1 /*
2 * Core IEEE1394 transaction logic
3 *
4 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include <linux/bug.h>
22 #include <linux/completion.h>
23 #include <linux/device.h>
24 #include <linux/errno.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/fs.h>
28 #include <linux/init.h>
29 #include <linux/idr.h>
30 #include <linux/jiffies.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/module.h>
34 #include <linux/rculist.h>
35 #include <linux/slab.h>
36 #include <linux/spinlock.h>
37 #include <linux/string.h>
38 #include <linux/timer.h>
39 #include <linux/types.h>
40 #include <linux/workqueue.h>
41
42 #include <asm/byteorder.h>
43
44 #include "core.h"
45
46 #define HEADER_PRI(pri) ((pri) << 0)
47 #define HEADER_TCODE(tcode) ((tcode) << 4)
48 #define HEADER_RETRY(retry) ((retry) << 8)
49 #define HEADER_TLABEL(tlabel) ((tlabel) << 10)
50 #define HEADER_DESTINATION(destination) ((destination) << 16)
51 #define HEADER_SOURCE(source) ((source) << 16)
52 #define HEADER_RCODE(rcode) ((rcode) << 12)
53 #define HEADER_OFFSET_HIGH(offset_high) ((offset_high) << 0)
54 #define HEADER_DATA_LENGTH(length) ((length) << 16)
55 #define HEADER_EXTENDED_TCODE(tcode) ((tcode) << 0)
56
57 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
58 #define HEADER_GET_TLABEL(q) (((q) >> 10) & 0x3f)
59 #define HEADER_GET_RCODE(q) (((q) >> 12) & 0x0f)
60 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
61 #define HEADER_GET_SOURCE(q) (((q) >> 16) & 0xffff)
62 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
63 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
64 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
65
66 #define HEADER_DESTINATION_IS_BROADCAST(q) \
67 (((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
68
69 #define PHY_PACKET_CONFIG 0x0
70 #define PHY_PACKET_LINK_ON 0x1
71 #define PHY_PACKET_SELF_ID 0x2
72
73 #define PHY_CONFIG_GAP_COUNT(gap_count) (((gap_count) << 16) | (1 << 22))
74 #define PHY_CONFIG_ROOT_ID(node_id) ((((node_id) & 0x3f) << 24) | (1 << 23))
75 #define PHY_IDENTIFIER(id) ((id) << 30)
76
77 /* returns 0 if the split timeout handler is already running */
try_cancel_split_timeout(struct fw_transaction * t)78 static int try_cancel_split_timeout(struct fw_transaction *t)
79 {
80 if (t->is_split_transaction)
81 return del_timer(&t->split_timeout_timer);
82 else
83 return 1;
84 }
85
close_transaction(struct fw_transaction * transaction,struct fw_card * card,int rcode)86 static int close_transaction(struct fw_transaction *transaction,
87 struct fw_card *card, int rcode)
88 {
89 struct fw_transaction *t;
90 unsigned long flags;
91
92 spin_lock_irqsave(&card->lock, flags);
93 list_for_each_entry(t, &card->transaction_list, link) {
94 if (t == transaction) {
95 if (!try_cancel_split_timeout(t)) {
96 spin_unlock_irqrestore(&card->lock, flags);
97 goto timed_out;
98 }
99 list_del_init(&t->link);
100 card->tlabel_mask &= ~(1ULL << t->tlabel);
101 break;
102 }
103 }
104 spin_unlock_irqrestore(&card->lock, flags);
105
106 if (&t->link != &card->transaction_list) {
107 t->callback(card, rcode, NULL, 0, t->callback_data);
108 return 0;
109 }
110
111 timed_out:
112 return -ENOENT;
113 }
114
115 /*
116 * Only valid for transactions that are potentially pending (ie have
117 * been sent).
118 */
fw_cancel_transaction(struct fw_card * card,struct fw_transaction * transaction)119 int fw_cancel_transaction(struct fw_card *card,
120 struct fw_transaction *transaction)
121 {
122 /*
123 * Cancel the packet transmission if it's still queued. That
124 * will call the packet transmission callback which cancels
125 * the transaction.
126 */
127
128 if (card->driver->cancel_packet(card, &transaction->packet) == 0)
129 return 0;
130
131 /*
132 * If the request packet has already been sent, we need to see
133 * if the transaction is still pending and remove it in that case.
134 */
135
136 return close_transaction(transaction, card, RCODE_CANCELLED);
137 }
138 EXPORT_SYMBOL(fw_cancel_transaction);
139
split_transaction_timeout_callback(unsigned long data)140 static void split_transaction_timeout_callback(unsigned long data)
141 {
142 struct fw_transaction *t = (struct fw_transaction *)data;
143 struct fw_card *card = t->card;
144 unsigned long flags;
145
146 spin_lock_irqsave(&card->lock, flags);
147 if (list_empty(&t->link)) {
148 spin_unlock_irqrestore(&card->lock, flags);
149 return;
150 }
151 list_del(&t->link);
152 card->tlabel_mask &= ~(1ULL << t->tlabel);
153 spin_unlock_irqrestore(&card->lock, flags);
154
155 t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
156 }
157
start_split_transaction_timeout(struct fw_transaction * t,struct fw_card * card)158 static void start_split_transaction_timeout(struct fw_transaction *t,
159 struct fw_card *card)
160 {
161 unsigned long flags;
162
163 spin_lock_irqsave(&card->lock, flags);
164
165 if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
166 spin_unlock_irqrestore(&card->lock, flags);
167 return;
168 }
169
170 t->is_split_transaction = true;
171 mod_timer(&t->split_timeout_timer,
172 jiffies + card->split_timeout_jiffies);
173
174 spin_unlock_irqrestore(&card->lock, flags);
175 }
176
transmit_complete_callback(struct fw_packet * packet,struct fw_card * card,int status)177 static void transmit_complete_callback(struct fw_packet *packet,
178 struct fw_card *card, int status)
179 {
180 struct fw_transaction *t =
181 container_of(packet, struct fw_transaction, packet);
182
183 switch (status) {
184 case ACK_COMPLETE:
185 close_transaction(t, card, RCODE_COMPLETE);
186 break;
187 case ACK_PENDING:
188 start_split_transaction_timeout(t, card);
189 break;
190 case ACK_BUSY_X:
191 case ACK_BUSY_A:
192 case ACK_BUSY_B:
193 close_transaction(t, card, RCODE_BUSY);
194 break;
195 case ACK_DATA_ERROR:
196 close_transaction(t, card, RCODE_DATA_ERROR);
197 break;
198 case ACK_TYPE_ERROR:
199 close_transaction(t, card, RCODE_TYPE_ERROR);
200 break;
201 default:
202 /*
203 * In this case the ack is really a juju specific
204 * rcode, so just forward that to the callback.
205 */
206 close_transaction(t, card, status);
207 break;
208 }
209 }
210
fw_fill_request(struct fw_packet * packet,int tcode,int tlabel,int destination_id,int source_id,int generation,int speed,unsigned long long offset,void * payload,size_t length)211 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
212 int destination_id, int source_id, int generation, int speed,
213 unsigned long long offset, void *payload, size_t length)
214 {
215 int ext_tcode;
216
217 if (tcode == TCODE_STREAM_DATA) {
218 packet->header[0] =
219 HEADER_DATA_LENGTH(length) |
220 destination_id |
221 HEADER_TCODE(TCODE_STREAM_DATA);
222 packet->header_length = 4;
223 packet->payload = payload;
224 packet->payload_length = length;
225
226 goto common;
227 }
228
229 if (tcode > 0x10) {
230 ext_tcode = tcode & ~0x10;
231 tcode = TCODE_LOCK_REQUEST;
232 } else
233 ext_tcode = 0;
234
235 packet->header[0] =
236 HEADER_RETRY(RETRY_X) |
237 HEADER_TLABEL(tlabel) |
238 HEADER_TCODE(tcode) |
239 HEADER_DESTINATION(destination_id);
240 packet->header[1] =
241 HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
242 packet->header[2] =
243 offset;
244
245 switch (tcode) {
246 case TCODE_WRITE_QUADLET_REQUEST:
247 packet->header[3] = *(u32 *)payload;
248 packet->header_length = 16;
249 packet->payload_length = 0;
250 break;
251
252 case TCODE_LOCK_REQUEST:
253 case TCODE_WRITE_BLOCK_REQUEST:
254 packet->header[3] =
255 HEADER_DATA_LENGTH(length) |
256 HEADER_EXTENDED_TCODE(ext_tcode);
257 packet->header_length = 16;
258 packet->payload = payload;
259 packet->payload_length = length;
260 break;
261
262 case TCODE_READ_QUADLET_REQUEST:
263 packet->header_length = 12;
264 packet->payload_length = 0;
265 break;
266
267 case TCODE_READ_BLOCK_REQUEST:
268 packet->header[3] =
269 HEADER_DATA_LENGTH(length) |
270 HEADER_EXTENDED_TCODE(ext_tcode);
271 packet->header_length = 16;
272 packet->payload_length = 0;
273 break;
274
275 default:
276 WARN(1, "wrong tcode %d\n", tcode);
277 }
278 common:
279 packet->speed = speed;
280 packet->generation = generation;
281 packet->ack = 0;
282 packet->payload_mapped = false;
283 }
284
allocate_tlabel(struct fw_card * card)285 static int allocate_tlabel(struct fw_card *card)
286 {
287 int tlabel;
288
289 tlabel = card->current_tlabel;
290 while (card->tlabel_mask & (1ULL << tlabel)) {
291 tlabel = (tlabel + 1) & 0x3f;
292 if (tlabel == card->current_tlabel)
293 return -EBUSY;
294 }
295
296 card->current_tlabel = (tlabel + 1) & 0x3f;
297 card->tlabel_mask |= 1ULL << tlabel;
298
299 return tlabel;
300 }
301
302 /**
303 * fw_send_request() - submit a request packet for transmission
304 * @card: interface to send the request at
305 * @t: transaction instance to which the request belongs
306 * @tcode: transaction code
307 * @destination_id: destination node ID, consisting of bus_ID and phy_ID
308 * @generation: bus generation in which request and response are valid
309 * @speed: transmission speed
310 * @offset: 48bit wide offset into destination's address space
311 * @payload: data payload for the request subaction
312 * @length: length of the payload, in bytes
313 * @callback: function to be called when the transaction is completed
314 * @callback_data: data to be passed to the transaction completion callback
315 *
316 * Submit a request packet into the asynchronous request transmission queue.
317 * Can be called from atomic context. If you prefer a blocking API, use
318 * fw_run_transaction() in a context that can sleep.
319 *
320 * In case of lock requests, specify one of the firewire-core specific %TCODE_
321 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
322 *
323 * Make sure that the value in @destination_id is not older than the one in
324 * @generation. Otherwise the request is in danger to be sent to a wrong node.
325 *
326 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
327 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
328 * It will contain tag, channel, and sy data instead of a node ID then.
329 *
330 * The payload buffer at @data is going to be DMA-mapped except in case of
331 * @length <= 8 or of local (loopback) requests. Hence make sure that the
332 * buffer complies with the restrictions of the streaming DMA mapping API.
333 * @payload must not be freed before the @callback is called.
334 *
335 * In case of request types without payload, @data is NULL and @length is 0.
336 *
337 * After the transaction is completed successfully or unsuccessfully, the
338 * @callback will be called. Among its parameters is the response code which
339 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
340 * the firewire-core specific %RCODE_SEND_ERROR. The other firewire-core
341 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
342 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
343 * generation, or missing ACK respectively.
344 *
345 * Note some timing corner cases: fw_send_request() may complete much earlier
346 * than when the request packet actually hits the wire. On the other hand,
347 * transaction completion and hence execution of @callback may happen even
348 * before fw_send_request() returns.
349 */
fw_send_request(struct fw_card * card,struct fw_transaction * t,int tcode,int destination_id,int generation,int speed,unsigned long long offset,void * payload,size_t length,fw_transaction_callback_t callback,void * callback_data)350 void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
351 int destination_id, int generation, int speed,
352 unsigned long long offset, void *payload, size_t length,
353 fw_transaction_callback_t callback, void *callback_data)
354 {
355 unsigned long flags;
356 int tlabel;
357
358 /*
359 * Allocate tlabel from the bitmap and put the transaction on
360 * the list while holding the card spinlock.
361 */
362
363 spin_lock_irqsave(&card->lock, flags);
364
365 tlabel = allocate_tlabel(card);
366 if (tlabel < 0) {
367 spin_unlock_irqrestore(&card->lock, flags);
368 callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
369 return;
370 }
371
372 t->node_id = destination_id;
373 t->tlabel = tlabel;
374 t->card = card;
375 t->is_split_transaction = false;
376 setup_timer(&t->split_timeout_timer,
377 split_transaction_timeout_callback, (unsigned long)t);
378 t->callback = callback;
379 t->callback_data = callback_data;
380
381 fw_fill_request(&t->packet, tcode, t->tlabel,
382 destination_id, card->node_id, generation,
383 speed, offset, payload, length);
384 t->packet.callback = transmit_complete_callback;
385
386 list_add_tail(&t->link, &card->transaction_list);
387
388 spin_unlock_irqrestore(&card->lock, flags);
389
390 card->driver->send_request(card, &t->packet);
391 }
392 EXPORT_SYMBOL(fw_send_request);
393
394 struct transaction_callback_data {
395 struct completion done;
396 void *payload;
397 int rcode;
398 };
399
transaction_callback(struct fw_card * card,int rcode,void * payload,size_t length,void * data)400 static void transaction_callback(struct fw_card *card, int rcode,
401 void *payload, size_t length, void *data)
402 {
403 struct transaction_callback_data *d = data;
404
405 if (rcode == RCODE_COMPLETE)
406 memcpy(d->payload, payload, length);
407 d->rcode = rcode;
408 complete(&d->done);
409 }
410
411 /**
412 * fw_run_transaction() - send request and sleep until transaction is completed
413 *
414 * Returns the RCODE. See fw_send_request() for parameter documentation.
415 * Unlike fw_send_request(), @data points to the payload of the request or/and
416 * to the payload of the response. DMA mapping restrictions apply to outbound
417 * request payloads of >= 8 bytes but not to inbound response payloads.
418 */
fw_run_transaction(struct fw_card * card,int tcode,int destination_id,int generation,int speed,unsigned long long offset,void * payload,size_t length)419 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
420 int generation, int speed, unsigned long long offset,
421 void *payload, size_t length)
422 {
423 struct transaction_callback_data d;
424 struct fw_transaction t;
425
426 init_timer_on_stack(&t.split_timeout_timer);
427 init_completion(&d.done);
428 d.payload = payload;
429 fw_send_request(card, &t, tcode, destination_id, generation, speed,
430 offset, payload, length, transaction_callback, &d);
431 wait_for_completion(&d.done);
432 destroy_timer_on_stack(&t.split_timeout_timer);
433
434 return d.rcode;
435 }
436 EXPORT_SYMBOL(fw_run_transaction);
437
438 static DEFINE_MUTEX(phy_config_mutex);
439 static DECLARE_COMPLETION(phy_config_done);
440
transmit_phy_packet_callback(struct fw_packet * packet,struct fw_card * card,int status)441 static void transmit_phy_packet_callback(struct fw_packet *packet,
442 struct fw_card *card, int status)
443 {
444 complete(&phy_config_done);
445 }
446
447 static struct fw_packet phy_config_packet = {
448 .header_length = 12,
449 .header[0] = TCODE_LINK_INTERNAL << 4,
450 .payload_length = 0,
451 .speed = SCODE_100,
452 .callback = transmit_phy_packet_callback,
453 };
454
fw_send_phy_config(struct fw_card * card,int node_id,int generation,int gap_count)455 void fw_send_phy_config(struct fw_card *card,
456 int node_id, int generation, int gap_count)
457 {
458 long timeout = DIV_ROUND_UP(HZ, 10);
459 u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
460
461 if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
462 data |= PHY_CONFIG_ROOT_ID(node_id);
463
464 if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
465 gap_count = card->driver->read_phy_reg(card, 1);
466 if (gap_count < 0)
467 return;
468
469 gap_count &= 63;
470 if (gap_count == 63)
471 return;
472 }
473 data |= PHY_CONFIG_GAP_COUNT(gap_count);
474
475 mutex_lock(&phy_config_mutex);
476
477 phy_config_packet.header[1] = data;
478 phy_config_packet.header[2] = ~data;
479 phy_config_packet.generation = generation;
480 INIT_COMPLETION(phy_config_done);
481
482 card->driver->send_request(card, &phy_config_packet);
483 wait_for_completion_timeout(&phy_config_done, timeout);
484
485 mutex_unlock(&phy_config_mutex);
486 }
487
lookup_overlapping_address_handler(struct list_head * list,unsigned long long offset,size_t length)488 static struct fw_address_handler *lookup_overlapping_address_handler(
489 struct list_head *list, unsigned long long offset, size_t length)
490 {
491 struct fw_address_handler *handler;
492
493 list_for_each_entry_rcu(handler, list, link) {
494 if (handler->offset < offset + length &&
495 offset < handler->offset + handler->length)
496 return handler;
497 }
498
499 return NULL;
500 }
501
is_enclosing_handler(struct fw_address_handler * handler,unsigned long long offset,size_t length)502 static bool is_enclosing_handler(struct fw_address_handler *handler,
503 unsigned long long offset, size_t length)
504 {
505 return handler->offset <= offset &&
506 offset + length <= handler->offset + handler->length;
507 }
508
lookup_enclosing_address_handler(struct list_head * list,unsigned long long offset,size_t length)509 static struct fw_address_handler *lookup_enclosing_address_handler(
510 struct list_head *list, unsigned long long offset, size_t length)
511 {
512 struct fw_address_handler *handler;
513
514 list_for_each_entry_rcu(handler, list, link) {
515 if (is_enclosing_handler(handler, offset, length))
516 return handler;
517 }
518
519 return NULL;
520 }
521
522 static DEFINE_SPINLOCK(address_handler_list_lock);
523 static LIST_HEAD(address_handler_list);
524
525 const struct fw_address_region fw_high_memory_region =
526 { .start = 0x000100000000ULL, .end = 0xffffe0000000ULL, };
527 EXPORT_SYMBOL(fw_high_memory_region);
528
529 static const struct fw_address_region low_memory_region =
530 { .start = 0x000000000000ULL, .end = 0x000100000000ULL, };
531
532 #if 0
533 const struct fw_address_region fw_private_region =
534 { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, };
535 const struct fw_address_region fw_csr_region =
536 { .start = CSR_REGISTER_BASE,
537 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END, };
538 const struct fw_address_region fw_unit_space_region =
539 { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
540 #endif /* 0 */
541
is_in_fcp_region(u64 offset,size_t length)542 static bool is_in_fcp_region(u64 offset, size_t length)
543 {
544 return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
545 offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
546 }
547
548 /**
549 * fw_core_add_address_handler() - register for incoming requests
550 * @handler: callback
551 * @region: region in the IEEE 1212 node space address range
552 *
553 * region->start, ->end, and handler->length have to be quadlet-aligned.
554 *
555 * When a request is received that falls within the specified address range,
556 * the specified callback is invoked. The parameters passed to the callback
557 * give the details of the particular request.
558 *
559 * To be called in process context.
560 * Return value: 0 on success, non-zero otherwise.
561 *
562 * The start offset of the handler's address region is determined by
563 * fw_core_add_address_handler() and is returned in handler->offset.
564 *
565 * Address allocations are exclusive, except for the FCP registers.
566 */
fw_core_add_address_handler(struct fw_address_handler * handler,const struct fw_address_region * region)567 int fw_core_add_address_handler(struct fw_address_handler *handler,
568 const struct fw_address_region *region)
569 {
570 struct fw_address_handler *other;
571 int ret = -EBUSY;
572
573 if (region->start & 0xffff000000000003ULL ||
574 region->start >= region->end ||
575 region->end > 0x0001000000000000ULL ||
576 handler->length & 3 ||
577 handler->length == 0)
578 return -EINVAL;
579
580 spin_lock(&address_handler_list_lock);
581
582 handler->offset = region->start;
583 while (handler->offset + handler->length <= region->end) {
584 if (is_in_fcp_region(handler->offset, handler->length))
585 other = NULL;
586 else
587 other = lookup_overlapping_address_handler
588 (&address_handler_list,
589 handler->offset, handler->length);
590 if (other != NULL) {
591 handler->offset += other->length;
592 } else {
593 list_add_tail_rcu(&handler->link, &address_handler_list);
594 ret = 0;
595 break;
596 }
597 }
598
599 spin_unlock(&address_handler_list_lock);
600
601 return ret;
602 }
603 EXPORT_SYMBOL(fw_core_add_address_handler);
604
605 /**
606 * fw_core_remove_address_handler() - unregister an address handler
607 *
608 * To be called in process context.
609 *
610 * When fw_core_remove_address_handler() returns, @handler->callback() is
611 * guaranteed to not run on any CPU anymore.
612 */
fw_core_remove_address_handler(struct fw_address_handler * handler)613 void fw_core_remove_address_handler(struct fw_address_handler *handler)
614 {
615 spin_lock(&address_handler_list_lock);
616 list_del_rcu(&handler->link);
617 spin_unlock(&address_handler_list_lock);
618 synchronize_rcu();
619 }
620 EXPORT_SYMBOL(fw_core_remove_address_handler);
621
622 struct fw_request {
623 struct fw_packet response;
624 u32 request_header[4];
625 int ack;
626 u32 length;
627 u32 data[0];
628 };
629
free_response_callback(struct fw_packet * packet,struct fw_card * card,int status)630 static void free_response_callback(struct fw_packet *packet,
631 struct fw_card *card, int status)
632 {
633 struct fw_request *request;
634
635 request = container_of(packet, struct fw_request, response);
636 kfree(request);
637 }
638
fw_get_response_length(struct fw_request * r)639 int fw_get_response_length(struct fw_request *r)
640 {
641 int tcode, ext_tcode, data_length;
642
643 tcode = HEADER_GET_TCODE(r->request_header[0]);
644
645 switch (tcode) {
646 case TCODE_WRITE_QUADLET_REQUEST:
647 case TCODE_WRITE_BLOCK_REQUEST:
648 return 0;
649
650 case TCODE_READ_QUADLET_REQUEST:
651 return 4;
652
653 case TCODE_READ_BLOCK_REQUEST:
654 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
655 return data_length;
656
657 case TCODE_LOCK_REQUEST:
658 ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
659 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
660 switch (ext_tcode) {
661 case EXTCODE_FETCH_ADD:
662 case EXTCODE_LITTLE_ADD:
663 return data_length;
664 default:
665 return data_length / 2;
666 }
667
668 default:
669 WARN(1, "wrong tcode %d\n", tcode);
670 return 0;
671 }
672 }
673
fw_fill_response(struct fw_packet * response,u32 * request_header,int rcode,void * payload,size_t length)674 void fw_fill_response(struct fw_packet *response, u32 *request_header,
675 int rcode, void *payload, size_t length)
676 {
677 int tcode, tlabel, extended_tcode, source, destination;
678
679 tcode = HEADER_GET_TCODE(request_header[0]);
680 tlabel = HEADER_GET_TLABEL(request_header[0]);
681 source = HEADER_GET_DESTINATION(request_header[0]);
682 destination = HEADER_GET_SOURCE(request_header[1]);
683 extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
684
685 response->header[0] =
686 HEADER_RETRY(RETRY_1) |
687 HEADER_TLABEL(tlabel) |
688 HEADER_DESTINATION(destination);
689 response->header[1] =
690 HEADER_SOURCE(source) |
691 HEADER_RCODE(rcode);
692 response->header[2] = 0;
693
694 switch (tcode) {
695 case TCODE_WRITE_QUADLET_REQUEST:
696 case TCODE_WRITE_BLOCK_REQUEST:
697 response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
698 response->header_length = 12;
699 response->payload_length = 0;
700 break;
701
702 case TCODE_READ_QUADLET_REQUEST:
703 response->header[0] |=
704 HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
705 if (payload != NULL)
706 response->header[3] = *(u32 *)payload;
707 else
708 response->header[3] = 0;
709 response->header_length = 16;
710 response->payload_length = 0;
711 break;
712
713 case TCODE_READ_BLOCK_REQUEST:
714 case TCODE_LOCK_REQUEST:
715 response->header[0] |= HEADER_TCODE(tcode + 2);
716 response->header[3] =
717 HEADER_DATA_LENGTH(length) |
718 HEADER_EXTENDED_TCODE(extended_tcode);
719 response->header_length = 16;
720 response->payload = payload;
721 response->payload_length = length;
722 break;
723
724 default:
725 WARN(1, "wrong tcode %d\n", tcode);
726 }
727
728 response->payload_mapped = false;
729 }
730 EXPORT_SYMBOL(fw_fill_response);
731
compute_split_timeout_timestamp(struct fw_card * card,u32 request_timestamp)732 static u32 compute_split_timeout_timestamp(struct fw_card *card,
733 u32 request_timestamp)
734 {
735 unsigned int cycles;
736 u32 timestamp;
737
738 cycles = card->split_timeout_cycles;
739 cycles += request_timestamp & 0x1fff;
740
741 timestamp = request_timestamp & ~0x1fff;
742 timestamp += (cycles / 8000) << 13;
743 timestamp |= cycles % 8000;
744
745 return timestamp;
746 }
747
allocate_request(struct fw_card * card,struct fw_packet * p)748 static struct fw_request *allocate_request(struct fw_card *card,
749 struct fw_packet *p)
750 {
751 struct fw_request *request;
752 u32 *data, length;
753 int request_tcode;
754
755 request_tcode = HEADER_GET_TCODE(p->header[0]);
756 switch (request_tcode) {
757 case TCODE_WRITE_QUADLET_REQUEST:
758 data = &p->header[3];
759 length = 4;
760 break;
761
762 case TCODE_WRITE_BLOCK_REQUEST:
763 case TCODE_LOCK_REQUEST:
764 data = p->payload;
765 length = HEADER_GET_DATA_LENGTH(p->header[3]);
766 break;
767
768 case TCODE_READ_QUADLET_REQUEST:
769 data = NULL;
770 length = 4;
771 break;
772
773 case TCODE_READ_BLOCK_REQUEST:
774 data = NULL;
775 length = HEADER_GET_DATA_LENGTH(p->header[3]);
776 break;
777
778 default:
779 fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
780 p->header[0], p->header[1], p->header[2]);
781 return NULL;
782 }
783
784 request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
785 if (request == NULL)
786 return NULL;
787
788 request->response.speed = p->speed;
789 request->response.timestamp =
790 compute_split_timeout_timestamp(card, p->timestamp);
791 request->response.generation = p->generation;
792 request->response.ack = 0;
793 request->response.callback = free_response_callback;
794 request->ack = p->ack;
795 request->length = length;
796 if (data)
797 memcpy(request->data, data, length);
798
799 memcpy(request->request_header, p->header, sizeof(p->header));
800
801 return request;
802 }
803
fw_send_response(struct fw_card * card,struct fw_request * request,int rcode)804 void fw_send_response(struct fw_card *card,
805 struct fw_request *request, int rcode)
806 {
807 if (WARN_ONCE(!request, "invalid for FCP address handlers"))
808 return;
809
810 /* unified transaction or broadcast transaction: don't respond */
811 if (request->ack != ACK_PENDING ||
812 HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
813 kfree(request);
814 return;
815 }
816
817 if (rcode == RCODE_COMPLETE)
818 fw_fill_response(&request->response, request->request_header,
819 rcode, request->data,
820 fw_get_response_length(request));
821 else
822 fw_fill_response(&request->response, request->request_header,
823 rcode, NULL, 0);
824
825 card->driver->send_response(card, &request->response);
826 }
827 EXPORT_SYMBOL(fw_send_response);
828
829 /**
830 * fw_get_request_speed() - returns speed at which the @request was received
831 */
fw_get_request_speed(struct fw_request * request)832 int fw_get_request_speed(struct fw_request *request)
833 {
834 return request->response.speed;
835 }
836 EXPORT_SYMBOL(fw_get_request_speed);
837
handle_exclusive_region_request(struct fw_card * card,struct fw_packet * p,struct fw_request * request,unsigned long long offset)838 static void handle_exclusive_region_request(struct fw_card *card,
839 struct fw_packet *p,
840 struct fw_request *request,
841 unsigned long long offset)
842 {
843 struct fw_address_handler *handler;
844 int tcode, destination, source;
845
846 destination = HEADER_GET_DESTINATION(p->header[0]);
847 source = HEADER_GET_SOURCE(p->header[1]);
848 tcode = HEADER_GET_TCODE(p->header[0]);
849 if (tcode == TCODE_LOCK_REQUEST)
850 tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
851
852 rcu_read_lock();
853 handler = lookup_enclosing_address_handler(&address_handler_list,
854 offset, request->length);
855 if (handler)
856 handler->address_callback(card, request,
857 tcode, destination, source,
858 p->generation, offset,
859 request->data, request->length,
860 handler->callback_data);
861 rcu_read_unlock();
862
863 if (!handler)
864 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
865 }
866
handle_fcp_region_request(struct fw_card * card,struct fw_packet * p,struct fw_request * request,unsigned long long offset)867 static void handle_fcp_region_request(struct fw_card *card,
868 struct fw_packet *p,
869 struct fw_request *request,
870 unsigned long long offset)
871 {
872 struct fw_address_handler *handler;
873 int tcode, destination, source;
874
875 if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
876 offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
877 request->length > 0x200) {
878 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
879
880 return;
881 }
882
883 tcode = HEADER_GET_TCODE(p->header[0]);
884 destination = HEADER_GET_DESTINATION(p->header[0]);
885 source = HEADER_GET_SOURCE(p->header[1]);
886
887 if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
888 tcode != TCODE_WRITE_BLOCK_REQUEST) {
889 fw_send_response(card, request, RCODE_TYPE_ERROR);
890
891 return;
892 }
893
894 rcu_read_lock();
895 list_for_each_entry_rcu(handler, &address_handler_list, link) {
896 if (is_enclosing_handler(handler, offset, request->length))
897 handler->address_callback(card, NULL, tcode,
898 destination, source,
899 p->generation, offset,
900 request->data,
901 request->length,
902 handler->callback_data);
903 }
904 rcu_read_unlock();
905
906 fw_send_response(card, request, RCODE_COMPLETE);
907 }
908
fw_core_handle_request(struct fw_card * card,struct fw_packet * p)909 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
910 {
911 struct fw_request *request;
912 unsigned long long offset;
913
914 if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
915 return;
916
917 if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
918 fw_cdev_handle_phy_packet(card, p);
919 return;
920 }
921
922 request = allocate_request(card, p);
923 if (request == NULL) {
924 /* FIXME: send statically allocated busy packet. */
925 return;
926 }
927
928 offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
929 p->header[2];
930
931 if (!is_in_fcp_region(offset, request->length))
932 handle_exclusive_region_request(card, p, request, offset);
933 else
934 handle_fcp_region_request(card, p, request, offset);
935
936 }
937 EXPORT_SYMBOL(fw_core_handle_request);
938
fw_core_handle_response(struct fw_card * card,struct fw_packet * p)939 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
940 {
941 struct fw_transaction *t;
942 unsigned long flags;
943 u32 *data;
944 size_t data_length;
945 int tcode, tlabel, source, rcode;
946
947 tcode = HEADER_GET_TCODE(p->header[0]);
948 tlabel = HEADER_GET_TLABEL(p->header[0]);
949 source = HEADER_GET_SOURCE(p->header[1]);
950 rcode = HEADER_GET_RCODE(p->header[1]);
951
952 spin_lock_irqsave(&card->lock, flags);
953 list_for_each_entry(t, &card->transaction_list, link) {
954 if (t->node_id == source && t->tlabel == tlabel) {
955 if (!try_cancel_split_timeout(t)) {
956 spin_unlock_irqrestore(&card->lock, flags);
957 goto timed_out;
958 }
959 list_del_init(&t->link);
960 card->tlabel_mask &= ~(1ULL << t->tlabel);
961 break;
962 }
963 }
964 spin_unlock_irqrestore(&card->lock, flags);
965
966 if (&t->link == &card->transaction_list) {
967 timed_out:
968 fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
969 source, tlabel);
970 return;
971 }
972
973 /*
974 * FIXME: sanity check packet, is length correct, does tcodes
975 * and addresses match.
976 */
977
978 switch (tcode) {
979 case TCODE_READ_QUADLET_RESPONSE:
980 data = (u32 *) &p->header[3];
981 data_length = 4;
982 break;
983
984 case TCODE_WRITE_RESPONSE:
985 data = NULL;
986 data_length = 0;
987 break;
988
989 case TCODE_READ_BLOCK_RESPONSE:
990 case TCODE_LOCK_RESPONSE:
991 data = p->payload;
992 data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
993 break;
994
995 default:
996 /* Should never happen, this is just to shut up gcc. */
997 data = NULL;
998 data_length = 0;
999 break;
1000 }
1001
1002 /*
1003 * The response handler may be executed while the request handler
1004 * is still pending. Cancel the request handler.
1005 */
1006 card->driver->cancel_packet(card, &t->packet);
1007
1008 t->callback(card, rcode, data, data_length, t->callback_data);
1009 }
1010 EXPORT_SYMBOL(fw_core_handle_response);
1011
1012 /**
1013 * fw_rcode_string - convert a firewire result code to an error description
1014 * @rcode: the result code
1015 */
fw_rcode_string(int rcode)1016 const char *fw_rcode_string(int rcode)
1017 {
1018 static const char *const names[] = {
1019 [RCODE_COMPLETE] = "no error",
1020 [RCODE_CONFLICT_ERROR] = "conflict error",
1021 [RCODE_DATA_ERROR] = "data error",
1022 [RCODE_TYPE_ERROR] = "type error",
1023 [RCODE_ADDRESS_ERROR] = "address error",
1024 [RCODE_SEND_ERROR] = "send error",
1025 [RCODE_CANCELLED] = "timeout",
1026 [RCODE_BUSY] = "busy",
1027 [RCODE_GENERATION] = "bus reset",
1028 [RCODE_NO_ACK] = "no ack",
1029 };
1030
1031 if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1032 return names[rcode];
1033 else
1034 return "unknown";
1035 }
1036 EXPORT_SYMBOL(fw_rcode_string);
1037
1038 static const struct fw_address_region topology_map_region =
1039 { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1040 .end = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1041
handle_topology_map(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1042 static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1043 int tcode, int destination, int source, int generation,
1044 unsigned long long offset, void *payload, size_t length,
1045 void *callback_data)
1046 {
1047 int start;
1048
1049 if (!TCODE_IS_READ_REQUEST(tcode)) {
1050 fw_send_response(card, request, RCODE_TYPE_ERROR);
1051 return;
1052 }
1053
1054 if ((offset & 3) > 0 || (length & 3) > 0) {
1055 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1056 return;
1057 }
1058
1059 start = (offset - topology_map_region.start) / 4;
1060 memcpy(payload, &card->topology_map[start], length);
1061
1062 fw_send_response(card, request, RCODE_COMPLETE);
1063 }
1064
1065 static struct fw_address_handler topology_map = {
1066 .length = 0x400,
1067 .address_callback = handle_topology_map,
1068 };
1069
1070 static const struct fw_address_region registers_region =
1071 { .start = CSR_REGISTER_BASE,
1072 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1073
update_split_timeout(struct fw_card * card)1074 static void update_split_timeout(struct fw_card *card)
1075 {
1076 unsigned int cycles;
1077
1078 cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1079
1080 /* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1081 cycles = clamp(cycles, 800u, 3u * 8000u);
1082
1083 card->split_timeout_cycles = cycles;
1084 card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1085 }
1086
handle_registers(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1087 static void handle_registers(struct fw_card *card, struct fw_request *request,
1088 int tcode, int destination, int source, int generation,
1089 unsigned long long offset, void *payload, size_t length,
1090 void *callback_data)
1091 {
1092 int reg = offset & ~CSR_REGISTER_BASE;
1093 __be32 *data = payload;
1094 int rcode = RCODE_COMPLETE;
1095 unsigned long flags;
1096
1097 switch (reg) {
1098 case CSR_PRIORITY_BUDGET:
1099 if (!card->priority_budget_implemented) {
1100 rcode = RCODE_ADDRESS_ERROR;
1101 break;
1102 }
1103 /* else fall through */
1104
1105 case CSR_NODE_IDS:
1106 /*
1107 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1108 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1109 */
1110 /* fall through */
1111
1112 case CSR_STATE_CLEAR:
1113 case CSR_STATE_SET:
1114 case CSR_CYCLE_TIME:
1115 case CSR_BUS_TIME:
1116 case CSR_BUSY_TIMEOUT:
1117 if (tcode == TCODE_READ_QUADLET_REQUEST)
1118 *data = cpu_to_be32(card->driver->read_csr(card, reg));
1119 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1120 card->driver->write_csr(card, reg, be32_to_cpu(*data));
1121 else
1122 rcode = RCODE_TYPE_ERROR;
1123 break;
1124
1125 case CSR_RESET_START:
1126 if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1127 card->driver->write_csr(card, CSR_STATE_CLEAR,
1128 CSR_STATE_BIT_ABDICATE);
1129 else
1130 rcode = RCODE_TYPE_ERROR;
1131 break;
1132
1133 case CSR_SPLIT_TIMEOUT_HI:
1134 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1135 *data = cpu_to_be32(card->split_timeout_hi);
1136 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1137 spin_lock_irqsave(&card->lock, flags);
1138 card->split_timeout_hi = be32_to_cpu(*data) & 7;
1139 update_split_timeout(card);
1140 spin_unlock_irqrestore(&card->lock, flags);
1141 } else {
1142 rcode = RCODE_TYPE_ERROR;
1143 }
1144 break;
1145
1146 case CSR_SPLIT_TIMEOUT_LO:
1147 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1148 *data = cpu_to_be32(card->split_timeout_lo);
1149 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1150 spin_lock_irqsave(&card->lock, flags);
1151 card->split_timeout_lo =
1152 be32_to_cpu(*data) & 0xfff80000;
1153 update_split_timeout(card);
1154 spin_unlock_irqrestore(&card->lock, flags);
1155 } else {
1156 rcode = RCODE_TYPE_ERROR;
1157 }
1158 break;
1159
1160 case CSR_MAINT_UTILITY:
1161 if (tcode == TCODE_READ_QUADLET_REQUEST)
1162 *data = card->maint_utility_register;
1163 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1164 card->maint_utility_register = *data;
1165 else
1166 rcode = RCODE_TYPE_ERROR;
1167 break;
1168
1169 case CSR_BROADCAST_CHANNEL:
1170 if (tcode == TCODE_READ_QUADLET_REQUEST)
1171 *data = cpu_to_be32(card->broadcast_channel);
1172 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1173 card->broadcast_channel =
1174 (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1175 BROADCAST_CHANNEL_INITIAL;
1176 else
1177 rcode = RCODE_TYPE_ERROR;
1178 break;
1179
1180 case CSR_BUS_MANAGER_ID:
1181 case CSR_BANDWIDTH_AVAILABLE:
1182 case CSR_CHANNELS_AVAILABLE_HI:
1183 case CSR_CHANNELS_AVAILABLE_LO:
1184 /*
1185 * FIXME: these are handled by the OHCI hardware and
1186 * the stack never sees these request. If we add
1187 * support for a new type of controller that doesn't
1188 * handle this in hardware we need to deal with these
1189 * transactions.
1190 */
1191 BUG();
1192 break;
1193
1194 default:
1195 rcode = RCODE_ADDRESS_ERROR;
1196 break;
1197 }
1198
1199 fw_send_response(card, request, rcode);
1200 }
1201
1202 static struct fw_address_handler registers = {
1203 .length = 0x400,
1204 .address_callback = handle_registers,
1205 };
1206
handle_low_memory(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1207 static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1208 int tcode, int destination, int source, int generation,
1209 unsigned long long offset, void *payload, size_t length,
1210 void *callback_data)
1211 {
1212 /*
1213 * This catches requests not handled by the physical DMA unit,
1214 * i.e., wrong transaction types or unauthorized source nodes.
1215 */
1216 fw_send_response(card, request, RCODE_TYPE_ERROR);
1217 }
1218
1219 static struct fw_address_handler low_memory = {
1220 .length = 0x000100000000ULL,
1221 .address_callback = handle_low_memory,
1222 };
1223
1224 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1225 MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1226 MODULE_LICENSE("GPL");
1227
1228 static const u32 vendor_textual_descriptor[] = {
1229 /* textual descriptor leaf () */
1230 0x00060000,
1231 0x00000000,
1232 0x00000000,
1233 0x4c696e75, /* L i n u */
1234 0x78204669, /* x F i */
1235 0x72657769, /* r e w i */
1236 0x72650000, /* r e */
1237 };
1238
1239 static const u32 model_textual_descriptor[] = {
1240 /* model descriptor leaf () */
1241 0x00030000,
1242 0x00000000,
1243 0x00000000,
1244 0x4a756a75, /* J u j u */
1245 };
1246
1247 static struct fw_descriptor vendor_id_descriptor = {
1248 .length = ARRAY_SIZE(vendor_textual_descriptor),
1249 .immediate = 0x03d00d1e,
1250 .key = 0x81000000,
1251 .data = vendor_textual_descriptor,
1252 };
1253
1254 static struct fw_descriptor model_id_descriptor = {
1255 .length = ARRAY_SIZE(model_textual_descriptor),
1256 .immediate = 0x17000001,
1257 .key = 0x81000000,
1258 .data = model_textual_descriptor,
1259 };
1260
fw_core_init(void)1261 static int __init fw_core_init(void)
1262 {
1263 int ret;
1264
1265 fw_workqueue = alloc_workqueue("firewire",
1266 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1267 if (!fw_workqueue)
1268 return -ENOMEM;
1269
1270 ret = bus_register(&fw_bus_type);
1271 if (ret < 0) {
1272 destroy_workqueue(fw_workqueue);
1273 return ret;
1274 }
1275
1276 fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1277 if (fw_cdev_major < 0) {
1278 bus_unregister(&fw_bus_type);
1279 destroy_workqueue(fw_workqueue);
1280 return fw_cdev_major;
1281 }
1282
1283 fw_core_add_address_handler(&topology_map, &topology_map_region);
1284 fw_core_add_address_handler(®isters, ®isters_region);
1285 fw_core_add_address_handler(&low_memory, &low_memory_region);
1286 fw_core_add_descriptor(&vendor_id_descriptor);
1287 fw_core_add_descriptor(&model_id_descriptor);
1288
1289 return 0;
1290 }
1291
fw_core_cleanup(void)1292 static void __exit fw_core_cleanup(void)
1293 {
1294 unregister_chrdev(fw_cdev_major, "firewire");
1295 bus_unregister(&fw_bus_type);
1296 destroy_workqueue(fw_workqueue);
1297 idr_destroy(&fw_device_idr);
1298 }
1299
1300 module_init(fw_core_init);
1301 module_exit(fw_core_cleanup);
1302