• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Device probing and sysfs code.
3  *
4  * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 #include <linux/bug.h>
22 #include <linux/ctype.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/errno.h>
26 #include <linux/firewire.h>
27 #include <linux/firewire-constants.h>
28 #include <linux/idr.h>
29 #include <linux/jiffies.h>
30 #include <linux/kobject.h>
31 #include <linux/list.h>
32 #include <linux/mod_devicetable.h>
33 #include <linux/module.h>
34 #include <linux/mutex.h>
35 #include <linux/random.h>
36 #include <linux/rwsem.h>
37 #include <linux/slab.h>
38 #include <linux/spinlock.h>
39 #include <linux/string.h>
40 #include <linux/workqueue.h>
41 
42 #include <linux/atomic.h>
43 #include <asm/byteorder.h>
44 
45 #include "core.h"
46 
fw_csr_iterator_init(struct fw_csr_iterator * ci,const u32 * p)47 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
48 {
49 	ci->p = p + 1;
50 	ci->end = ci->p + (p[0] >> 16);
51 }
52 EXPORT_SYMBOL(fw_csr_iterator_init);
53 
fw_csr_iterator_next(struct fw_csr_iterator * ci,int * key,int * value)54 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
55 {
56 	*key = *ci->p >> 24;
57 	*value = *ci->p & 0xffffff;
58 
59 	return ci->p++ < ci->end;
60 }
61 EXPORT_SYMBOL(fw_csr_iterator_next);
62 
search_leaf(const u32 * directory,int search_key)63 static const u32 *search_leaf(const u32 *directory, int search_key)
64 {
65 	struct fw_csr_iterator ci;
66 	int last_key = 0, key, value;
67 
68 	fw_csr_iterator_init(&ci, directory);
69 	while (fw_csr_iterator_next(&ci, &key, &value)) {
70 		if (last_key == search_key &&
71 		    key == (CSR_DESCRIPTOR | CSR_LEAF))
72 			return ci.p - 1 + value;
73 
74 		last_key = key;
75 	}
76 
77 	return NULL;
78 }
79 
textual_leaf_to_string(const u32 * block,char * buf,size_t size)80 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
81 {
82 	unsigned int quadlets, i;
83 	char c;
84 
85 	if (!size || !buf)
86 		return -EINVAL;
87 
88 	quadlets = min(block[0] >> 16, 256U);
89 	if (quadlets < 2)
90 		return -ENODATA;
91 
92 	if (block[1] != 0 || block[2] != 0)
93 		/* unknown language/character set */
94 		return -ENODATA;
95 
96 	block += 3;
97 	quadlets -= 2;
98 	for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
99 		c = block[i / 4] >> (24 - 8 * (i % 4));
100 		if (c == '\0')
101 			break;
102 		buf[i] = c;
103 	}
104 	buf[i] = '\0';
105 
106 	return i;
107 }
108 
109 /**
110  * fw_csr_string() - reads a string from the configuration ROM
111  * @directory:	e.g. root directory or unit directory
112  * @key:	the key of the preceding directory entry
113  * @buf:	where to put the string
114  * @size:	size of @buf, in bytes
115  *
116  * The string is taken from a minimal ASCII text descriptor leaf after
117  * the immediate entry with @key.  The string is zero-terminated.
118  * Returns strlen(buf) or a negative error code.
119  */
fw_csr_string(const u32 * directory,int key,char * buf,size_t size)120 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
121 {
122 	const u32 *leaf = search_leaf(directory, key);
123 	if (!leaf)
124 		return -ENOENT;
125 
126 	return textual_leaf_to_string(leaf, buf, size);
127 }
128 EXPORT_SYMBOL(fw_csr_string);
129 
get_ids(const u32 * directory,int * id)130 static void get_ids(const u32 *directory, int *id)
131 {
132 	struct fw_csr_iterator ci;
133 	int key, value;
134 
135 	fw_csr_iterator_init(&ci, directory);
136 	while (fw_csr_iterator_next(&ci, &key, &value)) {
137 		switch (key) {
138 		case CSR_VENDOR:	id[0] = value; break;
139 		case CSR_MODEL:		id[1] = value; break;
140 		case CSR_SPECIFIER_ID:	id[2] = value; break;
141 		case CSR_VERSION:	id[3] = value; break;
142 		}
143 	}
144 }
145 
get_modalias_ids(struct fw_unit * unit,int * id)146 static void get_modalias_ids(struct fw_unit *unit, int *id)
147 {
148 	get_ids(&fw_parent_device(unit)->config_rom[5], id);
149 	get_ids(unit->directory, id);
150 }
151 
match_ids(const struct ieee1394_device_id * id_table,int * id)152 static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
153 {
154 	int match = 0;
155 
156 	if (id[0] == id_table->vendor_id)
157 		match |= IEEE1394_MATCH_VENDOR_ID;
158 	if (id[1] == id_table->model_id)
159 		match |= IEEE1394_MATCH_MODEL_ID;
160 	if (id[2] == id_table->specifier_id)
161 		match |= IEEE1394_MATCH_SPECIFIER_ID;
162 	if (id[3] == id_table->version)
163 		match |= IEEE1394_MATCH_VERSION;
164 
165 	return (match & id_table->match_flags) == id_table->match_flags;
166 }
167 
168 static bool is_fw_unit(struct device *dev);
169 
fw_unit_match(struct device * dev,struct device_driver * drv)170 static int fw_unit_match(struct device *dev, struct device_driver *drv)
171 {
172 	const struct ieee1394_device_id *id_table =
173 			container_of(drv, struct fw_driver, driver)->id_table;
174 	int id[] = {0, 0, 0, 0};
175 
176 	/* We only allow binding to fw_units. */
177 	if (!is_fw_unit(dev))
178 		return 0;
179 
180 	get_modalias_ids(fw_unit(dev), id);
181 
182 	for (; id_table->match_flags != 0; id_table++)
183 		if (match_ids(id_table, id))
184 			return 1;
185 
186 	return 0;
187 }
188 
get_modalias(struct fw_unit * unit,char * buffer,size_t buffer_size)189 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
190 {
191 	int id[] = {0, 0, 0, 0};
192 
193 	get_modalias_ids(unit, id);
194 
195 	return snprintf(buffer, buffer_size,
196 			"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
197 			id[0], id[1], id[2], id[3]);
198 }
199 
fw_unit_uevent(struct device * dev,struct kobj_uevent_env * env)200 static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
201 {
202 	struct fw_unit *unit = fw_unit(dev);
203 	char modalias[64];
204 
205 	get_modalias(unit, modalias, sizeof(modalias));
206 
207 	if (add_uevent_var(env, "MODALIAS=%s", modalias))
208 		return -ENOMEM;
209 
210 	return 0;
211 }
212 
213 struct bus_type fw_bus_type = {
214 	.name = "firewire",
215 	.match = fw_unit_match,
216 };
217 EXPORT_SYMBOL(fw_bus_type);
218 
fw_device_enable_phys_dma(struct fw_device * device)219 int fw_device_enable_phys_dma(struct fw_device *device)
220 {
221 	int generation = device->generation;
222 
223 	/* device->node_id, accessed below, must not be older than generation */
224 	smp_rmb();
225 
226 	return device->card->driver->enable_phys_dma(device->card,
227 						     device->node_id,
228 						     generation);
229 }
230 EXPORT_SYMBOL(fw_device_enable_phys_dma);
231 
232 struct config_rom_attribute {
233 	struct device_attribute attr;
234 	u32 key;
235 };
236 
show_immediate(struct device * dev,struct device_attribute * dattr,char * buf)237 static ssize_t show_immediate(struct device *dev,
238 			      struct device_attribute *dattr, char *buf)
239 {
240 	struct config_rom_attribute *attr =
241 		container_of(dattr, struct config_rom_attribute, attr);
242 	struct fw_csr_iterator ci;
243 	const u32 *dir;
244 	int key, value, ret = -ENOENT;
245 
246 	down_read(&fw_device_rwsem);
247 
248 	if (is_fw_unit(dev))
249 		dir = fw_unit(dev)->directory;
250 	else
251 		dir = fw_device(dev)->config_rom + 5;
252 
253 	fw_csr_iterator_init(&ci, dir);
254 	while (fw_csr_iterator_next(&ci, &key, &value))
255 		if (attr->key == key) {
256 			ret = snprintf(buf, buf ? PAGE_SIZE : 0,
257 				       "0x%06x\n", value);
258 			break;
259 		}
260 
261 	up_read(&fw_device_rwsem);
262 
263 	return ret;
264 }
265 
266 #define IMMEDIATE_ATTR(name, key)				\
267 	{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }
268 
show_text_leaf(struct device * dev,struct device_attribute * dattr,char * buf)269 static ssize_t show_text_leaf(struct device *dev,
270 			      struct device_attribute *dattr, char *buf)
271 {
272 	struct config_rom_attribute *attr =
273 		container_of(dattr, struct config_rom_attribute, attr);
274 	const u32 *dir;
275 	size_t bufsize;
276 	char dummy_buf[2];
277 	int ret;
278 
279 	down_read(&fw_device_rwsem);
280 
281 	if (is_fw_unit(dev))
282 		dir = fw_unit(dev)->directory;
283 	else
284 		dir = fw_device(dev)->config_rom + 5;
285 
286 	if (buf) {
287 		bufsize = PAGE_SIZE - 1;
288 	} else {
289 		buf = dummy_buf;
290 		bufsize = 1;
291 	}
292 
293 	ret = fw_csr_string(dir, attr->key, buf, bufsize);
294 
295 	if (ret >= 0) {
296 		/* Strip trailing whitespace and add newline. */
297 		while (ret > 0 && isspace(buf[ret - 1]))
298 			ret--;
299 		strcpy(buf + ret, "\n");
300 		ret++;
301 	}
302 
303 	up_read(&fw_device_rwsem);
304 
305 	return ret;
306 }
307 
308 #define TEXT_LEAF_ATTR(name, key)				\
309 	{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
310 
311 static struct config_rom_attribute config_rom_attributes[] = {
312 	IMMEDIATE_ATTR(vendor, CSR_VENDOR),
313 	IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
314 	IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
315 	IMMEDIATE_ATTR(version, CSR_VERSION),
316 	IMMEDIATE_ATTR(model, CSR_MODEL),
317 	TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
318 	TEXT_LEAF_ATTR(model_name, CSR_MODEL),
319 	TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
320 };
321 
init_fw_attribute_group(struct device * dev,struct device_attribute * attrs,struct fw_attribute_group * group)322 static void init_fw_attribute_group(struct device *dev,
323 				    struct device_attribute *attrs,
324 				    struct fw_attribute_group *group)
325 {
326 	struct device_attribute *attr;
327 	int i, j;
328 
329 	for (j = 0; attrs[j].attr.name != NULL; j++)
330 		group->attrs[j] = &attrs[j].attr;
331 
332 	for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
333 		attr = &config_rom_attributes[i].attr;
334 		if (attr->show(dev, attr, NULL) < 0)
335 			continue;
336 		group->attrs[j++] = &attr->attr;
337 	}
338 
339 	group->attrs[j] = NULL;
340 	group->groups[0] = &group->group;
341 	group->groups[1] = NULL;
342 	group->group.attrs = group->attrs;
343 	dev->groups = (const struct attribute_group **) group->groups;
344 }
345 
modalias_show(struct device * dev,struct device_attribute * attr,char * buf)346 static ssize_t modalias_show(struct device *dev,
347 			     struct device_attribute *attr, char *buf)
348 {
349 	struct fw_unit *unit = fw_unit(dev);
350 	int length;
351 
352 	length = get_modalias(unit, buf, PAGE_SIZE);
353 	strcpy(buf + length, "\n");
354 
355 	return length + 1;
356 }
357 
rom_index_show(struct device * dev,struct device_attribute * attr,char * buf)358 static ssize_t rom_index_show(struct device *dev,
359 			      struct device_attribute *attr, char *buf)
360 {
361 	struct fw_device *device = fw_device(dev->parent);
362 	struct fw_unit *unit = fw_unit(dev);
363 
364 	return snprintf(buf, PAGE_SIZE, "%d\n",
365 			(int)(unit->directory - device->config_rom));
366 }
367 
368 static struct device_attribute fw_unit_attributes[] = {
369 	__ATTR_RO(modalias),
370 	__ATTR_RO(rom_index),
371 	__ATTR_NULL,
372 };
373 
config_rom_show(struct device * dev,struct device_attribute * attr,char * buf)374 static ssize_t config_rom_show(struct device *dev,
375 			       struct device_attribute *attr, char *buf)
376 {
377 	struct fw_device *device = fw_device(dev);
378 	size_t length;
379 
380 	down_read(&fw_device_rwsem);
381 	length = device->config_rom_length * 4;
382 	memcpy(buf, device->config_rom, length);
383 	up_read(&fw_device_rwsem);
384 
385 	return length;
386 }
387 
guid_show(struct device * dev,struct device_attribute * attr,char * buf)388 static ssize_t guid_show(struct device *dev,
389 			 struct device_attribute *attr, char *buf)
390 {
391 	struct fw_device *device = fw_device(dev);
392 	int ret;
393 
394 	down_read(&fw_device_rwsem);
395 	ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
396 		       device->config_rom[3], device->config_rom[4]);
397 	up_read(&fw_device_rwsem);
398 
399 	return ret;
400 }
401 
is_local_show(struct device * dev,struct device_attribute * attr,char * buf)402 static ssize_t is_local_show(struct device *dev,
403 			     struct device_attribute *attr, char *buf)
404 {
405 	struct fw_device *device = fw_device(dev);
406 
407 	return sprintf(buf, "%u\n", device->is_local);
408 }
409 
units_sprintf(char * buf,const u32 * directory)410 static int units_sprintf(char *buf, const u32 *directory)
411 {
412 	struct fw_csr_iterator ci;
413 	int key, value;
414 	int specifier_id = 0;
415 	int version = 0;
416 
417 	fw_csr_iterator_init(&ci, directory);
418 	while (fw_csr_iterator_next(&ci, &key, &value)) {
419 		switch (key) {
420 		case CSR_SPECIFIER_ID:
421 			specifier_id = value;
422 			break;
423 		case CSR_VERSION:
424 			version = value;
425 			break;
426 		}
427 	}
428 
429 	return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
430 }
431 
units_show(struct device * dev,struct device_attribute * attr,char * buf)432 static ssize_t units_show(struct device *dev,
433 			  struct device_attribute *attr, char *buf)
434 {
435 	struct fw_device *device = fw_device(dev);
436 	struct fw_csr_iterator ci;
437 	int key, value, i = 0;
438 
439 	down_read(&fw_device_rwsem);
440 	fw_csr_iterator_init(&ci, &device->config_rom[5]);
441 	while (fw_csr_iterator_next(&ci, &key, &value)) {
442 		if (key != (CSR_UNIT | CSR_DIRECTORY))
443 			continue;
444 		i += units_sprintf(&buf[i], ci.p + value - 1);
445 		if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
446 			break;
447 	}
448 	up_read(&fw_device_rwsem);
449 
450 	if (i)
451 		buf[i - 1] = '\n';
452 
453 	return i;
454 }
455 
456 static struct device_attribute fw_device_attributes[] = {
457 	__ATTR_RO(config_rom),
458 	__ATTR_RO(guid),
459 	__ATTR_RO(is_local),
460 	__ATTR_RO(units),
461 	__ATTR_NULL,
462 };
463 
read_rom(struct fw_device * device,int generation,int index,u32 * data)464 static int read_rom(struct fw_device *device,
465 		    int generation, int index, u32 *data)
466 {
467 	u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
468 	int i, rcode;
469 
470 	/* device->node_id, accessed below, must not be older than generation */
471 	smp_rmb();
472 
473 	for (i = 10; i < 100; i += 10) {
474 		rcode = fw_run_transaction(device->card,
475 				TCODE_READ_QUADLET_REQUEST, device->node_id,
476 				generation, device->max_speed, offset, data, 4);
477 		if (rcode != RCODE_BUSY)
478 			break;
479 		msleep(i);
480 	}
481 	be32_to_cpus(data);
482 
483 	return rcode;
484 }
485 
486 #define MAX_CONFIG_ROM_SIZE 256
487 
488 /*
489  * Read the bus info block, perform a speed probe, and read all of the rest of
490  * the config ROM.  We do all this with a cached bus generation.  If the bus
491  * generation changes under us, read_config_rom will fail and get retried.
492  * It's better to start all over in this case because the node from which we
493  * are reading the ROM may have changed the ROM during the reset.
494  * Returns either a result code or a negative error code.
495  */
read_config_rom(struct fw_device * device,int generation)496 static int read_config_rom(struct fw_device *device, int generation)
497 {
498 	struct fw_card *card = device->card;
499 	const u32 *old_rom, *new_rom;
500 	u32 *rom, *stack;
501 	u32 sp, key;
502 	int i, end, length, ret;
503 
504 	rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
505 		      sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
506 	if (rom == NULL)
507 		return -ENOMEM;
508 
509 	stack = &rom[MAX_CONFIG_ROM_SIZE];
510 	memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
511 
512 	device->max_speed = SCODE_100;
513 
514 	/* First read the bus info block. */
515 	for (i = 0; i < 5; i++) {
516 		ret = read_rom(device, generation, i, &rom[i]);
517 		if (ret != RCODE_COMPLETE)
518 			goto out;
519 		/*
520 		 * As per IEEE1212 7.2, during initialization, devices can
521 		 * reply with a 0 for the first quadlet of the config
522 		 * rom to indicate that they are booting (for example,
523 		 * if the firmware is on the disk of a external
524 		 * harddisk).  In that case we just fail, and the
525 		 * retry mechanism will try again later.
526 		 */
527 		if (i == 0 && rom[i] == 0) {
528 			ret = RCODE_BUSY;
529 			goto out;
530 		}
531 	}
532 
533 	device->max_speed = device->node->max_speed;
534 
535 	/*
536 	 * Determine the speed of
537 	 *   - devices with link speed less than PHY speed,
538 	 *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
539 	 *   - all devices if there are 1394b repeaters.
540 	 * Note, we cannot use the bus info block's link_spd as starting point
541 	 * because some buggy firmwares set it lower than necessary and because
542 	 * 1394-1995 nodes do not have the field.
543 	 */
544 	if ((rom[2] & 0x7) < device->max_speed ||
545 	    device->max_speed == SCODE_BETA ||
546 	    card->beta_repeaters_present) {
547 		u32 dummy;
548 
549 		/* for S1600 and S3200 */
550 		if (device->max_speed == SCODE_BETA)
551 			device->max_speed = card->link_speed;
552 
553 		while (device->max_speed > SCODE_100) {
554 			if (read_rom(device, generation, 0, &dummy) ==
555 			    RCODE_COMPLETE)
556 				break;
557 			device->max_speed--;
558 		}
559 	}
560 
561 	/*
562 	 * Now parse the config rom.  The config rom is a recursive
563 	 * directory structure so we parse it using a stack of
564 	 * references to the blocks that make up the structure.  We
565 	 * push a reference to the root directory on the stack to
566 	 * start things off.
567 	 */
568 	length = i;
569 	sp = 0;
570 	stack[sp++] = 0xc0000005;
571 	while (sp > 0) {
572 		/*
573 		 * Pop the next block reference of the stack.  The
574 		 * lower 24 bits is the offset into the config rom,
575 		 * the upper 8 bits are the type of the reference the
576 		 * block.
577 		 */
578 		key = stack[--sp];
579 		i = key & 0xffffff;
580 		if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
581 			ret = -ENXIO;
582 			goto out;
583 		}
584 
585 		/* Read header quadlet for the block to get the length. */
586 		ret = read_rom(device, generation, i, &rom[i]);
587 		if (ret != RCODE_COMPLETE)
588 			goto out;
589 		end = i + (rom[i] >> 16) + 1;
590 		if (end > MAX_CONFIG_ROM_SIZE) {
591 			/*
592 			 * This block extends outside the config ROM which is
593 			 * a firmware bug.  Ignore this whole block, i.e.
594 			 * simply set a fake block length of 0.
595 			 */
596 			fw_err(card, "skipped invalid ROM block %x at %llx\n",
597 			       rom[i],
598 			       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
599 			rom[i] = 0;
600 			end = i;
601 		}
602 		i++;
603 
604 		/*
605 		 * Now read in the block.  If this is a directory
606 		 * block, check the entries as we read them to see if
607 		 * it references another block, and push it in that case.
608 		 */
609 		for (; i < end; i++) {
610 			ret = read_rom(device, generation, i, &rom[i]);
611 			if (ret != RCODE_COMPLETE)
612 				goto out;
613 
614 			if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
615 				continue;
616 			/*
617 			 * Offset points outside the ROM.  May be a firmware
618 			 * bug or an Extended ROM entry (IEEE 1212-2001 clause
619 			 * 7.7.18).  Simply overwrite this pointer here by a
620 			 * fake immediate entry so that later iterators over
621 			 * the ROM don't have to check offsets all the time.
622 			 */
623 			if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
624 				fw_err(card,
625 				       "skipped unsupported ROM entry %x at %llx\n",
626 				       rom[i],
627 				       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
628 				rom[i] = 0;
629 				continue;
630 			}
631 			stack[sp++] = i + rom[i];
632 		}
633 		if (length < i)
634 			length = i;
635 	}
636 
637 	old_rom = device->config_rom;
638 	new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
639 	if (new_rom == NULL) {
640 		ret = -ENOMEM;
641 		goto out;
642 	}
643 
644 	down_write(&fw_device_rwsem);
645 	device->config_rom = new_rom;
646 	device->config_rom_length = length;
647 	up_write(&fw_device_rwsem);
648 
649 	kfree(old_rom);
650 	ret = RCODE_COMPLETE;
651 	device->max_rec	= rom[2] >> 12 & 0xf;
652 	device->cmc	= rom[2] >> 30 & 1;
653 	device->irmc	= rom[2] >> 31 & 1;
654  out:
655 	kfree(rom);
656 
657 	return ret;
658 }
659 
fw_unit_release(struct device * dev)660 static void fw_unit_release(struct device *dev)
661 {
662 	struct fw_unit *unit = fw_unit(dev);
663 
664 	fw_device_put(fw_parent_device(unit));
665 	kfree(unit);
666 }
667 
668 static struct device_type fw_unit_type = {
669 	.uevent		= fw_unit_uevent,
670 	.release	= fw_unit_release,
671 };
672 
is_fw_unit(struct device * dev)673 static bool is_fw_unit(struct device *dev)
674 {
675 	return dev->type == &fw_unit_type;
676 }
677 
create_units(struct fw_device * device)678 static void create_units(struct fw_device *device)
679 {
680 	struct fw_csr_iterator ci;
681 	struct fw_unit *unit;
682 	int key, value, i;
683 
684 	i = 0;
685 	fw_csr_iterator_init(&ci, &device->config_rom[5]);
686 	while (fw_csr_iterator_next(&ci, &key, &value)) {
687 		if (key != (CSR_UNIT | CSR_DIRECTORY))
688 			continue;
689 
690 		/*
691 		 * Get the address of the unit directory and try to
692 		 * match the drivers id_tables against it.
693 		 */
694 		unit = kzalloc(sizeof(*unit), GFP_KERNEL);
695 		if (unit == NULL)
696 			continue;
697 
698 		unit->directory = ci.p + value - 1;
699 		unit->device.bus = &fw_bus_type;
700 		unit->device.type = &fw_unit_type;
701 		unit->device.parent = &device->device;
702 		dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
703 
704 		BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
705 				ARRAY_SIZE(fw_unit_attributes) +
706 				ARRAY_SIZE(config_rom_attributes));
707 		init_fw_attribute_group(&unit->device,
708 					fw_unit_attributes,
709 					&unit->attribute_group);
710 
711 		if (device_register(&unit->device) < 0)
712 			goto skip_unit;
713 
714 		fw_device_get(device);
715 		continue;
716 
717 	skip_unit:
718 		kfree(unit);
719 	}
720 }
721 
shutdown_unit(struct device * device,void * data)722 static int shutdown_unit(struct device *device, void *data)
723 {
724 	device_unregister(device);
725 
726 	return 0;
727 }
728 
729 /*
730  * fw_device_rwsem acts as dual purpose mutex:
731  *   - serializes accesses to fw_device_idr,
732  *   - serializes accesses to fw_device.config_rom/.config_rom_length and
733  *     fw_unit.directory, unless those accesses happen at safe occasions
734  */
735 DECLARE_RWSEM(fw_device_rwsem);
736 
737 DEFINE_IDR(fw_device_idr);
738 int fw_cdev_major;
739 
fw_device_get_by_devt(dev_t devt)740 struct fw_device *fw_device_get_by_devt(dev_t devt)
741 {
742 	struct fw_device *device;
743 
744 	down_read(&fw_device_rwsem);
745 	device = idr_find(&fw_device_idr, MINOR(devt));
746 	if (device)
747 		fw_device_get(device);
748 	up_read(&fw_device_rwsem);
749 
750 	return device;
751 }
752 
753 struct workqueue_struct *fw_workqueue;
754 EXPORT_SYMBOL(fw_workqueue);
755 
fw_schedule_device_work(struct fw_device * device,unsigned long delay)756 static void fw_schedule_device_work(struct fw_device *device,
757 				    unsigned long delay)
758 {
759 	queue_delayed_work(fw_workqueue, &device->work, delay);
760 }
761 
762 /*
763  * These defines control the retry behavior for reading the config
764  * rom.  It shouldn't be necessary to tweak these; if the device
765  * doesn't respond to a config rom read within 10 seconds, it's not
766  * going to respond at all.  As for the initial delay, a lot of
767  * devices will be able to respond within half a second after bus
768  * reset.  On the other hand, it's not really worth being more
769  * aggressive than that, since it scales pretty well; if 10 devices
770  * are plugged in, they're all getting read within one second.
771  */
772 
773 #define MAX_RETRIES	10
774 #define RETRY_DELAY	(3 * HZ)
775 #define INITIAL_DELAY	(HZ / 2)
776 #define SHUTDOWN_DELAY	(2 * HZ)
777 
fw_device_shutdown(struct work_struct * work)778 static void fw_device_shutdown(struct work_struct *work)
779 {
780 	struct fw_device *device =
781 		container_of(work, struct fw_device, work.work);
782 	int minor = MINOR(device->device.devt);
783 
784 	if (time_before64(get_jiffies_64(),
785 			  device->card->reset_jiffies + SHUTDOWN_DELAY)
786 	    && !list_empty(&device->card->link)) {
787 		fw_schedule_device_work(device, SHUTDOWN_DELAY);
788 		return;
789 	}
790 
791 	if (atomic_cmpxchg(&device->state,
792 			   FW_DEVICE_GONE,
793 			   FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
794 		return;
795 
796 	fw_device_cdev_remove(device);
797 	device_for_each_child(&device->device, NULL, shutdown_unit);
798 	device_unregister(&device->device);
799 
800 	down_write(&fw_device_rwsem);
801 	idr_remove(&fw_device_idr, minor);
802 	up_write(&fw_device_rwsem);
803 
804 	fw_device_put(device);
805 }
806 
fw_device_release(struct device * dev)807 static void fw_device_release(struct device *dev)
808 {
809 	struct fw_device *device = fw_device(dev);
810 	struct fw_card *card = device->card;
811 	unsigned long flags;
812 
813 	/*
814 	 * Take the card lock so we don't set this to NULL while a
815 	 * FW_NODE_UPDATED callback is being handled or while the
816 	 * bus manager work looks at this node.
817 	 */
818 	spin_lock_irqsave(&card->lock, flags);
819 	device->node->data = NULL;
820 	spin_unlock_irqrestore(&card->lock, flags);
821 
822 	fw_node_put(device->node);
823 	kfree(device->config_rom);
824 	kfree(device);
825 	fw_card_put(card);
826 }
827 
828 static struct device_type fw_device_type = {
829 	.release = fw_device_release,
830 };
831 
is_fw_device(struct device * dev)832 static bool is_fw_device(struct device *dev)
833 {
834 	return dev->type == &fw_device_type;
835 }
836 
update_unit(struct device * dev,void * data)837 static int update_unit(struct device *dev, void *data)
838 {
839 	struct fw_unit *unit = fw_unit(dev);
840 	struct fw_driver *driver = (struct fw_driver *)dev->driver;
841 
842 	if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
843 		device_lock(dev);
844 		driver->update(unit);
845 		device_unlock(dev);
846 	}
847 
848 	return 0;
849 }
850 
fw_device_update(struct work_struct * work)851 static void fw_device_update(struct work_struct *work)
852 {
853 	struct fw_device *device =
854 		container_of(work, struct fw_device, work.work);
855 
856 	fw_device_cdev_update(device);
857 	device_for_each_child(&device->device, NULL, update_unit);
858 }
859 
860 /*
861  * If a device was pending for deletion because its node went away but its
862  * bus info block and root directory header matches that of a newly discovered
863  * device, revive the existing fw_device.
864  * The newly allocated fw_device becomes obsolete instead.
865  */
lookup_existing_device(struct device * dev,void * data)866 static int lookup_existing_device(struct device *dev, void *data)
867 {
868 	struct fw_device *old = fw_device(dev);
869 	struct fw_device *new = data;
870 	struct fw_card *card = new->card;
871 	int match = 0;
872 
873 	if (!is_fw_device(dev))
874 		return 0;
875 
876 	down_read(&fw_device_rwsem); /* serialize config_rom access */
877 	spin_lock_irq(&card->lock);  /* serialize node access */
878 
879 	if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
880 	    atomic_cmpxchg(&old->state,
881 			   FW_DEVICE_GONE,
882 			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
883 		struct fw_node *current_node = new->node;
884 		struct fw_node *obsolete_node = old->node;
885 
886 		new->node = obsolete_node;
887 		new->node->data = new;
888 		old->node = current_node;
889 		old->node->data = old;
890 
891 		old->max_speed = new->max_speed;
892 		old->node_id = current_node->node_id;
893 		smp_wmb();  /* update node_id before generation */
894 		old->generation = card->generation;
895 		old->config_rom_retries = 0;
896 		fw_notice(card, "rediscovered device %s\n", dev_name(dev));
897 
898 		PREPARE_DELAYED_WORK(&old->work, fw_device_update);
899 		fw_schedule_device_work(old, 0);
900 
901 		if (current_node == card->root_node)
902 			fw_schedule_bm_work(card, 0);
903 
904 		match = 1;
905 	}
906 
907 	spin_unlock_irq(&card->lock);
908 	up_read(&fw_device_rwsem);
909 
910 	return match;
911 }
912 
913 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
914 
set_broadcast_channel(struct fw_device * device,int generation)915 static void set_broadcast_channel(struct fw_device *device, int generation)
916 {
917 	struct fw_card *card = device->card;
918 	__be32 data;
919 	int rcode;
920 
921 	if (!card->broadcast_channel_allocated)
922 		return;
923 
924 	/*
925 	 * The Broadcast_Channel Valid bit is required by nodes which want to
926 	 * transmit on this channel.  Such transmissions are practically
927 	 * exclusive to IP over 1394 (RFC 2734).  IP capable nodes are required
928 	 * to be IRM capable and have a max_rec of 8 or more.  We use this fact
929 	 * to narrow down to which nodes we send Broadcast_Channel updates.
930 	 */
931 	if (!device->irmc || device->max_rec < 8)
932 		return;
933 
934 	/*
935 	 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
936 	 * Perform a read test first.
937 	 */
938 	if (device->bc_implemented == BC_UNKNOWN) {
939 		rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
940 				device->node_id, generation, device->max_speed,
941 				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
942 				&data, 4);
943 		switch (rcode) {
944 		case RCODE_COMPLETE:
945 			if (data & cpu_to_be32(1 << 31)) {
946 				device->bc_implemented = BC_IMPLEMENTED;
947 				break;
948 			}
949 			/* else fall through to case address error */
950 		case RCODE_ADDRESS_ERROR:
951 			device->bc_implemented = BC_UNIMPLEMENTED;
952 		}
953 	}
954 
955 	if (device->bc_implemented == BC_IMPLEMENTED) {
956 		data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
957 				   BROADCAST_CHANNEL_VALID);
958 		fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
959 				device->node_id, generation, device->max_speed,
960 				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
961 				&data, 4);
962 	}
963 }
964 
fw_device_set_broadcast_channel(struct device * dev,void * gen)965 int fw_device_set_broadcast_channel(struct device *dev, void *gen)
966 {
967 	if (is_fw_device(dev))
968 		set_broadcast_channel(fw_device(dev), (long)gen);
969 
970 	return 0;
971 }
972 
fw_device_init(struct work_struct * work)973 static void fw_device_init(struct work_struct *work)
974 {
975 	struct fw_device *device =
976 		container_of(work, struct fw_device, work.work);
977 	struct fw_card *card = device->card;
978 	struct device *revived_dev;
979 	int minor, ret;
980 
981 	/*
982 	 * All failure paths here set node->data to NULL, so that we
983 	 * don't try to do device_for_each_child() on a kfree()'d
984 	 * device.
985 	 */
986 
987 	ret = read_config_rom(device, device->generation);
988 	if (ret != RCODE_COMPLETE) {
989 		if (device->config_rom_retries < MAX_RETRIES &&
990 		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
991 			device->config_rom_retries++;
992 			fw_schedule_device_work(device, RETRY_DELAY);
993 		} else {
994 			if (device->node->link_on)
995 				fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
996 					  device->node_id,
997 					  fw_rcode_string(ret));
998 			if (device->node == card->root_node)
999 				fw_schedule_bm_work(card, 0);
1000 			fw_device_release(&device->device);
1001 		}
1002 		return;
1003 	}
1004 
1005 	revived_dev = device_find_child(card->device,
1006 					device, lookup_existing_device);
1007 	if (revived_dev) {
1008 		put_device(revived_dev);
1009 		fw_device_release(&device->device);
1010 
1011 		return;
1012 	}
1013 
1014 	device_initialize(&device->device);
1015 
1016 	fw_device_get(device);
1017 	down_write(&fw_device_rwsem);
1018 	minor = idr_alloc(&fw_device_idr, device, 0, 1 << MINORBITS,
1019 			GFP_KERNEL);
1020 	up_write(&fw_device_rwsem);
1021 
1022 	if (minor < 0)
1023 		goto error;
1024 
1025 	device->device.bus = &fw_bus_type;
1026 	device->device.type = &fw_device_type;
1027 	device->device.parent = card->device;
1028 	device->device.devt = MKDEV(fw_cdev_major, minor);
1029 	dev_set_name(&device->device, "fw%d", minor);
1030 
1031 	BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1032 			ARRAY_SIZE(fw_device_attributes) +
1033 			ARRAY_SIZE(config_rom_attributes));
1034 	init_fw_attribute_group(&device->device,
1035 				fw_device_attributes,
1036 				&device->attribute_group);
1037 
1038 	if (device_add(&device->device)) {
1039 		fw_err(card, "failed to add device\n");
1040 		goto error_with_cdev;
1041 	}
1042 
1043 	create_units(device);
1044 
1045 	/*
1046 	 * Transition the device to running state.  If it got pulled
1047 	 * out from under us while we did the intialization work, we
1048 	 * have to shut down the device again here.  Normally, though,
1049 	 * fw_node_event will be responsible for shutting it down when
1050 	 * necessary.  We have to use the atomic cmpxchg here to avoid
1051 	 * racing with the FW_NODE_DESTROYED case in
1052 	 * fw_node_event().
1053 	 */
1054 	if (atomic_cmpxchg(&device->state,
1055 			   FW_DEVICE_INITIALIZING,
1056 			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1057 		PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1058 		fw_schedule_device_work(device, SHUTDOWN_DELAY);
1059 	} else {
1060 		fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1061 			  dev_name(&device->device),
1062 			  device->config_rom[3], device->config_rom[4],
1063 			  1 << device->max_speed);
1064 		device->config_rom_retries = 0;
1065 
1066 		set_broadcast_channel(device, device->generation);
1067 
1068 		add_device_randomness(&device->config_rom[3], 8);
1069 	}
1070 
1071 	/*
1072 	 * Reschedule the IRM work if we just finished reading the
1073 	 * root node config rom.  If this races with a bus reset we
1074 	 * just end up running the IRM work a couple of extra times -
1075 	 * pretty harmless.
1076 	 */
1077 	if (device->node == card->root_node)
1078 		fw_schedule_bm_work(card, 0);
1079 
1080 	return;
1081 
1082  error_with_cdev:
1083 	down_write(&fw_device_rwsem);
1084 	idr_remove(&fw_device_idr, minor);
1085 	up_write(&fw_device_rwsem);
1086  error:
1087 	fw_device_put(device);		/* fw_device_idr's reference */
1088 
1089 	put_device(&device->device);	/* our reference */
1090 }
1091 
1092 /* Reread and compare bus info block and header of root directory */
reread_config_rom(struct fw_device * device,int generation,bool * changed)1093 static int reread_config_rom(struct fw_device *device, int generation,
1094 			     bool *changed)
1095 {
1096 	u32 q;
1097 	int i, rcode;
1098 
1099 	for (i = 0; i < 6; i++) {
1100 		rcode = read_rom(device, generation, i, &q);
1101 		if (rcode != RCODE_COMPLETE)
1102 			return rcode;
1103 
1104 		if (i == 0 && q == 0)
1105 			/* inaccessible (see read_config_rom); retry later */
1106 			return RCODE_BUSY;
1107 
1108 		if (q != device->config_rom[i]) {
1109 			*changed = true;
1110 			return RCODE_COMPLETE;
1111 		}
1112 	}
1113 
1114 	*changed = false;
1115 	return RCODE_COMPLETE;
1116 }
1117 
fw_device_refresh(struct work_struct * work)1118 static void fw_device_refresh(struct work_struct *work)
1119 {
1120 	struct fw_device *device =
1121 		container_of(work, struct fw_device, work.work);
1122 	struct fw_card *card = device->card;
1123 	int ret, node_id = device->node_id;
1124 	bool changed;
1125 
1126 	ret = reread_config_rom(device, device->generation, &changed);
1127 	if (ret != RCODE_COMPLETE)
1128 		goto failed_config_rom;
1129 
1130 	if (!changed) {
1131 		if (atomic_cmpxchg(&device->state,
1132 				   FW_DEVICE_INITIALIZING,
1133 				   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1134 			goto gone;
1135 
1136 		fw_device_update(work);
1137 		device->config_rom_retries = 0;
1138 		goto out;
1139 	}
1140 
1141 	/*
1142 	 * Something changed.  We keep things simple and don't investigate
1143 	 * further.  We just destroy all previous units and create new ones.
1144 	 */
1145 	device_for_each_child(&device->device, NULL, shutdown_unit);
1146 
1147 	ret = read_config_rom(device, device->generation);
1148 	if (ret != RCODE_COMPLETE)
1149 		goto failed_config_rom;
1150 
1151 	fw_device_cdev_update(device);
1152 	create_units(device);
1153 
1154 	/* Userspace may want to re-read attributes. */
1155 	kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1156 
1157 	if (atomic_cmpxchg(&device->state,
1158 			   FW_DEVICE_INITIALIZING,
1159 			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1160 		goto gone;
1161 
1162 	fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1163 	device->config_rom_retries = 0;
1164 	goto out;
1165 
1166  failed_config_rom:
1167 	if (device->config_rom_retries < MAX_RETRIES &&
1168 	    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1169 		device->config_rom_retries++;
1170 		fw_schedule_device_work(device, RETRY_DELAY);
1171 		return;
1172 	}
1173 
1174 	fw_notice(card, "giving up on refresh of device %s: %s\n",
1175 		  dev_name(&device->device), fw_rcode_string(ret));
1176  gone:
1177 	atomic_set(&device->state, FW_DEVICE_GONE);
1178 	PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1179 	fw_schedule_device_work(device, SHUTDOWN_DELAY);
1180  out:
1181 	if (node_id == card->root_node->node_id)
1182 		fw_schedule_bm_work(card, 0);
1183 }
1184 
fw_node_event(struct fw_card * card,struct fw_node * node,int event)1185 void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1186 {
1187 	struct fw_device *device;
1188 
1189 	switch (event) {
1190 	case FW_NODE_CREATED:
1191 		/*
1192 		 * Attempt to scan the node, regardless whether its self ID has
1193 		 * the L (link active) flag set or not.  Some broken devices
1194 		 * send L=0 but have an up-and-running link; others send L=1
1195 		 * without actually having a link.
1196 		 */
1197  create:
1198 		device = kzalloc(sizeof(*device), GFP_ATOMIC);
1199 		if (device == NULL)
1200 			break;
1201 
1202 		/*
1203 		 * Do minimal intialization of the device here, the
1204 		 * rest will happen in fw_device_init().
1205 		 *
1206 		 * Attention:  A lot of things, even fw_device_get(),
1207 		 * cannot be done before fw_device_init() finished!
1208 		 * You can basically just check device->state and
1209 		 * schedule work until then, but only while holding
1210 		 * card->lock.
1211 		 */
1212 		atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1213 		device->card = fw_card_get(card);
1214 		device->node = fw_node_get(node);
1215 		device->node_id = node->node_id;
1216 		device->generation = card->generation;
1217 		device->is_local = node == card->local_node;
1218 		mutex_init(&device->client_list_mutex);
1219 		INIT_LIST_HEAD(&device->client_list);
1220 
1221 		/*
1222 		 * Set the node data to point back to this device so
1223 		 * FW_NODE_UPDATED callbacks can update the node_id
1224 		 * and generation for the device.
1225 		 */
1226 		node->data = device;
1227 
1228 		/*
1229 		 * Many devices are slow to respond after bus resets,
1230 		 * especially if they are bus powered and go through
1231 		 * power-up after getting plugged in.  We schedule the
1232 		 * first config rom scan half a second after bus reset.
1233 		 */
1234 		INIT_DELAYED_WORK(&device->work, fw_device_init);
1235 		fw_schedule_device_work(device, INITIAL_DELAY);
1236 		break;
1237 
1238 	case FW_NODE_INITIATED_RESET:
1239 	case FW_NODE_LINK_ON:
1240 		device = node->data;
1241 		if (device == NULL)
1242 			goto create;
1243 
1244 		device->node_id = node->node_id;
1245 		smp_wmb();  /* update node_id before generation */
1246 		device->generation = card->generation;
1247 		if (atomic_cmpxchg(&device->state,
1248 			    FW_DEVICE_RUNNING,
1249 			    FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1250 			PREPARE_DELAYED_WORK(&device->work, fw_device_refresh);
1251 			fw_schedule_device_work(device,
1252 				device->is_local ? 0 : INITIAL_DELAY);
1253 		}
1254 		break;
1255 
1256 	case FW_NODE_UPDATED:
1257 		device = node->data;
1258 		if (device == NULL)
1259 			break;
1260 
1261 		device->node_id = node->node_id;
1262 		smp_wmb();  /* update node_id before generation */
1263 		device->generation = card->generation;
1264 		if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1265 			PREPARE_DELAYED_WORK(&device->work, fw_device_update);
1266 			fw_schedule_device_work(device, 0);
1267 		}
1268 		break;
1269 
1270 	case FW_NODE_DESTROYED:
1271 	case FW_NODE_LINK_OFF:
1272 		if (!node->data)
1273 			break;
1274 
1275 		/*
1276 		 * Destroy the device associated with the node.  There
1277 		 * are two cases here: either the device is fully
1278 		 * initialized (FW_DEVICE_RUNNING) or we're in the
1279 		 * process of reading its config rom
1280 		 * (FW_DEVICE_INITIALIZING).  If it is fully
1281 		 * initialized we can reuse device->work to schedule a
1282 		 * full fw_device_shutdown().  If not, there's work
1283 		 * scheduled to read it's config rom, and we just put
1284 		 * the device in shutdown state to have that code fail
1285 		 * to create the device.
1286 		 */
1287 		device = node->data;
1288 		if (atomic_xchg(&device->state,
1289 				FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1290 			PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1291 			fw_schedule_device_work(device,
1292 				list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1293 		}
1294 		break;
1295 	}
1296 }
1297