• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73 #include <linux/aio.h>
74 
75 #include <asm/pgtable.h>
76 #include <asm/pgalloc.h>
77 #include <asm/uaccess.h>
78 #include <asm/mmu_context.h>
79 #include <asm/cacheflush.h>
80 #include <asm/tlbflush.h>
81 
82 #include <trace/events/sched.h>
83 
84 #define CREATE_TRACE_POINTS
85 #include <trace/events/task.h>
86 
87 /*
88  * Protected counters by write_lock_irq(&tasklist_lock)
89  */
90 unsigned long total_forks;	/* Handle normal Linux uptimes. */
91 int nr_threads;			/* The idle threads do not count.. */
92 
93 int max_threads;		/* tunable limit on nr_threads */
94 
95 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
96 
97 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
98 
99 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)100 int lockdep_tasklist_lock_is_held(void)
101 {
102 	return lockdep_is_held(&tasklist_lock);
103 }
104 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
105 #endif /* #ifdef CONFIG_PROVE_RCU */
106 
nr_processes(void)107 int nr_processes(void)
108 {
109 	int cpu;
110 	int total = 0;
111 
112 	for_each_possible_cpu(cpu)
113 		total += per_cpu(process_counts, cpu);
114 
115 	return total;
116 }
117 
arch_release_task_struct(struct task_struct * tsk)118 void __weak arch_release_task_struct(struct task_struct *tsk)
119 {
120 }
121 
122 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
123 static struct kmem_cache *task_struct_cachep;
124 
alloc_task_struct_node(int node)125 static inline struct task_struct *alloc_task_struct_node(int node)
126 {
127 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
128 }
129 
free_task_struct(struct task_struct * tsk)130 static inline void free_task_struct(struct task_struct *tsk)
131 {
132 	kmem_cache_free(task_struct_cachep, tsk);
133 }
134 #endif
135 
arch_release_thread_info(struct thread_info * ti)136 void __weak arch_release_thread_info(struct thread_info *ti)
137 {
138 }
139 
140 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
141 
142 /*
143  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
144  * kmemcache based allocator.
145  */
146 # if THREAD_SIZE >= PAGE_SIZE
alloc_thread_info_node(struct task_struct * tsk,int node)147 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
148 						  int node)
149 {
150 	struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
151 					     THREAD_SIZE_ORDER);
152 
153 	return page ? page_address(page) : NULL;
154 }
155 
free_thread_info(struct thread_info * ti)156 static inline void free_thread_info(struct thread_info *ti)
157 {
158 	free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
159 }
160 # else
161 static struct kmem_cache *thread_info_cache;
162 
alloc_thread_info_node(struct task_struct * tsk,int node)163 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
164 						  int node)
165 {
166 	return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
167 }
168 
free_thread_info(struct thread_info * ti)169 static void free_thread_info(struct thread_info *ti)
170 {
171 	kmem_cache_free(thread_info_cache, ti);
172 }
173 
thread_info_cache_init(void)174 void thread_info_cache_init(void)
175 {
176 	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
177 					      THREAD_SIZE, 0, NULL);
178 	BUG_ON(thread_info_cache == NULL);
179 }
180 # endif
181 #endif
182 
183 /* SLAB cache for signal_struct structures (tsk->signal) */
184 static struct kmem_cache *signal_cachep;
185 
186 /* SLAB cache for sighand_struct structures (tsk->sighand) */
187 struct kmem_cache *sighand_cachep;
188 
189 /* SLAB cache for files_struct structures (tsk->files) */
190 struct kmem_cache *files_cachep;
191 
192 /* SLAB cache for fs_struct structures (tsk->fs) */
193 struct kmem_cache *fs_cachep;
194 
195 /* SLAB cache for vm_area_struct structures */
196 struct kmem_cache *vm_area_cachep;
197 
198 /* SLAB cache for mm_struct structures (tsk->mm) */
199 static struct kmem_cache *mm_cachep;
200 
201 /* Notifier list called when a task struct is freed */
202 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
203 
account_kernel_stack(struct thread_info * ti,int account)204 static void account_kernel_stack(struct thread_info *ti, int account)
205 {
206 	struct zone *zone = page_zone(virt_to_page(ti));
207 
208 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
209 }
210 
free_task(struct task_struct * tsk)211 void free_task(struct task_struct *tsk)
212 {
213 	account_kernel_stack(tsk->stack, -1);
214 	arch_release_thread_info(tsk->stack);
215 	free_thread_info(tsk->stack);
216 	rt_mutex_debug_task_free(tsk);
217 	ftrace_graph_exit_task(tsk);
218 	put_seccomp_filter(tsk);
219 	arch_release_task_struct(tsk);
220 	free_task_struct(tsk);
221 }
222 EXPORT_SYMBOL(free_task);
223 
free_signal_struct(struct signal_struct * sig)224 static inline void free_signal_struct(struct signal_struct *sig)
225 {
226 	taskstats_tgid_free(sig);
227 	sched_autogroup_exit(sig);
228 	kmem_cache_free(signal_cachep, sig);
229 }
230 
put_signal_struct(struct signal_struct * sig)231 static inline void put_signal_struct(struct signal_struct *sig)
232 {
233 	if (atomic_dec_and_test(&sig->sigcnt))
234 		free_signal_struct(sig);
235 }
236 
task_free_register(struct notifier_block * n)237 int task_free_register(struct notifier_block *n)
238 {
239 	return atomic_notifier_chain_register(&task_free_notifier, n);
240 }
241 EXPORT_SYMBOL(task_free_register);
242 
task_free_unregister(struct notifier_block * n)243 int task_free_unregister(struct notifier_block *n)
244 {
245 	return atomic_notifier_chain_unregister(&task_free_notifier, n);
246 }
247 EXPORT_SYMBOL(task_free_unregister);
248 
__put_task_struct(struct task_struct * tsk)249 void __put_task_struct(struct task_struct *tsk)
250 {
251 	WARN_ON(!tsk->exit_state);
252 	WARN_ON(atomic_read(&tsk->usage));
253 	WARN_ON(tsk == current);
254 
255 	security_task_free(tsk);
256 	exit_creds(tsk);
257 	delayacct_tsk_free(tsk);
258 	put_signal_struct(tsk->signal);
259 
260 	atomic_notifier_call_chain(&task_free_notifier, 0, tsk);
261 	if (!profile_handoff_task(tsk))
262 		free_task(tsk);
263 }
264 EXPORT_SYMBOL_GPL(__put_task_struct);
265 
arch_task_cache_init(void)266 void __init __weak arch_task_cache_init(void) { }
267 
fork_init(unsigned long mempages)268 void __init fork_init(unsigned long mempages)
269 {
270 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
271 #ifndef ARCH_MIN_TASKALIGN
272 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
273 #endif
274 	/* create a slab on which task_structs can be allocated */
275 	task_struct_cachep =
276 		kmem_cache_create("task_struct", sizeof(struct task_struct),
277 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
278 #endif
279 
280 	/* do the arch specific task caches init */
281 	arch_task_cache_init();
282 
283 	/*
284 	 * The default maximum number of threads is set to a safe
285 	 * value: the thread structures can take up at most half
286 	 * of memory.
287 	 */
288 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
289 
290 	/*
291 	 * we need to allow at least 20 threads to boot a system
292 	 */
293 	if (max_threads < 20)
294 		max_threads = 20;
295 
296 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
297 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
298 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
299 		init_task.signal->rlim[RLIMIT_NPROC];
300 }
301 
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)302 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
303 					       struct task_struct *src)
304 {
305 	*dst = *src;
306 	return 0;
307 }
308 
dup_task_struct(struct task_struct * orig)309 static struct task_struct *dup_task_struct(struct task_struct *orig)
310 {
311 	struct task_struct *tsk;
312 	struct thread_info *ti;
313 	unsigned long *stackend;
314 	int node = tsk_fork_get_node(orig);
315 	int err;
316 
317 	tsk = alloc_task_struct_node(node);
318 	if (!tsk)
319 		return NULL;
320 
321 	ti = alloc_thread_info_node(tsk, node);
322 	if (!ti)
323 		goto free_tsk;
324 
325 	err = arch_dup_task_struct(tsk, orig);
326 	if (err)
327 		goto free_ti;
328 
329 	tsk->stack = ti;
330 #ifdef CONFIG_SECCOMP
331 	/*
332 	 * We must handle setting up seccomp filters once we're under
333 	 * the sighand lock in case orig has changed between now and
334 	 * then. Until then, filter must be NULL to avoid messing up
335 	 * the usage counts on the error path calling free_task.
336 	 */
337 	tsk->seccomp.filter = NULL;
338 #endif
339 
340 	setup_thread_stack(tsk, orig);
341 	clear_user_return_notifier(tsk);
342 	clear_tsk_need_resched(tsk);
343 	stackend = end_of_stack(tsk);
344 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
345 
346 #ifdef CONFIG_CC_STACKPROTECTOR
347 	tsk->stack_canary = get_random_int();
348 #endif
349 
350 	/*
351 	 * One for us, one for whoever does the "release_task()" (usually
352 	 * parent)
353 	 */
354 	atomic_set(&tsk->usage, 2);
355 #ifdef CONFIG_BLK_DEV_IO_TRACE
356 	tsk->btrace_seq = 0;
357 #endif
358 	tsk->splice_pipe = NULL;
359 	tsk->task_frag.page = NULL;
360 
361 	account_kernel_stack(ti, 1);
362 
363 	return tsk;
364 
365 free_ti:
366 	free_thread_info(ti);
367 free_tsk:
368 	free_task_struct(tsk);
369 	return NULL;
370 }
371 
372 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)373 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
374 {
375 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
376 	struct rb_node **rb_link, *rb_parent;
377 	int retval;
378 	unsigned long charge;
379 	struct mempolicy *pol;
380 
381 	uprobe_start_dup_mmap();
382 	down_write(&oldmm->mmap_sem);
383 	flush_cache_dup_mm(oldmm);
384 	uprobe_dup_mmap(oldmm, mm);
385 	/*
386 	 * Not linked in yet - no deadlock potential:
387 	 */
388 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
389 
390 	mm->locked_vm = 0;
391 	mm->mmap = NULL;
392 	mm->mmap_cache = NULL;
393 	mm->free_area_cache = oldmm->mmap_base;
394 	mm->cached_hole_size = ~0UL;
395 	mm->map_count = 0;
396 	cpumask_clear(mm_cpumask(mm));
397 	mm->mm_rb = RB_ROOT;
398 	rb_link = &mm->mm_rb.rb_node;
399 	rb_parent = NULL;
400 	pprev = &mm->mmap;
401 	retval = ksm_fork(mm, oldmm);
402 	if (retval)
403 		goto out;
404 	retval = khugepaged_fork(mm, oldmm);
405 	if (retval)
406 		goto out;
407 
408 	prev = NULL;
409 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
410 		struct file *file;
411 
412 		if (mpnt->vm_flags & VM_DONTCOPY) {
413 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
414 							-vma_pages(mpnt));
415 			continue;
416 		}
417 		charge = 0;
418 		if (mpnt->vm_flags & VM_ACCOUNT) {
419 			unsigned long len = vma_pages(mpnt);
420 
421 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
422 				goto fail_nomem;
423 			charge = len;
424 		}
425 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
426 		if (!tmp)
427 			goto fail_nomem;
428 		*tmp = *mpnt;
429 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
430 		pol = mpol_dup(vma_policy(mpnt));
431 		retval = PTR_ERR(pol);
432 		if (IS_ERR(pol))
433 			goto fail_nomem_policy;
434 		vma_set_policy(tmp, pol);
435 		tmp->vm_mm = mm;
436 		if (anon_vma_fork(tmp, mpnt))
437 			goto fail_nomem_anon_vma_fork;
438 		tmp->vm_flags &= ~VM_LOCKED;
439 		tmp->vm_next = tmp->vm_prev = NULL;
440 		file = tmp->vm_file;
441 		if (file) {
442 			struct inode *inode = file_inode(file);
443 			struct address_space *mapping = file->f_mapping;
444 
445 			get_file(file);
446 			if (tmp->vm_flags & VM_DENYWRITE)
447 				atomic_dec(&inode->i_writecount);
448 			mutex_lock(&mapping->i_mmap_mutex);
449 			if (tmp->vm_flags & VM_SHARED)
450 				mapping->i_mmap_writable++;
451 			flush_dcache_mmap_lock(mapping);
452 			/* insert tmp into the share list, just after mpnt */
453 			if (unlikely(tmp->vm_flags & VM_NONLINEAR))
454 				vma_nonlinear_insert(tmp,
455 						&mapping->i_mmap_nonlinear);
456 			else
457 				vma_interval_tree_insert_after(tmp, mpnt,
458 							&mapping->i_mmap);
459 			flush_dcache_mmap_unlock(mapping);
460 			mutex_unlock(&mapping->i_mmap_mutex);
461 		}
462 
463 		/*
464 		 * Clear hugetlb-related page reserves for children. This only
465 		 * affects MAP_PRIVATE mappings. Faults generated by the child
466 		 * are not guaranteed to succeed, even if read-only
467 		 */
468 		if (is_vm_hugetlb_page(tmp))
469 			reset_vma_resv_huge_pages(tmp);
470 
471 		/*
472 		 * Link in the new vma and copy the page table entries.
473 		 */
474 		*pprev = tmp;
475 		pprev = &tmp->vm_next;
476 		tmp->vm_prev = prev;
477 		prev = tmp;
478 
479 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
480 		rb_link = &tmp->vm_rb.rb_right;
481 		rb_parent = &tmp->vm_rb;
482 
483 		mm->map_count++;
484 		retval = copy_page_range(mm, oldmm, mpnt);
485 
486 		if (tmp->vm_ops && tmp->vm_ops->open)
487 			tmp->vm_ops->open(tmp);
488 
489 		if (retval)
490 			goto out;
491 	}
492 	/* a new mm has just been created */
493 	arch_dup_mmap(oldmm, mm);
494 	retval = 0;
495 out:
496 	up_write(&mm->mmap_sem);
497 	flush_tlb_mm(oldmm);
498 	up_write(&oldmm->mmap_sem);
499 	uprobe_end_dup_mmap();
500 	return retval;
501 fail_nomem_anon_vma_fork:
502 	mpol_put(pol);
503 fail_nomem_policy:
504 	kmem_cache_free(vm_area_cachep, tmp);
505 fail_nomem:
506 	retval = -ENOMEM;
507 	vm_unacct_memory(charge);
508 	goto out;
509 }
510 
mm_alloc_pgd(struct mm_struct * mm)511 static inline int mm_alloc_pgd(struct mm_struct *mm)
512 {
513 	mm->pgd = pgd_alloc(mm);
514 	if (unlikely(!mm->pgd))
515 		return -ENOMEM;
516 	return 0;
517 }
518 
mm_free_pgd(struct mm_struct * mm)519 static inline void mm_free_pgd(struct mm_struct *mm)
520 {
521 	pgd_free(mm, mm->pgd);
522 }
523 #else
524 #define dup_mmap(mm, oldmm)	(0)
525 #define mm_alloc_pgd(mm)	(0)
526 #define mm_free_pgd(mm)
527 #endif /* CONFIG_MMU */
528 
529 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
530 
531 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
532 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
533 
534 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
535 
coredump_filter_setup(char * s)536 static int __init coredump_filter_setup(char *s)
537 {
538 	default_dump_filter =
539 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
540 		MMF_DUMP_FILTER_MASK;
541 	return 1;
542 }
543 
544 __setup("coredump_filter=", coredump_filter_setup);
545 
546 #include <linux/init_task.h>
547 
mm_init_aio(struct mm_struct * mm)548 static void mm_init_aio(struct mm_struct *mm)
549 {
550 #ifdef CONFIG_AIO
551 	spin_lock_init(&mm->ioctx_lock);
552 	INIT_HLIST_HEAD(&mm->ioctx_list);
553 #endif
554 }
555 
mm_init(struct mm_struct * mm,struct task_struct * p)556 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
557 {
558 	atomic_set(&mm->mm_users, 1);
559 	atomic_set(&mm->mm_count, 1);
560 	init_rwsem(&mm->mmap_sem);
561 	INIT_LIST_HEAD(&mm->mmlist);
562 	mm->flags = (current->mm) ?
563 		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
564 	mm->core_state = NULL;
565 	mm->nr_ptes = 0;
566 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
567 	spin_lock_init(&mm->page_table_lock);
568 	mm->free_area_cache = TASK_UNMAPPED_BASE;
569 	mm->cached_hole_size = ~0UL;
570 	mm_init_aio(mm);
571 	mm_init_owner(mm, p);
572 
573 	if (likely(!mm_alloc_pgd(mm))) {
574 		mm->def_flags = 0;
575 		mmu_notifier_mm_init(mm);
576 		return mm;
577 	}
578 
579 	free_mm(mm);
580 	return NULL;
581 }
582 
check_mm(struct mm_struct * mm)583 static void check_mm(struct mm_struct *mm)
584 {
585 	int i;
586 
587 	for (i = 0; i < NR_MM_COUNTERS; i++) {
588 		long x = atomic_long_read(&mm->rss_stat.count[i]);
589 
590 		if (unlikely(x))
591 			printk(KERN_ALERT "BUG: Bad rss-counter state "
592 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
593 	}
594 
595 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
596 	VM_BUG_ON(mm->pmd_huge_pte);
597 #endif
598 }
599 
600 /*
601  * Allocate and initialize an mm_struct.
602  */
mm_alloc(void)603 struct mm_struct *mm_alloc(void)
604 {
605 	struct mm_struct *mm;
606 
607 	mm = allocate_mm();
608 	if (!mm)
609 		return NULL;
610 
611 	memset(mm, 0, sizeof(*mm));
612 	mm_init_cpumask(mm);
613 	return mm_init(mm, current);
614 }
615 
616 /*
617  * Called when the last reference to the mm
618  * is dropped: either by a lazy thread or by
619  * mmput. Free the page directory and the mm.
620  */
__mmdrop(struct mm_struct * mm)621 void __mmdrop(struct mm_struct *mm)
622 {
623 	BUG_ON(mm == &init_mm);
624 	mm_free_pgd(mm);
625 	destroy_context(mm);
626 	mmu_notifier_mm_destroy(mm);
627 	check_mm(mm);
628 	free_mm(mm);
629 }
630 EXPORT_SYMBOL_GPL(__mmdrop);
631 
632 /*
633  * Decrement the use count and release all resources for an mm.
634  */
mmput(struct mm_struct * mm)635 void mmput(struct mm_struct *mm)
636 {
637 	might_sleep();
638 
639 	if (atomic_dec_and_test(&mm->mm_users)) {
640 		uprobe_clear_state(mm);
641 		exit_aio(mm);
642 		ksm_exit(mm);
643 		khugepaged_exit(mm); /* must run before exit_mmap */
644 		exit_mmap(mm);
645 		set_mm_exe_file(mm, NULL);
646 		if (!list_empty(&mm->mmlist)) {
647 			spin_lock(&mmlist_lock);
648 			list_del(&mm->mmlist);
649 			spin_unlock(&mmlist_lock);
650 		}
651 		if (mm->binfmt)
652 			module_put(mm->binfmt->module);
653 		mmdrop(mm);
654 	}
655 }
656 EXPORT_SYMBOL_GPL(mmput);
657 
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)658 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
659 {
660 	if (new_exe_file)
661 		get_file(new_exe_file);
662 	if (mm->exe_file)
663 		fput(mm->exe_file);
664 	mm->exe_file = new_exe_file;
665 }
666 
get_mm_exe_file(struct mm_struct * mm)667 struct file *get_mm_exe_file(struct mm_struct *mm)
668 {
669 	struct file *exe_file;
670 
671 	/* We need mmap_sem to protect against races with removal of exe_file */
672 	down_read(&mm->mmap_sem);
673 	exe_file = mm->exe_file;
674 	if (exe_file)
675 		get_file(exe_file);
676 	up_read(&mm->mmap_sem);
677 	return exe_file;
678 }
679 
dup_mm_exe_file(struct mm_struct * oldmm,struct mm_struct * newmm)680 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
681 {
682 	/* It's safe to write the exe_file pointer without exe_file_lock because
683 	 * this is called during fork when the task is not yet in /proc */
684 	newmm->exe_file = get_mm_exe_file(oldmm);
685 }
686 
687 /**
688  * get_task_mm - acquire a reference to the task's mm
689  *
690  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
691  * this kernel workthread has transiently adopted a user mm with use_mm,
692  * to do its AIO) is not set and if so returns a reference to it, after
693  * bumping up the use count.  User must release the mm via mmput()
694  * after use.  Typically used by /proc and ptrace.
695  */
get_task_mm(struct task_struct * task)696 struct mm_struct *get_task_mm(struct task_struct *task)
697 {
698 	struct mm_struct *mm;
699 
700 	task_lock(task);
701 	mm = task->mm;
702 	if (mm) {
703 		if (task->flags & PF_KTHREAD)
704 			mm = NULL;
705 		else
706 			atomic_inc(&mm->mm_users);
707 	}
708 	task_unlock(task);
709 	return mm;
710 }
711 EXPORT_SYMBOL_GPL(get_task_mm);
712 
mm_access(struct task_struct * task,unsigned int mode)713 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
714 {
715 	struct mm_struct *mm;
716 	int err;
717 
718 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
719 	if (err)
720 		return ERR_PTR(err);
721 
722 	mm = get_task_mm(task);
723 	if (mm && mm != current->mm &&
724 			!ptrace_may_access(task, mode)) {
725 		mmput(mm);
726 		mm = ERR_PTR(-EACCES);
727 	}
728 	mutex_unlock(&task->signal->cred_guard_mutex);
729 
730 	return mm;
731 }
732 
complete_vfork_done(struct task_struct * tsk)733 static void complete_vfork_done(struct task_struct *tsk)
734 {
735 	struct completion *vfork;
736 
737 	task_lock(tsk);
738 	vfork = tsk->vfork_done;
739 	if (likely(vfork)) {
740 		tsk->vfork_done = NULL;
741 		complete(vfork);
742 	}
743 	task_unlock(tsk);
744 }
745 
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)746 static int wait_for_vfork_done(struct task_struct *child,
747 				struct completion *vfork)
748 {
749 	int killed;
750 
751 	freezer_do_not_count();
752 	killed = wait_for_completion_killable(vfork);
753 	freezer_count();
754 
755 	if (killed) {
756 		task_lock(child);
757 		child->vfork_done = NULL;
758 		task_unlock(child);
759 	}
760 
761 	put_task_struct(child);
762 	return killed;
763 }
764 
765 /* Please note the differences between mmput and mm_release.
766  * mmput is called whenever we stop holding onto a mm_struct,
767  * error success whatever.
768  *
769  * mm_release is called after a mm_struct has been removed
770  * from the current process.
771  *
772  * This difference is important for error handling, when we
773  * only half set up a mm_struct for a new process and need to restore
774  * the old one.  Because we mmput the new mm_struct before
775  * restoring the old one. . .
776  * Eric Biederman 10 January 1998
777  */
mm_release(struct task_struct * tsk,struct mm_struct * mm)778 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
779 {
780 	/* Get rid of any futexes when releasing the mm */
781 #ifdef CONFIG_FUTEX
782 	if (unlikely(tsk->robust_list)) {
783 		exit_robust_list(tsk);
784 		tsk->robust_list = NULL;
785 	}
786 #ifdef CONFIG_COMPAT
787 	if (unlikely(tsk->compat_robust_list)) {
788 		compat_exit_robust_list(tsk);
789 		tsk->compat_robust_list = NULL;
790 	}
791 #endif
792 	if (unlikely(!list_empty(&tsk->pi_state_list)))
793 		exit_pi_state_list(tsk);
794 #endif
795 
796 	uprobe_free_utask(tsk);
797 
798 	/* Get rid of any cached register state */
799 	deactivate_mm(tsk, mm);
800 
801 	/*
802 	 * If we're exiting normally, clear a user-space tid field if
803 	 * requested.  We leave this alone when dying by signal, to leave
804 	 * the value intact in a core dump, and to save the unnecessary
805 	 * trouble, say, a killed vfork parent shouldn't touch this mm.
806 	 * Userland only wants this done for a sys_exit.
807 	 */
808 	if (tsk->clear_child_tid) {
809 		if (!(tsk->flags & PF_SIGNALED) &&
810 		    atomic_read(&mm->mm_users) > 1) {
811 			/*
812 			 * We don't check the error code - if userspace has
813 			 * not set up a proper pointer then tough luck.
814 			 */
815 			put_user(0, tsk->clear_child_tid);
816 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
817 					1, NULL, NULL, 0);
818 		}
819 		tsk->clear_child_tid = NULL;
820 	}
821 
822 	/*
823 	 * All done, finally we can wake up parent and return this mm to him.
824 	 * Also kthread_stop() uses this completion for synchronization.
825 	 */
826 	if (tsk->vfork_done)
827 		complete_vfork_done(tsk);
828 }
829 
830 /*
831  * Allocate a new mm structure and copy contents from the
832  * mm structure of the passed in task structure.
833  */
dup_mm(struct task_struct * tsk)834 struct mm_struct *dup_mm(struct task_struct *tsk)
835 {
836 	struct mm_struct *mm, *oldmm = current->mm;
837 	int err;
838 
839 	if (!oldmm)
840 		return NULL;
841 
842 	mm = allocate_mm();
843 	if (!mm)
844 		goto fail_nomem;
845 
846 	memcpy(mm, oldmm, sizeof(*mm));
847 	mm_init_cpumask(mm);
848 
849 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
850 	mm->pmd_huge_pte = NULL;
851 #endif
852 #ifdef CONFIG_NUMA_BALANCING
853 	mm->first_nid = NUMA_PTE_SCAN_INIT;
854 #endif
855 	if (!mm_init(mm, tsk))
856 		goto fail_nomem;
857 
858 	if (init_new_context(tsk, mm))
859 		goto fail_nocontext;
860 
861 	dup_mm_exe_file(oldmm, mm);
862 
863 	err = dup_mmap(mm, oldmm);
864 	if (err)
865 		goto free_pt;
866 
867 	mm->hiwater_rss = get_mm_rss(mm);
868 	mm->hiwater_vm = mm->total_vm;
869 
870 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
871 		goto free_pt;
872 
873 	return mm;
874 
875 free_pt:
876 	/* don't put binfmt in mmput, we haven't got module yet */
877 	mm->binfmt = NULL;
878 	mmput(mm);
879 
880 fail_nomem:
881 	return NULL;
882 
883 fail_nocontext:
884 	/*
885 	 * If init_new_context() failed, we cannot use mmput() to free the mm
886 	 * because it calls destroy_context()
887 	 */
888 	mm_free_pgd(mm);
889 	free_mm(mm);
890 	return NULL;
891 }
892 
copy_mm(unsigned long clone_flags,struct task_struct * tsk)893 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
894 {
895 	struct mm_struct *mm, *oldmm;
896 	int retval;
897 
898 	tsk->min_flt = tsk->maj_flt = 0;
899 	tsk->nvcsw = tsk->nivcsw = 0;
900 #ifdef CONFIG_DETECT_HUNG_TASK
901 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
902 #endif
903 
904 	tsk->mm = NULL;
905 	tsk->active_mm = NULL;
906 
907 	/*
908 	 * Are we cloning a kernel thread?
909 	 *
910 	 * We need to steal a active VM for that..
911 	 */
912 	oldmm = current->mm;
913 	if (!oldmm)
914 		return 0;
915 
916 	if (clone_flags & CLONE_VM) {
917 		atomic_inc(&oldmm->mm_users);
918 		mm = oldmm;
919 		goto good_mm;
920 	}
921 
922 	retval = -ENOMEM;
923 	mm = dup_mm(tsk);
924 	if (!mm)
925 		goto fail_nomem;
926 
927 good_mm:
928 	tsk->mm = mm;
929 	tsk->active_mm = mm;
930 	return 0;
931 
932 fail_nomem:
933 	return retval;
934 }
935 
copy_fs(unsigned long clone_flags,struct task_struct * tsk)936 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
937 {
938 	struct fs_struct *fs = current->fs;
939 	if (clone_flags & CLONE_FS) {
940 		/* tsk->fs is already what we want */
941 		spin_lock(&fs->lock);
942 		if (fs->in_exec) {
943 			spin_unlock(&fs->lock);
944 			return -EAGAIN;
945 		}
946 		fs->users++;
947 		spin_unlock(&fs->lock);
948 		return 0;
949 	}
950 	tsk->fs = copy_fs_struct(fs);
951 	if (!tsk->fs)
952 		return -ENOMEM;
953 	return 0;
954 }
955 
copy_files(unsigned long clone_flags,struct task_struct * tsk)956 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
957 {
958 	struct files_struct *oldf, *newf;
959 	int error = 0;
960 
961 	/*
962 	 * A background process may not have any files ...
963 	 */
964 	oldf = current->files;
965 	if (!oldf)
966 		goto out;
967 
968 	if (clone_flags & CLONE_FILES) {
969 		atomic_inc(&oldf->count);
970 		goto out;
971 	}
972 
973 	newf = dup_fd(oldf, &error);
974 	if (!newf)
975 		goto out;
976 
977 	tsk->files = newf;
978 	error = 0;
979 out:
980 	return error;
981 }
982 
copy_io(unsigned long clone_flags,struct task_struct * tsk)983 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
984 {
985 #ifdef CONFIG_BLOCK
986 	struct io_context *ioc = current->io_context;
987 	struct io_context *new_ioc;
988 
989 	if (!ioc)
990 		return 0;
991 	/*
992 	 * Share io context with parent, if CLONE_IO is set
993 	 */
994 	if (clone_flags & CLONE_IO) {
995 		ioc_task_link(ioc);
996 		tsk->io_context = ioc;
997 	} else if (ioprio_valid(ioc->ioprio)) {
998 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
999 		if (unlikely(!new_ioc))
1000 			return -ENOMEM;
1001 
1002 		new_ioc->ioprio = ioc->ioprio;
1003 		put_io_context(new_ioc);
1004 	}
1005 #endif
1006 	return 0;
1007 }
1008 
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1009 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1010 {
1011 	struct sighand_struct *sig;
1012 
1013 	if (clone_flags & CLONE_SIGHAND) {
1014 		atomic_inc(&current->sighand->count);
1015 		return 0;
1016 	}
1017 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1018 	rcu_assign_pointer(tsk->sighand, sig);
1019 	if (!sig)
1020 		return -ENOMEM;
1021 	atomic_set(&sig->count, 1);
1022 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1023 	return 0;
1024 }
1025 
__cleanup_sighand(struct sighand_struct * sighand)1026 void __cleanup_sighand(struct sighand_struct *sighand)
1027 {
1028 	if (atomic_dec_and_test(&sighand->count)) {
1029 		signalfd_cleanup(sighand);
1030 		kmem_cache_free(sighand_cachep, sighand);
1031 	}
1032 }
1033 
1034 
1035 /*
1036  * Initialize POSIX timer handling for a thread group.
1037  */
posix_cpu_timers_init_group(struct signal_struct * sig)1038 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1039 {
1040 	unsigned long cpu_limit;
1041 
1042 	/* Thread group counters. */
1043 	thread_group_cputime_init(sig);
1044 
1045 	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1046 	if (cpu_limit != RLIM_INFINITY) {
1047 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1048 		sig->cputimer.running = 1;
1049 	}
1050 
1051 	/* The timer lists. */
1052 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1053 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1054 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1055 }
1056 
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1057 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1058 {
1059 	struct signal_struct *sig;
1060 
1061 	if (clone_flags & CLONE_THREAD)
1062 		return 0;
1063 
1064 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1065 	tsk->signal = sig;
1066 	if (!sig)
1067 		return -ENOMEM;
1068 
1069 	sig->nr_threads = 1;
1070 	atomic_set(&sig->live, 1);
1071 	atomic_set(&sig->sigcnt, 1);
1072 
1073 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1074 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1075 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1076 
1077 	init_waitqueue_head(&sig->wait_chldexit);
1078 	sig->curr_target = tsk;
1079 	init_sigpending(&sig->shared_pending);
1080 	INIT_LIST_HEAD(&sig->posix_timers);
1081 
1082 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1083 	sig->real_timer.function = it_real_fn;
1084 
1085 	task_lock(current->group_leader);
1086 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1087 	task_unlock(current->group_leader);
1088 
1089 	posix_cpu_timers_init_group(sig);
1090 
1091 	tty_audit_fork(sig);
1092 	sched_autogroup_fork(sig);
1093 
1094 #ifdef CONFIG_CGROUPS
1095 	init_rwsem(&sig->group_rwsem);
1096 #endif
1097 
1098 	sig->oom_score_adj = current->signal->oom_score_adj;
1099 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1100 
1101 	sig->has_child_subreaper = current->signal->has_child_subreaper ||
1102 				   current->signal->is_child_subreaper;
1103 
1104 	mutex_init(&sig->cred_guard_mutex);
1105 
1106 	return 0;
1107 }
1108 
copy_flags(unsigned long clone_flags,struct task_struct * p)1109 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1110 {
1111 	unsigned long new_flags = p->flags;
1112 
1113 	new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1114 	new_flags |= PF_FORKNOEXEC;
1115 	p->flags = new_flags;
1116 }
1117 
copy_seccomp(struct task_struct * p)1118 static void copy_seccomp(struct task_struct *p)
1119 {
1120 #ifdef CONFIG_SECCOMP
1121 	/*
1122 	 * Must be called with sighand->lock held, which is common to
1123 	 * all threads in the group. Holding cred_guard_mutex is not
1124 	 * needed because this new task is not yet running and cannot
1125 	 * be racing exec.
1126 	 */
1127 	assert_spin_locked(&current->sighand->siglock);
1128 
1129 	/* Ref-count the new filter user, and assign it. */
1130 	get_seccomp_filter(current);
1131 	p->seccomp = current->seccomp;
1132 
1133 	/*
1134 	 * Explicitly enable no_new_privs here in case it got set
1135 	 * between the task_struct being duplicated and holding the
1136 	 * sighand lock. The seccomp state and nnp must be in sync.
1137 	 */
1138 	if (task_no_new_privs(current))
1139 		task_set_no_new_privs(p);
1140 
1141 	/*
1142 	 * If the parent gained a seccomp mode after copying thread
1143 	 * flags and between before we held the sighand lock, we have
1144 	 * to manually enable the seccomp thread flag here.
1145 	 */
1146 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1147 		set_tsk_thread_flag(p, TIF_SECCOMP);
1148 #endif
1149 }
1150 
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1151 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1152 {
1153 	current->clear_child_tid = tidptr;
1154 
1155 	return task_pid_vnr(current);
1156 }
1157 
rt_mutex_init_task(struct task_struct * p)1158 static void rt_mutex_init_task(struct task_struct *p)
1159 {
1160 	raw_spin_lock_init(&p->pi_lock);
1161 #ifdef CONFIG_RT_MUTEXES
1162 	plist_head_init(&p->pi_waiters);
1163 	p->pi_blocked_on = NULL;
1164 #endif
1165 }
1166 
1167 #ifdef CONFIG_MM_OWNER
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1168 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1169 {
1170 	mm->owner = p;
1171 }
1172 #endif /* CONFIG_MM_OWNER */
1173 
1174 /*
1175  * Initialize POSIX timer handling for a single task.
1176  */
posix_cpu_timers_init(struct task_struct * tsk)1177 static void posix_cpu_timers_init(struct task_struct *tsk)
1178 {
1179 	tsk->cputime_expires.prof_exp = 0;
1180 	tsk->cputime_expires.virt_exp = 0;
1181 	tsk->cputime_expires.sched_exp = 0;
1182 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1183 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1184 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1185 }
1186 
1187 /*
1188  * This creates a new process as a copy of the old one,
1189  * but does not actually start it yet.
1190  *
1191  * It copies the registers, and all the appropriate
1192  * parts of the process environment (as per the clone
1193  * flags). The actual kick-off is left to the caller.
1194  */
copy_process(unsigned long clone_flags,unsigned long stack_start,unsigned long stack_size,int __user * child_tidptr,struct pid * pid,int trace)1195 static struct task_struct *copy_process(unsigned long clone_flags,
1196 					unsigned long stack_start,
1197 					unsigned long stack_size,
1198 					int __user *child_tidptr,
1199 					struct pid *pid,
1200 					int trace)
1201 {
1202 	int retval;
1203 	struct task_struct *p;
1204 
1205 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1206 		return ERR_PTR(-EINVAL);
1207 
1208 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1209 		return ERR_PTR(-EINVAL);
1210 
1211 	/*
1212 	 * Thread groups must share signals as well, and detached threads
1213 	 * can only be started up within the thread group.
1214 	 */
1215 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1216 		return ERR_PTR(-EINVAL);
1217 
1218 	/*
1219 	 * Shared signal handlers imply shared VM. By way of the above,
1220 	 * thread groups also imply shared VM. Blocking this case allows
1221 	 * for various simplifications in other code.
1222 	 */
1223 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1224 		return ERR_PTR(-EINVAL);
1225 
1226 	/*
1227 	 * Siblings of global init remain as zombies on exit since they are
1228 	 * not reaped by their parent (swapper). To solve this and to avoid
1229 	 * multi-rooted process trees, prevent global and container-inits
1230 	 * from creating siblings.
1231 	 */
1232 	if ((clone_flags & CLONE_PARENT) &&
1233 				current->signal->flags & SIGNAL_UNKILLABLE)
1234 		return ERR_PTR(-EINVAL);
1235 
1236 	/*
1237 	 * If the new process will be in a different pid namespace
1238 	 * don't allow the creation of threads.
1239 	 */
1240 	if ((clone_flags & (CLONE_VM|CLONE_NEWPID)) &&
1241 	    (task_active_pid_ns(current) != current->nsproxy->pid_ns))
1242 		return ERR_PTR(-EINVAL);
1243 
1244 	retval = security_task_create(clone_flags);
1245 	if (retval)
1246 		goto fork_out;
1247 
1248 	retval = -ENOMEM;
1249 	p = dup_task_struct(current);
1250 	if (!p)
1251 		goto fork_out;
1252 
1253 	ftrace_graph_init_task(p);
1254 
1255 	rt_mutex_init_task(p);
1256 
1257 #ifdef CONFIG_PROVE_LOCKING
1258 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1259 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1260 #endif
1261 	retval = -EAGAIN;
1262 	if (atomic_read(&p->real_cred->user->processes) >=
1263 			task_rlimit(p, RLIMIT_NPROC)) {
1264 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1265 		    p->real_cred->user != INIT_USER)
1266 			goto bad_fork_free;
1267 	}
1268 	current->flags &= ~PF_NPROC_EXCEEDED;
1269 
1270 	retval = copy_creds(p, clone_flags);
1271 	if (retval < 0)
1272 		goto bad_fork_free;
1273 
1274 	/*
1275 	 * If multiple threads are within copy_process(), then this check
1276 	 * triggers too late. This doesn't hurt, the check is only there
1277 	 * to stop root fork bombs.
1278 	 */
1279 	retval = -EAGAIN;
1280 	if (nr_threads >= max_threads)
1281 		goto bad_fork_cleanup_count;
1282 
1283 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1284 		goto bad_fork_cleanup_count;
1285 
1286 	p->did_exec = 0;
1287 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1288 	copy_flags(clone_flags, p);
1289 	INIT_LIST_HEAD(&p->children);
1290 	INIT_LIST_HEAD(&p->sibling);
1291 	rcu_copy_process(p);
1292 	p->vfork_done = NULL;
1293 	spin_lock_init(&p->alloc_lock);
1294 
1295 	init_sigpending(&p->pending);
1296 
1297 	p->utime = p->stime = p->gtime = 0;
1298 	p->utimescaled = p->stimescaled = 0;
1299 	p->cpu_power = 0;
1300 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1301 	p->prev_cputime.utime = p->prev_cputime.stime = 0;
1302 #endif
1303 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1304 	seqlock_init(&p->vtime_seqlock);
1305 	p->vtime_snap = 0;
1306 	p->vtime_snap_whence = VTIME_SLEEPING;
1307 #endif
1308 
1309 #if defined(SPLIT_RSS_COUNTING)
1310 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1311 #endif
1312 
1313 	p->default_timer_slack_ns = current->timer_slack_ns;
1314 
1315 	task_io_accounting_init(&p->ioac);
1316 	acct_clear_integrals(p);
1317 
1318 	posix_cpu_timers_init(p);
1319 
1320 	do_posix_clock_monotonic_gettime(&p->start_time);
1321 	p->real_start_time = p->start_time;
1322 	monotonic_to_bootbased(&p->real_start_time);
1323 	p->io_context = NULL;
1324 	p->audit_context = NULL;
1325 	if (clone_flags & CLONE_THREAD)
1326 		threadgroup_change_begin(current);
1327 	cgroup_fork(p);
1328 #ifdef CONFIG_NUMA
1329 	p->mempolicy = mpol_dup(p->mempolicy);
1330 	if (IS_ERR(p->mempolicy)) {
1331 		retval = PTR_ERR(p->mempolicy);
1332 		p->mempolicy = NULL;
1333 		goto bad_fork_cleanup_cgroup;
1334 	}
1335 	mpol_fix_fork_child_flag(p);
1336 #endif
1337 #ifdef CONFIG_CPUSETS
1338 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1339 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1340 	seqcount_init(&p->mems_allowed_seq);
1341 #endif
1342 #ifdef CONFIG_TRACE_IRQFLAGS
1343 	p->irq_events = 0;
1344 	p->hardirqs_enabled = 0;
1345 	p->hardirq_enable_ip = 0;
1346 	p->hardirq_enable_event = 0;
1347 	p->hardirq_disable_ip = _THIS_IP_;
1348 	p->hardirq_disable_event = 0;
1349 	p->softirqs_enabled = 1;
1350 	p->softirq_enable_ip = _THIS_IP_;
1351 	p->softirq_enable_event = 0;
1352 	p->softirq_disable_ip = 0;
1353 	p->softirq_disable_event = 0;
1354 	p->hardirq_context = 0;
1355 	p->softirq_context = 0;
1356 #endif
1357 #ifdef CONFIG_LOCKDEP
1358 	p->lockdep_depth = 0; /* no locks held yet */
1359 	p->curr_chain_key = 0;
1360 	p->lockdep_recursion = 0;
1361 #endif
1362 
1363 #ifdef CONFIG_DEBUG_MUTEXES
1364 	p->blocked_on = NULL; /* not blocked yet */
1365 #endif
1366 #ifdef CONFIG_MEMCG
1367 	p->memcg_batch.do_batch = 0;
1368 	p->memcg_batch.memcg = NULL;
1369 #endif
1370 #ifdef CONFIG_BCACHE
1371 	p->sequential_io	= 0;
1372 	p->sequential_io_avg	= 0;
1373 #endif
1374 
1375 	/* Perform scheduler related setup. Assign this task to a CPU. */
1376 	sched_fork(p);
1377 
1378 	retval = perf_event_init_task(p);
1379 	if (retval)
1380 		goto bad_fork_cleanup_policy;
1381 	retval = audit_alloc(p);
1382 	if (retval)
1383 		goto bad_fork_cleanup_policy;
1384 	/* copy all the process information */
1385 	retval = copy_semundo(clone_flags, p);
1386 	if (retval)
1387 		goto bad_fork_cleanup_audit;
1388 	retval = copy_files(clone_flags, p);
1389 	if (retval)
1390 		goto bad_fork_cleanup_semundo;
1391 	retval = copy_fs(clone_flags, p);
1392 	if (retval)
1393 		goto bad_fork_cleanup_files;
1394 	retval = copy_sighand(clone_flags, p);
1395 	if (retval)
1396 		goto bad_fork_cleanup_fs;
1397 	retval = copy_signal(clone_flags, p);
1398 	if (retval)
1399 		goto bad_fork_cleanup_sighand;
1400 	retval = copy_mm(clone_flags, p);
1401 	if (retval)
1402 		goto bad_fork_cleanup_signal;
1403 	retval = copy_namespaces(clone_flags, p);
1404 	if (retval)
1405 		goto bad_fork_cleanup_mm;
1406 	retval = copy_io(clone_flags, p);
1407 	if (retval)
1408 		goto bad_fork_cleanup_namespaces;
1409 	retval = copy_thread(clone_flags, stack_start, stack_size, p);
1410 	if (retval)
1411 		goto bad_fork_cleanup_io;
1412 
1413 	if (pid != &init_struct_pid) {
1414 		retval = -ENOMEM;
1415 		pid = alloc_pid(p->nsproxy->pid_ns);
1416 		if (!pid)
1417 			goto bad_fork_cleanup_io;
1418 	}
1419 
1420 	p->pid = pid_nr(pid);
1421 	p->tgid = p->pid;
1422 	if (clone_flags & CLONE_THREAD)
1423 		p->tgid = current->tgid;
1424 
1425 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1426 	/*
1427 	 * Clear TID on mm_release()?
1428 	 */
1429 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1430 #ifdef CONFIG_BLOCK
1431 	p->plug = NULL;
1432 #endif
1433 #ifdef CONFIG_FUTEX
1434 	p->robust_list = NULL;
1435 #ifdef CONFIG_COMPAT
1436 	p->compat_robust_list = NULL;
1437 #endif
1438 	INIT_LIST_HEAD(&p->pi_state_list);
1439 	p->pi_state_cache = NULL;
1440 #endif
1441 	uprobe_copy_process(p);
1442 	/*
1443 	 * sigaltstack should be cleared when sharing the same VM
1444 	 */
1445 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1446 		p->sas_ss_sp = p->sas_ss_size = 0;
1447 
1448 	/*
1449 	 * Syscall tracing and stepping should be turned off in the
1450 	 * child regardless of CLONE_PTRACE.
1451 	 */
1452 	user_disable_single_step(p);
1453 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1454 #ifdef TIF_SYSCALL_EMU
1455 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1456 #endif
1457 	clear_all_latency_tracing(p);
1458 
1459 	/* ok, now we should be set up.. */
1460 	if (clone_flags & CLONE_THREAD)
1461 		p->exit_signal = -1;
1462 	else if (clone_flags & CLONE_PARENT)
1463 		p->exit_signal = current->group_leader->exit_signal;
1464 	else
1465 		p->exit_signal = (clone_flags & CSIGNAL);
1466 
1467 	p->pdeath_signal = 0;
1468 	p->exit_state = 0;
1469 
1470 	p->nr_dirtied = 0;
1471 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1472 	p->dirty_paused_when = 0;
1473 
1474 	/*
1475 	 * Ok, make it visible to the rest of the system.
1476 	 * We dont wake it up yet.
1477 	 */
1478 	p->group_leader = p;
1479 	INIT_LIST_HEAD(&p->thread_group);
1480 	p->task_works = NULL;
1481 
1482 	/* Need tasklist lock for parent etc handling! */
1483 	write_lock_irq(&tasklist_lock);
1484 
1485 	/* CLONE_PARENT re-uses the old parent */
1486 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1487 		p->real_parent = current->real_parent;
1488 		p->parent_exec_id = current->parent_exec_id;
1489 	} else {
1490 		p->real_parent = current;
1491 		p->parent_exec_id = current->self_exec_id;
1492 	}
1493 
1494 	spin_lock(&current->sighand->siglock);
1495 
1496 	/*
1497 	 * Copy seccomp details explicitly here, in case they were changed
1498 	 * before holding sighand lock.
1499 	 */
1500 	copy_seccomp(p);
1501 
1502 	/*
1503 	 * Process group and session signals need to be delivered to just the
1504 	 * parent before the fork or both the parent and the child after the
1505 	 * fork. Restart if a signal comes in before we add the new process to
1506 	 * it's process group.
1507 	 * A fatal signal pending means that current will exit, so the new
1508 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1509 	*/
1510 	recalc_sigpending();
1511 	if (signal_pending(current)) {
1512 		spin_unlock(&current->sighand->siglock);
1513 		write_unlock_irq(&tasklist_lock);
1514 		retval = -ERESTARTNOINTR;
1515 		goto bad_fork_free_pid;
1516 	}
1517 
1518 	if (clone_flags & CLONE_THREAD) {
1519 		current->signal->nr_threads++;
1520 		atomic_inc(&current->signal->live);
1521 		atomic_inc(&current->signal->sigcnt);
1522 		p->group_leader = current->group_leader;
1523 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1524 	}
1525 
1526 	if (likely(p->pid)) {
1527 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1528 
1529 		if (thread_group_leader(p)) {
1530 			if (is_child_reaper(pid)) {
1531 				ns_of_pid(pid)->child_reaper = p;
1532 				p->signal->flags |= SIGNAL_UNKILLABLE;
1533 			}
1534 
1535 			p->signal->leader_pid = pid;
1536 			p->signal->tty = tty_kref_get(current->signal->tty);
1537 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1538 			attach_pid(p, PIDTYPE_SID, task_session(current));
1539 			list_add_tail(&p->sibling, &p->real_parent->children);
1540 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1541 			__this_cpu_inc(process_counts);
1542 		} else {
1543 			list_add_tail_rcu(&p->thread_node,
1544 					  &p->signal->thread_head);
1545 		}
1546 		attach_pid(p, PIDTYPE_PID, pid);
1547 		nr_threads++;
1548 	}
1549 
1550 	total_forks++;
1551 	spin_unlock(&current->sighand->siglock);
1552 	write_unlock_irq(&tasklist_lock);
1553 	proc_fork_connector(p);
1554 	cgroup_post_fork(p);
1555 	if (clone_flags & CLONE_THREAD)
1556 		threadgroup_change_end(current);
1557 	perf_event_fork(p);
1558 
1559 	trace_task_newtask(p, clone_flags);
1560 
1561 	return p;
1562 
1563 bad_fork_free_pid:
1564 	if (pid != &init_struct_pid)
1565 		free_pid(pid);
1566 bad_fork_cleanup_io:
1567 	if (p->io_context)
1568 		exit_io_context(p);
1569 bad_fork_cleanup_namespaces:
1570 	exit_task_namespaces(p);
1571 bad_fork_cleanup_mm:
1572 	if (p->mm)
1573 		mmput(p->mm);
1574 bad_fork_cleanup_signal:
1575 	if (!(clone_flags & CLONE_THREAD))
1576 		free_signal_struct(p->signal);
1577 bad_fork_cleanup_sighand:
1578 	__cleanup_sighand(p->sighand);
1579 bad_fork_cleanup_fs:
1580 	exit_fs(p); /* blocking */
1581 bad_fork_cleanup_files:
1582 	exit_files(p); /* blocking */
1583 bad_fork_cleanup_semundo:
1584 	exit_sem(p);
1585 bad_fork_cleanup_audit:
1586 	audit_free(p);
1587 bad_fork_cleanup_policy:
1588 	perf_event_free_task(p);
1589 #ifdef CONFIG_NUMA
1590 	mpol_put(p->mempolicy);
1591 bad_fork_cleanup_cgroup:
1592 #endif
1593 	if (clone_flags & CLONE_THREAD)
1594 		threadgroup_change_end(current);
1595 	cgroup_exit(p, 0);
1596 	delayacct_tsk_free(p);
1597 	module_put(task_thread_info(p)->exec_domain->module);
1598 bad_fork_cleanup_count:
1599 	atomic_dec(&p->cred->user->processes);
1600 	exit_creds(p);
1601 bad_fork_free:
1602 	free_task(p);
1603 fork_out:
1604 	return ERR_PTR(retval);
1605 }
1606 
init_idle_pids(struct pid_link * links)1607 static inline void init_idle_pids(struct pid_link *links)
1608 {
1609 	enum pid_type type;
1610 
1611 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1612 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1613 		links[type].pid = &init_struct_pid;
1614 	}
1615 }
1616 
fork_idle(int cpu)1617 struct task_struct * __cpuinit fork_idle(int cpu)
1618 {
1619 	struct task_struct *task;
1620 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1621 	if (!IS_ERR(task)) {
1622 		init_idle_pids(task->pids);
1623 		init_idle(task, cpu);
1624 	}
1625 
1626 	return task;
1627 }
1628 
1629 /*
1630  *  Ok, this is the main fork-routine.
1631  *
1632  * It copies the process, and if successful kick-starts
1633  * it and waits for it to finish using the VM if required.
1634  */
do_fork(unsigned long clone_flags,unsigned long stack_start,unsigned long stack_size,int __user * parent_tidptr,int __user * child_tidptr)1635 long do_fork(unsigned long clone_flags,
1636 	      unsigned long stack_start,
1637 	      unsigned long stack_size,
1638 	      int __user *parent_tidptr,
1639 	      int __user *child_tidptr)
1640 {
1641 	struct task_struct *p;
1642 	int trace = 0;
1643 	long nr;
1644 
1645 	/*
1646 	 * Do some preliminary argument and permissions checking before we
1647 	 * actually start allocating stuff
1648 	 */
1649 	if (clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) {
1650 		if (clone_flags & (CLONE_THREAD|CLONE_PARENT))
1651 			return -EINVAL;
1652 	}
1653 
1654 	/*
1655 	 * Determine whether and which event to report to ptracer.  When
1656 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1657 	 * requested, no event is reported; otherwise, report if the event
1658 	 * for the type of forking is enabled.
1659 	 */
1660 	if (!(clone_flags & CLONE_UNTRACED)) {
1661 		if (clone_flags & CLONE_VFORK)
1662 			trace = PTRACE_EVENT_VFORK;
1663 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1664 			trace = PTRACE_EVENT_CLONE;
1665 		else
1666 			trace = PTRACE_EVENT_FORK;
1667 
1668 		if (likely(!ptrace_event_enabled(current, trace)))
1669 			trace = 0;
1670 	}
1671 
1672 	p = copy_process(clone_flags, stack_start, stack_size,
1673 			 child_tidptr, NULL, trace);
1674 	/*
1675 	 * Do this prior waking up the new thread - the thread pointer
1676 	 * might get invalid after that point, if the thread exits quickly.
1677 	 */
1678 	if (!IS_ERR(p)) {
1679 		struct completion vfork;
1680 
1681 		trace_sched_process_fork(current, p);
1682 
1683 		nr = task_pid_vnr(p);
1684 
1685 		if (clone_flags & CLONE_PARENT_SETTID)
1686 			put_user(nr, parent_tidptr);
1687 
1688 		if (clone_flags & CLONE_VFORK) {
1689 			p->vfork_done = &vfork;
1690 			init_completion(&vfork);
1691 			get_task_struct(p);
1692 		}
1693 
1694 		wake_up_new_task(p);
1695 
1696 		/* forking complete and child started to run, tell ptracer */
1697 		if (unlikely(trace))
1698 			ptrace_event(trace, nr);
1699 
1700 		if (clone_flags & CLONE_VFORK) {
1701 			if (!wait_for_vfork_done(p, &vfork))
1702 				ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1703 		}
1704 	} else {
1705 		nr = PTR_ERR(p);
1706 	}
1707 	return nr;
1708 }
1709 
1710 /*
1711  * Create a kernel thread.
1712  */
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)1713 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1714 {
1715 	return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1716 		(unsigned long)arg, NULL, NULL);
1717 }
1718 
1719 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)1720 SYSCALL_DEFINE0(fork)
1721 {
1722 #ifdef CONFIG_MMU
1723 	return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1724 #else
1725 	/* can not support in nommu mode */
1726 	return(-EINVAL);
1727 #endif
1728 }
1729 #endif
1730 
1731 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)1732 SYSCALL_DEFINE0(vfork)
1733 {
1734 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1735 			0, NULL, NULL);
1736 }
1737 #endif
1738 
1739 #ifdef __ARCH_WANT_SYS_CLONE
1740 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,int,tls_val,int __user *,child_tidptr)1741 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1742 		 int __user *, parent_tidptr,
1743 		 int, tls_val,
1744 		 int __user *, child_tidptr)
1745 #elif defined(CONFIG_CLONE_BACKWARDS2)
1746 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1747 		 int __user *, parent_tidptr,
1748 		 int __user *, child_tidptr,
1749 		 int, tls_val)
1750 #else
1751 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1752 		 int __user *, parent_tidptr,
1753 		 int __user *, child_tidptr,
1754 		 int, tls_val)
1755 #endif
1756 {
1757 	return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1758 }
1759 #endif
1760 
1761 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1762 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1763 #endif
1764 
sighand_ctor(void * data)1765 static void sighand_ctor(void *data)
1766 {
1767 	struct sighand_struct *sighand = data;
1768 
1769 	spin_lock_init(&sighand->siglock);
1770 	init_waitqueue_head(&sighand->signalfd_wqh);
1771 }
1772 
proc_caches_init(void)1773 void __init proc_caches_init(void)
1774 {
1775 	sighand_cachep = kmem_cache_create("sighand_cache",
1776 			sizeof(struct sighand_struct), 0,
1777 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1778 			SLAB_NOTRACK, sighand_ctor);
1779 	signal_cachep = kmem_cache_create("signal_cache",
1780 			sizeof(struct signal_struct), 0,
1781 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1782 	files_cachep = kmem_cache_create("files_cache",
1783 			sizeof(struct files_struct), 0,
1784 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1785 	fs_cachep = kmem_cache_create("fs_cache",
1786 			sizeof(struct fs_struct), 0,
1787 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1788 	/*
1789 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1790 	 * whole struct cpumask for the OFFSTACK case. We could change
1791 	 * this to *only* allocate as much of it as required by the
1792 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1793 	 * is at the end of the structure, exactly for that reason.
1794 	 */
1795 	mm_cachep = kmem_cache_create("mm_struct",
1796 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1797 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1798 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1799 	mmap_init();
1800 	nsproxy_cache_init();
1801 }
1802 
1803 /*
1804  * Check constraints on flags passed to the unshare system call.
1805  */
check_unshare_flags(unsigned long unshare_flags)1806 static int check_unshare_flags(unsigned long unshare_flags)
1807 {
1808 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1809 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1810 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1811 				CLONE_NEWUSER|CLONE_NEWPID))
1812 		return -EINVAL;
1813 	/*
1814 	 * Not implemented, but pretend it works if there is nothing to
1815 	 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1816 	 * needs to unshare vm.
1817 	 */
1818 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1819 		/* FIXME: get_task_mm() increments ->mm_users */
1820 		if (atomic_read(&current->mm->mm_users) > 1)
1821 			return -EINVAL;
1822 	}
1823 
1824 	return 0;
1825 }
1826 
1827 /*
1828  * Unshare the filesystem structure if it is being shared
1829  */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)1830 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1831 {
1832 	struct fs_struct *fs = current->fs;
1833 
1834 	if (!(unshare_flags & CLONE_FS) || !fs)
1835 		return 0;
1836 
1837 	/* don't need lock here; in the worst case we'll do useless copy */
1838 	if (fs->users == 1)
1839 		return 0;
1840 
1841 	*new_fsp = copy_fs_struct(fs);
1842 	if (!*new_fsp)
1843 		return -ENOMEM;
1844 
1845 	return 0;
1846 }
1847 
1848 /*
1849  * Unshare file descriptor table if it is being shared
1850  */
unshare_fd(unsigned long unshare_flags,struct files_struct ** new_fdp)1851 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1852 {
1853 	struct files_struct *fd = current->files;
1854 	int error = 0;
1855 
1856 	if ((unshare_flags & CLONE_FILES) &&
1857 	    (fd && atomic_read(&fd->count) > 1)) {
1858 		*new_fdp = dup_fd(fd, &error);
1859 		if (!*new_fdp)
1860 			return error;
1861 	}
1862 
1863 	return 0;
1864 }
1865 
1866 /*
1867  * unshare allows a process to 'unshare' part of the process
1868  * context which was originally shared using clone.  copy_*
1869  * functions used by do_fork() cannot be used here directly
1870  * because they modify an inactive task_struct that is being
1871  * constructed. Here we are modifying the current, active,
1872  * task_struct.
1873  */
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)1874 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1875 {
1876 	struct fs_struct *fs, *new_fs = NULL;
1877 	struct files_struct *fd, *new_fd = NULL;
1878 	struct cred *new_cred = NULL;
1879 	struct nsproxy *new_nsproxy = NULL;
1880 	int do_sysvsem = 0;
1881 	int err;
1882 
1883 	/*
1884 	 * If unsharing a user namespace must also unshare the thread.
1885 	 */
1886 	if (unshare_flags & CLONE_NEWUSER)
1887 		unshare_flags |= CLONE_THREAD | CLONE_FS;
1888 	/*
1889 	 * If unsharing a pid namespace must also unshare the thread.
1890 	 */
1891 	if (unshare_flags & CLONE_NEWPID)
1892 		unshare_flags |= CLONE_THREAD;
1893 	/*
1894 	 * If unsharing a thread from a thread group, must also unshare vm.
1895 	 */
1896 	if (unshare_flags & CLONE_THREAD)
1897 		unshare_flags |= CLONE_VM;
1898 	/*
1899 	 * If unsharing vm, must also unshare signal handlers.
1900 	 */
1901 	if (unshare_flags & CLONE_VM)
1902 		unshare_flags |= CLONE_SIGHAND;
1903 	/*
1904 	 * If unsharing namespace, must also unshare filesystem information.
1905 	 */
1906 	if (unshare_flags & CLONE_NEWNS)
1907 		unshare_flags |= CLONE_FS;
1908 
1909 	err = check_unshare_flags(unshare_flags);
1910 	if (err)
1911 		goto bad_unshare_out;
1912 	/*
1913 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1914 	 * to a new ipc namespace, the semaphore arrays from the old
1915 	 * namespace are unreachable.
1916 	 */
1917 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1918 		do_sysvsem = 1;
1919 	err = unshare_fs(unshare_flags, &new_fs);
1920 	if (err)
1921 		goto bad_unshare_out;
1922 	err = unshare_fd(unshare_flags, &new_fd);
1923 	if (err)
1924 		goto bad_unshare_cleanup_fs;
1925 	err = unshare_userns(unshare_flags, &new_cred);
1926 	if (err)
1927 		goto bad_unshare_cleanup_fd;
1928 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1929 					 new_cred, new_fs);
1930 	if (err)
1931 		goto bad_unshare_cleanup_cred;
1932 
1933 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1934 		if (do_sysvsem) {
1935 			/*
1936 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1937 			 */
1938 			exit_sem(current);
1939 		}
1940 
1941 		if (new_nsproxy)
1942 			switch_task_namespaces(current, new_nsproxy);
1943 
1944 		task_lock(current);
1945 
1946 		if (new_fs) {
1947 			fs = current->fs;
1948 			spin_lock(&fs->lock);
1949 			current->fs = new_fs;
1950 			if (--fs->users)
1951 				new_fs = NULL;
1952 			else
1953 				new_fs = fs;
1954 			spin_unlock(&fs->lock);
1955 		}
1956 
1957 		if (new_fd) {
1958 			fd = current->files;
1959 			current->files = new_fd;
1960 			new_fd = fd;
1961 		}
1962 
1963 		task_unlock(current);
1964 
1965 		if (new_cred) {
1966 			/* Install the new user namespace */
1967 			commit_creds(new_cred);
1968 			new_cred = NULL;
1969 		}
1970 	}
1971 
1972 bad_unshare_cleanup_cred:
1973 	if (new_cred)
1974 		put_cred(new_cred);
1975 bad_unshare_cleanup_fd:
1976 	if (new_fd)
1977 		put_files_struct(new_fd);
1978 
1979 bad_unshare_cleanup_fs:
1980 	if (new_fs)
1981 		free_fs_struct(new_fs);
1982 
1983 bad_unshare_out:
1984 	return err;
1985 }
1986 
1987 /*
1988  *	Helper to unshare the files of the current task.
1989  *	We don't want to expose copy_files internals to
1990  *	the exec layer of the kernel.
1991  */
1992 
unshare_files(struct files_struct ** displaced)1993 int unshare_files(struct files_struct **displaced)
1994 {
1995 	struct task_struct *task = current;
1996 	struct files_struct *copy = NULL;
1997 	int error;
1998 
1999 	error = unshare_fd(CLONE_FILES, &copy);
2000 	if (error || !copy) {
2001 		*displaced = NULL;
2002 		return error;
2003 	}
2004 	*displaced = task->files;
2005 	task_lock(task);
2006 	task->files = copy;
2007 	task_unlock(task);
2008 	return 0;
2009 }
2010