1 /* flow.c: Generic flow cache.
2 *
3 * Copyright (C) 2003 Alexey N. Kuznetsov (kuznet@ms2.inr.ac.ru)
4 * Copyright (C) 2003 David S. Miller (davem@redhat.com)
5 */
6
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/list.h>
10 #include <linux/jhash.h>
11 #include <linux/interrupt.h>
12 #include <linux/mm.h>
13 #include <linux/random.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/smp.h>
17 #include <linux/completion.h>
18 #include <linux/percpu.h>
19 #include <linux/bitops.h>
20 #include <linux/notifier.h>
21 #include <linux/cpu.h>
22 #include <linux/cpumask.h>
23 #include <linux/mutex.h>
24 #include <net/flow.h>
25 #include <linux/atomic.h>
26 #include <linux/security.h>
27
28 struct flow_cache_entry {
29 union {
30 struct hlist_node hlist;
31 struct list_head gc_list;
32 } u;
33 struct net *net;
34 u16 family;
35 u8 dir;
36 u32 genid;
37 struct flowi key;
38 struct flow_cache_object *object;
39 };
40
41 struct flow_cache_percpu {
42 struct hlist_head *hash_table;
43 int hash_count;
44 u32 hash_rnd;
45 int hash_rnd_recalc;
46 struct tasklet_struct flush_tasklet;
47 };
48
49 struct flow_flush_info {
50 struct flow_cache *cache;
51 atomic_t cpuleft;
52 struct completion completion;
53 };
54
55 struct flow_cache {
56 u32 hash_shift;
57 struct flow_cache_percpu __percpu *percpu;
58 struct notifier_block hotcpu_notifier;
59 int low_watermark;
60 int high_watermark;
61 struct timer_list rnd_timer;
62 };
63
64 atomic_t flow_cache_genid = ATOMIC_INIT(0);
65 EXPORT_SYMBOL(flow_cache_genid);
66 static struct flow_cache flow_cache_global;
67 static struct kmem_cache *flow_cachep __read_mostly;
68
69 static DEFINE_SPINLOCK(flow_cache_gc_lock);
70 static LIST_HEAD(flow_cache_gc_list);
71
72 #define flow_cache_hash_size(cache) (1 << (cache)->hash_shift)
73 #define FLOW_HASH_RND_PERIOD (10 * 60 * HZ)
74
flow_cache_new_hashrnd(unsigned long arg)75 static void flow_cache_new_hashrnd(unsigned long arg)
76 {
77 struct flow_cache *fc = (void *) arg;
78 int i;
79
80 for_each_possible_cpu(i)
81 per_cpu_ptr(fc->percpu, i)->hash_rnd_recalc = 1;
82
83 fc->rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD;
84 add_timer(&fc->rnd_timer);
85 }
86
flow_entry_valid(struct flow_cache_entry * fle)87 static int flow_entry_valid(struct flow_cache_entry *fle)
88 {
89 if (atomic_read(&flow_cache_genid) != fle->genid)
90 return 0;
91 if (fle->object && !fle->object->ops->check(fle->object))
92 return 0;
93 return 1;
94 }
95
flow_entry_kill(struct flow_cache_entry * fle)96 static void flow_entry_kill(struct flow_cache_entry *fle)
97 {
98 if (fle->object)
99 fle->object->ops->delete(fle->object);
100 kmem_cache_free(flow_cachep, fle);
101 }
102
flow_cache_gc_task(struct work_struct * work)103 static void flow_cache_gc_task(struct work_struct *work)
104 {
105 struct list_head gc_list;
106 struct flow_cache_entry *fce, *n;
107
108 INIT_LIST_HEAD(&gc_list);
109 spin_lock_bh(&flow_cache_gc_lock);
110 list_splice_tail_init(&flow_cache_gc_list, &gc_list);
111 spin_unlock_bh(&flow_cache_gc_lock);
112
113 list_for_each_entry_safe(fce, n, &gc_list, u.gc_list)
114 flow_entry_kill(fce);
115 }
116 static DECLARE_WORK(flow_cache_gc_work, flow_cache_gc_task);
117
flow_cache_queue_garbage(struct flow_cache_percpu * fcp,int deleted,struct list_head * gc_list)118 static void flow_cache_queue_garbage(struct flow_cache_percpu *fcp,
119 int deleted, struct list_head *gc_list)
120 {
121 if (deleted) {
122 fcp->hash_count -= deleted;
123 spin_lock_bh(&flow_cache_gc_lock);
124 list_splice_tail(gc_list, &flow_cache_gc_list);
125 spin_unlock_bh(&flow_cache_gc_lock);
126 schedule_work(&flow_cache_gc_work);
127 }
128 }
129
__flow_cache_shrink(struct flow_cache * fc,struct flow_cache_percpu * fcp,int shrink_to)130 static void __flow_cache_shrink(struct flow_cache *fc,
131 struct flow_cache_percpu *fcp,
132 int shrink_to)
133 {
134 struct flow_cache_entry *fle;
135 struct hlist_node *tmp;
136 LIST_HEAD(gc_list);
137 int i, deleted = 0;
138
139 for (i = 0; i < flow_cache_hash_size(fc); i++) {
140 int saved = 0;
141
142 hlist_for_each_entry_safe(fle, tmp,
143 &fcp->hash_table[i], u.hlist) {
144 if (saved < shrink_to &&
145 flow_entry_valid(fle)) {
146 saved++;
147 } else {
148 deleted++;
149 hlist_del(&fle->u.hlist);
150 list_add_tail(&fle->u.gc_list, &gc_list);
151 }
152 }
153 }
154
155 flow_cache_queue_garbage(fcp, deleted, &gc_list);
156 }
157
flow_cache_shrink(struct flow_cache * fc,struct flow_cache_percpu * fcp)158 static void flow_cache_shrink(struct flow_cache *fc,
159 struct flow_cache_percpu *fcp)
160 {
161 int shrink_to = fc->low_watermark / flow_cache_hash_size(fc);
162
163 __flow_cache_shrink(fc, fcp, shrink_to);
164 }
165
flow_new_hash_rnd(struct flow_cache * fc,struct flow_cache_percpu * fcp)166 static void flow_new_hash_rnd(struct flow_cache *fc,
167 struct flow_cache_percpu *fcp)
168 {
169 get_random_bytes(&fcp->hash_rnd, sizeof(u32));
170 fcp->hash_rnd_recalc = 0;
171 __flow_cache_shrink(fc, fcp, 0);
172 }
173
flow_hash_code(struct flow_cache * fc,struct flow_cache_percpu * fcp,const struct flowi * key,size_t keysize)174 static u32 flow_hash_code(struct flow_cache *fc,
175 struct flow_cache_percpu *fcp,
176 const struct flowi *key,
177 size_t keysize)
178 {
179 const u32 *k = (const u32 *) key;
180 const u32 length = keysize * sizeof(flow_compare_t) / sizeof(u32);
181
182 return jhash2(k, length, fcp->hash_rnd)
183 & (flow_cache_hash_size(fc) - 1);
184 }
185
186 /* I hear what you're saying, use memcmp. But memcmp cannot make
187 * important assumptions that we can here, such as alignment.
188 */
flow_key_compare(const struct flowi * key1,const struct flowi * key2,size_t keysize)189 static int flow_key_compare(const struct flowi *key1, const struct flowi *key2,
190 size_t keysize)
191 {
192 const flow_compare_t *k1, *k1_lim, *k2;
193
194 k1 = (const flow_compare_t *) key1;
195 k1_lim = k1 + keysize;
196
197 k2 = (const flow_compare_t *) key2;
198
199 do {
200 if (*k1++ != *k2++)
201 return 1;
202 } while (k1 < k1_lim);
203
204 return 0;
205 }
206
207 struct flow_cache_object *
flow_cache_lookup(struct net * net,const struct flowi * key,u16 family,u8 dir,flow_resolve_t resolver,void * ctx)208 flow_cache_lookup(struct net *net, const struct flowi *key, u16 family, u8 dir,
209 flow_resolve_t resolver, void *ctx)
210 {
211 struct flow_cache *fc = &flow_cache_global;
212 struct flow_cache_percpu *fcp;
213 struct flow_cache_entry *fle, *tfle;
214 struct flow_cache_object *flo;
215 size_t keysize;
216 unsigned int hash;
217
218 local_bh_disable();
219 fcp = this_cpu_ptr(fc->percpu);
220
221 fle = NULL;
222 flo = NULL;
223
224 keysize = flow_key_size(family);
225 if (!keysize)
226 goto nocache;
227
228 /* Packet really early in init? Making flow_cache_init a
229 * pre-smp initcall would solve this. --RR */
230 if (!fcp->hash_table)
231 goto nocache;
232
233 if (fcp->hash_rnd_recalc)
234 flow_new_hash_rnd(fc, fcp);
235
236 hash = flow_hash_code(fc, fcp, key, keysize);
237 hlist_for_each_entry(tfle, &fcp->hash_table[hash], u.hlist) {
238 if (tfle->net == net &&
239 tfle->family == family &&
240 tfle->dir == dir &&
241 flow_key_compare(key, &tfle->key, keysize) == 0) {
242 fle = tfle;
243 break;
244 }
245 }
246
247 if (unlikely(!fle)) {
248 if (fcp->hash_count > fc->high_watermark)
249 flow_cache_shrink(fc, fcp);
250
251 fle = kmem_cache_alloc(flow_cachep, GFP_ATOMIC);
252 if (fle) {
253 fle->net = net;
254 fle->family = family;
255 fle->dir = dir;
256 memcpy(&fle->key, key, keysize * sizeof(flow_compare_t));
257 fle->object = NULL;
258 hlist_add_head(&fle->u.hlist, &fcp->hash_table[hash]);
259 fcp->hash_count++;
260 }
261 } else if (likely(fle->genid == atomic_read(&flow_cache_genid))) {
262 flo = fle->object;
263 if (!flo)
264 goto ret_object;
265 flo = flo->ops->get(flo);
266 if (flo)
267 goto ret_object;
268 } else if (fle->object) {
269 flo = fle->object;
270 flo->ops->delete(flo);
271 fle->object = NULL;
272 }
273
274 nocache:
275 flo = NULL;
276 if (fle) {
277 flo = fle->object;
278 fle->object = NULL;
279 }
280 flo = resolver(net, key, family, dir, flo, ctx);
281 if (fle) {
282 fle->genid = atomic_read(&flow_cache_genid);
283 if (!IS_ERR(flo))
284 fle->object = flo;
285 else
286 fle->genid--;
287 } else {
288 if (!IS_ERR_OR_NULL(flo))
289 flo->ops->delete(flo);
290 }
291 ret_object:
292 local_bh_enable();
293 return flo;
294 }
295 EXPORT_SYMBOL(flow_cache_lookup);
296
flow_cache_flush_tasklet(unsigned long data)297 static void flow_cache_flush_tasklet(unsigned long data)
298 {
299 struct flow_flush_info *info = (void *)data;
300 struct flow_cache *fc = info->cache;
301 struct flow_cache_percpu *fcp;
302 struct flow_cache_entry *fle;
303 struct hlist_node *tmp;
304 LIST_HEAD(gc_list);
305 int i, deleted = 0;
306
307 fcp = this_cpu_ptr(fc->percpu);
308 for (i = 0; i < flow_cache_hash_size(fc); i++) {
309 hlist_for_each_entry_safe(fle, tmp,
310 &fcp->hash_table[i], u.hlist) {
311 if (flow_entry_valid(fle))
312 continue;
313
314 deleted++;
315 hlist_del(&fle->u.hlist);
316 list_add_tail(&fle->u.gc_list, &gc_list);
317 }
318 }
319
320 flow_cache_queue_garbage(fcp, deleted, &gc_list);
321
322 if (atomic_dec_and_test(&info->cpuleft))
323 complete(&info->completion);
324 }
325
326 /*
327 * Return whether a cpu needs flushing. Conservatively, we assume
328 * the presence of any entries means the core may require flushing,
329 * since the flow_cache_ops.check() function may assume it's running
330 * on the same core as the per-cpu cache component.
331 */
flow_cache_percpu_empty(struct flow_cache * fc,int cpu)332 static int flow_cache_percpu_empty(struct flow_cache *fc, int cpu)
333 {
334 struct flow_cache_percpu *fcp;
335 int i;
336
337 fcp = per_cpu_ptr(fc->percpu, cpu);
338 for (i = 0; i < flow_cache_hash_size(fc); i++)
339 if (!hlist_empty(&fcp->hash_table[i]))
340 return 0;
341 return 1;
342 }
343
flow_cache_flush_per_cpu(void * data)344 static void flow_cache_flush_per_cpu(void *data)
345 {
346 struct flow_flush_info *info = data;
347 struct tasklet_struct *tasklet;
348
349 tasklet = &this_cpu_ptr(info->cache->percpu)->flush_tasklet;
350 tasklet->data = (unsigned long)info;
351 tasklet_schedule(tasklet);
352 }
353
flow_cache_flush(void)354 void flow_cache_flush(void)
355 {
356 struct flow_flush_info info;
357 static DEFINE_MUTEX(flow_flush_sem);
358 cpumask_var_t mask;
359 int i, self;
360
361 /* Track which cpus need flushing to avoid disturbing all cores. */
362 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
363 return;
364 cpumask_clear(mask);
365
366 /* Don't want cpus going down or up during this. */
367 get_online_cpus();
368 mutex_lock(&flow_flush_sem);
369 info.cache = &flow_cache_global;
370 for_each_online_cpu(i)
371 if (!flow_cache_percpu_empty(info.cache, i))
372 cpumask_set_cpu(i, mask);
373 atomic_set(&info.cpuleft, cpumask_weight(mask));
374 if (atomic_read(&info.cpuleft) == 0)
375 goto done;
376
377 init_completion(&info.completion);
378
379 local_bh_disable();
380 self = cpumask_test_and_clear_cpu(smp_processor_id(), mask);
381 on_each_cpu_mask(mask, flow_cache_flush_per_cpu, &info, 0);
382 if (self)
383 flow_cache_flush_tasklet((unsigned long)&info);
384 local_bh_enable();
385
386 wait_for_completion(&info.completion);
387
388 done:
389 mutex_unlock(&flow_flush_sem);
390 put_online_cpus();
391 free_cpumask_var(mask);
392 }
393
flow_cache_flush_task(struct work_struct * work)394 static void flow_cache_flush_task(struct work_struct *work)
395 {
396 flow_cache_flush();
397 }
398
399 static DECLARE_WORK(flow_cache_flush_work, flow_cache_flush_task);
400
flow_cache_flush_deferred(void)401 void flow_cache_flush_deferred(void)
402 {
403 schedule_work(&flow_cache_flush_work);
404 }
405
flow_cache_cpu_prepare(struct flow_cache * fc,int cpu)406 static int __cpuinit flow_cache_cpu_prepare(struct flow_cache *fc, int cpu)
407 {
408 struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, cpu);
409 size_t sz = sizeof(struct hlist_head) * flow_cache_hash_size(fc);
410
411 if (!fcp->hash_table) {
412 fcp->hash_table = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
413 if (!fcp->hash_table) {
414 pr_err("NET: failed to allocate flow cache sz %zu\n", sz);
415 return -ENOMEM;
416 }
417 fcp->hash_rnd_recalc = 1;
418 fcp->hash_count = 0;
419 tasklet_init(&fcp->flush_tasklet, flow_cache_flush_tasklet, 0);
420 }
421 return 0;
422 }
423
flow_cache_cpu(struct notifier_block * nfb,unsigned long action,void * hcpu)424 static int __cpuinit flow_cache_cpu(struct notifier_block *nfb,
425 unsigned long action,
426 void *hcpu)
427 {
428 struct flow_cache *fc = container_of(nfb, struct flow_cache, hotcpu_notifier);
429 int res, cpu = (unsigned long) hcpu;
430 struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, cpu);
431
432 switch (action) {
433 case CPU_UP_PREPARE:
434 case CPU_UP_PREPARE_FROZEN:
435 res = flow_cache_cpu_prepare(fc, cpu);
436 if (res)
437 return notifier_from_errno(res);
438 break;
439 case CPU_DEAD:
440 case CPU_DEAD_FROZEN:
441 __flow_cache_shrink(fc, fcp, 0);
442 break;
443 }
444 return NOTIFY_OK;
445 }
446
flow_cache_init(struct flow_cache * fc)447 static int __init flow_cache_init(struct flow_cache *fc)
448 {
449 int i;
450
451 fc->hash_shift = 10;
452 fc->low_watermark = 2 * flow_cache_hash_size(fc);
453 fc->high_watermark = 4 * flow_cache_hash_size(fc);
454
455 fc->percpu = alloc_percpu(struct flow_cache_percpu);
456 if (!fc->percpu)
457 return -ENOMEM;
458
459 for_each_online_cpu(i) {
460 if (flow_cache_cpu_prepare(fc, i))
461 goto err;
462 }
463 fc->hotcpu_notifier = (struct notifier_block){
464 .notifier_call = flow_cache_cpu,
465 };
466 register_hotcpu_notifier(&fc->hotcpu_notifier);
467
468 setup_timer(&fc->rnd_timer, flow_cache_new_hashrnd,
469 (unsigned long) fc);
470 fc->rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD;
471 add_timer(&fc->rnd_timer);
472
473 return 0;
474
475 err:
476 for_each_possible_cpu(i) {
477 struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, i);
478 kfree(fcp->hash_table);
479 fcp->hash_table = NULL;
480 }
481
482 free_percpu(fc->percpu);
483 fc->percpu = NULL;
484
485 return -ENOMEM;
486 }
487
flow_cache_init_global(void)488 static int __init flow_cache_init_global(void)
489 {
490 flow_cachep = kmem_cache_create("flow_cache",
491 sizeof(struct flow_cache_entry),
492 0, SLAB_PANIC, NULL);
493
494 return flow_cache_init(&flow_cache_global);
495 }
496
497 module_init(flow_cache_init_global);
498