1 /*
2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
3 *
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
6 *
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
9 *
10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
12 *
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
16 */
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/ptrace.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/skbuff.h>
32 #include <linux/spinlock.h>
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
35 #include <linux/bitops.h>
36 #include <linux/fs.h>
37 #include <linux/platform_device.h>
38 #include <linux/phy.h>
39 #include <linux/of.h>
40 #include <linux/of_mdio.h>
41 #include <linux/of_platform.h>
42 #include <linux/of_gpio.h>
43 #include <linux/of_net.h>
44
45 #include <linux/vmalloc.h>
46 #include <asm/pgtable.h>
47 #include <asm/irq.h>
48 #include <asm/uaccess.h>
49
50 #include "fs_enet.h"
51
52 /*************************************************/
53
54 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
55 MODULE_DESCRIPTION("Freescale Ethernet Driver");
56 MODULE_LICENSE("GPL");
57 MODULE_VERSION(DRV_MODULE_VERSION);
58
59 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
60 module_param(fs_enet_debug, int, 0);
61 MODULE_PARM_DESC(fs_enet_debug,
62 "Freescale bitmapped debugging message enable value");
63
64 #ifdef CONFIG_NET_POLL_CONTROLLER
65 static void fs_enet_netpoll(struct net_device *dev);
66 #endif
67
fs_set_multicast_list(struct net_device * dev)68 static void fs_set_multicast_list(struct net_device *dev)
69 {
70 struct fs_enet_private *fep = netdev_priv(dev);
71
72 (*fep->ops->set_multicast_list)(dev);
73 }
74
skb_align(struct sk_buff * skb,int align)75 static void skb_align(struct sk_buff *skb, int align)
76 {
77 int off = ((unsigned long)skb->data) & (align - 1);
78
79 if (off)
80 skb_reserve(skb, align - off);
81 }
82
83 /* NAPI receive function */
fs_enet_rx_napi(struct napi_struct * napi,int budget)84 static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
85 {
86 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
87 struct net_device *dev = fep->ndev;
88 const struct fs_platform_info *fpi = fep->fpi;
89 cbd_t __iomem *bdp;
90 struct sk_buff *skb, *skbn, *skbt;
91 int received = 0;
92 u16 pkt_len, sc;
93 int curidx;
94
95 /*
96 * First, grab all of the stats for the incoming packet.
97 * These get messed up if we get called due to a busy condition.
98 */
99 bdp = fep->cur_rx;
100
101 /* clear RX status bits for napi*/
102 (*fep->ops->napi_clear_rx_event)(dev);
103
104 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
105 curidx = bdp - fep->rx_bd_base;
106
107 /*
108 * Since we have allocated space to hold a complete frame,
109 * the last indicator should be set.
110 */
111 if ((sc & BD_ENET_RX_LAST) == 0)
112 dev_warn(fep->dev, "rcv is not +last\n");
113
114 /*
115 * Check for errors.
116 */
117 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
118 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
119 fep->stats.rx_errors++;
120 /* Frame too long or too short. */
121 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
122 fep->stats.rx_length_errors++;
123 /* Frame alignment */
124 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
125 fep->stats.rx_frame_errors++;
126 /* CRC Error */
127 if (sc & BD_ENET_RX_CR)
128 fep->stats.rx_crc_errors++;
129 /* FIFO overrun */
130 if (sc & BD_ENET_RX_OV)
131 fep->stats.rx_crc_errors++;
132
133 skb = fep->rx_skbuff[curidx];
134
135 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
136 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
137 DMA_FROM_DEVICE);
138
139 skbn = skb;
140
141 } else {
142 skb = fep->rx_skbuff[curidx];
143
144 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
145 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
146 DMA_FROM_DEVICE);
147
148 /*
149 * Process the incoming frame.
150 */
151 fep->stats.rx_packets++;
152 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
153 fep->stats.rx_bytes += pkt_len + 4;
154
155 if (pkt_len <= fpi->rx_copybreak) {
156 /* +2 to make IP header L1 cache aligned */
157 skbn = netdev_alloc_skb(dev, pkt_len + 2);
158 if (skbn != NULL) {
159 skb_reserve(skbn, 2); /* align IP header */
160 skb_copy_from_linear_data(skb,
161 skbn->data, pkt_len);
162 /* swap */
163 skbt = skb;
164 skb = skbn;
165 skbn = skbt;
166 }
167 } else {
168 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
169
170 if (skbn)
171 skb_align(skbn, ENET_RX_ALIGN);
172 }
173
174 if (skbn != NULL) {
175 skb_put(skb, pkt_len); /* Make room */
176 skb->protocol = eth_type_trans(skb, dev);
177 received++;
178 netif_receive_skb(skb);
179 } else {
180 fep->stats.rx_dropped++;
181 skbn = skb;
182 }
183 }
184
185 fep->rx_skbuff[curidx] = skbn;
186 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
187 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
188 DMA_FROM_DEVICE));
189 CBDW_DATLEN(bdp, 0);
190 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
191
192 /*
193 * Update BD pointer to next entry.
194 */
195 if ((sc & BD_ENET_RX_WRAP) == 0)
196 bdp++;
197 else
198 bdp = fep->rx_bd_base;
199
200 (*fep->ops->rx_bd_done)(dev);
201
202 if (received >= budget)
203 break;
204 }
205
206 fep->cur_rx = bdp;
207
208 if (received < budget) {
209 /* done */
210 napi_complete(napi);
211 (*fep->ops->napi_enable_rx)(dev);
212 }
213 return received;
214 }
215
216 /* non NAPI receive function */
fs_enet_rx_non_napi(struct net_device * dev)217 static int fs_enet_rx_non_napi(struct net_device *dev)
218 {
219 struct fs_enet_private *fep = netdev_priv(dev);
220 const struct fs_platform_info *fpi = fep->fpi;
221 cbd_t __iomem *bdp;
222 struct sk_buff *skb, *skbn, *skbt;
223 int received = 0;
224 u16 pkt_len, sc;
225 int curidx;
226 /*
227 * First, grab all of the stats for the incoming packet.
228 * These get messed up if we get called due to a busy condition.
229 */
230 bdp = fep->cur_rx;
231
232 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
233
234 curidx = bdp - fep->rx_bd_base;
235
236 /*
237 * Since we have allocated space to hold a complete frame,
238 * the last indicator should be set.
239 */
240 if ((sc & BD_ENET_RX_LAST) == 0)
241 dev_warn(fep->dev, "rcv is not +last\n");
242
243 /*
244 * Check for errors.
245 */
246 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
247 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
248 fep->stats.rx_errors++;
249 /* Frame too long or too short. */
250 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
251 fep->stats.rx_length_errors++;
252 /* Frame alignment */
253 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
254 fep->stats.rx_frame_errors++;
255 /* CRC Error */
256 if (sc & BD_ENET_RX_CR)
257 fep->stats.rx_crc_errors++;
258 /* FIFO overrun */
259 if (sc & BD_ENET_RX_OV)
260 fep->stats.rx_crc_errors++;
261
262 skb = fep->rx_skbuff[curidx];
263
264 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
265 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
266 DMA_FROM_DEVICE);
267
268 skbn = skb;
269
270 } else {
271
272 skb = fep->rx_skbuff[curidx];
273
274 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
275 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
276 DMA_FROM_DEVICE);
277
278 /*
279 * Process the incoming frame.
280 */
281 fep->stats.rx_packets++;
282 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
283 fep->stats.rx_bytes += pkt_len + 4;
284
285 if (pkt_len <= fpi->rx_copybreak) {
286 /* +2 to make IP header L1 cache aligned */
287 skbn = netdev_alloc_skb(dev, pkt_len + 2);
288 if (skbn != NULL) {
289 skb_reserve(skbn, 2); /* align IP header */
290 skb_copy_from_linear_data(skb,
291 skbn->data, pkt_len);
292 /* swap */
293 skbt = skb;
294 skb = skbn;
295 skbn = skbt;
296 }
297 } else {
298 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
299
300 if (skbn)
301 skb_align(skbn, ENET_RX_ALIGN);
302 }
303
304 if (skbn != NULL) {
305 skb_put(skb, pkt_len); /* Make room */
306 skb->protocol = eth_type_trans(skb, dev);
307 received++;
308 netif_rx(skb);
309 } else {
310 fep->stats.rx_dropped++;
311 skbn = skb;
312 }
313 }
314
315 fep->rx_skbuff[curidx] = skbn;
316 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
317 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
318 DMA_FROM_DEVICE));
319 CBDW_DATLEN(bdp, 0);
320 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
321
322 /*
323 * Update BD pointer to next entry.
324 */
325 if ((sc & BD_ENET_RX_WRAP) == 0)
326 bdp++;
327 else
328 bdp = fep->rx_bd_base;
329
330 (*fep->ops->rx_bd_done)(dev);
331 }
332
333 fep->cur_rx = bdp;
334
335 return 0;
336 }
337
fs_enet_tx(struct net_device * dev)338 static void fs_enet_tx(struct net_device *dev)
339 {
340 struct fs_enet_private *fep = netdev_priv(dev);
341 cbd_t __iomem *bdp;
342 struct sk_buff *skb;
343 int dirtyidx, do_wake, do_restart;
344 u16 sc;
345
346 spin_lock(&fep->tx_lock);
347 bdp = fep->dirty_tx;
348
349 do_wake = do_restart = 0;
350 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
351 dirtyidx = bdp - fep->tx_bd_base;
352
353 if (fep->tx_free == fep->tx_ring)
354 break;
355
356 skb = fep->tx_skbuff[dirtyidx];
357
358 /*
359 * Check for errors.
360 */
361 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
362 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
363
364 if (sc & BD_ENET_TX_HB) /* No heartbeat */
365 fep->stats.tx_heartbeat_errors++;
366 if (sc & BD_ENET_TX_LC) /* Late collision */
367 fep->stats.tx_window_errors++;
368 if (sc & BD_ENET_TX_RL) /* Retrans limit */
369 fep->stats.tx_aborted_errors++;
370 if (sc & BD_ENET_TX_UN) /* Underrun */
371 fep->stats.tx_fifo_errors++;
372 if (sc & BD_ENET_TX_CSL) /* Carrier lost */
373 fep->stats.tx_carrier_errors++;
374
375 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
376 fep->stats.tx_errors++;
377 do_restart = 1;
378 }
379 } else
380 fep->stats.tx_packets++;
381
382 if (sc & BD_ENET_TX_READY) {
383 dev_warn(fep->dev,
384 "HEY! Enet xmit interrupt and TX_READY.\n");
385 }
386
387 /*
388 * Deferred means some collisions occurred during transmit,
389 * but we eventually sent the packet OK.
390 */
391 if (sc & BD_ENET_TX_DEF)
392 fep->stats.collisions++;
393
394 /* unmap */
395 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
396 skb->len, DMA_TO_DEVICE);
397
398 /*
399 * Free the sk buffer associated with this last transmit.
400 */
401 dev_kfree_skb_irq(skb);
402 fep->tx_skbuff[dirtyidx] = NULL;
403
404 /*
405 * Update pointer to next buffer descriptor to be transmitted.
406 */
407 if ((sc & BD_ENET_TX_WRAP) == 0)
408 bdp++;
409 else
410 bdp = fep->tx_bd_base;
411
412 /*
413 * Since we have freed up a buffer, the ring is no longer
414 * full.
415 */
416 if (!fep->tx_free++)
417 do_wake = 1;
418 }
419
420 fep->dirty_tx = bdp;
421
422 if (do_restart)
423 (*fep->ops->tx_restart)(dev);
424
425 spin_unlock(&fep->tx_lock);
426
427 if (do_wake)
428 netif_wake_queue(dev);
429 }
430
431 /*
432 * The interrupt handler.
433 * This is called from the MPC core interrupt.
434 */
435 static irqreturn_t
fs_enet_interrupt(int irq,void * dev_id)436 fs_enet_interrupt(int irq, void *dev_id)
437 {
438 struct net_device *dev = dev_id;
439 struct fs_enet_private *fep;
440 const struct fs_platform_info *fpi;
441 u32 int_events;
442 u32 int_clr_events;
443 int nr, napi_ok;
444 int handled;
445
446 fep = netdev_priv(dev);
447 fpi = fep->fpi;
448
449 nr = 0;
450 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
451 nr++;
452
453 int_clr_events = int_events;
454 if (fpi->use_napi)
455 int_clr_events &= ~fep->ev_napi_rx;
456
457 (*fep->ops->clear_int_events)(dev, int_clr_events);
458
459 if (int_events & fep->ev_err)
460 (*fep->ops->ev_error)(dev, int_events);
461
462 if (int_events & fep->ev_rx) {
463 if (!fpi->use_napi)
464 fs_enet_rx_non_napi(dev);
465 else {
466 napi_ok = napi_schedule_prep(&fep->napi);
467
468 (*fep->ops->napi_disable_rx)(dev);
469 (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
470
471 /* NOTE: it is possible for FCCs in NAPI mode */
472 /* to submit a spurious interrupt while in poll */
473 if (napi_ok)
474 __napi_schedule(&fep->napi);
475 }
476 }
477
478 if (int_events & fep->ev_tx)
479 fs_enet_tx(dev);
480 }
481
482 handled = nr > 0;
483 return IRQ_RETVAL(handled);
484 }
485
fs_init_bds(struct net_device * dev)486 void fs_init_bds(struct net_device *dev)
487 {
488 struct fs_enet_private *fep = netdev_priv(dev);
489 cbd_t __iomem *bdp;
490 struct sk_buff *skb;
491 int i;
492
493 fs_cleanup_bds(dev);
494
495 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
496 fep->tx_free = fep->tx_ring;
497 fep->cur_rx = fep->rx_bd_base;
498
499 /*
500 * Initialize the receive buffer descriptors.
501 */
502 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
503 skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
504 if (skb == NULL)
505 break;
506
507 skb_align(skb, ENET_RX_ALIGN);
508 fep->rx_skbuff[i] = skb;
509 CBDW_BUFADDR(bdp,
510 dma_map_single(fep->dev, skb->data,
511 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
512 DMA_FROM_DEVICE));
513 CBDW_DATLEN(bdp, 0); /* zero */
514 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
515 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
516 }
517 /*
518 * if we failed, fillup remainder
519 */
520 for (; i < fep->rx_ring; i++, bdp++) {
521 fep->rx_skbuff[i] = NULL;
522 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
523 }
524
525 /*
526 * ...and the same for transmit.
527 */
528 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
529 fep->tx_skbuff[i] = NULL;
530 CBDW_BUFADDR(bdp, 0);
531 CBDW_DATLEN(bdp, 0);
532 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
533 }
534 }
535
fs_cleanup_bds(struct net_device * dev)536 void fs_cleanup_bds(struct net_device *dev)
537 {
538 struct fs_enet_private *fep = netdev_priv(dev);
539 struct sk_buff *skb;
540 cbd_t __iomem *bdp;
541 int i;
542
543 /*
544 * Reset SKB transmit buffers.
545 */
546 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
547 if ((skb = fep->tx_skbuff[i]) == NULL)
548 continue;
549
550 /* unmap */
551 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
552 skb->len, DMA_TO_DEVICE);
553
554 fep->tx_skbuff[i] = NULL;
555 dev_kfree_skb(skb);
556 }
557
558 /*
559 * Reset SKB receive buffers
560 */
561 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
562 if ((skb = fep->rx_skbuff[i]) == NULL)
563 continue;
564
565 /* unmap */
566 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
567 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
568 DMA_FROM_DEVICE);
569
570 fep->rx_skbuff[i] = NULL;
571
572 dev_kfree_skb(skb);
573 }
574 }
575
576 /**********************************************************************************/
577
578 #ifdef CONFIG_FS_ENET_MPC5121_FEC
579 /*
580 * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
581 */
tx_skb_align_workaround(struct net_device * dev,struct sk_buff * skb)582 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
583 struct sk_buff *skb)
584 {
585 struct sk_buff *new_skb;
586 struct fs_enet_private *fep = netdev_priv(dev);
587
588 /* Alloc new skb */
589 new_skb = netdev_alloc_skb(dev, skb->len + 4);
590 if (!new_skb)
591 return NULL;
592
593 /* Make sure new skb is properly aligned */
594 skb_align(new_skb, 4);
595
596 /* Copy data to new skb ... */
597 skb_copy_from_linear_data(skb, new_skb->data, skb->len);
598 skb_put(new_skb, skb->len);
599
600 /* ... and free an old one */
601 dev_kfree_skb_any(skb);
602
603 return new_skb;
604 }
605 #endif
606
fs_enet_start_xmit(struct sk_buff * skb,struct net_device * dev)607 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
608 {
609 struct fs_enet_private *fep = netdev_priv(dev);
610 cbd_t __iomem *bdp;
611 int curidx;
612 u16 sc;
613 unsigned long flags;
614
615 #ifdef CONFIG_FS_ENET_MPC5121_FEC
616 if (((unsigned long)skb->data) & 0x3) {
617 skb = tx_skb_align_workaround(dev, skb);
618 if (!skb) {
619 /*
620 * We have lost packet due to memory allocation error
621 * in tx_skb_align_workaround(). Hopefully original
622 * skb is still valid, so try transmit it later.
623 */
624 return NETDEV_TX_BUSY;
625 }
626 }
627 #endif
628 spin_lock_irqsave(&fep->tx_lock, flags);
629
630 /*
631 * Fill in a Tx ring entry
632 */
633 bdp = fep->cur_tx;
634
635 if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
636 netif_stop_queue(dev);
637 spin_unlock_irqrestore(&fep->tx_lock, flags);
638
639 /*
640 * Ooops. All transmit buffers are full. Bail out.
641 * This should not happen, since the tx queue should be stopped.
642 */
643 dev_warn(fep->dev, "tx queue full!.\n");
644 return NETDEV_TX_BUSY;
645 }
646
647 curidx = bdp - fep->tx_bd_base;
648 /*
649 * Clear all of the status flags.
650 */
651 CBDC_SC(bdp, BD_ENET_TX_STATS);
652
653 /*
654 * Save skb pointer.
655 */
656 fep->tx_skbuff[curidx] = skb;
657
658 fep->stats.tx_bytes += skb->len;
659
660 /*
661 * Push the data cache so the CPM does not get stale memory data.
662 */
663 CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
664 skb->data, skb->len, DMA_TO_DEVICE));
665 CBDW_DATLEN(bdp, skb->len);
666
667 /*
668 * If this was the last BD in the ring, start at the beginning again.
669 */
670 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
671 fep->cur_tx++;
672 else
673 fep->cur_tx = fep->tx_bd_base;
674
675 if (!--fep->tx_free)
676 netif_stop_queue(dev);
677
678 /* Trigger transmission start */
679 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
680 BD_ENET_TX_LAST | BD_ENET_TX_TC;
681
682 /* note that while FEC does not have this bit
683 * it marks it as available for software use
684 * yay for hw reuse :) */
685 if (skb->len <= 60)
686 sc |= BD_ENET_TX_PAD;
687 CBDS_SC(bdp, sc);
688
689 skb_tx_timestamp(skb);
690
691 (*fep->ops->tx_kickstart)(dev);
692
693 spin_unlock_irqrestore(&fep->tx_lock, flags);
694
695 return NETDEV_TX_OK;
696 }
697
fs_timeout(struct net_device * dev)698 static void fs_timeout(struct net_device *dev)
699 {
700 struct fs_enet_private *fep = netdev_priv(dev);
701 unsigned long flags;
702 int wake = 0;
703
704 fep->stats.tx_errors++;
705
706 spin_lock_irqsave(&fep->lock, flags);
707
708 if (dev->flags & IFF_UP) {
709 phy_stop(fep->phydev);
710 (*fep->ops->stop)(dev);
711 (*fep->ops->restart)(dev);
712 phy_start(fep->phydev);
713 }
714
715 phy_start(fep->phydev);
716 wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
717 spin_unlock_irqrestore(&fep->lock, flags);
718
719 if (wake)
720 netif_wake_queue(dev);
721 }
722
723 /*-----------------------------------------------------------------------------
724 * generic link-change handler - should be sufficient for most cases
725 *-----------------------------------------------------------------------------*/
generic_adjust_link(struct net_device * dev)726 static void generic_adjust_link(struct net_device *dev)
727 {
728 struct fs_enet_private *fep = netdev_priv(dev);
729 struct phy_device *phydev = fep->phydev;
730 int new_state = 0;
731
732 if (phydev->link) {
733 /* adjust to duplex mode */
734 if (phydev->duplex != fep->oldduplex) {
735 new_state = 1;
736 fep->oldduplex = phydev->duplex;
737 }
738
739 if (phydev->speed != fep->oldspeed) {
740 new_state = 1;
741 fep->oldspeed = phydev->speed;
742 }
743
744 if (!fep->oldlink) {
745 new_state = 1;
746 fep->oldlink = 1;
747 }
748
749 if (new_state)
750 fep->ops->restart(dev);
751 } else if (fep->oldlink) {
752 new_state = 1;
753 fep->oldlink = 0;
754 fep->oldspeed = 0;
755 fep->oldduplex = -1;
756 }
757
758 if (new_state && netif_msg_link(fep))
759 phy_print_status(phydev);
760 }
761
762
fs_adjust_link(struct net_device * dev)763 static void fs_adjust_link(struct net_device *dev)
764 {
765 struct fs_enet_private *fep = netdev_priv(dev);
766 unsigned long flags;
767
768 spin_lock_irqsave(&fep->lock, flags);
769
770 if(fep->ops->adjust_link)
771 fep->ops->adjust_link(dev);
772 else
773 generic_adjust_link(dev);
774
775 spin_unlock_irqrestore(&fep->lock, flags);
776 }
777
fs_init_phy(struct net_device * dev)778 static int fs_init_phy(struct net_device *dev)
779 {
780 struct fs_enet_private *fep = netdev_priv(dev);
781 struct phy_device *phydev;
782 phy_interface_t iface;
783
784 fep->oldlink = 0;
785 fep->oldspeed = 0;
786 fep->oldduplex = -1;
787
788 iface = fep->fpi->use_rmii ?
789 PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
790
791 phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
792 iface);
793 if (!phydev) {
794 phydev = of_phy_connect_fixed_link(dev, &fs_adjust_link,
795 iface);
796 }
797 if (!phydev) {
798 dev_err(&dev->dev, "Could not attach to PHY\n");
799 return -ENODEV;
800 }
801
802 fep->phydev = phydev;
803
804 return 0;
805 }
806
fs_enet_open(struct net_device * dev)807 static int fs_enet_open(struct net_device *dev)
808 {
809 struct fs_enet_private *fep = netdev_priv(dev);
810 int r;
811 int err;
812
813 /* to initialize the fep->cur_rx,... */
814 /* not doing this, will cause a crash in fs_enet_rx_napi */
815 fs_init_bds(fep->ndev);
816
817 if (fep->fpi->use_napi)
818 napi_enable(&fep->napi);
819
820 /* Install our interrupt handler. */
821 r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
822 "fs_enet-mac", dev);
823 if (r != 0) {
824 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
825 if (fep->fpi->use_napi)
826 napi_disable(&fep->napi);
827 return -EINVAL;
828 }
829
830 err = fs_init_phy(dev);
831 if (err) {
832 free_irq(fep->interrupt, dev);
833 if (fep->fpi->use_napi)
834 napi_disable(&fep->napi);
835 return err;
836 }
837 phy_start(fep->phydev);
838
839 netif_start_queue(dev);
840
841 return 0;
842 }
843
fs_enet_close(struct net_device * dev)844 static int fs_enet_close(struct net_device *dev)
845 {
846 struct fs_enet_private *fep = netdev_priv(dev);
847 unsigned long flags;
848
849 netif_stop_queue(dev);
850 netif_carrier_off(dev);
851 if (fep->fpi->use_napi)
852 napi_disable(&fep->napi);
853 phy_stop(fep->phydev);
854
855 spin_lock_irqsave(&fep->lock, flags);
856 spin_lock(&fep->tx_lock);
857 (*fep->ops->stop)(dev);
858 spin_unlock(&fep->tx_lock);
859 spin_unlock_irqrestore(&fep->lock, flags);
860
861 /* release any irqs */
862 phy_disconnect(fep->phydev);
863 fep->phydev = NULL;
864 free_irq(fep->interrupt, dev);
865
866 return 0;
867 }
868
fs_enet_get_stats(struct net_device * dev)869 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
870 {
871 struct fs_enet_private *fep = netdev_priv(dev);
872 return &fep->stats;
873 }
874
875 /*************************************************************************/
876
fs_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)877 static void fs_get_drvinfo(struct net_device *dev,
878 struct ethtool_drvinfo *info)
879 {
880 strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
881 strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
882 }
883
fs_get_regs_len(struct net_device * dev)884 static int fs_get_regs_len(struct net_device *dev)
885 {
886 struct fs_enet_private *fep = netdev_priv(dev);
887
888 return (*fep->ops->get_regs_len)(dev);
889 }
890
fs_get_regs(struct net_device * dev,struct ethtool_regs * regs,void * p)891 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
892 void *p)
893 {
894 struct fs_enet_private *fep = netdev_priv(dev);
895 unsigned long flags;
896 int r, len;
897
898 len = regs->len;
899
900 spin_lock_irqsave(&fep->lock, flags);
901 r = (*fep->ops->get_regs)(dev, p, &len);
902 spin_unlock_irqrestore(&fep->lock, flags);
903
904 if (r == 0)
905 regs->version = 0;
906 }
907
fs_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)908 static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
909 {
910 struct fs_enet_private *fep = netdev_priv(dev);
911
912 if (!fep->phydev)
913 return -ENODEV;
914
915 return phy_ethtool_gset(fep->phydev, cmd);
916 }
917
fs_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)918 static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
919 {
920 struct fs_enet_private *fep = netdev_priv(dev);
921
922 if (!fep->phydev)
923 return -ENODEV;
924
925 return phy_ethtool_sset(fep->phydev, cmd);
926 }
927
fs_nway_reset(struct net_device * dev)928 static int fs_nway_reset(struct net_device *dev)
929 {
930 return 0;
931 }
932
fs_get_msglevel(struct net_device * dev)933 static u32 fs_get_msglevel(struct net_device *dev)
934 {
935 struct fs_enet_private *fep = netdev_priv(dev);
936 return fep->msg_enable;
937 }
938
fs_set_msglevel(struct net_device * dev,u32 value)939 static void fs_set_msglevel(struct net_device *dev, u32 value)
940 {
941 struct fs_enet_private *fep = netdev_priv(dev);
942 fep->msg_enable = value;
943 }
944
945 static const struct ethtool_ops fs_ethtool_ops = {
946 .get_drvinfo = fs_get_drvinfo,
947 .get_regs_len = fs_get_regs_len,
948 .get_settings = fs_get_settings,
949 .set_settings = fs_set_settings,
950 .nway_reset = fs_nway_reset,
951 .get_link = ethtool_op_get_link,
952 .get_msglevel = fs_get_msglevel,
953 .set_msglevel = fs_set_msglevel,
954 .get_regs = fs_get_regs,
955 .get_ts_info = ethtool_op_get_ts_info,
956 };
957
fs_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)958 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
959 {
960 struct fs_enet_private *fep = netdev_priv(dev);
961
962 if (!netif_running(dev))
963 return -EINVAL;
964
965 return phy_mii_ioctl(fep->phydev, rq, cmd);
966 }
967
968 extern int fs_mii_connect(struct net_device *dev);
969 extern void fs_mii_disconnect(struct net_device *dev);
970
971 /**************************************************************************************/
972
973 #ifdef CONFIG_FS_ENET_HAS_FEC
974 #define IS_FEC(match) ((match)->data == &fs_fec_ops)
975 #else
976 #define IS_FEC(match) 0
977 #endif
978
979 static const struct net_device_ops fs_enet_netdev_ops = {
980 .ndo_open = fs_enet_open,
981 .ndo_stop = fs_enet_close,
982 .ndo_get_stats = fs_enet_get_stats,
983 .ndo_start_xmit = fs_enet_start_xmit,
984 .ndo_tx_timeout = fs_timeout,
985 .ndo_set_rx_mode = fs_set_multicast_list,
986 .ndo_do_ioctl = fs_ioctl,
987 .ndo_validate_addr = eth_validate_addr,
988 .ndo_set_mac_address = eth_mac_addr,
989 .ndo_change_mtu = eth_change_mtu,
990 #ifdef CONFIG_NET_POLL_CONTROLLER
991 .ndo_poll_controller = fs_enet_netpoll,
992 #endif
993 };
994
995 static struct of_device_id fs_enet_match[];
fs_enet_probe(struct platform_device * ofdev)996 static int fs_enet_probe(struct platform_device *ofdev)
997 {
998 const struct of_device_id *match;
999 struct net_device *ndev;
1000 struct fs_enet_private *fep;
1001 struct fs_platform_info *fpi;
1002 const u32 *data;
1003 const u8 *mac_addr;
1004 const char *phy_connection_type;
1005 int privsize, len, ret = -ENODEV;
1006
1007 match = of_match_device(fs_enet_match, &ofdev->dev);
1008 if (!match)
1009 return -EINVAL;
1010
1011 fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
1012 if (!fpi)
1013 return -ENOMEM;
1014
1015 if (!IS_FEC(match)) {
1016 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
1017 if (!data || len != 4)
1018 goto out_free_fpi;
1019
1020 fpi->cp_command = *data;
1021 }
1022
1023 fpi->rx_ring = 32;
1024 fpi->tx_ring = 32;
1025 fpi->rx_copybreak = 240;
1026 fpi->use_napi = 1;
1027 fpi->napi_weight = 17;
1028 fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
1029 if ((!fpi->phy_node) && (!of_get_property(ofdev->dev.of_node, "fixed-link",
1030 NULL)))
1031 goto out_free_fpi;
1032
1033 if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
1034 phy_connection_type = of_get_property(ofdev->dev.of_node,
1035 "phy-connection-type", NULL);
1036 if (phy_connection_type && !strcmp("rmii", phy_connection_type))
1037 fpi->use_rmii = 1;
1038 }
1039
1040 privsize = sizeof(*fep) +
1041 sizeof(struct sk_buff **) *
1042 (fpi->rx_ring + fpi->tx_ring);
1043
1044 ndev = alloc_etherdev(privsize);
1045 if (!ndev) {
1046 ret = -ENOMEM;
1047 goto out_put;
1048 }
1049
1050 SET_NETDEV_DEV(ndev, &ofdev->dev);
1051 dev_set_drvdata(&ofdev->dev, ndev);
1052
1053 fep = netdev_priv(ndev);
1054 fep->dev = &ofdev->dev;
1055 fep->ndev = ndev;
1056 fep->fpi = fpi;
1057 fep->ops = match->data;
1058
1059 ret = fep->ops->setup_data(ndev);
1060 if (ret)
1061 goto out_free_dev;
1062
1063 fep->rx_skbuff = (struct sk_buff **)&fep[1];
1064 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1065
1066 spin_lock_init(&fep->lock);
1067 spin_lock_init(&fep->tx_lock);
1068
1069 mac_addr = of_get_mac_address(ofdev->dev.of_node);
1070 if (mac_addr)
1071 memcpy(ndev->dev_addr, mac_addr, 6);
1072
1073 ret = fep->ops->allocate_bd(ndev);
1074 if (ret)
1075 goto out_cleanup_data;
1076
1077 fep->rx_bd_base = fep->ring_base;
1078 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1079
1080 fep->tx_ring = fpi->tx_ring;
1081 fep->rx_ring = fpi->rx_ring;
1082
1083 ndev->netdev_ops = &fs_enet_netdev_ops;
1084 ndev->watchdog_timeo = 2 * HZ;
1085 if (fpi->use_napi)
1086 netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi,
1087 fpi->napi_weight);
1088
1089 ndev->ethtool_ops = &fs_ethtool_ops;
1090
1091 init_timer(&fep->phy_timer_list);
1092
1093 netif_carrier_off(ndev);
1094
1095 ret = register_netdev(ndev);
1096 if (ret)
1097 goto out_free_bd;
1098
1099 pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1100
1101 return 0;
1102
1103 out_free_bd:
1104 fep->ops->free_bd(ndev);
1105 out_cleanup_data:
1106 fep->ops->cleanup_data(ndev);
1107 out_free_dev:
1108 free_netdev(ndev);
1109 dev_set_drvdata(&ofdev->dev, NULL);
1110 out_put:
1111 of_node_put(fpi->phy_node);
1112 out_free_fpi:
1113 kfree(fpi);
1114 return ret;
1115 }
1116
fs_enet_remove(struct platform_device * ofdev)1117 static int fs_enet_remove(struct platform_device *ofdev)
1118 {
1119 struct net_device *ndev = dev_get_drvdata(&ofdev->dev);
1120 struct fs_enet_private *fep = netdev_priv(ndev);
1121
1122 unregister_netdev(ndev);
1123
1124 fep->ops->free_bd(ndev);
1125 fep->ops->cleanup_data(ndev);
1126 dev_set_drvdata(fep->dev, NULL);
1127 of_node_put(fep->fpi->phy_node);
1128 free_netdev(ndev);
1129 return 0;
1130 }
1131
1132 static struct of_device_id fs_enet_match[] = {
1133 #ifdef CONFIG_FS_ENET_HAS_SCC
1134 {
1135 .compatible = "fsl,cpm1-scc-enet",
1136 .data = (void *)&fs_scc_ops,
1137 },
1138 {
1139 .compatible = "fsl,cpm2-scc-enet",
1140 .data = (void *)&fs_scc_ops,
1141 },
1142 #endif
1143 #ifdef CONFIG_FS_ENET_HAS_FCC
1144 {
1145 .compatible = "fsl,cpm2-fcc-enet",
1146 .data = (void *)&fs_fcc_ops,
1147 },
1148 #endif
1149 #ifdef CONFIG_FS_ENET_HAS_FEC
1150 #ifdef CONFIG_FS_ENET_MPC5121_FEC
1151 {
1152 .compatible = "fsl,mpc5121-fec",
1153 .data = (void *)&fs_fec_ops,
1154 },
1155 {
1156 .compatible = "fsl,mpc5125-fec",
1157 .data = (void *)&fs_fec_ops,
1158 },
1159 #else
1160 {
1161 .compatible = "fsl,pq1-fec-enet",
1162 .data = (void *)&fs_fec_ops,
1163 },
1164 #endif
1165 #endif
1166 {}
1167 };
1168 MODULE_DEVICE_TABLE(of, fs_enet_match);
1169
1170 static struct platform_driver fs_enet_driver = {
1171 .driver = {
1172 .owner = THIS_MODULE,
1173 .name = "fs_enet",
1174 .of_match_table = fs_enet_match,
1175 },
1176 .probe = fs_enet_probe,
1177 .remove = fs_enet_remove,
1178 };
1179
1180 #ifdef CONFIG_NET_POLL_CONTROLLER
fs_enet_netpoll(struct net_device * dev)1181 static void fs_enet_netpoll(struct net_device *dev)
1182 {
1183 disable_irq(dev->irq);
1184 fs_enet_interrupt(dev->irq, dev);
1185 enable_irq(dev->irq);
1186 }
1187 #endif
1188
1189 module_platform_driver(fs_enet_driver);
1190