1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73 #include <linux/aio.h>
74
75 #include <asm/pgtable.h>
76 #include <asm/pgalloc.h>
77 #include <asm/uaccess.h>
78 #include <asm/mmu_context.h>
79 #include <asm/cacheflush.h>
80 #include <asm/tlbflush.h>
81
82 #include <trace/events/sched.h>
83
84 #define CREATE_TRACE_POINTS
85 #include <trace/events/task.h>
86
87 /*
88 * Protected counters by write_lock_irq(&tasklist_lock)
89 */
90 unsigned long total_forks; /* Handle normal Linux uptimes. */
91 int nr_threads; /* The idle threads do not count.. */
92
93 int max_threads; /* tunable limit on nr_threads */
94
95 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
96
97 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
98
99 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)100 int lockdep_tasklist_lock_is_held(void)
101 {
102 return lockdep_is_held(&tasklist_lock);
103 }
104 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
105 #endif /* #ifdef CONFIG_PROVE_RCU */
106
nr_processes(void)107 int nr_processes(void)
108 {
109 int cpu;
110 int total = 0;
111
112 for_each_possible_cpu(cpu)
113 total += per_cpu(process_counts, cpu);
114
115 return total;
116 }
117
arch_release_task_struct(struct task_struct * tsk)118 void __weak arch_release_task_struct(struct task_struct *tsk)
119 {
120 }
121
122 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
123 static struct kmem_cache *task_struct_cachep;
124
alloc_task_struct_node(int node)125 static inline struct task_struct *alloc_task_struct_node(int node)
126 {
127 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
128 }
129
free_task_struct(struct task_struct * tsk)130 static inline void free_task_struct(struct task_struct *tsk)
131 {
132 kmem_cache_free(task_struct_cachep, tsk);
133 }
134 #endif
135
arch_release_thread_info(struct thread_info * ti)136 void __weak arch_release_thread_info(struct thread_info *ti)
137 {
138 }
139
140 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
141
142 /*
143 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
144 * kmemcache based allocator.
145 */
146 # if THREAD_SIZE >= PAGE_SIZE
alloc_thread_info_node(struct task_struct * tsk,int node)147 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
148 int node)
149 {
150 struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
151 THREAD_SIZE_ORDER);
152
153 return page ? page_address(page) : NULL;
154 }
155
free_thread_info(struct thread_info * ti)156 static inline void free_thread_info(struct thread_info *ti)
157 {
158 free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
159 }
160 # else
161 static struct kmem_cache *thread_info_cache;
162
alloc_thread_info_node(struct task_struct * tsk,int node)163 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
164 int node)
165 {
166 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
167 }
168
free_thread_info(struct thread_info * ti)169 static void free_thread_info(struct thread_info *ti)
170 {
171 kmem_cache_free(thread_info_cache, ti);
172 }
173
thread_info_cache_init(void)174 void thread_info_cache_init(void)
175 {
176 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
177 THREAD_SIZE, 0, NULL);
178 BUG_ON(thread_info_cache == NULL);
179 }
180 # endif
181 #endif
182
183 /* SLAB cache for signal_struct structures (tsk->signal) */
184 static struct kmem_cache *signal_cachep;
185
186 /* SLAB cache for sighand_struct structures (tsk->sighand) */
187 struct kmem_cache *sighand_cachep;
188
189 /* SLAB cache for files_struct structures (tsk->files) */
190 struct kmem_cache *files_cachep;
191
192 /* SLAB cache for fs_struct structures (tsk->fs) */
193 struct kmem_cache *fs_cachep;
194
195 /* SLAB cache for vm_area_struct structures */
196 struct kmem_cache *vm_area_cachep;
197
198 /* SLAB cache for mm_struct structures (tsk->mm) */
199 static struct kmem_cache *mm_cachep;
200
201 /* Notifier list called when a task struct is freed */
202 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
203
account_kernel_stack(struct thread_info * ti,int account)204 static void account_kernel_stack(struct thread_info *ti, int account)
205 {
206 struct zone *zone = page_zone(virt_to_page(ti));
207
208 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
209 }
210
free_task(struct task_struct * tsk)211 void free_task(struct task_struct *tsk)
212 {
213 account_kernel_stack(tsk->stack, -1);
214 arch_release_thread_info(tsk->stack);
215 free_thread_info(tsk->stack);
216 rt_mutex_debug_task_free(tsk);
217 ftrace_graph_exit_task(tsk);
218 put_seccomp_filter(tsk);
219 arch_release_task_struct(tsk);
220 free_task_struct(tsk);
221 }
222 EXPORT_SYMBOL(free_task);
223
free_signal_struct(struct signal_struct * sig)224 static inline void free_signal_struct(struct signal_struct *sig)
225 {
226 taskstats_tgid_free(sig);
227 sched_autogroup_exit(sig);
228 kmem_cache_free(signal_cachep, sig);
229 }
230
put_signal_struct(struct signal_struct * sig)231 static inline void put_signal_struct(struct signal_struct *sig)
232 {
233 if (atomic_dec_and_test(&sig->sigcnt))
234 free_signal_struct(sig);
235 }
236
task_free_register(struct notifier_block * n)237 int task_free_register(struct notifier_block *n)
238 {
239 return atomic_notifier_chain_register(&task_free_notifier, n);
240 }
241 EXPORT_SYMBOL(task_free_register);
242
task_free_unregister(struct notifier_block * n)243 int task_free_unregister(struct notifier_block *n)
244 {
245 return atomic_notifier_chain_unregister(&task_free_notifier, n);
246 }
247 EXPORT_SYMBOL(task_free_unregister);
248
__put_task_struct(struct task_struct * tsk)249 void __put_task_struct(struct task_struct *tsk)
250 {
251 WARN_ON(!tsk->exit_state);
252 WARN_ON(atomic_read(&tsk->usage));
253 WARN_ON(tsk == current);
254
255 security_task_free(tsk);
256 exit_creds(tsk);
257 delayacct_tsk_free(tsk);
258 put_signal_struct(tsk->signal);
259
260 atomic_notifier_call_chain(&task_free_notifier, 0, tsk);
261 if (!profile_handoff_task(tsk))
262 free_task(tsk);
263 }
264 EXPORT_SYMBOL_GPL(__put_task_struct);
265
arch_task_cache_init(void)266 void __init __weak arch_task_cache_init(void) { }
267
fork_init(unsigned long mempages)268 void __init fork_init(unsigned long mempages)
269 {
270 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
271 #ifndef ARCH_MIN_TASKALIGN
272 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
273 #endif
274 /* create a slab on which task_structs can be allocated */
275 task_struct_cachep =
276 kmem_cache_create("task_struct", sizeof(struct task_struct),
277 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
278 #endif
279
280 /* do the arch specific task caches init */
281 arch_task_cache_init();
282
283 /*
284 * The default maximum number of threads is set to a safe
285 * value: the thread structures can take up at most half
286 * of memory.
287 */
288 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
289
290 /*
291 * we need to allow at least 20 threads to boot a system
292 */
293 if (max_threads < 20)
294 max_threads = 20;
295
296 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
297 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
298 init_task.signal->rlim[RLIMIT_SIGPENDING] =
299 init_task.signal->rlim[RLIMIT_NPROC];
300 }
301
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)302 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
303 struct task_struct *src)
304 {
305 *dst = *src;
306 return 0;
307 }
308
dup_task_struct(struct task_struct * orig)309 static struct task_struct *dup_task_struct(struct task_struct *orig)
310 {
311 struct task_struct *tsk;
312 struct thread_info *ti;
313 unsigned long *stackend;
314 int node = tsk_fork_get_node(orig);
315 int err;
316
317 tsk = alloc_task_struct_node(node);
318 if (!tsk)
319 return NULL;
320
321 ti = alloc_thread_info_node(tsk, node);
322 if (!ti)
323 goto free_tsk;
324
325 err = arch_dup_task_struct(tsk, orig);
326 if (err)
327 goto free_ti;
328
329 tsk->stack = ti;
330 #ifdef CONFIG_SECCOMP
331 /*
332 * We must handle setting up seccomp filters once we're under
333 * the sighand lock in case orig has changed between now and
334 * then. Until then, filter must be NULL to avoid messing up
335 * the usage counts on the error path calling free_task.
336 */
337 tsk->seccomp.filter = NULL;
338 #endif
339
340 setup_thread_stack(tsk, orig);
341 clear_user_return_notifier(tsk);
342 clear_tsk_need_resched(tsk);
343 stackend = end_of_stack(tsk);
344 *stackend = STACK_END_MAGIC; /* for overflow detection */
345
346 #ifdef CONFIG_CC_STACKPROTECTOR
347 tsk->stack_canary = get_random_int();
348 #endif
349
350 /*
351 * One for us, one for whoever does the "release_task()" (usually
352 * parent)
353 */
354 atomic_set(&tsk->usage, 2);
355 #ifdef CONFIG_BLK_DEV_IO_TRACE
356 tsk->btrace_seq = 0;
357 #endif
358 tsk->splice_pipe = NULL;
359 tsk->task_frag.page = NULL;
360
361 account_kernel_stack(ti, 1);
362
363 return tsk;
364
365 free_ti:
366 free_thread_info(ti);
367 free_tsk:
368 free_task_struct(tsk);
369 return NULL;
370 }
371
372 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)373 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
374 {
375 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
376 struct rb_node **rb_link, *rb_parent;
377 int retval;
378 unsigned long charge;
379 struct mempolicy *pol;
380
381 uprobe_start_dup_mmap();
382 down_write(&oldmm->mmap_sem);
383 flush_cache_dup_mm(oldmm);
384 uprobe_dup_mmap(oldmm, mm);
385 /*
386 * Not linked in yet - no deadlock potential:
387 */
388 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
389
390 mm->locked_vm = 0;
391 mm->mmap = NULL;
392 mm->mmap_cache = NULL;
393 mm->free_area_cache = oldmm->mmap_base;
394 mm->cached_hole_size = ~0UL;
395 mm->map_count = 0;
396 cpumask_clear(mm_cpumask(mm));
397 mm->mm_rb = RB_ROOT;
398 rb_link = &mm->mm_rb.rb_node;
399 rb_parent = NULL;
400 pprev = &mm->mmap;
401 retval = ksm_fork(mm, oldmm);
402 if (retval)
403 goto out;
404 retval = khugepaged_fork(mm, oldmm);
405 if (retval)
406 goto out;
407
408 prev = NULL;
409 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
410 struct file *file;
411
412 if (mpnt->vm_flags & VM_DONTCOPY) {
413 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
414 -vma_pages(mpnt));
415 continue;
416 }
417 charge = 0;
418 if (mpnt->vm_flags & VM_ACCOUNT) {
419 unsigned long len = vma_pages(mpnt);
420
421 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
422 goto fail_nomem;
423 charge = len;
424 }
425 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
426 if (!tmp)
427 goto fail_nomem;
428 *tmp = *mpnt;
429 INIT_LIST_HEAD(&tmp->anon_vma_chain);
430 pol = mpol_dup(vma_policy(mpnt));
431 retval = PTR_ERR(pol);
432 if (IS_ERR(pol))
433 goto fail_nomem_policy;
434 vma_set_policy(tmp, pol);
435 tmp->vm_mm = mm;
436 if (anon_vma_fork(tmp, mpnt))
437 goto fail_nomem_anon_vma_fork;
438 tmp->vm_flags &= ~VM_LOCKED;
439 tmp->vm_next = tmp->vm_prev = NULL;
440 file = tmp->vm_file;
441 if (file) {
442 struct inode *inode = file_inode(file);
443 struct address_space *mapping = file->f_mapping;
444
445 get_file(file);
446 if (tmp->vm_flags & VM_DENYWRITE)
447 atomic_dec(&inode->i_writecount);
448 mutex_lock(&mapping->i_mmap_mutex);
449 if (tmp->vm_flags & VM_SHARED)
450 mapping->i_mmap_writable++;
451 flush_dcache_mmap_lock(mapping);
452 /* insert tmp into the share list, just after mpnt */
453 if (unlikely(tmp->vm_flags & VM_NONLINEAR))
454 vma_nonlinear_insert(tmp,
455 &mapping->i_mmap_nonlinear);
456 else
457 vma_interval_tree_insert_after(tmp, mpnt,
458 &mapping->i_mmap);
459 flush_dcache_mmap_unlock(mapping);
460 mutex_unlock(&mapping->i_mmap_mutex);
461 }
462
463 /*
464 * Clear hugetlb-related page reserves for children. This only
465 * affects MAP_PRIVATE mappings. Faults generated by the child
466 * are not guaranteed to succeed, even if read-only
467 */
468 if (is_vm_hugetlb_page(tmp))
469 reset_vma_resv_huge_pages(tmp);
470
471 /*
472 * Link in the new vma and copy the page table entries.
473 */
474 *pprev = tmp;
475 pprev = &tmp->vm_next;
476 tmp->vm_prev = prev;
477 prev = tmp;
478
479 __vma_link_rb(mm, tmp, rb_link, rb_parent);
480 rb_link = &tmp->vm_rb.rb_right;
481 rb_parent = &tmp->vm_rb;
482
483 mm->map_count++;
484 retval = copy_page_range(mm, oldmm, mpnt);
485
486 if (tmp->vm_ops && tmp->vm_ops->open)
487 tmp->vm_ops->open(tmp);
488
489 if (retval)
490 goto out;
491 }
492 /* a new mm has just been created */
493 arch_dup_mmap(oldmm, mm);
494 retval = 0;
495 out:
496 up_write(&mm->mmap_sem);
497 flush_tlb_mm(oldmm);
498 up_write(&oldmm->mmap_sem);
499 uprobe_end_dup_mmap();
500 return retval;
501 fail_nomem_anon_vma_fork:
502 mpol_put(pol);
503 fail_nomem_policy:
504 kmem_cache_free(vm_area_cachep, tmp);
505 fail_nomem:
506 retval = -ENOMEM;
507 vm_unacct_memory(charge);
508 goto out;
509 }
510
mm_alloc_pgd(struct mm_struct * mm)511 static inline int mm_alloc_pgd(struct mm_struct *mm)
512 {
513 mm->pgd = pgd_alloc(mm);
514 if (unlikely(!mm->pgd))
515 return -ENOMEM;
516 return 0;
517 }
518
mm_free_pgd(struct mm_struct * mm)519 static inline void mm_free_pgd(struct mm_struct *mm)
520 {
521 pgd_free(mm, mm->pgd);
522 }
523 #else
524 #define dup_mmap(mm, oldmm) (0)
525 #define mm_alloc_pgd(mm) (0)
526 #define mm_free_pgd(mm)
527 #endif /* CONFIG_MMU */
528
529 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
530
531 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
532 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
533
534 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
535
coredump_filter_setup(char * s)536 static int __init coredump_filter_setup(char *s)
537 {
538 default_dump_filter =
539 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
540 MMF_DUMP_FILTER_MASK;
541 return 1;
542 }
543
544 __setup("coredump_filter=", coredump_filter_setup);
545
546 #include <linux/init_task.h>
547
mm_init_aio(struct mm_struct * mm)548 static void mm_init_aio(struct mm_struct *mm)
549 {
550 #ifdef CONFIG_AIO
551 spin_lock_init(&mm->ioctx_lock);
552 INIT_HLIST_HEAD(&mm->ioctx_list);
553 #endif
554 }
555
mm_init(struct mm_struct * mm,struct task_struct * p)556 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
557 {
558 atomic_set(&mm->mm_users, 1);
559 atomic_set(&mm->mm_count, 1);
560 init_rwsem(&mm->mmap_sem);
561 INIT_LIST_HEAD(&mm->mmlist);
562 mm->flags = (current->mm) ?
563 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
564 mm->core_state = NULL;
565 mm->nr_ptes = 0;
566 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
567 spin_lock_init(&mm->page_table_lock);
568 mm->free_area_cache = TASK_UNMAPPED_BASE;
569 mm->cached_hole_size = ~0UL;
570 mm_init_aio(mm);
571 mm_init_owner(mm, p);
572
573 if (likely(!mm_alloc_pgd(mm))) {
574 mm->def_flags = 0;
575 mmu_notifier_mm_init(mm);
576 return mm;
577 }
578
579 free_mm(mm);
580 return NULL;
581 }
582
check_mm(struct mm_struct * mm)583 static void check_mm(struct mm_struct *mm)
584 {
585 int i;
586
587 for (i = 0; i < NR_MM_COUNTERS; i++) {
588 long x = atomic_long_read(&mm->rss_stat.count[i]);
589
590 if (unlikely(x))
591 printk(KERN_ALERT "BUG: Bad rss-counter state "
592 "mm:%p idx:%d val:%ld\n", mm, i, x);
593 }
594
595 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
596 VM_BUG_ON(mm->pmd_huge_pte);
597 #endif
598 }
599
600 /*
601 * Allocate and initialize an mm_struct.
602 */
mm_alloc(void)603 struct mm_struct *mm_alloc(void)
604 {
605 struct mm_struct *mm;
606
607 mm = allocate_mm();
608 if (!mm)
609 return NULL;
610
611 memset(mm, 0, sizeof(*mm));
612 mm_init_cpumask(mm);
613 return mm_init(mm, current);
614 }
615
616 /*
617 * Called when the last reference to the mm
618 * is dropped: either by a lazy thread or by
619 * mmput. Free the page directory and the mm.
620 */
__mmdrop(struct mm_struct * mm)621 void __mmdrop(struct mm_struct *mm)
622 {
623 BUG_ON(mm == &init_mm);
624 mm_free_pgd(mm);
625 destroy_context(mm);
626 mmu_notifier_mm_destroy(mm);
627 check_mm(mm);
628 free_mm(mm);
629 }
630 EXPORT_SYMBOL_GPL(__mmdrop);
631
632 /*
633 * Decrement the use count and release all resources for an mm.
634 */
mmput(struct mm_struct * mm)635 void mmput(struct mm_struct *mm)
636 {
637 might_sleep();
638
639 if (atomic_dec_and_test(&mm->mm_users)) {
640 uprobe_clear_state(mm);
641 exit_aio(mm);
642 ksm_exit(mm);
643 khugepaged_exit(mm); /* must run before exit_mmap */
644 exit_mmap(mm);
645 set_mm_exe_file(mm, NULL);
646 if (!list_empty(&mm->mmlist)) {
647 spin_lock(&mmlist_lock);
648 list_del(&mm->mmlist);
649 spin_unlock(&mmlist_lock);
650 }
651 if (mm->binfmt)
652 module_put(mm->binfmt->module);
653 mmdrop(mm);
654 }
655 }
656 EXPORT_SYMBOL_GPL(mmput);
657
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)658 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
659 {
660 if (new_exe_file)
661 get_file(new_exe_file);
662 if (mm->exe_file)
663 fput(mm->exe_file);
664 mm->exe_file = new_exe_file;
665 }
666
get_mm_exe_file(struct mm_struct * mm)667 struct file *get_mm_exe_file(struct mm_struct *mm)
668 {
669 struct file *exe_file;
670
671 /* We need mmap_sem to protect against races with removal of exe_file */
672 down_read(&mm->mmap_sem);
673 exe_file = mm->exe_file;
674 if (exe_file)
675 get_file(exe_file);
676 up_read(&mm->mmap_sem);
677 return exe_file;
678 }
679
dup_mm_exe_file(struct mm_struct * oldmm,struct mm_struct * newmm)680 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
681 {
682 /* It's safe to write the exe_file pointer without exe_file_lock because
683 * this is called during fork when the task is not yet in /proc */
684 newmm->exe_file = get_mm_exe_file(oldmm);
685 }
686
687 /**
688 * get_task_mm - acquire a reference to the task's mm
689 *
690 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
691 * this kernel workthread has transiently adopted a user mm with use_mm,
692 * to do its AIO) is not set and if so returns a reference to it, after
693 * bumping up the use count. User must release the mm via mmput()
694 * after use. Typically used by /proc and ptrace.
695 */
get_task_mm(struct task_struct * task)696 struct mm_struct *get_task_mm(struct task_struct *task)
697 {
698 struct mm_struct *mm;
699
700 task_lock(task);
701 mm = task->mm;
702 if (mm) {
703 if (task->flags & PF_KTHREAD)
704 mm = NULL;
705 else
706 atomic_inc(&mm->mm_users);
707 }
708 task_unlock(task);
709 return mm;
710 }
711 EXPORT_SYMBOL_GPL(get_task_mm);
712
mm_access(struct task_struct * task,unsigned int mode)713 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
714 {
715 struct mm_struct *mm;
716 int err;
717
718 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
719 if (err)
720 return ERR_PTR(err);
721
722 mm = get_task_mm(task);
723 if (mm && mm != current->mm &&
724 !ptrace_may_access(task, mode)) {
725 mmput(mm);
726 mm = ERR_PTR(-EACCES);
727 }
728 mutex_unlock(&task->signal->cred_guard_mutex);
729
730 return mm;
731 }
732
complete_vfork_done(struct task_struct * tsk)733 static void complete_vfork_done(struct task_struct *tsk)
734 {
735 struct completion *vfork;
736
737 task_lock(tsk);
738 vfork = tsk->vfork_done;
739 if (likely(vfork)) {
740 tsk->vfork_done = NULL;
741 complete(vfork);
742 }
743 task_unlock(tsk);
744 }
745
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)746 static int wait_for_vfork_done(struct task_struct *child,
747 struct completion *vfork)
748 {
749 int killed;
750
751 freezer_do_not_count();
752 killed = wait_for_completion_killable(vfork);
753 freezer_count();
754
755 if (killed) {
756 task_lock(child);
757 child->vfork_done = NULL;
758 task_unlock(child);
759 }
760
761 put_task_struct(child);
762 return killed;
763 }
764
765 /* Please note the differences between mmput and mm_release.
766 * mmput is called whenever we stop holding onto a mm_struct,
767 * error success whatever.
768 *
769 * mm_release is called after a mm_struct has been removed
770 * from the current process.
771 *
772 * This difference is important for error handling, when we
773 * only half set up a mm_struct for a new process and need to restore
774 * the old one. Because we mmput the new mm_struct before
775 * restoring the old one. . .
776 * Eric Biederman 10 January 1998
777 */
mm_release(struct task_struct * tsk,struct mm_struct * mm)778 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
779 {
780 /* Get rid of any futexes when releasing the mm */
781 #ifdef CONFIG_FUTEX
782 if (unlikely(tsk->robust_list)) {
783 exit_robust_list(tsk);
784 tsk->robust_list = NULL;
785 }
786 #ifdef CONFIG_COMPAT
787 if (unlikely(tsk->compat_robust_list)) {
788 compat_exit_robust_list(tsk);
789 tsk->compat_robust_list = NULL;
790 }
791 #endif
792 if (unlikely(!list_empty(&tsk->pi_state_list)))
793 exit_pi_state_list(tsk);
794 #endif
795
796 uprobe_free_utask(tsk);
797
798 /* Get rid of any cached register state */
799 deactivate_mm(tsk, mm);
800
801 /*
802 * If we're exiting normally, clear a user-space tid field if
803 * requested. We leave this alone when dying by signal, to leave
804 * the value intact in a core dump, and to save the unnecessary
805 * trouble, say, a killed vfork parent shouldn't touch this mm.
806 * Userland only wants this done for a sys_exit.
807 */
808 if (tsk->clear_child_tid) {
809 if (!(tsk->flags & PF_SIGNALED) &&
810 atomic_read(&mm->mm_users) > 1) {
811 /*
812 * We don't check the error code - if userspace has
813 * not set up a proper pointer then tough luck.
814 */
815 put_user(0, tsk->clear_child_tid);
816 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
817 1, NULL, NULL, 0);
818 }
819 tsk->clear_child_tid = NULL;
820 }
821
822 /*
823 * All done, finally we can wake up parent and return this mm to him.
824 * Also kthread_stop() uses this completion for synchronization.
825 */
826 if (tsk->vfork_done)
827 complete_vfork_done(tsk);
828 }
829
830 /*
831 * Allocate a new mm structure and copy contents from the
832 * mm structure of the passed in task structure.
833 */
dup_mm(struct task_struct * tsk)834 struct mm_struct *dup_mm(struct task_struct *tsk)
835 {
836 struct mm_struct *mm, *oldmm = current->mm;
837 int err;
838
839 if (!oldmm)
840 return NULL;
841
842 mm = allocate_mm();
843 if (!mm)
844 goto fail_nomem;
845
846 memcpy(mm, oldmm, sizeof(*mm));
847 mm_init_cpumask(mm);
848
849 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
850 mm->pmd_huge_pte = NULL;
851 #endif
852 #ifdef CONFIG_NUMA_BALANCING
853 mm->first_nid = NUMA_PTE_SCAN_INIT;
854 #endif
855 if (!mm_init(mm, tsk))
856 goto fail_nomem;
857
858 if (init_new_context(tsk, mm))
859 goto fail_nocontext;
860
861 dup_mm_exe_file(oldmm, mm);
862
863 err = dup_mmap(mm, oldmm);
864 if (err)
865 goto free_pt;
866
867 mm->hiwater_rss = get_mm_rss(mm);
868 mm->hiwater_vm = mm->total_vm;
869
870 if (mm->binfmt && !try_module_get(mm->binfmt->module))
871 goto free_pt;
872
873 return mm;
874
875 free_pt:
876 /* don't put binfmt in mmput, we haven't got module yet */
877 mm->binfmt = NULL;
878 mmput(mm);
879
880 fail_nomem:
881 return NULL;
882
883 fail_nocontext:
884 /*
885 * If init_new_context() failed, we cannot use mmput() to free the mm
886 * because it calls destroy_context()
887 */
888 mm_free_pgd(mm);
889 free_mm(mm);
890 return NULL;
891 }
892
copy_mm(unsigned long clone_flags,struct task_struct * tsk)893 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
894 {
895 struct mm_struct *mm, *oldmm;
896 int retval;
897
898 tsk->min_flt = tsk->maj_flt = 0;
899 tsk->nvcsw = tsk->nivcsw = 0;
900 #ifdef CONFIG_DETECT_HUNG_TASK
901 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
902 #endif
903
904 tsk->mm = NULL;
905 tsk->active_mm = NULL;
906
907 /*
908 * Are we cloning a kernel thread?
909 *
910 * We need to steal a active VM for that..
911 */
912 oldmm = current->mm;
913 if (!oldmm)
914 return 0;
915
916 if (clone_flags & CLONE_VM) {
917 atomic_inc(&oldmm->mm_users);
918 mm = oldmm;
919 goto good_mm;
920 }
921
922 retval = -ENOMEM;
923 mm = dup_mm(tsk);
924 if (!mm)
925 goto fail_nomem;
926
927 good_mm:
928 tsk->mm = mm;
929 tsk->active_mm = mm;
930 return 0;
931
932 fail_nomem:
933 return retval;
934 }
935
copy_fs(unsigned long clone_flags,struct task_struct * tsk)936 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
937 {
938 struct fs_struct *fs = current->fs;
939 if (clone_flags & CLONE_FS) {
940 /* tsk->fs is already what we want */
941 spin_lock(&fs->lock);
942 if (fs->in_exec) {
943 spin_unlock(&fs->lock);
944 return -EAGAIN;
945 }
946 fs->users++;
947 spin_unlock(&fs->lock);
948 return 0;
949 }
950 tsk->fs = copy_fs_struct(fs);
951 if (!tsk->fs)
952 return -ENOMEM;
953 return 0;
954 }
955
copy_files(unsigned long clone_flags,struct task_struct * tsk)956 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
957 {
958 struct files_struct *oldf, *newf;
959 int error = 0;
960
961 /*
962 * A background process may not have any files ...
963 */
964 oldf = current->files;
965 if (!oldf)
966 goto out;
967
968 if (clone_flags & CLONE_FILES) {
969 atomic_inc(&oldf->count);
970 goto out;
971 }
972
973 newf = dup_fd(oldf, &error);
974 if (!newf)
975 goto out;
976
977 tsk->files = newf;
978 error = 0;
979 out:
980 return error;
981 }
982
copy_io(unsigned long clone_flags,struct task_struct * tsk)983 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
984 {
985 #ifdef CONFIG_BLOCK
986 struct io_context *ioc = current->io_context;
987 struct io_context *new_ioc;
988
989 if (!ioc)
990 return 0;
991 /*
992 * Share io context with parent, if CLONE_IO is set
993 */
994 if (clone_flags & CLONE_IO) {
995 ioc_task_link(ioc);
996 tsk->io_context = ioc;
997 } else if (ioprio_valid(ioc->ioprio)) {
998 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
999 if (unlikely(!new_ioc))
1000 return -ENOMEM;
1001
1002 new_ioc->ioprio = ioc->ioprio;
1003 put_io_context(new_ioc);
1004 }
1005 #endif
1006 return 0;
1007 }
1008
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1009 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1010 {
1011 struct sighand_struct *sig;
1012
1013 if (clone_flags & CLONE_SIGHAND) {
1014 atomic_inc(¤t->sighand->count);
1015 return 0;
1016 }
1017 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1018 rcu_assign_pointer(tsk->sighand, sig);
1019 if (!sig)
1020 return -ENOMEM;
1021 atomic_set(&sig->count, 1);
1022 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1023 return 0;
1024 }
1025
__cleanup_sighand(struct sighand_struct * sighand)1026 void __cleanup_sighand(struct sighand_struct *sighand)
1027 {
1028 if (atomic_dec_and_test(&sighand->count)) {
1029 signalfd_cleanup(sighand);
1030 kmem_cache_free(sighand_cachep, sighand);
1031 }
1032 }
1033
1034
1035 /*
1036 * Initialize POSIX timer handling for a thread group.
1037 */
posix_cpu_timers_init_group(struct signal_struct * sig)1038 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1039 {
1040 unsigned long cpu_limit;
1041
1042 /* Thread group counters. */
1043 thread_group_cputime_init(sig);
1044
1045 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1046 if (cpu_limit != RLIM_INFINITY) {
1047 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1048 sig->cputimer.running = 1;
1049 }
1050
1051 /* The timer lists. */
1052 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1053 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1054 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1055 }
1056
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1057 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1058 {
1059 struct signal_struct *sig;
1060
1061 if (clone_flags & CLONE_THREAD)
1062 return 0;
1063
1064 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1065 tsk->signal = sig;
1066 if (!sig)
1067 return -ENOMEM;
1068
1069 sig->nr_threads = 1;
1070 atomic_set(&sig->live, 1);
1071 atomic_set(&sig->sigcnt, 1);
1072
1073 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1074 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1075 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1076
1077 init_waitqueue_head(&sig->wait_chldexit);
1078 sig->curr_target = tsk;
1079 init_sigpending(&sig->shared_pending);
1080 INIT_LIST_HEAD(&sig->posix_timers);
1081
1082 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1083 sig->real_timer.function = it_real_fn;
1084
1085 task_lock(current->group_leader);
1086 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1087 task_unlock(current->group_leader);
1088
1089 posix_cpu_timers_init_group(sig);
1090
1091 tty_audit_fork(sig);
1092 sched_autogroup_fork(sig);
1093
1094 #ifdef CONFIG_CGROUPS
1095 init_rwsem(&sig->group_rwsem);
1096 #endif
1097
1098 sig->oom_score_adj = current->signal->oom_score_adj;
1099 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1100
1101 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1102 current->signal->is_child_subreaper;
1103
1104 mutex_init(&sig->cred_guard_mutex);
1105
1106 return 0;
1107 }
1108
copy_flags(unsigned long clone_flags,struct task_struct * p)1109 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1110 {
1111 unsigned long new_flags = p->flags;
1112
1113 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1114 new_flags |= PF_FORKNOEXEC;
1115 p->flags = new_flags;
1116 }
1117
copy_seccomp(struct task_struct * p)1118 static void copy_seccomp(struct task_struct *p)
1119 {
1120 #ifdef CONFIG_SECCOMP
1121 /*
1122 * Must be called with sighand->lock held, which is common to
1123 * all threads in the group. Holding cred_guard_mutex is not
1124 * needed because this new task is not yet running and cannot
1125 * be racing exec.
1126 */
1127 assert_spin_locked(¤t->sighand->siglock);
1128
1129 /* Ref-count the new filter user, and assign it. */
1130 get_seccomp_filter(current);
1131 p->seccomp = current->seccomp;
1132
1133 /*
1134 * Explicitly enable no_new_privs here in case it got set
1135 * between the task_struct being duplicated and holding the
1136 * sighand lock. The seccomp state and nnp must be in sync.
1137 */
1138 if (task_no_new_privs(current))
1139 task_set_no_new_privs(p);
1140
1141 /*
1142 * If the parent gained a seccomp mode after copying thread
1143 * flags and between before we held the sighand lock, we have
1144 * to manually enable the seccomp thread flag here.
1145 */
1146 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1147 set_tsk_thread_flag(p, TIF_SECCOMP);
1148 #endif
1149 }
1150
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1151 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1152 {
1153 current->clear_child_tid = tidptr;
1154
1155 return task_pid_vnr(current);
1156 }
1157
rt_mutex_init_task(struct task_struct * p)1158 static void rt_mutex_init_task(struct task_struct *p)
1159 {
1160 raw_spin_lock_init(&p->pi_lock);
1161 #ifdef CONFIG_RT_MUTEXES
1162 plist_head_init(&p->pi_waiters);
1163 p->pi_blocked_on = NULL;
1164 #endif
1165 }
1166
1167 #ifdef CONFIG_MM_OWNER
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1168 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1169 {
1170 mm->owner = p;
1171 }
1172 #endif /* CONFIG_MM_OWNER */
1173
1174 /*
1175 * Initialize POSIX timer handling for a single task.
1176 */
posix_cpu_timers_init(struct task_struct * tsk)1177 static void posix_cpu_timers_init(struct task_struct *tsk)
1178 {
1179 tsk->cputime_expires.prof_exp = 0;
1180 tsk->cputime_expires.virt_exp = 0;
1181 tsk->cputime_expires.sched_exp = 0;
1182 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1183 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1184 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1185 }
1186
1187 /*
1188 * This creates a new process as a copy of the old one,
1189 * but does not actually start it yet.
1190 *
1191 * It copies the registers, and all the appropriate
1192 * parts of the process environment (as per the clone
1193 * flags). The actual kick-off is left to the caller.
1194 */
copy_process(unsigned long clone_flags,unsigned long stack_start,unsigned long stack_size,int __user * child_tidptr,struct pid * pid,int trace)1195 static struct task_struct *copy_process(unsigned long clone_flags,
1196 unsigned long stack_start,
1197 unsigned long stack_size,
1198 int __user *child_tidptr,
1199 struct pid *pid,
1200 int trace)
1201 {
1202 int retval;
1203 struct task_struct *p;
1204
1205 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1206 return ERR_PTR(-EINVAL);
1207
1208 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1209 return ERR_PTR(-EINVAL);
1210
1211 /*
1212 * Thread groups must share signals as well, and detached threads
1213 * can only be started up within the thread group.
1214 */
1215 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1216 return ERR_PTR(-EINVAL);
1217
1218 /*
1219 * Shared signal handlers imply shared VM. By way of the above,
1220 * thread groups also imply shared VM. Blocking this case allows
1221 * for various simplifications in other code.
1222 */
1223 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1224 return ERR_PTR(-EINVAL);
1225
1226 /*
1227 * Siblings of global init remain as zombies on exit since they are
1228 * not reaped by their parent (swapper). To solve this and to avoid
1229 * multi-rooted process trees, prevent global and container-inits
1230 * from creating siblings.
1231 */
1232 if ((clone_flags & CLONE_PARENT) &&
1233 current->signal->flags & SIGNAL_UNKILLABLE)
1234 return ERR_PTR(-EINVAL);
1235
1236 /*
1237 * If the new process will be in a different pid namespace
1238 * don't allow the creation of threads.
1239 */
1240 if ((clone_flags & (CLONE_VM|CLONE_NEWPID)) &&
1241 (task_active_pid_ns(current) != current->nsproxy->pid_ns))
1242 return ERR_PTR(-EINVAL);
1243
1244 retval = security_task_create(clone_flags);
1245 if (retval)
1246 goto fork_out;
1247
1248 retval = -ENOMEM;
1249 p = dup_task_struct(current);
1250 if (!p)
1251 goto fork_out;
1252
1253 ftrace_graph_init_task(p);
1254
1255 rt_mutex_init_task(p);
1256
1257 #ifdef CONFIG_PROVE_LOCKING
1258 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1259 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1260 #endif
1261 retval = -EAGAIN;
1262 if (atomic_read(&p->real_cred->user->processes) >=
1263 task_rlimit(p, RLIMIT_NPROC)) {
1264 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1265 p->real_cred->user != INIT_USER)
1266 goto bad_fork_free;
1267 }
1268 current->flags &= ~PF_NPROC_EXCEEDED;
1269
1270 retval = copy_creds(p, clone_flags);
1271 if (retval < 0)
1272 goto bad_fork_free;
1273
1274 /*
1275 * If multiple threads are within copy_process(), then this check
1276 * triggers too late. This doesn't hurt, the check is only there
1277 * to stop root fork bombs.
1278 */
1279 retval = -EAGAIN;
1280 if (nr_threads >= max_threads)
1281 goto bad_fork_cleanup_count;
1282
1283 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1284 goto bad_fork_cleanup_count;
1285
1286 p->did_exec = 0;
1287 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1288 copy_flags(clone_flags, p);
1289 INIT_LIST_HEAD(&p->children);
1290 INIT_LIST_HEAD(&p->sibling);
1291 rcu_copy_process(p);
1292 p->vfork_done = NULL;
1293 spin_lock_init(&p->alloc_lock);
1294
1295 init_sigpending(&p->pending);
1296
1297 p->utime = p->stime = p->gtime = 0;
1298 p->utimescaled = p->stimescaled = 0;
1299 p->cpu_power = 0;
1300 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1301 p->prev_cputime.utime = p->prev_cputime.stime = 0;
1302 #endif
1303 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1304 seqlock_init(&p->vtime_seqlock);
1305 p->vtime_snap = 0;
1306 p->vtime_snap_whence = VTIME_SLEEPING;
1307 #endif
1308
1309 #if defined(SPLIT_RSS_COUNTING)
1310 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1311 #endif
1312
1313 p->default_timer_slack_ns = current->timer_slack_ns;
1314
1315 task_io_accounting_init(&p->ioac);
1316 acct_clear_integrals(p);
1317
1318 posix_cpu_timers_init(p);
1319
1320 do_posix_clock_monotonic_gettime(&p->start_time);
1321 p->real_start_time = p->start_time;
1322 monotonic_to_bootbased(&p->real_start_time);
1323 p->io_context = NULL;
1324 p->audit_context = NULL;
1325 if (clone_flags & CLONE_THREAD)
1326 threadgroup_change_begin(current);
1327 cgroup_fork(p);
1328 #ifdef CONFIG_NUMA
1329 p->mempolicy = mpol_dup(p->mempolicy);
1330 if (IS_ERR(p->mempolicy)) {
1331 retval = PTR_ERR(p->mempolicy);
1332 p->mempolicy = NULL;
1333 goto bad_fork_cleanup_cgroup;
1334 }
1335 mpol_fix_fork_child_flag(p);
1336 #endif
1337 #ifdef CONFIG_CPUSETS
1338 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1339 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1340 seqcount_init(&p->mems_allowed_seq);
1341 #endif
1342 #ifdef CONFIG_TRACE_IRQFLAGS
1343 p->irq_events = 0;
1344 p->hardirqs_enabled = 0;
1345 p->hardirq_enable_ip = 0;
1346 p->hardirq_enable_event = 0;
1347 p->hardirq_disable_ip = _THIS_IP_;
1348 p->hardirq_disable_event = 0;
1349 p->softirqs_enabled = 1;
1350 p->softirq_enable_ip = _THIS_IP_;
1351 p->softirq_enable_event = 0;
1352 p->softirq_disable_ip = 0;
1353 p->softirq_disable_event = 0;
1354 p->hardirq_context = 0;
1355 p->softirq_context = 0;
1356 #endif
1357 #ifdef CONFIG_LOCKDEP
1358 p->lockdep_depth = 0; /* no locks held yet */
1359 p->curr_chain_key = 0;
1360 p->lockdep_recursion = 0;
1361 #endif
1362
1363 #ifdef CONFIG_DEBUG_MUTEXES
1364 p->blocked_on = NULL; /* not blocked yet */
1365 #endif
1366 #ifdef CONFIG_MEMCG
1367 p->memcg_batch.do_batch = 0;
1368 p->memcg_batch.memcg = NULL;
1369 #endif
1370 #ifdef CONFIG_BCACHE
1371 p->sequential_io = 0;
1372 p->sequential_io_avg = 0;
1373 #endif
1374
1375 /* Perform scheduler related setup. Assign this task to a CPU. */
1376 sched_fork(p);
1377
1378 retval = perf_event_init_task(p);
1379 if (retval)
1380 goto bad_fork_cleanup_policy;
1381 retval = audit_alloc(p);
1382 if (retval)
1383 goto bad_fork_cleanup_policy;
1384 /* copy all the process information */
1385 retval = copy_semundo(clone_flags, p);
1386 if (retval)
1387 goto bad_fork_cleanup_audit;
1388 retval = copy_files(clone_flags, p);
1389 if (retval)
1390 goto bad_fork_cleanup_semundo;
1391 retval = copy_fs(clone_flags, p);
1392 if (retval)
1393 goto bad_fork_cleanup_files;
1394 retval = copy_sighand(clone_flags, p);
1395 if (retval)
1396 goto bad_fork_cleanup_fs;
1397 retval = copy_signal(clone_flags, p);
1398 if (retval)
1399 goto bad_fork_cleanup_sighand;
1400 retval = copy_mm(clone_flags, p);
1401 if (retval)
1402 goto bad_fork_cleanup_signal;
1403 retval = copy_namespaces(clone_flags, p);
1404 if (retval)
1405 goto bad_fork_cleanup_mm;
1406 retval = copy_io(clone_flags, p);
1407 if (retval)
1408 goto bad_fork_cleanup_namespaces;
1409 retval = copy_thread(clone_flags, stack_start, stack_size, p);
1410 if (retval)
1411 goto bad_fork_cleanup_io;
1412
1413 if (pid != &init_struct_pid) {
1414 retval = -ENOMEM;
1415 pid = alloc_pid(p->nsproxy->pid_ns);
1416 if (!pid)
1417 goto bad_fork_cleanup_io;
1418 }
1419
1420 p->pid = pid_nr(pid);
1421 p->tgid = p->pid;
1422 if (clone_flags & CLONE_THREAD)
1423 p->tgid = current->tgid;
1424
1425 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1426 /*
1427 * Clear TID on mm_release()?
1428 */
1429 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1430 #ifdef CONFIG_BLOCK
1431 p->plug = NULL;
1432 #endif
1433 #ifdef CONFIG_FUTEX
1434 p->robust_list = NULL;
1435 #ifdef CONFIG_COMPAT
1436 p->compat_robust_list = NULL;
1437 #endif
1438 INIT_LIST_HEAD(&p->pi_state_list);
1439 p->pi_state_cache = NULL;
1440 #endif
1441 uprobe_copy_process(p);
1442 /*
1443 * sigaltstack should be cleared when sharing the same VM
1444 */
1445 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1446 p->sas_ss_sp = p->sas_ss_size = 0;
1447
1448 /*
1449 * Syscall tracing and stepping should be turned off in the
1450 * child regardless of CLONE_PTRACE.
1451 */
1452 user_disable_single_step(p);
1453 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1454 #ifdef TIF_SYSCALL_EMU
1455 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1456 #endif
1457 clear_all_latency_tracing(p);
1458
1459 /* ok, now we should be set up.. */
1460 if (clone_flags & CLONE_THREAD)
1461 p->exit_signal = -1;
1462 else if (clone_flags & CLONE_PARENT)
1463 p->exit_signal = current->group_leader->exit_signal;
1464 else
1465 p->exit_signal = (clone_flags & CSIGNAL);
1466
1467 p->pdeath_signal = 0;
1468 p->exit_state = 0;
1469
1470 p->nr_dirtied = 0;
1471 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1472 p->dirty_paused_when = 0;
1473
1474 /*
1475 * Ok, make it visible to the rest of the system.
1476 * We dont wake it up yet.
1477 */
1478 p->group_leader = p;
1479 INIT_LIST_HEAD(&p->thread_group);
1480 p->task_works = NULL;
1481
1482 /* Need tasklist lock for parent etc handling! */
1483 write_lock_irq(&tasklist_lock);
1484
1485 /* CLONE_PARENT re-uses the old parent */
1486 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1487 p->real_parent = current->real_parent;
1488 p->parent_exec_id = current->parent_exec_id;
1489 } else {
1490 p->real_parent = current;
1491 p->parent_exec_id = current->self_exec_id;
1492 }
1493
1494 spin_lock(¤t->sighand->siglock);
1495
1496 /*
1497 * Copy seccomp details explicitly here, in case they were changed
1498 * before holding sighand lock.
1499 */
1500 copy_seccomp(p);
1501
1502 /*
1503 * Process group and session signals need to be delivered to just the
1504 * parent before the fork or both the parent and the child after the
1505 * fork. Restart if a signal comes in before we add the new process to
1506 * it's process group.
1507 * A fatal signal pending means that current will exit, so the new
1508 * thread can't slip out of an OOM kill (or normal SIGKILL).
1509 */
1510 recalc_sigpending();
1511 if (signal_pending(current)) {
1512 spin_unlock(¤t->sighand->siglock);
1513 write_unlock_irq(&tasklist_lock);
1514 retval = -ERESTARTNOINTR;
1515 goto bad_fork_free_pid;
1516 }
1517
1518 if (clone_flags & CLONE_THREAD) {
1519 current->signal->nr_threads++;
1520 atomic_inc(¤t->signal->live);
1521 atomic_inc(¤t->signal->sigcnt);
1522 p->group_leader = current->group_leader;
1523 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1524 }
1525
1526 if (likely(p->pid)) {
1527 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1528
1529 if (thread_group_leader(p)) {
1530 if (is_child_reaper(pid)) {
1531 ns_of_pid(pid)->child_reaper = p;
1532 p->signal->flags |= SIGNAL_UNKILLABLE;
1533 }
1534
1535 p->signal->leader_pid = pid;
1536 p->signal->tty = tty_kref_get(current->signal->tty);
1537 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1538 attach_pid(p, PIDTYPE_SID, task_session(current));
1539 list_add_tail(&p->sibling, &p->real_parent->children);
1540 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1541 __this_cpu_inc(process_counts);
1542 } else {
1543 list_add_tail_rcu(&p->thread_node,
1544 &p->signal->thread_head);
1545 }
1546 attach_pid(p, PIDTYPE_PID, pid);
1547 nr_threads++;
1548 }
1549
1550 total_forks++;
1551 spin_unlock(¤t->sighand->siglock);
1552 write_unlock_irq(&tasklist_lock);
1553 proc_fork_connector(p);
1554 cgroup_post_fork(p);
1555 if (clone_flags & CLONE_THREAD)
1556 threadgroup_change_end(current);
1557 perf_event_fork(p);
1558
1559 trace_task_newtask(p, clone_flags);
1560
1561 return p;
1562
1563 bad_fork_free_pid:
1564 if (pid != &init_struct_pid)
1565 free_pid(pid);
1566 bad_fork_cleanup_io:
1567 if (p->io_context)
1568 exit_io_context(p);
1569 bad_fork_cleanup_namespaces:
1570 exit_task_namespaces(p);
1571 bad_fork_cleanup_mm:
1572 if (p->mm)
1573 mmput(p->mm);
1574 bad_fork_cleanup_signal:
1575 if (!(clone_flags & CLONE_THREAD))
1576 free_signal_struct(p->signal);
1577 bad_fork_cleanup_sighand:
1578 __cleanup_sighand(p->sighand);
1579 bad_fork_cleanup_fs:
1580 exit_fs(p); /* blocking */
1581 bad_fork_cleanup_files:
1582 exit_files(p); /* blocking */
1583 bad_fork_cleanup_semundo:
1584 exit_sem(p);
1585 bad_fork_cleanup_audit:
1586 audit_free(p);
1587 bad_fork_cleanup_policy:
1588 perf_event_free_task(p);
1589 #ifdef CONFIG_NUMA
1590 mpol_put(p->mempolicy);
1591 bad_fork_cleanup_cgroup:
1592 #endif
1593 if (clone_flags & CLONE_THREAD)
1594 threadgroup_change_end(current);
1595 cgroup_exit(p, 0);
1596 delayacct_tsk_free(p);
1597 module_put(task_thread_info(p)->exec_domain->module);
1598 bad_fork_cleanup_count:
1599 atomic_dec(&p->cred->user->processes);
1600 exit_creds(p);
1601 bad_fork_free:
1602 free_task(p);
1603 fork_out:
1604 return ERR_PTR(retval);
1605 }
1606
init_idle_pids(struct pid_link * links)1607 static inline void init_idle_pids(struct pid_link *links)
1608 {
1609 enum pid_type type;
1610
1611 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1612 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1613 links[type].pid = &init_struct_pid;
1614 }
1615 }
1616
fork_idle(int cpu)1617 struct task_struct * __cpuinit fork_idle(int cpu)
1618 {
1619 struct task_struct *task;
1620 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1621 if (!IS_ERR(task)) {
1622 init_idle_pids(task->pids);
1623 init_idle(task, cpu);
1624 }
1625
1626 return task;
1627 }
1628
1629 /*
1630 * Ok, this is the main fork-routine.
1631 *
1632 * It copies the process, and if successful kick-starts
1633 * it and waits for it to finish using the VM if required.
1634 */
do_fork(unsigned long clone_flags,unsigned long stack_start,unsigned long stack_size,int __user * parent_tidptr,int __user * child_tidptr)1635 long do_fork(unsigned long clone_flags,
1636 unsigned long stack_start,
1637 unsigned long stack_size,
1638 int __user *parent_tidptr,
1639 int __user *child_tidptr)
1640 {
1641 struct task_struct *p;
1642 int trace = 0;
1643 long nr;
1644
1645 /*
1646 * Do some preliminary argument and permissions checking before we
1647 * actually start allocating stuff
1648 */
1649 if (clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) {
1650 if (clone_flags & (CLONE_THREAD|CLONE_PARENT))
1651 return -EINVAL;
1652 }
1653
1654 /*
1655 * Determine whether and which event to report to ptracer. When
1656 * called from kernel_thread or CLONE_UNTRACED is explicitly
1657 * requested, no event is reported; otherwise, report if the event
1658 * for the type of forking is enabled.
1659 */
1660 if (!(clone_flags & CLONE_UNTRACED)) {
1661 if (clone_flags & CLONE_VFORK)
1662 trace = PTRACE_EVENT_VFORK;
1663 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1664 trace = PTRACE_EVENT_CLONE;
1665 else
1666 trace = PTRACE_EVENT_FORK;
1667
1668 if (likely(!ptrace_event_enabled(current, trace)))
1669 trace = 0;
1670 }
1671
1672 p = copy_process(clone_flags, stack_start, stack_size,
1673 child_tidptr, NULL, trace);
1674 /*
1675 * Do this prior waking up the new thread - the thread pointer
1676 * might get invalid after that point, if the thread exits quickly.
1677 */
1678 if (!IS_ERR(p)) {
1679 struct completion vfork;
1680
1681 trace_sched_process_fork(current, p);
1682
1683 nr = task_pid_vnr(p);
1684
1685 if (clone_flags & CLONE_PARENT_SETTID)
1686 put_user(nr, parent_tidptr);
1687
1688 if (clone_flags & CLONE_VFORK) {
1689 p->vfork_done = &vfork;
1690 init_completion(&vfork);
1691 get_task_struct(p);
1692 }
1693
1694 wake_up_new_task(p);
1695
1696 /* forking complete and child started to run, tell ptracer */
1697 if (unlikely(trace))
1698 ptrace_event(trace, nr);
1699
1700 if (clone_flags & CLONE_VFORK) {
1701 if (!wait_for_vfork_done(p, &vfork))
1702 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1703 }
1704 } else {
1705 nr = PTR_ERR(p);
1706 }
1707 return nr;
1708 }
1709
1710 /*
1711 * Create a kernel thread.
1712 */
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)1713 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1714 {
1715 return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1716 (unsigned long)arg, NULL, NULL);
1717 }
1718
1719 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)1720 SYSCALL_DEFINE0(fork)
1721 {
1722 #ifdef CONFIG_MMU
1723 return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1724 #else
1725 /* can not support in nommu mode */
1726 return(-EINVAL);
1727 #endif
1728 }
1729 #endif
1730
1731 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)1732 SYSCALL_DEFINE0(vfork)
1733 {
1734 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1735 0, NULL, NULL);
1736 }
1737 #endif
1738
1739 #ifdef __ARCH_WANT_SYS_CLONE
1740 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,int,tls_val,int __user *,child_tidptr)1741 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1742 int __user *, parent_tidptr,
1743 int, tls_val,
1744 int __user *, child_tidptr)
1745 #elif defined(CONFIG_CLONE_BACKWARDS2)
1746 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1747 int __user *, parent_tidptr,
1748 int __user *, child_tidptr,
1749 int, tls_val)
1750 #else
1751 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1752 int __user *, parent_tidptr,
1753 int __user *, child_tidptr,
1754 int, tls_val)
1755 #endif
1756 {
1757 return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1758 }
1759 #endif
1760
1761 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1762 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1763 #endif
1764
sighand_ctor(void * data)1765 static void sighand_ctor(void *data)
1766 {
1767 struct sighand_struct *sighand = data;
1768
1769 spin_lock_init(&sighand->siglock);
1770 init_waitqueue_head(&sighand->signalfd_wqh);
1771 }
1772
proc_caches_init(void)1773 void __init proc_caches_init(void)
1774 {
1775 sighand_cachep = kmem_cache_create("sighand_cache",
1776 sizeof(struct sighand_struct), 0,
1777 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1778 SLAB_NOTRACK, sighand_ctor);
1779 signal_cachep = kmem_cache_create("signal_cache",
1780 sizeof(struct signal_struct), 0,
1781 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1782 files_cachep = kmem_cache_create("files_cache",
1783 sizeof(struct files_struct), 0,
1784 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1785 fs_cachep = kmem_cache_create("fs_cache",
1786 sizeof(struct fs_struct), 0,
1787 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1788 /*
1789 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1790 * whole struct cpumask for the OFFSTACK case. We could change
1791 * this to *only* allocate as much of it as required by the
1792 * maximum number of CPU's we can ever have. The cpumask_allocation
1793 * is at the end of the structure, exactly for that reason.
1794 */
1795 mm_cachep = kmem_cache_create("mm_struct",
1796 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1797 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1798 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1799 mmap_init();
1800 nsproxy_cache_init();
1801 }
1802
1803 /*
1804 * Check constraints on flags passed to the unshare system call.
1805 */
check_unshare_flags(unsigned long unshare_flags)1806 static int check_unshare_flags(unsigned long unshare_flags)
1807 {
1808 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1809 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1810 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1811 CLONE_NEWUSER|CLONE_NEWPID))
1812 return -EINVAL;
1813 /*
1814 * Not implemented, but pretend it works if there is nothing to
1815 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1816 * needs to unshare vm.
1817 */
1818 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1819 /* FIXME: get_task_mm() increments ->mm_users */
1820 if (atomic_read(¤t->mm->mm_users) > 1)
1821 return -EINVAL;
1822 }
1823
1824 return 0;
1825 }
1826
1827 /*
1828 * Unshare the filesystem structure if it is being shared
1829 */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)1830 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1831 {
1832 struct fs_struct *fs = current->fs;
1833
1834 if (!(unshare_flags & CLONE_FS) || !fs)
1835 return 0;
1836
1837 /* don't need lock here; in the worst case we'll do useless copy */
1838 if (fs->users == 1)
1839 return 0;
1840
1841 *new_fsp = copy_fs_struct(fs);
1842 if (!*new_fsp)
1843 return -ENOMEM;
1844
1845 return 0;
1846 }
1847
1848 /*
1849 * Unshare file descriptor table if it is being shared
1850 */
unshare_fd(unsigned long unshare_flags,struct files_struct ** new_fdp)1851 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1852 {
1853 struct files_struct *fd = current->files;
1854 int error = 0;
1855
1856 if ((unshare_flags & CLONE_FILES) &&
1857 (fd && atomic_read(&fd->count) > 1)) {
1858 *new_fdp = dup_fd(fd, &error);
1859 if (!*new_fdp)
1860 return error;
1861 }
1862
1863 return 0;
1864 }
1865
1866 /*
1867 * unshare allows a process to 'unshare' part of the process
1868 * context which was originally shared using clone. copy_*
1869 * functions used by do_fork() cannot be used here directly
1870 * because they modify an inactive task_struct that is being
1871 * constructed. Here we are modifying the current, active,
1872 * task_struct.
1873 */
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)1874 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1875 {
1876 struct fs_struct *fs, *new_fs = NULL;
1877 struct files_struct *fd, *new_fd = NULL;
1878 struct cred *new_cred = NULL;
1879 struct nsproxy *new_nsproxy = NULL;
1880 int do_sysvsem = 0;
1881 int err;
1882
1883 /*
1884 * If unsharing a user namespace must also unshare the thread.
1885 */
1886 if (unshare_flags & CLONE_NEWUSER)
1887 unshare_flags |= CLONE_THREAD | CLONE_FS;
1888 /*
1889 * If unsharing a pid namespace must also unshare the thread.
1890 */
1891 if (unshare_flags & CLONE_NEWPID)
1892 unshare_flags |= CLONE_THREAD;
1893 /*
1894 * If unsharing a thread from a thread group, must also unshare vm.
1895 */
1896 if (unshare_flags & CLONE_THREAD)
1897 unshare_flags |= CLONE_VM;
1898 /*
1899 * If unsharing vm, must also unshare signal handlers.
1900 */
1901 if (unshare_flags & CLONE_VM)
1902 unshare_flags |= CLONE_SIGHAND;
1903 /*
1904 * If unsharing namespace, must also unshare filesystem information.
1905 */
1906 if (unshare_flags & CLONE_NEWNS)
1907 unshare_flags |= CLONE_FS;
1908
1909 err = check_unshare_flags(unshare_flags);
1910 if (err)
1911 goto bad_unshare_out;
1912 /*
1913 * CLONE_NEWIPC must also detach from the undolist: after switching
1914 * to a new ipc namespace, the semaphore arrays from the old
1915 * namespace are unreachable.
1916 */
1917 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1918 do_sysvsem = 1;
1919 err = unshare_fs(unshare_flags, &new_fs);
1920 if (err)
1921 goto bad_unshare_out;
1922 err = unshare_fd(unshare_flags, &new_fd);
1923 if (err)
1924 goto bad_unshare_cleanup_fs;
1925 err = unshare_userns(unshare_flags, &new_cred);
1926 if (err)
1927 goto bad_unshare_cleanup_fd;
1928 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1929 new_cred, new_fs);
1930 if (err)
1931 goto bad_unshare_cleanup_cred;
1932
1933 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1934 if (do_sysvsem) {
1935 /*
1936 * CLONE_SYSVSEM is equivalent to sys_exit().
1937 */
1938 exit_sem(current);
1939 }
1940
1941 if (new_nsproxy)
1942 switch_task_namespaces(current, new_nsproxy);
1943
1944 task_lock(current);
1945
1946 if (new_fs) {
1947 fs = current->fs;
1948 spin_lock(&fs->lock);
1949 current->fs = new_fs;
1950 if (--fs->users)
1951 new_fs = NULL;
1952 else
1953 new_fs = fs;
1954 spin_unlock(&fs->lock);
1955 }
1956
1957 if (new_fd) {
1958 fd = current->files;
1959 current->files = new_fd;
1960 new_fd = fd;
1961 }
1962
1963 task_unlock(current);
1964
1965 if (new_cred) {
1966 /* Install the new user namespace */
1967 commit_creds(new_cred);
1968 new_cred = NULL;
1969 }
1970 }
1971
1972 bad_unshare_cleanup_cred:
1973 if (new_cred)
1974 put_cred(new_cred);
1975 bad_unshare_cleanup_fd:
1976 if (new_fd)
1977 put_files_struct(new_fd);
1978
1979 bad_unshare_cleanup_fs:
1980 if (new_fs)
1981 free_fs_struct(new_fs);
1982
1983 bad_unshare_out:
1984 return err;
1985 }
1986
1987 /*
1988 * Helper to unshare the files of the current task.
1989 * We don't want to expose copy_files internals to
1990 * the exec layer of the kernel.
1991 */
1992
unshare_files(struct files_struct ** displaced)1993 int unshare_files(struct files_struct **displaced)
1994 {
1995 struct task_struct *task = current;
1996 struct files_struct *copy = NULL;
1997 int error;
1998
1999 error = unshare_fd(CLONE_FILES, ©);
2000 if (error || !copy) {
2001 *displaced = NULL;
2002 return error;
2003 }
2004 *displaced = task->files;
2005 task_lock(task);
2006 task->files = copy;
2007 task_unlock(task);
2008 return 0;
2009 }
2010