2_alloc_inode(GFP_KERNEL);
3648 spin_lock(&inode->i_lock);
3649 if (!ei->jinode) {
3650 if (!jinode) {
3651 spin_unlock(&inode->i_lock);
3652 return -ENOMEM;
3653 }
3654 ei->jinode = jinode;
3655 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3656 jinode = NULL;
3657 }
3658 spin_unlock(&inode->i_lock);
3659 if (unlikely(jinode != NULL))
3660 jbd2_free_inode(jinode);
3661 return 0;
3662 }
3663
3664 /*
3665 * ext4_truncate()
3666 *
3667 * We block out ext4_get_block() block instantiations across the entire
3668 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3669 * simultaneously on behalf of the same inode.
3670 *
3671 * As we work through the truncate and commit bits of it to the journal there
3672 * is one core, guiding principle: the file's tree must always be consistent on
3673 * disk. We must be able to restart the truncate after a crash.
3674 *
3675 * The file's tree may be transiently inconsistent in memory (although it
3676 * probably isn't), but whenever we close off and commit a journal transaction,
3677 * the contents of (the filesystem + the journal) must be consistent and
3678 * restartable. It's pretty simple, really: bottom up, right to left (although
3679 * left-to-right works OK too).
3680 *
3681 * Note that at recovery time, journal replay occurs *before* the restart of
3682 * truncate against the orphan inode list.
3683 *
3684 * The committed inode has the new, desired i_size (which is the same as
3685 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3686 * that this inode's truncate did not complete and it will again call
3687 * ext4_truncate() to have another go. So there will be instantiated blocks
3688 * to the right of the truncation point in a crashed ext4 filesystem. But
3689 * that's fine - as long as they are linked from the inode, the post-crash
3690 * ext4_truncate() run will find them and release them.
3691 */
ext4_truncate(struct inode * inode)3692 void ext4_truncate(struct inode *inode)
3693 {
3694 struct ext4_inode_info *ei = EXT4_I(inode);
3695 unsigned int credits;
3696 handle_t *handle;
3697 struct address_space *mapping = inode->i_mapping;
3698
3699 /*
3700 * There is a possibility that we're either freeing the inode
3701 * or it's a completely new inode. In those cases we might not
3702 * have i_mutex locked because it's not necessary.
3703 */
3704 if (!(inode->i_state & (I_NEW|I_FREEING)))
3705 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3706 trace_ext4_truncate_enter(inode);
3707
3708 if (!ext4_can_truncate(inode))
3709 return;
3710
3711 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3712
3713 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3714 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3715
3716 if (ext4_has_inline_data(inode)) {
3717 int has_inline = 1;
3718
3719 ext4_inline_data_truncate(inode, &has_inline);
3720 if (has_inline)
3721 return;
3722 }
3723
3724 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3725 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3726 if (ext4_inode_attach_jinode(inode) < 0)
3727 return;
3728 }
3729
3730 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3731 credits = ext4_writepage_trans_blocks(inode);
3732 else
3733 credits = ext4_blocks_for_truncate(inode);
3734
3735 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3736 if (IS_ERR(handle)) {
3737 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3738 return;
3739 }
3740
3741 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3742 ext4_block_truncate_page(handle, mapping, inode->i_size);
3743
3744 /*
3745 * We add the inode to the orphan list, so that if this
3746 * truncate spans multiple transactions, and we crash, we will
3747 * resume the truncate when the filesystem recovers. It also
3748 * marks the inode dirty, to catch the new size.
3749 *
3750 * Implication: the file must always be in a sane, consistent
3751 * truncatable state while each transaction commits.
3752 */
3753 if (ext4_orphan_add(handle, inode))
3754 goto out_stop;
3755
3756 down_write(&EXT4_I(inode)->i_data_sem);
3757
3758 ext4_discard_preallocations(inode);
3759
3760 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3761 ext4_ext_truncate(handle, inode);
3762 else
3763 ext4_ind_truncate(handle, inode);
3764
3765 up_write(&ei->i_data_sem);
3766
3767 if (IS_SYNC(inode))
3768 ext4_handle_sync(handle);
3769
3770 out_stop:
3771 /*
3772 * If this was a simple ftruncate() and the file will remain alive,
3773 * then we need to clear up the orphan record which we created above.
3774 * However, if this was a real unlink then we were called by
3775 * ext4_delete_inode(), and we allow that function to clean up the
3776 * orphan info for us.
3777 */
3778 if (inode->i_nlink)
3779 ext4_orphan_del(handle, inode);
3780
3781 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3782 ext4_mark_inode_dirty(handle, inode);
3783 ext4_journal_stop(handle);
3784
3785 trace_ext4_truncate_exit(inode);
3786 }
3787
3788 /*
3789 * ext4_get_inode_loc returns with an extra refcount against the inode's
3790 * underlying buffer_head on success. If 'in_mem' is true, we have all
3791 * data in memory that is needed to recreate the on-disk version of this
3792 * inode.
3793 */
__ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc,int in_mem)3794 static int __ext4_get_inode_loc(struct inode *inode,
3795 struct ext4_iloc *iloc, int in_mem)
3796 {
3797 struct ext4_group_desc *gdp;
3798 struct buffer_head *bh;
3799 struct super_block *sb = inode->i_sb;
3800 ext4_fsblk_t block;
3801 int inodes_per_block, inode_offset;
3802
3803 iloc->bh = NULL;
3804 if (!ext4_valid_inum(sb, inode->i_ino))
3805 return -EIO;
3806
3807 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3808 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3809 if (!gdp)
3810 return -EIO;
3811
3812 /*
3813 * Figure out the offset within the block group inode table
3814 */
3815 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3816 inode_offset = ((inode->i_ino - 1) %
3817 EXT4_INODES_PER_GROUP(sb));
3818 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3819 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3820
3821 bh = sb_getblk(sb, block);
3822 if (unlikely(!bh))
3823 return -ENOMEM;
3824 if (!buffer_uptodate(bh)) {
3825 lock_buffer(bh);
3826
3827 /*
3828 * If the buffer has the write error flag, we have failed
3829 * to write out another inode in the same block. In this
3830 * case, we don't have to read the block because we may
3831 * read the old inode data successfully.
3832 */
3833 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3834 set_buffer_uptodate(bh);
3835
3836 if (buffer_uptodate(bh)) {
3837 /* someone brought it uptodate while we waited */
3838 unlock_buffer(bh);
3839 goto has_buffer;
3840 }
3841
3842 /*
3843 * If we have all information of the inode in memory and this
3844 * is the only valid inode in the block, we need not read the
3845 * block.
3846 */
3847 if (in_mem) {
3848 struct buffer_head *bitmap_bh;
3849 int i, start;
3850
3851 start = inode_offset & ~(inodes_per_block - 1);
3852
3853 /* Is the inode bitmap in cache? */
3854 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3855 if (unlikely(!bitmap_bh))
3856 goto make_io;
3857
3858 /*
3859 * If the inode bitmap isn't in cache then the
3860 * optimisation may end up performing two reads instead
3861 * of one, so skip it.
3862 */
3863 if (!buffer_uptodate(bitmap_bh)) {
3864 brelse(bitmap_bh);
3865 goto make_io;
3866 }
3867 for (i = start; i < start + inodes_per_block; i++) {
3868 if (i == inode_offset)
3869 continue;
3870 if (ext4_test_bit(i, bitmap_bh->b_data))
3871 break;
3872 }
3873 brelse(bitmap_bh);
3874 if (i == start + inodes_per_block) {
3875 /* all other inodes are free, so skip I/O */
3876 memset(bh->b_data, 0, bh->b_size);
3877 set_buffer_uptodate(bh);
3878 unlock_buffer(bh);
3879 goto has_buffer;
3880 }
3881 }
3882
3883 make_io:
3884 /*
3885 * If we need to do any I/O, try to pre-readahead extra
3886 * blocks from the inode table.
3887 */
3888 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3889 ext4_fsblk_t b, end, table;
3890 unsigned num;
3891 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3892
3893 table = ext4_inode_table(sb, gdp);
3894 /* s_inode_readahead_blks is always a power of 2 */
3895 b = block & ~((ext4_fsblk_t) ra_blks - 1);
3896 if (table > b)
3897 b = table;
3898 end = b + ra_blks;
3899 num = EXT4_INODES_PER_GROUP(sb);
3900 if (ext4_has_group_desc_csum(sb))
3901 num -= ext4_itable_unused_count(sb, gdp);
3902 table += num / inodes_per_block;
3903 if (end > table)
3904 end = table;
3905 while (b <= end)
3906 sb_breadahead(sb, b++);
3907 }
3908
3909 /*
3910 * There are other valid inodes in the buffer, this inode
3911 * has in-inode xattrs, or we don't have this inode in memory.
3912 * Read the block from disk.
3913 */
3914 trace_ext4_load_inode(inode);
3915 get_bh(bh);
3916 bh->b_end_io = end_buffer_read_sync;
3917 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3918 wait_on_buffer(bh);
3919 if (!buffer_uptodate(bh)) {
3920 EXT4_ERROR_INODE_BLOCK(inode, block,
3921 "unable to read itable block");
3922 brelse(bh);
3923 return -EIO;
3924 }
3925 }
3926 has_buffer:
3927 iloc->bh = bh;
3928 return 0;
3929 }
3930
ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc)3931 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3932 {
3933 /* We have all inode data except xattrs in memory here. */
3934 return __ext4_get_inode_loc(inode, iloc,
3935 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3936 }
3937
ext4_set_inode_flags(struct inode * inode)3938 void ext4_set_inode_flags(struct inode *inode)
3939 {
3940 unsigned int flags = EXT4_I(inode)->i_flags;
3941 unsigned int new_fl = 0;
3942
3943 if (flags & EXT4_SYNC_FL)
3944 new_fl |= S_SYNC;
3945 if (flags & EXT4_APPEND_FL)
3946 new_fl |= S_APPEND;
3947 if (flags & EXT4_IMMUTABLE_FL)
3948 new_fl |= S_IMMUTABLE;
3949 if (flags & EXT4_NOATIME_FL)
3950 new_fl |= S_NOATIME;
3951 if (flags & EXT4_DIRSYNC_FL)
3952 new_fl |= S_DIRSYNC;
3953 inode_set_flags(inode, new_fl,
3954 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3955 }
3956
3957 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
ext4_get_inode_flags(struct ext4_inode_info * ei)3958 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3959 {
3960 unsigned int vfs_fl;
3961 unsigned long old_fl, new_fl;
3962
3963 do {
3964 vfs_fl = ei->vfs_inode.i_flags;
3965 old_fl = ei->i_flags;
3966 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3967 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3968 EXT4_DIRSYNC_FL);
3969 if (vfs_fl & S_SYNC)
3970 new_fl |= EXT4_SYNC_FL;
3971 if (vfs_fl & S_APPEND)
3972 new_fl |= EXT4_APPEND_FL;
3973 if (vfs_fl & S_IMMUTABLE)
3974 new_fl |= EXT4_IMMUTABLE_FL;
3975 if (vfs_fl & S_NOATIME)
3976 new_fl |= EXT4_NOATIME_FL;
3977 if (vfs_fl & S_DIRSYNC)
3978 new_fl |= EXT4_DIRSYNC_FL;
3979 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3980 }
3981
ext4_inode_blocks(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)3982 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3983 struct ext4_inode_info *ei)
3984 {
3985 blkcnt_t i_blocks ;
3986 struct inode *inode = &(ei->vfs_inode);
3987 struct super_block *sb = inode->i_sb;
3988
3989 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3990 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3991 /* we are using combined 48 bit field */
3992 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3993 le32_to_cpu(raw_inode->i_blocks_lo);
3994 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3995 /* i_blocks represent file system block size */
3996 return i_blocks << (inode->i_blkbits - 9);
3997 } else {
3998 return i_blocks;
3999 }
4000 } else {
4001 return le32_to_cpu(raw_inode->i_blocks_lo);
4002 }
4003 }
4004
ext4_iget_extra_inode(struct inode * inode,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4005 static inline void ext4_iget_extra_inode(struct inode *inode,
4006 struct ext4_inode *raw_inode,
4007 struct ext4_inode_info *ei)
4008 {
4009 __le32 *magic = (void *)raw_inode +
4010 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4011 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4012 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4013 ext4_find_inline_data_nolock(inode);
4014 } else
4015 EXT4_I(inode)->i_inline_off = 0;
4016 }
4017
ext4_iget(struct super_block * sb,unsigned long ino)4018 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4019 {
4020 struct ext4_iloc iloc;
4021 struct ext4_inode *raw_inode;
4022 struct ext4_inode_info *ei;
4023 struct inode *inode;
4024 journal_t *journal = EXT4_SB(sb)->s_journal;
4025 long ret;
4026 int block;
4027 uid_t i_uid;
4028 gid_t i_gid;
4029
4030 inode = iget_locked(sb, ino);
4031 if (!inode)
4032 return ERR_PTR(-ENOMEM);
4033 if (!(inode->i_state & I_NEW))
4034 return inode;
4035
4036 ei = EXT4_I(inode);
4037 iloc.bh = NULL;
4038
4039 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4040 if (ret < 0)
4041 goto bad_inode;
4042 raw_inode = ext4_raw_inode(&iloc);
4043
4044 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4045 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4046 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4047 EXT4_INODE_SIZE(inode->i_sb)) {
4048 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4049 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4050 EXT4_INODE_SIZE(inode->i_sb));
4051 ret = -EIO;
4052 goto bad_inode;
4053 }
4054 } else
4055 ei->i_extra_isize = 0;
4056
4057 /* Precompute checksum seed for inode metadata */
4058 if (ext4_has_metadata_csum(sb)) {
4059 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4060 __u32 csum;
4061 __le32 inum = cpu_to_le32(inode->i_ino);
4062 __le32 gen = raw_inode->i_generation;
4063 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4064 sizeof(inum));
4065 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4066 sizeof(gen));
4067 }
4068
4069 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4070 EXT4_ERROR_INODE(inode, "checksum invalid");
4071 ret = -EIO;
4072 goto bad_inode;
4073 }
4074
4075 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4076 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4077 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4078 if (!(test_opt(inode->i_sb, NO_UID32))) {
4079 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4080 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4081 }
4082 i_uid_write(inode, i_uid);
4083 i_gid_write(inode, i_gid);
4084 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4085
4086 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4087 ei->i_inline_off = 0;
4088 ei->i_dir_start_lookup = 0;
4089 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4090 /* We now have enough fields to check if the inode was active or not.
4091 * This is needed because nfsd might try to access dead inodes
4092 * the test is that same one that e2fsck uses
4093 * NeilBrown 1999oct15
4094 */
4095 if (inode->i_nlink == 0) {
4096 if ((inode->i_mode == 0 ||
4097 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4098 ino != EXT4_BOOT_LOADER_INO) {
4099 /* this inode is deleted */
4100 ret = -ESTALE;
4101 goto bad_inode;
4102 }
4103 /* The only unlinked inodes we let through here have
4104 * valid i_mode and are being read by the orphan
4105 * recovery code: that's fine, we're about to complete
4106 * the process of deleting those.
4107 * OR it is the EXT4_BOOT_LOADER_INO which is
4108 * not initialized on a new filesystem. */
4109 }
4110 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4111 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4112 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4113 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4114 ei->i_file_acl |=
4115 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4116 inode->i_size = ext4_isize(raw_inode);
4117 ei->i_disksize = inode->i_size;
4118 #ifdef CONFIG_QUOTA
4119 ei->i_reserved_quota = 0;
4120 #endif
4121 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4122 ei->i_block_group = iloc.block_group;
4123 ei->i_last_alloc_group = ~0;
4124 /*
4125 * NOTE! The in-memory inode i_data array is in little-endian order
4126 * even on big-endian machines: we do NOT byteswap the block numbers!
4127 */
4128 for (block = 0; block < EXT4_N_BLOCKS; block++)
4129 ei->i_data[block] = raw_inode->i_block[block];
4130 INIT_LIST_HEAD(&ei->i_orphan);
4131
4132 /*
4133 * Set transaction id's of transactions that have to be committed
4134 * to finish f[data]sync. We set them to currently running transaction
4135 * as we cannot be sure that the inode or some of its metadata isn't
4136 * part of the transaction - the inode could have been reclaimed and
4137 * now it is reread from disk.
4138 */
4139 if (journal) {
4140 transaction_t *transaction;
4141 tid_t tid;
4142
4143 read_lock(&journal->j_state_lock);
4144 if (journal->j_running_transaction)
4145 transaction = journal->j_running_transaction;
4146 else
4147 transaction = journal->j_committing_transaction;
4148 if (transaction)
4149 tid = transaction->t_tid;
4150 else
4151 tid = journal->j_commit_sequence;
4152 read_unlock(&journal->j_state_lock);
4153 ei->i_sync_tid = tid;
4154 ei->i_datasync_tid = tid;
4155 }
4156
4157 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4158 if (ei->i_extra_isize == 0) {
4159 /* The extra space is currently unused. Use it. */
4160 ei->i_extra_isize = sizeof(struct ext4_inode) -
4161 EXT4_GOOD_OLD_INODE_SIZE;
4162 } else {
4163 ext4_iget_extra_inode(inode, raw_inode, ei);
4164 }
4165 }
4166
4167 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4168 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4169 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4170 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4171
4172 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4173 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4174 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4175 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4176 inode->i_version |=
4177 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4178 }
4179 }
4180
4181 ret = 0;
4182 if (ei->i_file_acl &&
4183 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4184 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4185 ei->i_file_acl);
4186 ret = -EIO;
4187 goto bad_inode;
4188 } else if (!ext4_has_inline_data(inode)) {
4189 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4190 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4191 (S_ISLNK(inode->i_mode) &&
4192 !ext4_inode_is_fast_symlink(inode))))
4193 /* Validate extent which is part of inode */
4194 ret = ext4_ext_check_inode(inode);
4195 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4196 (S_ISLNK(inode->i_mode) &&
4197 !ext4_inode_is_fast_symlink(inode))) {
4198 /* Validate block references which are part of inode */
4199 ret = ext4_ind_check_inode(inode);
4200 }
4201 }
4202 if (ret)
4203 goto bad_inode;
4204
4205 if (S_ISREG(inode->i_mode)) {
4206 inode->i_op = &ext4_file_inode_operations;
4207 inode->i_fop = &ext4_file_operations;
4208 ext4_set_aops(inode);
4209 } else if (S_ISDIR(inode->i_mode)) {
4210 inode->i_op = &ext4_dir_inode_operations;
4211 inode->i_fop = &ext4_dir_operations;
4212 } else if (S_ISLNK(inode->i_mode)) {
4213 if (ext4_inode_is_fast_symlink(inode) &&
4214 !ext4_encrypted_inode(inode)) {
4215 inode->i_op = &ext4_fast_symlink_inode_operations;
4216 nd_terminate_link(ei->i_data, inode->i_size,
4217 sizeof(ei->i_data) - 1);
4218 } else {
4219 inode->i_op = &ext4_symlink_inode_operations;
4220 ext4_set_aops(inode);
4221 }
4222 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4223 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4224 inode->i_op = &ext4_special_inode_operations;
4225 if (raw_inode->i_block[0])
4226 init_special_inode(inode, inode->i_mode,
4227 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4228 else
4229 init_special_inode(inode, inode->i_mode,
4230 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4231 } else if (ino == EXT4_BOOT_LOADER_INO) {
4232 make_bad_inode(inode);
4233 } else {
4234 ret = -EIO;
4235 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4236 goto bad_inode;
4237 }
4238 brelse(iloc.bh);
4239 ext4_set_inode_flags(inode);
4240 unlock_new_inode(inode);
4241 return inode;
4242
4243 bad_inode:
4244 brelse(iloc.bh);
4245 iget_failed(inode);
4246 return ERR_PTR(ret);
4247 }
4248
ext4_iget_normal(struct super_block * sb,unsigned long ino)4249 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4250 {
4251 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4252 return ERR_PTR(-EIO);
4253 return ext4_iget(sb, ino);
4254 }
4255
ext4_inode_blocks_set(handle_t * handle,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4256 static int ext4_inode_blocks_set(handle_t *handle,
4257 struct ext4_inode *raw_inode,
4258 struct ext4_inode_info *ei)
4259 {
4260 struct inode *inode = &(ei->vfs_inode);
4261 u64 i_blocks = inode->i_blocks;
4262 struct super_block *sb = inode->i_sb;
4263
4264 if (i_blocks <= ~0U) {
4265 /*
4266 * i_blocks can be represented in a 32 bit variable
4267 * as multiple of 512 bytes
4268 */
4269 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4270 raw_inode->i_blocks_high = 0;
4271 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4272 return 0;
4273 }
4274 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4275 return -EFBIG;
4276
4277 if (i_blocks <= 0xffffffffffffULL) {
4278 /*
4279 * i_blocks can be represented in a 48 bit variable
4280 * as multiple of 512 bytes
4281 */
4282 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4283 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4284 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4285 } else {
4286 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4287 /* i_block is stored in file system block size */
4288 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4289 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4290 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4291 }
4292 return 0;
4293 }
4294
4295 /*
4296 * Post the struct inode info into an on-disk inode location in the
4297 * buffer-cache. This gobbles the caller's reference to the
4298 * buffer_head in the inode location struct.
4299 *
4300 * The caller must have write access to iloc->bh.
4301 */
ext4_do_update_inode(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)4302 static int ext4_do_update_inode(handle_t *handle,
4303 struct inode *inode,
4304 struct ext4_iloc *iloc)
4305 {
4306 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4307 struct ext4_inode_info *ei = EXT4_I(inode);
4308 struct buffer_head *bh = iloc->bh;
4309 struct super_block *sb = inode->i_sb;
4310 int err = 0, rc, block;
4311 int need_datasync = 0, set_large_file = 0;
4312 uid_t i_uid;
4313 gid_t i_gid;
4314
4315 spin_lock(&ei->i_raw_lock);
4316
4317 /* For fields not tracked in the in-memory inode,
4318 * initialise them to zero for new inodes. */
4319 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4320 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4321
4322 ext4_get_inode_flags(ei);
4323 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4324 i_uid = i_uid_read(inode);
4325 i_gid = i_gid_read(inode);
4326 if (!(test_opt(inode->i_sb, NO_UID32))) {
4327 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4328 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4329 /*
4330 * Fix up interoperability with old kernels. Otherwise, old inodes get
4331 * re-used with the upper 16 bits of the uid/gid intact
4332 */
4333 if (!ei->i_dtime) {
4334 raw_inode->i_uid_high =
4335 cpu_to_le16(high_16_bits(i_uid));
4336 raw_inode->i_gid_high =
4337 cpu_to_le16(high_16_bits(i_gid));
4338 } else {
4339 raw_inode->i_uid_high = 0;
4340 raw_inode->i_gid_high = 0;
4341 }
4342 } else {
4343 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4344 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4345 raw_inode->i_uid_high = 0;
4346 raw_inode->i_gid_high = 0;
4347 }
4348 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4349
4350 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4351 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4352 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4353 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4354
4355 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4356 if (err) {
4357 spin_unlock(&ei->i_raw_lock);
4358 goto out_brelse;
4359 }
4360 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4361 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4362 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4363 raw_inode->i_file_acl_high =
4364 cpu_to_le16(ei->i_file_acl >> 32);
4365 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4366 if (ei->i_disksize != ext4_isize(raw_inode)) {
4367 ext4_isize_set(raw_inode, ei->i_disksize);
4368 need_datasync = 1;
4369 }
4370 if (ei->i_disksize > 0x7fffffffULL) {
4371 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4372 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4373 EXT4_SB(sb)->s_es->s_rev_level ==
4374 cpu_to_le32(EXT4_GOOD_OLD_REV))
4375 set_large_file = 1;
4376 }
4377 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4378 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4379 if (old_valid_dev(inode->i_rdev)) {
4380 raw_inode->i_block[0] =
4381 cpu_to_le32(old_encode_dev(inode->i_rdev));
4382 raw_inode->i_block[1] = 0;
4383 } else {
4384 raw_inode->i_block[0] = 0;
4385 raw_inode->i_block[1] =
4386 cpu_to_le32(new_encode_dev(inode->i_rdev));
4387 raw_inode->i_block[2] = 0;
4388 }
4389 } else if (!ext4_has_inline_data(inode)) {
4390 for (block = 0; block < EXT4_N_BLOCKS; block++)
4391 raw_inode->i_block[block] = ei->i_data[block];
4392 }
4393
4394 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4395 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4396 if (ei->i_extra_isize) {
4397 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4398 raw_inode->i_version_hi =
4399 cpu_to_le32(inode->i_version >> 32);
4400 raw_inode->i_extra_isize =
4401 cpu_to_le16(ei->i_extra_isize);
4402 }
4403 }
4404
4405 ext4_inode_csum_set(inode, raw_inode, ei);
4406
4407 spin_unlock(&ei->i_raw_lock);
4408
4409 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4410 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4411 if (!err)
4412 err = rc;
4413 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4414 if (set_large_file) {
4415 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4416 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4417 if (err)
4418 goto out_brelse;
4419 ext4_update_dynamic_rev(sb);
4420 EXT4_SET_RO_COMPAT_FEATURE(sb,
4421 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4422 ext4_handle_sync(handle);
4423 err = ext4_handle_dirty_super(handle, sb);
4424 }
4425 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4426 out_brelse:
4427 brelse(bh);
4428 ext4_std_error(inode->i_sb, err);
4429 return err;
4430 }
4431
4432 /*
4433 * ext4_write_inode()
4434 *
4435 * We are called from a few places:
4436 *
4437 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4438 * Here, there will be no transaction running. We wait for any running
4439 * transaction to commit.
4440 *
4441 * - Within flush work (sys_sync(), kupdate and such).
4442 * We wait on commit, if told to.
4443 *
4444 * - Within iput_final() -> write_inode_now()
4445 * We wait on commit, if told to.
4446 *
4447 * In all cases it is actually safe for us to return without doing anything,
4448 * because the inode has been copied into a raw inode buffer in
4449 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4450 * writeback.
4451 *
4452 * Note that we are absolutely dependent upon all inode dirtiers doing the
4453 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4454 * which we are interested.
4455 *
4456 * It would be a bug for them to not do this. The code:
4457 *
4458 * mark_inode_dirty(inode)
4459 * stuff();
4460 * inode->i_size = expr;
4461 *
4462 * is in error because write_inode() could occur while `stuff()' is running,
4463 * and the new i_size will be lost. Plus the inode will no longer be on the
4464 * superblock's dirty inode list.
4465 */
ext4_write_inode(struct inode * inode,struct writeback_control * wbc)4466 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4467 {
4468 int err;
4469
4470 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4471 return 0;
4472
4473 if (EXT4_SB(inode->i_sb)->s_journal) {
4474 if (ext4_journal_current_handle()) {
4475 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4476 dump_stack();
4477 return -EIO;
4478 }
4479
4480 /*
4481 * No need to force transaction in WB_SYNC_NONE mode. Also
4482 * ext4_sync_fs() will force the commit after everything is
4483 * written.
4484 */
4485 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4486 return 0;
4487
4488 err = ext4_force_commit(inode->i_sb);
4489 } else {
4490 struct ext4_iloc iloc;
4491
4492 err = __ext4_get_inode_loc(inode, &iloc, 0);
4493 if (err)
4494 return err;
4495 /*
4496 * sync(2) will flush the whole buffer cache. No need to do
4497 * it here separately for each inode.
4498 */
4499 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4500 sync_dirty_buffer(iloc.bh);
4501 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4502 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4503 "IO error syncing inode");
4504 err = -EIO;
4505 }
4506 brelse(iloc.bh);
4507 }
4508 return err;
4509 }
4510
4511 /*
4512 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4513 * buffers that are attached to a page stradding i_size and are undergoing
4514 * commit. In that case we have to wait for commit to finish and try again.
4515 */
ext4_wait_for_tail_page_commit(struct inode * inode)4516 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4517 {
4518 struct page *page;
4519 unsigned offset;
4520 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4521 tid_t commit_tid = 0;
4522 int ret;
4523
4524 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4525 /*
4526 * All buffers in the last page remain valid? Then there's nothing to
4527 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4528 * blocksize case
4529 */
4530 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4531 return;
4532 while (1) {
4533 page = find_lock_page(inode->i_mapping,
4534 inode->i_size >> PAGE_CACHE_SHIFT);
4535 if (!page)
4536 return;
4537 ret = __ext4_journalled_invalidatepage(page, offset,
4538 PAGE_CACHE_SIZE - offset);
4539 unlock_page(page);
4540 page_cache_release(page);
4541 if (ret != -EBUSY)
4542 return;
4543 commit_tid = 0;
4544 read_lock(&journal->j_state_lock);
4545 if (journal->j_committing_transaction)
4546 commit_tid = journal->j_committing_transaction->t_tid;
4547 read_unlock(&journal->j_state_lock);
4548 if (commit_tid)
4549 jbd2_log_wait_commit(journal, commit_tid);
4550 }
4551 }
4552
4553 /*
4554 * ext4_setattr()
4555 *
4556 * Called from notify_change.
4557 *
4558 * We want to trap VFS attempts to truncate the file as soon as
4559 * possible. In particular, we want to make sure that when the VFS
4560 * shrinks i_size, we put the inode on the orphan list and modify
4561 * i_disksize immediately, so that during the subsequent flushing of
4562 * dirty pages and freeing of disk blocks, we can guarantee that any
4563 * commit will leave the blocks being flushed in an unused state on
4564 * disk. (On recovery, the inode will get truncated and the blocks will
4565 * be freed, so we have a strong guarantee that no future commit will
4566 * leave these blocks visible to the user.)
4567 *
4568 * Another thing we have to assure is that if we are in ordered mode
4569 * and inode is still attached to the committing transaction, we must
4570 * we start writeout of all the dirty pages which are being truncated.
4571 * This way we are sure that all the data written in the previous
4572 * transaction are already on disk (truncate waits for pages under
4573 * writeback).
4574 *
4575 * Called with inode->i_mutex down.
4576 */
ext4_setattr(struct dentry * dentry,struct iattr * attr)4577 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4578 {
4579 struct inode *inode = dentry->d_inode;
4580 int error, rc = 0;
4581 int orphan = 0;
4582 const unsigned int ia_valid = attr->ia_valid;
4583
4584 error = inode_change_ok(inode, attr);
4585 if (error)
4586 return error;
4587
4588 if (is_quota_modification(inode, attr))
4589 dquot_initialize(inode);
4590 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4591 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4592 handle_t *handle;
4593
4594 /* (user+group)*(old+new) structure, inode write (sb,
4595 * inode block, ? - but truncate inode update has it) */
4596 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4597 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4598 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4599 if (IS_ERR(handle)) {
4600 error = PTR_ERR(handle);
4601 goto err_out;
4602 }
4603 error = dquot_transfer(inode, attr);
4604 if (error) {
4605 ext4_journal_stop(handle);
4606 return error;
4607 }
4608 /* Update corresponding info in inode so that everything is in
4609 * one transaction */
4610 if (attr->ia_valid & ATTR_UID)
4611 inode->i_uid = attr->ia_uid;
4612 if (attr->ia_valid & ATTR_GID)
4613 inode->i_gid = attr->ia_gid;
4614 error = ext4_mark_inode_dirty(handle, inode);
4615 ext4_journal_stop(handle);
4616 }
4617
4618 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4619 handle_t *handle;
4620 loff_t oldsize = i_size_read(inode);
4621
4622 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4623 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4624
4625 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4626 return -EFBIG;
4627 }
4628
4629 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4630 inode_inc_iversion(inode);
4631
4632 if (S_ISREG(inode->i_mode) &&
4633 (attr->ia_size < inode->i_size)) {
4634 if (ext4_should_order_data(inode)) {
4635 error = ext4_begin_ordered_truncate(inode,
4636 attr->ia_size);
4637 if (error)
4638 goto err_out;
4639 }
4640 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4641 if (IS_ERR(handle)) {
4642 error = PTR_ERR(handle);
4643 goto err_out;
4644 }
4645 if (ext4_handle_valid(handle)) {
4646 error = ext4_orphan_add(handle, inode);
4647 orphan = 1;
4648 }
4649 down_write(&EXT4_I(inode)->i_data_sem);
4650 EXT4_I(inode)->i_disksize = attr->ia_size;
4651 rc = ext4_mark_inode_dirty(handle, inode);
4652 if (!error)
4653 error = rc;
4654 /*
4655 * We have to update i_size under i_data_sem together
4656 * with i_disksize to avoid races with writeback code
4657 * running ext4_wb_update_i_disksize().
4658 */
4659 if (!error)
4660 i_size_write(inode, attr->ia_size);
4661 up_write(&EXT4_I(inode)->i_data_sem);
4662 ext4_journal_stop(handle);
4663 if (error) {
4664 ext4_orphan_del(NULL, inode);
4665 goto err_out;
4666 }
4667 } else {
4668 loff_t oldsize = inode->i_size;
4669
4670 i_size_write(inode, attr->ia_size);
4671 pagecache_isize_extended(inode, oldsize, inode->i_size);
4672 }
4673
4674 /*
4675 * Blocks are going to be removed from the inode. Wait
4676 * for dio in flight. Temporarily disable
4677 * dioread_nolock to prevent livelock.
4678 */
4679 if (orphan) {
4680 if (!ext4_should_journal_data(inode)) {
4681 ext4_inode_block_unlocked_dio(inode);
4682 inode_dio_wait(inode);
4683 ext4_inode_resume_unlocked_dio(inode);
4684 } else
4685 ext4_wait_for_tail_page_commit(inode);
4686 }
4687 /*
4688 * Truncate pagecache after we've waited for commit
4689 * in data=journal mode to make pages freeable.
4690 */
4691 truncate_pagecache(inode, oldsize, inode->i_size);
4692 }
4693 /*
4694 * We want to call ext4_truncate() even if attr->ia_size ==
4695 * inode->i_size for cases like truncation of fallocated space
4696 */
4697 if (attr->ia_valid & ATTR_SIZE)
4698 ext4_truncate(inode);
4699
4700 if (!rc) {
4701 setattr_copy(inode, attr);
4702 mark_inode_dirty(inode);
4703 }
4704
4705 /*
4706 * If the call to ext4_truncate failed to get a transaction handle at
4707 * all, we need to clean up the in-core orphan list manually.
4708 */
4709 if (orphan && inode->i_nlink)
4710 ext4_orphan_del(NULL, inode);
4711
4712 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4713 #error POSIX_ACL not supported in 3.18 backport
4714 if (!rc && (ia_valid & ATTR_MODE))
4715 rc = posix_acl_chmod(inode, inode->i_mode);
4716 #endif
4717
4718 err_out:
4719 ext4_std_error(inode->i_sb, error);
4720 if (!error)
4721 error = rc;
4722 return error;
4723 }
4724
ext4_getattr(struct vfsmount * mnt,struct dentry * dentry,struct kstat * stat)4725 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4726 struct kstat *stat)
4727 {
4728 struct inode *inode;
4729 unsigned long long delalloc_blocks;
4730
4731 inode = dentry->d_inode;
4732 generic_fillattr(inode, stat);
4733
4734 /*
4735 * If there is inline data in the inode, the inode will normally not
4736 * have data blocks allocated (it may have an external xattr block).
4737 * Report at least one sector for such files, so tools like tar, rsync,
4738 * others doen't incorrectly think the file is completely sparse.
4739 */
4740 if (unlikely(ext4_has_inline_data(inode)))
4741 stat->blocks += (stat->size + 511) >> 9;
4742
4743 /*
4744 * We can't update i_blocks if the block allocation is delayed
4745 * otherwise in the case of system crash before the real block
4746 * allocation is done, we will have i_blocks inconsistent with
4747 * on-disk file blocks.
4748 * We always keep i_blocks updated together with real
4749 * allocation. But to not confuse with user, stat
4750 * will return the blocks that include the delayed allocation
4751 * blocks for this file.
4752 */
4753 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4754 EXT4_I(inode)->i_reserved_data_blocks);
4755 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4756 return 0;
4757 }
4758
ext4_index_trans_blocks(struct inode * inode,int lblocks,int pextents)4759 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4760 int pextents)
4761 {
4762 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4763 return ext4_ind_trans_blocks(inode, lblocks);
4764 return ext4_ext_index_trans_blocks(inode, pextents);
4765 }
4766
4767 /*
4768 * Account for index blocks, block groups bitmaps and block group
4769 * descriptor blocks if modify datablocks and index blocks
4770 * worse case, the indexs blocks spread over different block groups
4771 *
4772 * If datablocks are discontiguous, they are possible to spread over
4773 * different block groups too. If they are contiguous, with flexbg,
4774 * they could still across block group boundary.
4775 *
4776 * Also account for superblock, inode, quota and xattr blocks
4777 */
ext4_meta_trans_blocks(struct inode * inode,int lblocks,int pextents)4778 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4779 int pextents)
4780 {
4781 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4782 int gdpblocks;
4783 int idxblocks;
4784 int ret = 0;
4785
4786 /*
4787 * How many index blocks need to touch to map @lblocks logical blocks
4788 * to @pextents physical extents?
4789 */
4790 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4791
4792 ret = idxblocks;
4793
4794 /*
4795 * Now let's see how many group bitmaps and group descriptors need
4796 * to account
4797 */
4798 groups = idxblocks + pextents;
4799 gdpblocks = groups;
4800 if (groups > ngroups)
4801 groups = ngroups;
4802 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4803 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4804
4805 /* bitmaps and block group descriptor blocks */
4806 ret += groups + gdpblocks;
4807
4808 /* Blocks for super block, inode, quota and xattr blocks */
4809 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4810
4811 return ret;
4812 }
4813
4814 /*
4815 * Calculate the total number of credits to reserve to fit
4816 * the modification of a single pages into a single transaction,
4817 * which may include multiple chunks of block allocations.
4818 *
4819 * This could be called via ext4_write_begin()
4820 *
4821 * We need to consider the worse case, when
4822 * one new block per extent.
4823 */
ext4_writepage_trans_blocks(struct inode * inode)4824 int ext4_writepage_trans_blocks(struct inode *inode)
4825 {
4826 int bpp = ext4_journal_blocks_per_page(inode);
4827 int ret;
4828
4829 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4830
4831 /* Account for data blocks for journalled mode */
4832 if (ext4_should_journal_data(inode))
4833 ret += bpp;
4834 return ret;
4835 }
4836
4837 /*
4838 * Calculate the journal credits for a chunk of data modification.
4839 *
4840 * This is called from DIO, fallocate or whoever calling
4841 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4842 *
4843 * journal buffers for data blocks are not included here, as DIO
4844 * and fallocate do no need to journal data buffers.
4845 */
ext4_chunk_trans_blocks(struct inode * inode,int nrblocks)4846 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4847 {
4848 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4849 }
4850
4851 /*
4852 * The caller must have previously called ext4_reserve_inode_write().
4853 * Give this, we know that the caller already has write access to iloc->bh.
4854 */
ext4_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)4855 int ext4_mark_iloc_dirty(handle_t *handle,
4856 struct inode *inode, struct ext4_iloc *iloc)
4857 {
4858 int err = 0;
4859
4860 if (IS_I_VERSION(inode))
4861 inode_inc_iversion(inode);
4862
4863 /* the do_update_inode consumes one bh->b_count */
4864 get_bh(iloc->bh);
4865
4866 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4867 err = ext4_do_update_inode(handle, inode, iloc);
4868 put_bh(iloc->bh);
4869 return err;
4870 }
4871
4872 /*
4873 * On success, We end up with an outstanding reference count against
4874 * iloc->bh. This _must_ be cleaned up later.
4875 */
4876
4877 int
ext4_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)4878 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4879 struct ext4_iloc *iloc)
4880 {
4881 int err;
4882
4883 err = ext4_get_inode_loc(inode, iloc);
4884 if (!err) {
4885 BUFFER_TRACE(iloc->bh, "get_write_access");
4886 err = ext4_journal_get_write_access(handle, iloc->bh);
4887 if (err) {
4888 brelse(iloc->bh);
4889 iloc->bh = NULL;
4890 }
4891 }
4892 ext4_std_error(inode->i_sb, err);
4893 return err;
4894 }
4895
4896 /*
4897 * Expand an inode by new_extra_isize bytes.
4898 * Returns 0 on success or negative error number on failure.
4899 */
ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc iloc,handle_t * handle)4900 static int ext4_expand_extra_isize(struct inode *inode,
4901 unsigned int new_extra_isize,
4902 struct ext4_iloc iloc,
4903 handle_t *handle)
4904 {
4905 struct ext4_inode *raw_inode;
4906 struct ext4_xattr_ibody_header *header;
4907
4908 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4909 return 0;
4910
4911 raw_inode = ext4_raw_inode(&iloc);
4912
4913 header = IHDR(inode, raw_inode);
4914
4915 /* No extended attributes present */
4916 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4917 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4918 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4919 new_extra_isize);
4920 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4921 return 0;
4922 }
4923
4924 /* try to expand with EAs present */
4925 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4926 raw_inode, handle);
4927 }
4928
4929 /*
4930 * What we do here is to mark the in-core inode as clean with respect to inode
4931 * dirtiness (it may still be data-dirty).
4932 * This means that the in-core inode may be reaped by prune_icache
4933 * without having to perform any I/O. This is a very good thing,
4934 * because *any* task may call prune_icache - even ones which
4935 * have a transaction open against a different journal.
4936 *
4937 * Is this cheating? Not really. Sure, we haven't written the
4938 * inode out, but prune_icache isn't a user-visible syncing function.
4939 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4940 * we start and wait on commits.
4941 */
ext4_mark_inode_dirty(handle_t * handle,struct inode * inode)4942 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4943 {
4944 struct ext4_iloc iloc;
4945 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4946 static unsigned int mnt_count;
4947 int err, ret;
4948
4949 might_sleep();
4950 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4951 err = ext4_reserve_inode_write(handle, inode, &iloc);
4952 if (ext4_handle_valid(handle) &&
4953 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4954 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4955 /*
4956 * We need extra buffer credits since we may write into EA block
4957 * with this same handle. If journal_extend fails, then it will
4958 * only result in a minor loss of functionality for that inode.
4959 * If this is felt to be critical, then e2fsck should be run to
4960 * force a large enough s_min_extra_isize.
4961 */
4962 if ((jbd2_journal_extend(handle,
4963 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4964 ret = ext4_expand_extra_isize(inode,
4965 sbi->s_want_extra_isize,
4966 iloc, handle);
4967 if (ret) {
4968 ext4_set_inode_state(inode,
4969 EXT4_STATE_NO_EXPAND);
4970 if (mnt_count !=
4971 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4972 ext4_warning(inode->i_sb,
4973 "Unable to expand inode %lu. Delete"
4974 " some EAs or run e2fsck.",
4975 inode->i_ino);
4976 mnt_count =
4977 le16_to_cpu(sbi->s_es->s_mnt_count);
4978 }
4979 }
4980 }
4981 }
4982 if (!err)
4983 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4984 return err;
4985 }
4986
4987 /*
4988 * ext4_dirty_inode() is called from __mark_inode_dirty()
4989 *
4990 * We're really interested in the case where a file is being extended.
4991 * i_size has been changed by generic_commit_write() and we thus need
4992 * to include the updated inode in the current transaction.
4993 *
4994 * Also, dquot_alloc_block() will always dirty the inode when blocks
4995 * are allocated to the file.
4996 *
4997 * If the inode is marked synchronous, we don't honour that here - doing
4998 * so would cause a commit on atime updates, which we don't bother doing.
4999 * We handle synchronous inodes at the highest possible level.
5000 */
ext4_dirty_inode(struct inode * inode,int flags)5001 void ext4_dirty_inode(struct inode *inode, int flags)
5002 {
5003 handle_t *handle;
5004
5005 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5006 if (IS_ERR(handle))
5007 goto out;
5008
5009 ext4_mark_inode_dirty(handle, inode);
5010
5011 ext4_journal_stop(handle);
5012 out:
5013 return;
5014 }
5015
5016 #if 0
5017 /*
5018 * Bind an inode's backing buffer_head into this transaction, to prevent
5019 * it from being flushed to disk early. Unlike
5020 * ext4_reserve_inode_write, this leaves behind no bh reference and
5021 * returns no iloc structure, so the caller needs to repeat the iloc
5022 * lookup to mark the inode dirty later.
5023 */
5024 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5025 {
5026 struct ext4_iloc iloc;
5027
5028 int err = 0;
5029 if (handle) {
5030 err = ext4_get_inode_loc(inode, &iloc);
5031 if (!err) {
5032 BUFFER_TRACE(iloc.bh, "get_write_access");
5033 err = jbd2_journal_get_write_access(handle, iloc.bh);
5034 if (!err)
5035 err = ext4_handle_dirty_metadata(handle,
5036 NULL,
5037 iloc.bh);
5038 brelse(iloc.bh);
5039 }
5040 }
5041 ext4_std_error(inode->i_sb, err);
5042 return err;
5043 }
5044 #endif
5045
ext4_change_inode_journal_flag(struct inode * inode,int val)5046 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5047 {
5048 journal_t *journal;
5049 handle_t *handle;
5050 int err;
5051
5052 /*
5053 * We have to be very careful here: changing a data block's
5054 * journaling status dynamically is dangerous. If we write a
5055 * data block to the journal, change the status and then delete
5056 * that block, we risk forgetting to revoke the old log record
5057 * from the journal and so a subsequent replay can corrupt data.
5058 * So, first we make sure that the journal is empty and that
5059 * nobody is changing anything.
5060 */
5061
5062 journal = EXT4_JOURNAL(inode);
5063 if (!journal)
5064 return 0;
5065 if (is_journal_aborted(journal))
5066 return -EROFS;
5067 /* We have to allocate physical blocks for delalloc blocks
5068 * before flushing journal. otherwise delalloc blocks can not
5069 * be allocated any more. even more truncate on delalloc blocks
5070 * could trigger BUG by flushing delalloc blocks in journal.
5071 * There is no delalloc block in non-journal data mode.
5072 */
5073 if (val && test_opt(inode->i_sb, DELALLOC)) {
5074 err = ext4_alloc_da_blocks(inode);
5075 if (err < 0)
5076 return err;
5077 }
5078
5079 /* Wait for all existing dio workers */
5080 ext4_inode_block_unlocked_dio(inode);
5081 inode_dio_wait(inode);
5082
5083 jbd2_journal_lock_updates(journal);
5084
5085 /*
5086 * OK, there are no updates running now, and all cached data is
5087 * synced to disk. We are now in a completely consistent state
5088 * which doesn't have anything in the journal, and we know that
5089 * no filesystem updates are running, so it is safe to modify
5090 * the inode's in-core data-journaling state flag now.
5091 */
5092
5093 if (val)
5094 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5095 else {
5096 err = jbd2_journal_flush(journal);
5097 if (err < 0) {
5098 jbd2_journal_unlock_updates(journal);
5099 ext4_inode_resume_unlocked_dio(inode);
5100 return err;
5101 }
5102 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5103 }
5104 ext4_set_aops(inode);
5105
5106 jbd2_journal_unlock_updates(journal);
5107 ext4_inode_resume_unlocked_dio(inode);
5108
5109 /* Finally we can mark the inode as dirty. */
5110
5111 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5112 if (IS_ERR(handle))
5113 return PTR_ERR(handle);
5114
5115 err = ext4_mark_inode_dirty(handle, inode);
5116 ext4_handle_sync(handle);
5117 ext4_journal_stop(handle);
5118 ext4_std_error(inode->i_sb, err);
5119
5120 return err;
5121 }
5122
ext4_bh_unmapped(handle_t * handle,struct buffer_head * bh)5123 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5124 {
5125 return !buffer_mapped(bh);
5126 }
5127
ext4_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf)5128 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5129 {
5130 struct page *page = vmf->page;
5131 loff_t size;
5132 unsigned long len;
5133 int ret;
5134 struct file *file = vma->vm_file;
5135 struct inode *inode = file_inode(file);
5136 struct address_space *mapping = inode->i_mapping;
5137 handle_t *handle;
5138 get_block_t *get_block;
5139 int retries = 0;
5140
5141 sb_start_pagefault(inode->i_sb);
5142 file_update_time(vma->vm_file);
5143 /* Delalloc case is easy... */
5144 if (test_opt(inode->i_sb, DELALLOC) &&
5145 !ext4_should_journal_data(inode) &&
5146 !ext4_nonda_switch(inode->i_sb)) {
5147 do {
5148 ret = __block_page_mkwrite(vma, vmf,
5149 ext4_da_get_block_prep);
5150 } while (ret == -ENOSPC &&
5151 ext4_should_retry_alloc(inode->i_sb, &retries));
5152 goto out_ret;
5153 }
5154
5155 lock_page(page);
5156 size = i_size_read(inode);
5157 /* Page got truncated from under us? */
5158 if (page->mapping != mapping || page_offset(page) > size) {
5159 unlock_page(page);
5160 ret = VM_FAULT_NOPAGE;
5161 goto out;
5162 }
5163
5164 if (page->index == size >> PAGE_CACHE_SHIFT)
5165 len = size & ~PAGE_CACHE_MASK;
5166 else
5167 len = PAGE_CACHE_SIZE;
5168 /*
5169 * Return if we have all the buffers mapped. This avoids the need to do
5170 * journal_start/journal_stop which can block and take a long time
5171 */
5172 if (page_has_buffers(page)) {
5173 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5174 0, len, NULL,
5175 ext4_bh_unmapped)) {
5176 /* Wait so that we don't change page under IO */
5177 wait_for_stable_page(page);
5178 ret = VM_FAULT_LOCKED;
5179 goto out;
5180 }
5181 }
5182 unlock_page(page);
5183 /* OK, we need to fill the hole... */
5184 if (ext4_should_dioread_nolock(inode))
5185 get_block = ext4_get_block_write;
5186 else
5187 get_block = ext4_get_block;
5188 retry_alloc:
5189 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5190 ext4_writepage_trans_blocks(inode));
5191 if (IS_ERR(handle)) {
5192 ret = VM_FAULT_SIGBUS;
5193 goto out;
5194 }
5195 ret = __block_page_mkwrite(vma, vmf, get_block);
5196 if (!ret && ext4_should_journal_data(inode)) {
5197 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5198 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5199 unlock_page(page);
5200 ret = VM_FAULT_SIGBUS;
5201 ext4_journal_stop(handle);
5202 goto out;
5203 }
5204 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5205 }
5206 ext4_journal_stop(handle);
5207 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5208 goto retry_alloc;
5209 out_ret:
5210 ret = block_page_mkwrite_return(ret);
5211 out:
5212 sb_end_pagefault(inode->i_sb);
5213 return ret;
5214 }
5215