1 /*
2 * linux/fs/super.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
12 *
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
14 *
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21 */
22
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include "internal.h"
38
39
40 LIST_HEAD(super_blocks);
41 DEFINE_SPINLOCK(sb_lock);
42
43 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
44 "sb_writers",
45 "sb_pagefaults",
46 "sb_internal",
47 };
48
49 /*
50 * One thing we have to be careful of with a per-sb shrinker is that we don't
51 * drop the last active reference to the superblock from within the shrinker.
52 * If that happens we could trigger unregistering the shrinker from within the
53 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
54 * take a passive reference to the superblock to avoid this from occurring.
55 */
prune_super(struct shrinker * shrink,struct shrink_control * sc)56 static int prune_super(struct shrinker *shrink, struct shrink_control *sc)
57 {
58 struct super_block *sb;
59 int fs_objects = 0;
60 int total_objects;
61
62 sb = container_of(shrink, struct super_block, s_shrink);
63
64 /*
65 * Deadlock avoidance. We may hold various FS locks, and we don't want
66 * to recurse into the FS that called us in clear_inode() and friends..
67 */
68 if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS))
69 return -1;
70
71 if (!grab_super_passive(sb))
72 return -1;
73
74 if (sb->s_op && sb->s_op->nr_cached_objects)
75 fs_objects = sb->s_op->nr_cached_objects(sb);
76
77 total_objects = sb->s_nr_dentry_unused +
78 sb->s_nr_inodes_unused + fs_objects + 1;
79
80 if (sc->nr_to_scan) {
81 int dentries;
82 int inodes;
83
84 /* proportion the scan between the caches */
85 dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) /
86 total_objects;
87 inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) /
88 total_objects;
89 if (fs_objects)
90 fs_objects = (sc->nr_to_scan * fs_objects) /
91 total_objects;
92 /*
93 * prune the dcache first as the icache is pinned by it, then
94 * prune the icache, followed by the filesystem specific caches
95 */
96 prune_dcache_sb(sb, dentries);
97 prune_icache_sb(sb, inodes);
98
99 if (fs_objects && sb->s_op->free_cached_objects) {
100 sb->s_op->free_cached_objects(sb, fs_objects);
101 fs_objects = sb->s_op->nr_cached_objects(sb);
102 }
103 total_objects = sb->s_nr_dentry_unused +
104 sb->s_nr_inodes_unused + fs_objects;
105 }
106
107 total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure;
108 drop_super(sb);
109 return total_objects;
110 }
111
init_sb_writers(struct super_block * s,struct file_system_type * type)112 static int init_sb_writers(struct super_block *s, struct file_system_type *type)
113 {
114 int err;
115 int i;
116
117 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
118 err = percpu_counter_init(&s->s_writers.counter[i], 0);
119 if (err < 0)
120 goto err_out;
121 lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i],
122 &type->s_writers_key[i], 0);
123 }
124 init_waitqueue_head(&s->s_writers.wait);
125 init_waitqueue_head(&s->s_writers.wait_unfrozen);
126 return 0;
127 err_out:
128 while (--i >= 0)
129 percpu_counter_destroy(&s->s_writers.counter[i]);
130 return err;
131 }
132
destroy_sb_writers(struct super_block * s)133 static void destroy_sb_writers(struct super_block *s)
134 {
135 int i;
136
137 for (i = 0; i < SB_FREEZE_LEVELS; i++)
138 percpu_counter_destroy(&s->s_writers.counter[i]);
139 }
140
141 /**
142 * alloc_super - create new superblock
143 * @type: filesystem type superblock should belong to
144 * @flags: the mount flags
145 *
146 * Allocates and initializes a new &struct super_block. alloc_super()
147 * returns a pointer new superblock or %NULL if allocation had failed.
148 */
alloc_super(struct file_system_type * type,int flags)149 static struct super_block *alloc_super(struct file_system_type *type, int flags)
150 {
151 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
152 static const struct super_operations default_op;
153
154 if (s) {
155 if (security_sb_alloc(s))
156 goto out_free_sb;
157
158 #ifdef CONFIG_SMP
159 s->s_files = alloc_percpu(struct list_head);
160 if (!s->s_files)
161 goto err_out;
162 else {
163 int i;
164
165 for_each_possible_cpu(i)
166 INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
167 }
168 #else
169 INIT_LIST_HEAD(&s->s_files);
170 #endif
171 if (init_sb_writers(s, type))
172 goto err_out;
173 s->s_flags = flags;
174 s->s_bdi = &default_backing_dev_info;
175 INIT_HLIST_NODE(&s->s_instances);
176 INIT_HLIST_BL_HEAD(&s->s_anon);
177 INIT_LIST_HEAD(&s->s_inodes);
178 INIT_LIST_HEAD(&s->s_dentry_lru);
179 INIT_LIST_HEAD(&s->s_inode_lru);
180 spin_lock_init(&s->s_inode_lru_lock);
181 INIT_LIST_HEAD(&s->s_mounts);
182 init_rwsem(&s->s_umount);
183 lockdep_set_class(&s->s_umount, &type->s_umount_key);
184 /*
185 * sget() can have s_umount recursion.
186 *
187 * When it cannot find a suitable sb, it allocates a new
188 * one (this one), and tries again to find a suitable old
189 * one.
190 *
191 * In case that succeeds, it will acquire the s_umount
192 * lock of the old one. Since these are clearly distrinct
193 * locks, and this object isn't exposed yet, there's no
194 * risk of deadlocks.
195 *
196 * Annotate this by putting this lock in a different
197 * subclass.
198 */
199 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
200 s->s_count = 1;
201 atomic_set(&s->s_active, 1);
202 mutex_init(&s->s_vfs_rename_mutex);
203 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
204 mutex_init(&s->s_dquot.dqio_mutex);
205 mutex_init(&s->s_dquot.dqonoff_mutex);
206 init_rwsem(&s->s_dquot.dqptr_sem);
207 s->s_maxbytes = MAX_NON_LFS;
208 s->s_op = &default_op;
209 s->s_time_gran = 1000000000;
210 s->cleancache_poolid = -1;
211
212 s->s_shrink.seeks = DEFAULT_SEEKS;
213 s->s_shrink.shrink = prune_super;
214 s->s_shrink.batch = 1024;
215 }
216 out:
217 return s;
218 err_out:
219 security_sb_free(s);
220 #ifdef CONFIG_SMP
221 if (s->s_files)
222 free_percpu(s->s_files);
223 #endif
224 destroy_sb_writers(s);
225 out_free_sb:
226 kfree(s);
227 s = NULL;
228 goto out;
229 }
230
231 /**
232 * destroy_super - frees a superblock
233 * @s: superblock to free
234 *
235 * Frees a superblock.
236 */
destroy_super(struct super_block * s)237 static inline void destroy_super(struct super_block *s)
238 {
239 #ifdef CONFIG_SMP
240 free_percpu(s->s_files);
241 #endif
242 destroy_sb_writers(s);
243 security_sb_free(s);
244 WARN_ON(!list_empty(&s->s_mounts));
245 kfree(s->s_subtype);
246 kfree(s->s_options);
247 kfree(s);
248 }
249
250 /* Superblock refcounting */
251
252 /*
253 * Drop a superblock's refcount. The caller must hold sb_lock.
254 */
__put_super(struct super_block * sb)255 static void __put_super(struct super_block *sb)
256 {
257 if (!--sb->s_count) {
258 list_del_init(&sb->s_list);
259 destroy_super(sb);
260 }
261 }
262
263 /**
264 * put_super - drop a temporary reference to superblock
265 * @sb: superblock in question
266 *
267 * Drops a temporary reference, frees superblock if there's no
268 * references left.
269 */
put_super(struct super_block * sb)270 static void put_super(struct super_block *sb)
271 {
272 spin_lock(&sb_lock);
273 __put_super(sb);
274 spin_unlock(&sb_lock);
275 }
276
277
278 /**
279 * deactivate_locked_super - drop an active reference to superblock
280 * @s: superblock to deactivate
281 *
282 * Drops an active reference to superblock, converting it into a temprory
283 * one if there is no other active references left. In that case we
284 * tell fs driver to shut it down and drop the temporary reference we
285 * had just acquired.
286 *
287 * Caller holds exclusive lock on superblock; that lock is released.
288 */
deactivate_locked_super(struct super_block * s)289 void deactivate_locked_super(struct super_block *s)
290 {
291 struct file_system_type *fs = s->s_type;
292 if (atomic_dec_and_test(&s->s_active)) {
293 cleancache_invalidate_fs(s);
294 fs->kill_sb(s);
295
296 /* caches are now gone, we can safely kill the shrinker now */
297 unregister_shrinker(&s->s_shrink);
298 put_filesystem(fs);
299 put_super(s);
300 } else {
301 up_write(&s->s_umount);
302 }
303 }
304
305 EXPORT_SYMBOL(deactivate_locked_super);
306
307 /**
308 * deactivate_super - drop an active reference to superblock
309 * @s: superblock to deactivate
310 *
311 * Variant of deactivate_locked_super(), except that superblock is *not*
312 * locked by caller. If we are going to drop the final active reference,
313 * lock will be acquired prior to that.
314 */
deactivate_super(struct super_block * s)315 void deactivate_super(struct super_block *s)
316 {
317 if (!atomic_add_unless(&s->s_active, -1, 1)) {
318 down_write(&s->s_umount);
319 deactivate_locked_super(s);
320 }
321 }
322
323 EXPORT_SYMBOL(deactivate_super);
324
325 /**
326 * grab_super - acquire an active reference
327 * @s: reference we are trying to make active
328 *
329 * Tries to acquire an active reference. grab_super() is used when we
330 * had just found a superblock in super_blocks or fs_type->fs_supers
331 * and want to turn it into a full-blown active reference. grab_super()
332 * is called with sb_lock held and drops it. Returns 1 in case of
333 * success, 0 if we had failed (superblock contents was already dead or
334 * dying when grab_super() had been called).
335 */
grab_super(struct super_block * s)336 static int grab_super(struct super_block *s) __releases(sb_lock)
337 {
338 if (atomic_inc_not_zero(&s->s_active)) {
339 spin_unlock(&sb_lock);
340 return 1;
341 }
342 /* it's going away */
343 s->s_count++;
344 spin_unlock(&sb_lock);
345 /* wait for it to die */
346 down_write(&s->s_umount);
347 up_write(&s->s_umount);
348 put_super(s);
349 return 0;
350 }
351
352 /*
353 * grab_super_passive - acquire a passive reference
354 * @sb: reference we are trying to grab
355 *
356 * Tries to acquire a passive reference. This is used in places where we
357 * cannot take an active reference but we need to ensure that the
358 * superblock does not go away while we are working on it. It returns
359 * false if a reference was not gained, and returns true with the s_umount
360 * lock held in read mode if a reference is gained. On successful return,
361 * the caller must drop the s_umount lock and the passive reference when
362 * done.
363 */
grab_super_passive(struct super_block * sb)364 bool grab_super_passive(struct super_block *sb)
365 {
366 spin_lock(&sb_lock);
367 if (hlist_unhashed(&sb->s_instances)) {
368 spin_unlock(&sb_lock);
369 return false;
370 }
371
372 sb->s_count++;
373 spin_unlock(&sb_lock);
374
375 if (down_read_trylock(&sb->s_umount)) {
376 if (sb->s_root && (sb->s_flags & MS_BORN))
377 return true;
378 up_read(&sb->s_umount);
379 }
380
381 put_super(sb);
382 return false;
383 }
384
385 /**
386 * generic_shutdown_super - common helper for ->kill_sb()
387 * @sb: superblock to kill
388 *
389 * generic_shutdown_super() does all fs-independent work on superblock
390 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
391 * that need destruction out of superblock, call generic_shutdown_super()
392 * and release aforementioned objects. Note: dentries and inodes _are_
393 * taken care of and do not need specific handling.
394 *
395 * Upon calling this function, the filesystem may no longer alter or
396 * rearrange the set of dentries belonging to this super_block, nor may it
397 * change the attachments of dentries to inodes.
398 */
generic_shutdown_super(struct super_block * sb)399 void generic_shutdown_super(struct super_block *sb)
400 {
401 const struct super_operations *sop = sb->s_op;
402
403 if (sb->s_root) {
404 shrink_dcache_for_umount(sb);
405 sync_filesystem(sb);
406 sb->s_flags &= ~MS_ACTIVE;
407
408 fsnotify_unmount_inodes(&sb->s_inodes);
409
410 evict_inodes(sb);
411
412 if (sb->s_dio_done_wq) {
413 destroy_workqueue(sb->s_dio_done_wq);
414 sb->s_dio_done_wq = NULL;
415 }
416
417 if (sop->put_super)
418 sop->put_super(sb);
419
420 if (!list_empty(&sb->s_inodes)) {
421 printk("VFS: Busy inodes after unmount of %s. "
422 "Self-destruct in 5 seconds. Have a nice day...\n",
423 sb->s_id);
424 }
425 }
426 spin_lock(&sb_lock);
427 /* should be initialized for __put_super_and_need_restart() */
428 hlist_del_init(&sb->s_instances);
429 spin_unlock(&sb_lock);
430 up_write(&sb->s_umount);
431 }
432
433 EXPORT_SYMBOL(generic_shutdown_super);
434
435 /**
436 * sget - find or create a superblock
437 * @type: filesystem type superblock should belong to
438 * @test: comparison callback
439 * @set: setup callback
440 * @flags: mount flags
441 * @data: argument to each of them
442 */
sget(struct file_system_type * type,int (* test)(struct super_block *,void *),int (* set)(struct super_block *,void *),int flags,void * data)443 struct super_block *sget(struct file_system_type *type,
444 int (*test)(struct super_block *,void *),
445 int (*set)(struct super_block *,void *),
446 int flags,
447 void *data)
448 {
449 struct super_block *s = NULL;
450 struct super_block *old;
451 int err;
452
453 retry:
454 spin_lock(&sb_lock);
455 if (test) {
456 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
457 if (!test(old, data))
458 continue;
459 if (!grab_super(old))
460 goto retry;
461 if (s) {
462 up_write(&s->s_umount);
463 destroy_super(s);
464 s = NULL;
465 }
466 down_write(&old->s_umount);
467 if (unlikely(!(old->s_flags & MS_BORN))) {
468 deactivate_locked_super(old);
469 goto retry;
470 }
471 return old;
472 }
473 }
474 if (!s) {
475 spin_unlock(&sb_lock);
476 s = alloc_super(type, flags);
477 if (!s)
478 return ERR_PTR(-ENOMEM);
479 goto retry;
480 }
481
482 err = set(s, data);
483 if (err) {
484 spin_unlock(&sb_lock);
485 up_write(&s->s_umount);
486 destroy_super(s);
487 return ERR_PTR(err);
488 }
489 s->s_type = type;
490 strlcpy(s->s_id, type->name, sizeof(s->s_id));
491 list_add_tail(&s->s_list, &super_blocks);
492 hlist_add_head(&s->s_instances, &type->fs_supers);
493 spin_unlock(&sb_lock);
494 get_filesystem(type);
495 register_shrinker(&s->s_shrink);
496 return s;
497 }
498
499 EXPORT_SYMBOL(sget);
500
drop_super(struct super_block * sb)501 void drop_super(struct super_block *sb)
502 {
503 up_read(&sb->s_umount);
504 put_super(sb);
505 }
506
507 EXPORT_SYMBOL(drop_super);
508
509 /**
510 * iterate_supers - call function for all active superblocks
511 * @f: function to call
512 * @arg: argument to pass to it
513 *
514 * Scans the superblock list and calls given function, passing it
515 * locked superblock and given argument.
516 */
iterate_supers(void (* f)(struct super_block *,void *),void * arg)517 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
518 {
519 struct super_block *sb, *p = NULL;
520
521 spin_lock(&sb_lock);
522 list_for_each_entry(sb, &super_blocks, s_list) {
523 if (hlist_unhashed(&sb->s_instances))
524 continue;
525 sb->s_count++;
526 spin_unlock(&sb_lock);
527
528 down_read(&sb->s_umount);
529 if (sb->s_root && (sb->s_flags & MS_BORN))
530 f(sb, arg);
531 up_read(&sb->s_umount);
532
533 spin_lock(&sb_lock);
534 if (p)
535 __put_super(p);
536 p = sb;
537 }
538 if (p)
539 __put_super(p);
540 spin_unlock(&sb_lock);
541 }
542
543 /**
544 * iterate_supers_type - call function for superblocks of given type
545 * @type: fs type
546 * @f: function to call
547 * @arg: argument to pass to it
548 *
549 * Scans the superblock list and calls given function, passing it
550 * locked superblock and given argument.
551 */
iterate_supers_type(struct file_system_type * type,void (* f)(struct super_block *,void *),void * arg)552 void iterate_supers_type(struct file_system_type *type,
553 void (*f)(struct super_block *, void *), void *arg)
554 {
555 struct super_block *sb, *p = NULL;
556
557 spin_lock(&sb_lock);
558 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
559 sb->s_count++;
560 spin_unlock(&sb_lock);
561
562 down_read(&sb->s_umount);
563 if (sb->s_root && (sb->s_flags & MS_BORN))
564 f(sb, arg);
565 up_read(&sb->s_umount);
566
567 spin_lock(&sb_lock);
568 if (p)
569 __put_super(p);
570 p = sb;
571 }
572 if (p)
573 __put_super(p);
574 spin_unlock(&sb_lock);
575 }
576
577 EXPORT_SYMBOL(iterate_supers_type);
578
579 /**
580 * get_super - get the superblock of a device
581 * @bdev: device to get the superblock for
582 *
583 * Scans the superblock list and finds the superblock of the file system
584 * mounted on the device given. %NULL is returned if no match is found.
585 */
586
get_super(struct block_device * bdev)587 struct super_block *get_super(struct block_device *bdev)
588 {
589 struct super_block *sb;
590
591 if (!bdev)
592 return NULL;
593
594 spin_lock(&sb_lock);
595 rescan:
596 list_for_each_entry(sb, &super_blocks, s_list) {
597 if (hlist_unhashed(&sb->s_instances))
598 continue;
599 if (sb->s_bdev == bdev) {
600 sb->s_count++;
601 spin_unlock(&sb_lock);
602 down_read(&sb->s_umount);
603 /* still alive? */
604 if (sb->s_root && (sb->s_flags & MS_BORN))
605 return sb;
606 up_read(&sb->s_umount);
607 /* nope, got unmounted */
608 spin_lock(&sb_lock);
609 __put_super(sb);
610 goto rescan;
611 }
612 }
613 spin_unlock(&sb_lock);
614 return NULL;
615 }
616
617 EXPORT_SYMBOL(get_super);
618
619 /**
620 * get_super_thawed - get thawed superblock of a device
621 * @bdev: device to get the superblock for
622 *
623 * Scans the superblock list and finds the superblock of the file system
624 * mounted on the device. The superblock is returned once it is thawed
625 * (or immediately if it was not frozen). %NULL is returned if no match
626 * is found.
627 */
get_super_thawed(struct block_device * bdev)628 struct super_block *get_super_thawed(struct block_device *bdev)
629 {
630 while (1) {
631 struct super_block *s = get_super(bdev);
632 if (!s || s->s_writers.frozen == SB_UNFROZEN)
633 return s;
634 up_read(&s->s_umount);
635 wait_event(s->s_writers.wait_unfrozen,
636 s->s_writers.frozen == SB_UNFROZEN);
637 put_super(s);
638 }
639 }
640 EXPORT_SYMBOL(get_super_thawed);
641
642 /**
643 * get_active_super - get an active reference to the superblock of a device
644 * @bdev: device to get the superblock for
645 *
646 * Scans the superblock list and finds the superblock of the file system
647 * mounted on the device given. Returns the superblock with an active
648 * reference or %NULL if none was found.
649 */
get_active_super(struct block_device * bdev)650 struct super_block *get_active_super(struct block_device *bdev)
651 {
652 struct super_block *sb;
653
654 if (!bdev)
655 return NULL;
656
657 restart:
658 spin_lock(&sb_lock);
659 list_for_each_entry(sb, &super_blocks, s_list) {
660 if (hlist_unhashed(&sb->s_instances))
661 continue;
662 if (sb->s_bdev == bdev) {
663 if (grab_super(sb)) /* drops sb_lock */
664 return sb;
665 else
666 goto restart;
667 }
668 }
669 spin_unlock(&sb_lock);
670 return NULL;
671 }
672
user_get_super(dev_t dev)673 struct super_block *user_get_super(dev_t dev)
674 {
675 struct super_block *sb;
676
677 spin_lock(&sb_lock);
678 rescan:
679 list_for_each_entry(sb, &super_blocks, s_list) {
680 if (hlist_unhashed(&sb->s_instances))
681 continue;
682 if (sb->s_dev == dev) {
683 sb->s_count++;
684 spin_unlock(&sb_lock);
685 down_read(&sb->s_umount);
686 /* still alive? */
687 if (sb->s_root && (sb->s_flags & MS_BORN))
688 return sb;
689 up_read(&sb->s_umount);
690 /* nope, got unmounted */
691 spin_lock(&sb_lock);
692 __put_super(sb);
693 goto rescan;
694 }
695 }
696 spin_unlock(&sb_lock);
697 return NULL;
698 }
699
700 /**
701 * do_remount_sb2 - asks filesystem to change mount options.
702 * @mnt: mount we are looking at
703 * @sb: superblock in question
704 * @flags: numeric part of options
705 * @data: the rest of options
706 * @force: whether or not to force the change
707 *
708 * Alters the mount options of a mounted file system.
709 */
do_remount_sb2(struct vfsmount * mnt,struct super_block * sb,int flags,void * data,int force)710 int do_remount_sb2(struct vfsmount *mnt, struct super_block *sb, int flags, void *data, int force)
711 {
712 int retval;
713 int remount_ro;
714
715 if (sb->s_writers.frozen != SB_UNFROZEN)
716 return -EBUSY;
717
718 #ifdef CONFIG_BLOCK
719 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
720 return -EACCES;
721 #endif
722
723 if (flags & MS_RDONLY)
724 acct_auto_close(sb);
725 shrink_dcache_sb(sb);
726 sync_filesystem(sb);
727
728 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
729
730 /* If we are remounting RDONLY and current sb is read/write,
731 make sure there are no rw files opened */
732 if (remount_ro) {
733 if (force) {
734 mark_files_ro(sb);
735 } else {
736 retval = sb_prepare_remount_readonly(sb);
737 if (retval)
738 return retval;
739 }
740 }
741
742 if (mnt && sb->s_op->remount_fs2) {
743 retval = sb->s_op->remount_fs2(mnt, sb, &flags, data);
744 if (retval) {
745 if (!force)
746 goto cancel_readonly;
747 /* If forced remount, go ahead despite any errors */
748 WARN(1, "forced remount of a %s fs returned %i\n",
749 sb->s_type->name, retval);
750 }
751 } else if (sb->s_op->remount_fs) {
752 retval = sb->s_op->remount_fs(sb, &flags, data);
753 if (retval) {
754 if (!force)
755 goto cancel_readonly;
756 /* If forced remount, go ahead despite any errors */
757 WARN(1, "forced remount of a %s fs returned %i\n",
758 sb->s_type->name, retval);
759 }
760 }
761 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
762 /* Needs to be ordered wrt mnt_is_readonly() */
763 smp_wmb();
764 sb->s_readonly_remount = 0;
765
766 /*
767 * Some filesystems modify their metadata via some other path than the
768 * bdev buffer cache (eg. use a private mapping, or directories in
769 * pagecache, etc). Also file data modifications go via their own
770 * mappings. So If we try to mount readonly then copy the filesystem
771 * from bdev, we could get stale data, so invalidate it to give a best
772 * effort at coherency.
773 */
774 if (remount_ro && sb->s_bdev)
775 invalidate_bdev(sb->s_bdev);
776 return 0;
777
778 cancel_readonly:
779 sb->s_readonly_remount = 0;
780 return retval;
781 }
782
do_remount_sb(struct super_block * sb,int flags,void * data,int force)783 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
784 {
785 return do_remount_sb2(NULL, sb, flags, data, force);
786 }
787
do_emergency_remount(struct work_struct * work)788 static void do_emergency_remount(struct work_struct *work)
789 {
790 struct super_block *sb, *p = NULL;
791
792 spin_lock(&sb_lock);
793 list_for_each_entry_reverse(sb, &super_blocks, s_list) {
794 if (hlist_unhashed(&sb->s_instances))
795 continue;
796 sb->s_count++;
797 spin_unlock(&sb_lock);
798 down_write(&sb->s_umount);
799 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
800 !(sb->s_flags & MS_RDONLY)) {
801 /*
802 * What lock protects sb->s_flags??
803 */
804 do_remount_sb(sb, MS_RDONLY, NULL, 1);
805 }
806 up_write(&sb->s_umount);
807 spin_lock(&sb_lock);
808 if (p)
809 __put_super(p);
810 p = sb;
811 }
812 if (p)
813 __put_super(p);
814 spin_unlock(&sb_lock);
815 kfree(work);
816 printk("Emergency Remount complete\n");
817 }
818
emergency_remount(void)819 void emergency_remount(void)
820 {
821 struct work_struct *work;
822
823 work = kmalloc(sizeof(*work), GFP_ATOMIC);
824 if (work) {
825 INIT_WORK(work, do_emergency_remount);
826 schedule_work(work);
827 }
828 }
829
830 /*
831 * Unnamed block devices are dummy devices used by virtual
832 * filesystems which don't use real block-devices. -- jrs
833 */
834
835 static DEFINE_IDA(unnamed_dev_ida);
836 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
837 static int unnamed_dev_start = 0; /* don't bother trying below it */
838
get_anon_bdev(dev_t * p)839 int get_anon_bdev(dev_t *p)
840 {
841 int dev;
842 int error;
843
844 retry:
845 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
846 return -ENOMEM;
847 spin_lock(&unnamed_dev_lock);
848 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
849 if (!error)
850 unnamed_dev_start = dev + 1;
851 spin_unlock(&unnamed_dev_lock);
852 if (error == -EAGAIN)
853 /* We raced and lost with another CPU. */
854 goto retry;
855 else if (error)
856 return -EAGAIN;
857
858 if (dev == (1 << MINORBITS)) {
859 spin_lock(&unnamed_dev_lock);
860 ida_remove(&unnamed_dev_ida, dev);
861 if (unnamed_dev_start > dev)
862 unnamed_dev_start = dev;
863 spin_unlock(&unnamed_dev_lock);
864 return -EMFILE;
865 }
866 *p = MKDEV(0, dev & MINORMASK);
867 return 0;
868 }
869 EXPORT_SYMBOL(get_anon_bdev);
870
free_anon_bdev(dev_t dev)871 void free_anon_bdev(dev_t dev)
872 {
873 int slot = MINOR(dev);
874 spin_lock(&unnamed_dev_lock);
875 ida_remove(&unnamed_dev_ida, slot);
876 if (slot < unnamed_dev_start)
877 unnamed_dev_start = slot;
878 spin_unlock(&unnamed_dev_lock);
879 }
880 EXPORT_SYMBOL(free_anon_bdev);
881
set_anon_super(struct super_block * s,void * data)882 int set_anon_super(struct super_block *s, void *data)
883 {
884 int error = get_anon_bdev(&s->s_dev);
885 if (!error)
886 s->s_bdi = &noop_backing_dev_info;
887 return error;
888 }
889
890 EXPORT_SYMBOL(set_anon_super);
891
kill_anon_super(struct super_block * sb)892 void kill_anon_super(struct super_block *sb)
893 {
894 dev_t dev = sb->s_dev;
895 generic_shutdown_super(sb);
896 free_anon_bdev(dev);
897 }
898
899 EXPORT_SYMBOL(kill_anon_super);
900
kill_litter_super(struct super_block * sb)901 void kill_litter_super(struct super_block *sb)
902 {
903 if (sb->s_root)
904 d_genocide(sb->s_root);
905 kill_anon_super(sb);
906 }
907
908 EXPORT_SYMBOL(kill_litter_super);
909
ns_test_super(struct super_block * sb,void * data)910 static int ns_test_super(struct super_block *sb, void *data)
911 {
912 return sb->s_fs_info == data;
913 }
914
ns_set_super(struct super_block * sb,void * data)915 static int ns_set_super(struct super_block *sb, void *data)
916 {
917 sb->s_fs_info = data;
918 return set_anon_super(sb, NULL);
919 }
920
mount_ns(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))921 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
922 void *data, int (*fill_super)(struct super_block *, void *, int))
923 {
924 struct super_block *sb;
925
926 sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
927 if (IS_ERR(sb))
928 return ERR_CAST(sb);
929
930 if (!sb->s_root) {
931 int err;
932 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
933 if (err) {
934 deactivate_locked_super(sb);
935 return ERR_PTR(err);
936 }
937
938 sb->s_flags |= MS_ACTIVE;
939 }
940
941 return dget(sb->s_root);
942 }
943
944 EXPORT_SYMBOL(mount_ns);
945
946 #ifdef CONFIG_BLOCK
set_bdev_super(struct super_block * s,void * data)947 static int set_bdev_super(struct super_block *s, void *data)
948 {
949 s->s_bdev = data;
950 s->s_dev = s->s_bdev->bd_dev;
951
952 /*
953 * We set the bdi here to the queue backing, file systems can
954 * overwrite this in ->fill_super()
955 */
956 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
957 return 0;
958 }
959
test_bdev_super(struct super_block * s,void * data)960 static int test_bdev_super(struct super_block *s, void *data)
961 {
962 return (void *)s->s_bdev == data;
963 }
964
mount_bdev(struct file_system_type * fs_type,int flags,const char * dev_name,void * data,int (* fill_super)(struct super_block *,void *,int))965 struct dentry *mount_bdev(struct file_system_type *fs_type,
966 int flags, const char *dev_name, void *data,
967 int (*fill_super)(struct super_block *, void *, int))
968 {
969 struct block_device *bdev;
970 struct super_block *s;
971 fmode_t mode = FMODE_READ | FMODE_EXCL;
972 int error = 0;
973
974 if (!(flags & MS_RDONLY))
975 mode |= FMODE_WRITE;
976
977 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
978 if (IS_ERR(bdev))
979 return ERR_CAST(bdev);
980
981 /*
982 * once the super is inserted into the list by sget, s_umount
983 * will protect the lockfs code from trying to start a snapshot
984 * while we are mounting
985 */
986 mutex_lock(&bdev->bd_fsfreeze_mutex);
987 if (bdev->bd_fsfreeze_count > 0) {
988 mutex_unlock(&bdev->bd_fsfreeze_mutex);
989 error = -EBUSY;
990 goto error_bdev;
991 }
992 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
993 bdev);
994 mutex_unlock(&bdev->bd_fsfreeze_mutex);
995 if (IS_ERR(s))
996 goto error_s;
997
998 if (s->s_root) {
999 if ((flags ^ s->s_flags) & MS_RDONLY) {
1000 deactivate_locked_super(s);
1001 error = -EBUSY;
1002 goto error_bdev;
1003 }
1004
1005 /*
1006 * s_umount nests inside bd_mutex during
1007 * __invalidate_device(). blkdev_put() acquires
1008 * bd_mutex and can't be called under s_umount. Drop
1009 * s_umount temporarily. This is safe as we're
1010 * holding an active reference.
1011 */
1012 up_write(&s->s_umount);
1013 blkdev_put(bdev, mode);
1014 down_write(&s->s_umount);
1015 } else {
1016 char b[BDEVNAME_SIZE];
1017
1018 s->s_mode = mode;
1019 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1020 sb_set_blocksize(s, block_size(bdev));
1021 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1022 if (error) {
1023 deactivate_locked_super(s);
1024 goto error;
1025 }
1026
1027 s->s_flags |= MS_ACTIVE;
1028 bdev->bd_super = s;
1029 }
1030
1031 return dget(s->s_root);
1032
1033 error_s:
1034 error = PTR_ERR(s);
1035 error_bdev:
1036 blkdev_put(bdev, mode);
1037 error:
1038 return ERR_PTR(error);
1039 }
1040 EXPORT_SYMBOL(mount_bdev);
1041
kill_block_super(struct super_block * sb)1042 void kill_block_super(struct super_block *sb)
1043 {
1044 struct block_device *bdev = sb->s_bdev;
1045 fmode_t mode = sb->s_mode;
1046
1047 bdev->bd_super = NULL;
1048 generic_shutdown_super(sb);
1049 sync_blockdev(bdev);
1050 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1051 blkdev_put(bdev, mode | FMODE_EXCL);
1052 }
1053
1054 EXPORT_SYMBOL(kill_block_super);
1055 #endif
1056
mount_nodev(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1057 struct dentry *mount_nodev(struct file_system_type *fs_type,
1058 int flags, void *data,
1059 int (*fill_super)(struct super_block *, void *, int))
1060 {
1061 int error;
1062 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1063
1064 if (IS_ERR(s))
1065 return ERR_CAST(s);
1066
1067 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1068 if (error) {
1069 deactivate_locked_super(s);
1070 return ERR_PTR(error);
1071 }
1072 s->s_flags |= MS_ACTIVE;
1073 return dget(s->s_root);
1074 }
1075 EXPORT_SYMBOL(mount_nodev);
1076
compare_single(struct super_block * s,void * p)1077 static int compare_single(struct super_block *s, void *p)
1078 {
1079 return 1;
1080 }
1081
mount_single(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1082 struct dentry *mount_single(struct file_system_type *fs_type,
1083 int flags, void *data,
1084 int (*fill_super)(struct super_block *, void *, int))
1085 {
1086 struct super_block *s;
1087 int error;
1088
1089 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1090 if (IS_ERR(s))
1091 return ERR_CAST(s);
1092 if (!s->s_root) {
1093 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1094 if (error) {
1095 deactivate_locked_super(s);
1096 return ERR_PTR(error);
1097 }
1098 s->s_flags |= MS_ACTIVE;
1099 } else {
1100 do_remount_sb(s, flags, data, 0);
1101 }
1102 return dget(s->s_root);
1103 }
1104 EXPORT_SYMBOL(mount_single);
1105
1106 struct dentry *
mount_fs(struct file_system_type * type,int flags,const char * name,struct vfsmount * mnt,void * data)1107 mount_fs(struct file_system_type *type, int flags, const char *name, struct vfsmount *mnt, void *data)
1108 {
1109 struct dentry *root;
1110 struct super_block *sb;
1111 char *secdata = NULL;
1112 int error = -ENOMEM;
1113
1114 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1115 secdata = alloc_secdata();
1116 if (!secdata)
1117 goto out;
1118
1119 error = security_sb_copy_data(data, secdata);
1120 if (error)
1121 goto out_free_secdata;
1122 }
1123
1124 if (type->mount2)
1125 root = type->mount2(mnt, type, flags, name, data);
1126 else
1127 root = type->mount(type, flags, name, data);
1128 if (IS_ERR(root)) {
1129 error = PTR_ERR(root);
1130 goto out_free_secdata;
1131 }
1132 sb = root->d_sb;
1133 BUG_ON(!sb);
1134 WARN_ON(!sb->s_bdi);
1135 WARN_ON(sb->s_bdi == &default_backing_dev_info);
1136 sb->s_flags |= MS_BORN;
1137
1138 error = security_sb_kern_mount(sb, flags, secdata);
1139 if (error)
1140 goto out_sb;
1141
1142 /*
1143 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1144 * but s_maxbytes was an unsigned long long for many releases. Throw
1145 * this warning for a little while to try and catch filesystems that
1146 * violate this rule.
1147 */
1148 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1149 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1150
1151 up_write(&sb->s_umount);
1152 free_secdata(secdata);
1153 return root;
1154 out_sb:
1155 dput(root);
1156 deactivate_locked_super(sb);
1157 out_free_secdata:
1158 free_secdata(secdata);
1159 out:
1160 return ERR_PTR(error);
1161 }
1162
1163 /*
1164 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1165 * instead.
1166 */
__sb_end_write(struct super_block * sb,int level)1167 void __sb_end_write(struct super_block *sb, int level)
1168 {
1169 percpu_counter_dec(&sb->s_writers.counter[level-1]);
1170 /*
1171 * Make sure s_writers are updated before we wake up waiters in
1172 * freeze_super().
1173 */
1174 smp_mb();
1175 if (waitqueue_active(&sb->s_writers.wait))
1176 wake_up(&sb->s_writers.wait);
1177 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_);
1178 }
1179 EXPORT_SYMBOL(__sb_end_write);
1180
1181 #ifdef CONFIG_LOCKDEP
1182 /*
1183 * We want lockdep to tell us about possible deadlocks with freezing but
1184 * it's it bit tricky to properly instrument it. Getting a freeze protection
1185 * works as getting a read lock but there are subtle problems. XFS for example
1186 * gets freeze protection on internal level twice in some cases, which is OK
1187 * only because we already hold a freeze protection also on higher level. Due
1188 * to these cases we have to tell lockdep we are doing trylock when we
1189 * already hold a freeze protection for a higher freeze level.
1190 */
acquire_freeze_lock(struct super_block * sb,int level,bool trylock,unsigned long ip)1191 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock,
1192 unsigned long ip)
1193 {
1194 int i;
1195
1196 if (!trylock) {
1197 for (i = 0; i < level - 1; i++)
1198 if (lock_is_held(&sb->s_writers.lock_map[i])) {
1199 trylock = true;
1200 break;
1201 }
1202 }
1203 rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip);
1204 }
1205 #endif
1206
1207 /*
1208 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1209 * instead.
1210 */
__sb_start_write(struct super_block * sb,int level,bool wait)1211 int __sb_start_write(struct super_block *sb, int level, bool wait)
1212 {
1213 retry:
1214 if (unlikely(sb->s_writers.frozen >= level)) {
1215 if (!wait)
1216 return 0;
1217 wait_event(sb->s_writers.wait_unfrozen,
1218 sb->s_writers.frozen < level);
1219 }
1220
1221 #ifdef CONFIG_LOCKDEP
1222 acquire_freeze_lock(sb, level, !wait, _RET_IP_);
1223 #endif
1224 percpu_counter_inc(&sb->s_writers.counter[level-1]);
1225 /*
1226 * Make sure counter is updated before we check for frozen.
1227 * freeze_super() first sets frozen and then checks the counter.
1228 */
1229 smp_mb();
1230 if (unlikely(sb->s_writers.frozen >= level)) {
1231 __sb_end_write(sb, level);
1232 goto retry;
1233 }
1234 return 1;
1235 }
1236 EXPORT_SYMBOL(__sb_start_write);
1237
1238 /**
1239 * sb_wait_write - wait until all writers to given file system finish
1240 * @sb: the super for which we wait
1241 * @level: type of writers we wait for (normal vs page fault)
1242 *
1243 * This function waits until there are no writers of given type to given file
1244 * system. Caller of this function should make sure there can be no new writers
1245 * of type @level before calling this function. Otherwise this function can
1246 * livelock.
1247 */
sb_wait_write(struct super_block * sb,int level)1248 static void sb_wait_write(struct super_block *sb, int level)
1249 {
1250 s64 writers;
1251
1252 /*
1253 * We just cycle-through lockdep here so that it does not complain
1254 * about returning with lock to userspace
1255 */
1256 rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_);
1257 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_);
1258
1259 do {
1260 DEFINE_WAIT(wait);
1261
1262 /*
1263 * We use a barrier in prepare_to_wait() to separate setting
1264 * of frozen and checking of the counter
1265 */
1266 prepare_to_wait(&sb->s_writers.wait, &wait,
1267 TASK_UNINTERRUPTIBLE);
1268
1269 writers = percpu_counter_sum(&sb->s_writers.counter[level-1]);
1270 if (writers)
1271 schedule();
1272
1273 finish_wait(&sb->s_writers.wait, &wait);
1274 } while (writers);
1275 }
1276
1277 /**
1278 * freeze_super - lock the filesystem and force it into a consistent state
1279 * @sb: the super to lock
1280 *
1281 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1282 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1283 * -EBUSY.
1284 *
1285 * During this function, sb->s_writers.frozen goes through these values:
1286 *
1287 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1288 *
1289 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1290 * writes should be blocked, though page faults are still allowed. We wait for
1291 * all writes to complete and then proceed to the next stage.
1292 *
1293 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1294 * but internal fs threads can still modify the filesystem (although they
1295 * should not dirty new pages or inodes), writeback can run etc. After waiting
1296 * for all running page faults we sync the filesystem which will clean all
1297 * dirty pages and inodes (no new dirty pages or inodes can be created when
1298 * sync is running).
1299 *
1300 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1301 * modification are blocked (e.g. XFS preallocation truncation on inode
1302 * reclaim). This is usually implemented by blocking new transactions for
1303 * filesystems that have them and need this additional guard. After all
1304 * internal writers are finished we call ->freeze_fs() to finish filesystem
1305 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1306 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1307 *
1308 * sb->s_writers.frozen is protected by sb->s_umount.
1309 */
freeze_super(struct super_block * sb)1310 int freeze_super(struct super_block *sb)
1311 {
1312 int ret;
1313
1314 atomic_inc(&sb->s_active);
1315 down_write(&sb->s_umount);
1316 if (sb->s_writers.frozen != SB_UNFROZEN) {
1317 deactivate_locked_super(sb);
1318 return -EBUSY;
1319 }
1320
1321 if (!(sb->s_flags & MS_BORN)) {
1322 up_write(&sb->s_umount);
1323 return 0; /* sic - it's "nothing to do" */
1324 }
1325
1326 if (sb->s_flags & MS_RDONLY) {
1327 /* Nothing to do really... */
1328 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1329 up_write(&sb->s_umount);
1330 return 0;
1331 }
1332
1333 /* From now on, no new normal writers can start */
1334 sb->s_writers.frozen = SB_FREEZE_WRITE;
1335 smp_wmb();
1336
1337 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1338 up_write(&sb->s_umount);
1339
1340 sb_wait_write(sb, SB_FREEZE_WRITE);
1341
1342 /* Now we go and block page faults... */
1343 down_write(&sb->s_umount);
1344 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1345 smp_wmb();
1346
1347 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1348
1349 /* All writers are done so after syncing there won't be dirty data */
1350 sync_filesystem(sb);
1351
1352 /* Now wait for internal filesystem counter */
1353 sb->s_writers.frozen = SB_FREEZE_FS;
1354 smp_wmb();
1355 sb_wait_write(sb, SB_FREEZE_FS);
1356
1357 if (sb->s_op->freeze_fs) {
1358 ret = sb->s_op->freeze_fs(sb);
1359 if (ret) {
1360 printk(KERN_ERR
1361 "VFS:Filesystem freeze failed\n");
1362 sb->s_writers.frozen = SB_UNFROZEN;
1363 smp_wmb();
1364 wake_up(&sb->s_writers.wait_unfrozen);
1365 deactivate_locked_super(sb);
1366 return ret;
1367 }
1368 }
1369 /*
1370 * This is just for debugging purposes so that fs can warn if it
1371 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1372 */
1373 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1374 up_write(&sb->s_umount);
1375 return 0;
1376 }
1377 EXPORT_SYMBOL(freeze_super);
1378
1379 /**
1380 * thaw_super -- unlock filesystem
1381 * @sb: the super to thaw
1382 *
1383 * Unlocks the filesystem and marks it writeable again after freeze_super().
1384 */
thaw_super(struct super_block * sb)1385 int thaw_super(struct super_block *sb)
1386 {
1387 int error;
1388
1389 down_write(&sb->s_umount);
1390 if (sb->s_writers.frozen == SB_UNFROZEN) {
1391 up_write(&sb->s_umount);
1392 return -EINVAL;
1393 }
1394
1395 if (sb->s_flags & MS_RDONLY)
1396 goto out;
1397
1398 if (sb->s_op->unfreeze_fs) {
1399 error = sb->s_op->unfreeze_fs(sb);
1400 if (error) {
1401 printk(KERN_ERR
1402 "VFS:Filesystem thaw failed\n");
1403 up_write(&sb->s_umount);
1404 return error;
1405 }
1406 }
1407
1408 out:
1409 sb->s_writers.frozen = SB_UNFROZEN;
1410 smp_wmb();
1411 wake_up(&sb->s_writers.wait_unfrozen);
1412 deactivate_locked_super(sb);
1413
1414 return 0;
1415 }
1416 EXPORT_SYMBOL(thaw_super);
1417