1 /*
2 * linux/fs/ext4/crypto.c
3 *
4 * Copyright (C) 2015, Google, Inc.
5 *
6 * This contains encryption functions for ext4
7 *
8 * Written by Michael Halcrow, 2014.
9 *
10 * Filename encryption additions
11 * Uday Savagaonkar, 2014
12 * Encryption policy handling additions
13 * Ildar Muslukhov, 2014
14 *
15 * This has not yet undergone a rigorous security audit.
16 *
17 * The usage of AES-XTS should conform to recommendations in NIST
18 * Special Publication 800-38E and IEEE P1619/D16.
19 */
20
21 #include <crypto/hash.h>
22 #include <crypto/sha.h>
23 #include <keys/user-type.h>
24 #include <keys/encrypted-type.h>
25 #include <linux/crypto.h>
26 #include <linux/ecryptfs.h>
27 #include <linux/gfp.h>
28 #include <linux/kernel.h>
29 #include <linux/key.h>
30 #include <linux/list.h>
31 #include <linux/mempool.h>
32 #include <linux/module.h>
33 #include <linux/mutex.h>
34 #include <linux/random.h>
35 #include <linux/scatterlist.h>
36 #include <linux/spinlock_types.h>
37
38 #include "ext4_extents.h"
39 #include "xattr.h"
40
41 /* Encryption added and removed here! (L: */
42
43 static unsigned int num_prealloc_crypto_pages = 32;
44 static unsigned int num_prealloc_crypto_ctxs = 128;
45
46 module_param(num_prealloc_crypto_pages, uint, 0444);
47 MODULE_PARM_DESC(num_prealloc_crypto_pages,
48 "Number of crypto pages to preallocate");
49 module_param(num_prealloc_crypto_ctxs, uint, 0444);
50 MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
51 "Number of crypto contexts to preallocate");
52
53 static mempool_t *ext4_bounce_page_pool;
54
55 static LIST_HEAD(ext4_free_crypto_ctxs);
56 static DEFINE_SPINLOCK(ext4_crypto_ctx_lock);
57
58 static struct kmem_cache *ext4_crypto_ctx_cachep;
59 struct kmem_cache *ext4_crypt_info_cachep;
60
61 /**
62 * ext4_release_crypto_ctx() - Releases an encryption context
63 * @ctx: The encryption context to release.
64 *
65 * If the encryption context was allocated from the pre-allocated pool, returns
66 * it to that pool. Else, frees it.
67 *
68 * If there's a bounce page in the context, this frees that.
69 */
ext4_release_crypto_ctx(struct ext4_crypto_ctx * ctx)70 void ext4_release_crypto_ctx(struct ext4_crypto_ctx *ctx)
71 {
72 unsigned long flags;
73
74 if (ctx->flags & EXT4_WRITE_PATH_FL && ctx->w.bounce_page)
75 mempool_free(ctx->w.bounce_page, ext4_bounce_page_pool);
76 ctx->w.bounce_page = NULL;
77 ctx->w.control_page = NULL;
78 if (ctx->flags & EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL) {
79 kmem_cache_free(ext4_crypto_ctx_cachep, ctx);
80 } else {
81 spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
82 list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
83 spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
84 }
85 }
86
87 /**
88 * ext4_get_crypto_ctx() - Gets an encryption context
89 * @inode: The inode for which we are doing the crypto
90 *
91 * Allocates and initializes an encryption context.
92 *
93 * Return: An allocated and initialized encryption context on success; error
94 * value or NULL otherwise.
95 */
ext4_get_crypto_ctx(struct inode * inode)96 struct ext4_crypto_ctx *ext4_get_crypto_ctx(struct inode *inode)
97 {
98 struct ext4_crypto_ctx *ctx = NULL;
99 int res = 0;
100 unsigned long flags;
101 struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info;
102
103 if (ci == NULL)
104 return ERR_PTR(-ENOKEY);
105
106 /*
107 * We first try getting the ctx from a free list because in
108 * the common case the ctx will have an allocated and
109 * initialized crypto tfm, so it's probably a worthwhile
110 * optimization. For the bounce page, we first try getting it
111 * from the kernel allocator because that's just about as fast
112 * as getting it from a list and because a cache of free pages
113 * should generally be a "last resort" option for a filesystem
114 * to be able to do its job.
115 */
116 spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
117 ctx = list_first_entry_or_null(&ext4_free_crypto_ctxs,
118 struct ext4_crypto_ctx, free_list);
119 if (ctx)
120 list_del(&ctx->free_list);
121 spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
122 if (!ctx) {
123 ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, GFP_NOFS);
124 if (!ctx) {
125 res = -ENOMEM;
126 goto out;
127 }
128 ctx->flags |= EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
129 } else {
130 ctx->flags &= ~EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
131 }
132 ctx->flags &= ~EXT4_WRITE_PATH_FL;
133
134 out:
135 if (res) {
136 if (!IS_ERR_OR_NULL(ctx))
137 ext4_release_crypto_ctx(ctx);
138 ctx = ERR_PTR(res);
139 }
140 return ctx;
141 }
142
143 struct workqueue_struct *ext4_read_workqueue;
144 static DEFINE_MUTEX(crypto_init);
145
146 /**
147 * ext4_exit_crypto() - Shutdown the ext4 encryption system
148 */
ext4_exit_crypto(void)149 void ext4_exit_crypto(void)
150 {
151 struct ext4_crypto_ctx *pos, *n;
152
153 list_for_each_entry_safe(pos, n, &ext4_free_crypto_ctxs, free_list)
154 kmem_cache_free(ext4_crypto_ctx_cachep, pos);
155 INIT_LIST_HEAD(&ext4_free_crypto_ctxs);
156 if (ext4_bounce_page_pool)
157 mempool_destroy(ext4_bounce_page_pool);
158 ext4_bounce_page_pool = NULL;
159 if (ext4_read_workqueue)
160 destroy_workqueue(ext4_read_workqueue);
161 ext4_read_workqueue = NULL;
162 if (ext4_crypto_ctx_cachep)
163 kmem_cache_destroy(ext4_crypto_ctx_cachep);
164 ext4_crypto_ctx_cachep = NULL;
165 if (ext4_crypt_info_cachep)
166 kmem_cache_destroy(ext4_crypt_info_cachep);
167 ext4_crypt_info_cachep = NULL;
168 }
169
170 /**
171 * ext4_init_crypto() - Set up for ext4 encryption.
172 *
173 * We only call this when we start accessing encrypted files, since it
174 * results in memory getting allocated that wouldn't otherwise be used.
175 *
176 * Return: Zero on success, non-zero otherwise.
177 */
ext4_init_crypto(void)178 int ext4_init_crypto(void)
179 {
180 int i, res = -ENOMEM;
181
182 mutex_lock(&crypto_init);
183 if (ext4_read_workqueue)
184 goto already_initialized;
185 ext4_read_workqueue = alloc_workqueue("ext4_crypto", WQ_HIGHPRI, 0);
186 if (!ext4_read_workqueue)
187 goto fail;
188
189 ext4_crypto_ctx_cachep = KMEM_CACHE(ext4_crypto_ctx,
190 SLAB_RECLAIM_ACCOUNT);
191 if (!ext4_crypto_ctx_cachep)
192 goto fail;
193
194 ext4_crypt_info_cachep = KMEM_CACHE(ext4_crypt_info,
195 SLAB_RECLAIM_ACCOUNT);
196 if (!ext4_crypt_info_cachep)
197 goto fail;
198
199 for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
200 struct ext4_crypto_ctx *ctx;
201
202 ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, GFP_NOFS);
203 if (!ctx) {
204 res = -ENOMEM;
205 goto fail;
206 }
207 list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
208 }
209
210 ext4_bounce_page_pool =
211 mempool_create_page_pool(num_prealloc_crypto_pages, 0);
212 if (!ext4_bounce_page_pool) {
213 res = -ENOMEM;
214 goto fail;
215 }
216 already_initialized:
217 mutex_unlock(&crypto_init);
218 return 0;
219 fail:
220 ext4_exit_crypto();
221 mutex_unlock(&crypto_init);
222 return res;
223 }
224
ext4_restore_control_page(struct page * data_page)225 void ext4_restore_control_page(struct page *data_page)
226 {
227 struct ext4_crypto_ctx *ctx =
228 (struct ext4_crypto_ctx *)page_private(data_page);
229
230 set_page_private(data_page, (unsigned long)NULL);
231 ClearPagePrivate(data_page);
232 unlock_page(data_page);
233 ext4_release_crypto_ctx(ctx);
234 }
235
236 /**
237 * ext4_crypt_complete() - The completion callback for page encryption
238 * @req: The asynchronous encryption request context
239 * @res: The result of the encryption operation
240 */
ext4_crypt_complete(struct crypto_async_request * req,int res)241 static void ext4_crypt_complete(struct crypto_async_request *req, int res)
242 {
243 struct ext4_completion_result *ecr = req->data;
244
245 if (res == -EINPROGRESS)
246 return;
247 ecr->res = res;
248 complete(&ecr->completion);
249 }
250
251 typedef enum {
252 EXT4_DECRYPT = 0,
253 EXT4_ENCRYPT,
254 } ext4_direction_t;
255
ext4_page_crypto(struct ext4_crypto_ctx * ctx,struct inode * inode,ext4_direction_t rw,pgoff_t index,struct page * src_page,struct page * dest_page)256 static int ext4_page_crypto(struct ext4_crypto_ctx *ctx,
257 struct inode *inode,
258 ext4_direction_t rw,
259 pgoff_t index,
260 struct page *src_page,
261 struct page *dest_page)
262
263 {
264 u8 xts_tweak[EXT4_XTS_TWEAK_SIZE];
265 struct ablkcipher_request *req = NULL;
266 DECLARE_EXT4_COMPLETION_RESULT(ecr);
267 struct scatterlist dst, src;
268 struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info;
269 struct crypto_ablkcipher *tfm = ci->ci_ctfm;
270 int res = 0;
271
272 req = ablkcipher_request_alloc(tfm, GFP_NOFS);
273 if (!req) {
274 printk_ratelimited(KERN_ERR
275 "%s: crypto_request_alloc() failed\n",
276 __func__);
277 return -ENOMEM;
278 }
279 ablkcipher_request_set_callback(
280 req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
281 ext4_crypt_complete, &ecr);
282
283 BUILD_BUG_ON(EXT4_XTS_TWEAK_SIZE < sizeof(index));
284 memcpy(xts_tweak, &index, sizeof(index));
285 memset(&xts_tweak[sizeof(index)], 0,
286 EXT4_XTS_TWEAK_SIZE - sizeof(index));
287
288 sg_init_table(&dst, 1);
289 sg_set_page(&dst, dest_page, PAGE_CACHE_SIZE, 0);
290 sg_init_table(&src, 1);
291 sg_set_page(&src, src_page, PAGE_CACHE_SIZE, 0);
292 ablkcipher_request_set_crypt(req, &src, &dst, PAGE_CACHE_SIZE,
293 xts_tweak);
294 if (rw == EXT4_DECRYPT)
295 res = crypto_ablkcipher_decrypt(req);
296 else
297 res = crypto_ablkcipher_encrypt(req);
298 if (res == -EINPROGRESS || res == -EBUSY) {
299 BUG_ON(req->base.data != &ecr);
300 wait_for_completion(&ecr.completion);
301 res = ecr.res;
302 }
303 ablkcipher_request_free(req);
304 if (res) {
305 printk_ratelimited(
306 KERN_ERR
307 "%s: crypto_ablkcipher_encrypt() returned %d\n",
308 __func__, res);
309 return res;
310 }
311 return 0;
312 }
313
alloc_bounce_page(struct ext4_crypto_ctx * ctx)314 static struct page *alloc_bounce_page(struct ext4_crypto_ctx *ctx)
315 {
316 ctx->w.bounce_page = mempool_alloc(ext4_bounce_page_pool, GFP_NOWAIT);
317 if (ctx->w.bounce_page == NULL)
318 return ERR_PTR(-ENOMEM);
319 ctx->flags |= EXT4_WRITE_PATH_FL;
320 return ctx->w.bounce_page;
321 }
322
323 /**
324 * ext4_encrypt() - Encrypts a page
325 * @inode: The inode for which the encryption should take place
326 * @plaintext_page: The page to encrypt. Must be locked.
327 *
328 * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
329 * encryption context.
330 *
331 * Called on the page write path. The caller must call
332 * ext4_restore_control_page() on the returned ciphertext page to
333 * release the bounce buffer and the encryption context.
334 *
335 * Return: An allocated page with the encrypted content on success. Else, an
336 * error value or NULL.
337 */
ext4_encrypt(struct inode * inode,struct page * plaintext_page)338 struct page *ext4_encrypt(struct inode *inode,
339 struct page *plaintext_page)
340 {
341 struct ext4_crypto_ctx *ctx;
342 struct page *ciphertext_page = NULL;
343 int err;
344
345 BUG_ON(!PageLocked(plaintext_page));
346
347 ctx = ext4_get_crypto_ctx(inode);
348 if (IS_ERR(ctx))
349 return (struct page *) ctx;
350
351 /* The encryption operation will require a bounce page. */
352 ciphertext_page = alloc_bounce_page(ctx);
353 if (IS_ERR(ciphertext_page))
354 goto errout;
355 ctx->w.control_page = plaintext_page;
356 err = ext4_page_crypto(ctx, inode, EXT4_ENCRYPT, plaintext_page->index,
357 plaintext_page, ciphertext_page);
358 if (err) {
359 ciphertext_page = ERR_PTR(err);
360 errout:
361 ext4_release_crypto_ctx(ctx);
362 return ciphertext_page;
363 }
364 SetPagePrivate(ciphertext_page);
365 set_page_private(ciphertext_page, (unsigned long)ctx);
366 lock_page(ciphertext_page);
367 return ciphertext_page;
368 }
369
370 /**
371 * ext4_decrypt() - Decrypts a page in-place
372 * @ctx: The encryption context.
373 * @page: The page to decrypt. Must be locked.
374 *
375 * Decrypts page in-place using the ctx encryption context.
376 *
377 * Called from the read completion callback.
378 *
379 * Return: Zero on success, non-zero otherwise.
380 */
ext4_decrypt(struct ext4_crypto_ctx * ctx,struct page * page)381 int ext4_decrypt(struct ext4_crypto_ctx *ctx, struct page *page)
382 {
383 BUG_ON(!PageLocked(page));
384
385 return ext4_page_crypto(ctx, page->mapping->host,
386 EXT4_DECRYPT, page->index, page, page);
387 }
388
389 /*
390 * Convenience function which takes care of allocating and
391 * deallocating the encryption context
392 */
ext4_decrypt_one(struct inode * inode,struct page * page)393 int ext4_decrypt_one(struct inode *inode, struct page *page)
394 {
395 int ret;
396
397 struct ext4_crypto_ctx *ctx = ext4_get_crypto_ctx(inode);
398
399 if (!ctx)
400 return -ENOMEM;
401 ret = ext4_decrypt(ctx, page);
402 ext4_release_crypto_ctx(ctx);
403 return ret;
404 }
405
ext4_encrypted_zeroout(struct inode * inode,struct ext4_extent * ex)406 int ext4_encrypted_zeroout(struct inode *inode, struct ext4_extent *ex)
407 {
408 struct ext4_crypto_ctx *ctx;
409 struct page *ciphertext_page = NULL;
410 struct bio *bio;
411 ext4_lblk_t lblk = ex->ee_block;
412 ext4_fsblk_t pblk = ext4_ext_pblock(ex);
413 unsigned int len = ext4_ext_get_actual_len(ex);
414 int err = 0;
415
416 BUG_ON(inode->i_sb->s_blocksize != PAGE_CACHE_SIZE);
417
418 ctx = ext4_get_crypto_ctx(inode);
419 if (IS_ERR(ctx))
420 return PTR_ERR(ctx);
421
422 ciphertext_page = alloc_bounce_page(ctx);
423 if (IS_ERR(ciphertext_page)) {
424 err = PTR_ERR(ciphertext_page);
425 goto errout;
426 }
427
428 while (len--) {
429 err = ext4_page_crypto(ctx, inode, EXT4_ENCRYPT, lblk,
430 ZERO_PAGE(0), ciphertext_page);
431 if (err)
432 goto errout;
433
434 bio = bio_alloc(GFP_KERNEL, 1);
435 if (!bio) {
436 err = -ENOMEM;
437 goto errout;
438 }
439 bio->bi_bdev = inode->i_sb->s_bdev;
440 bio->bi_sector = pblk;
441 err = bio_add_page(bio, ciphertext_page,
442 inode->i_sb->s_blocksize, 0);
443 if (err) {
444 bio_put(bio);
445 goto errout;
446 }
447 err = submit_bio_wait(WRITE, bio);
448 bio_put(bio);
449 if (err)
450 goto errout;
451 }
452 err = 0;
453 errout:
454 ext4_release_crypto_ctx(ctx);
455 return err;
456 }
457
ext4_valid_contents_enc_mode(uint32_t mode)458 bool ext4_valid_contents_enc_mode(uint32_t mode)
459 {
460 return (mode == EXT4_ENCRYPTION_MODE_AES_256_XTS);
461 }
462
463 /**
464 * ext4_validate_encryption_key_size() - Validate the encryption key size
465 * @mode: The key mode.
466 * @size: The key size to validate.
467 *
468 * Return: The validated key size for @mode. Zero if invalid.
469 */
ext4_validate_encryption_key_size(uint32_t mode,uint32_t size)470 uint32_t ext4_validate_encryption_key_size(uint32_t mode, uint32_t size)
471 {
472 if (size == ext4_encryption_key_size(mode))
473 return size;
474 return 0;
475 }
476