1 /*
2 * fs/f2fs/node.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include <trace/events/f2fs.h>
23
24 static struct kmem_cache *nat_entry_slab;
25 static struct kmem_cache *free_nid_slab;
26
clear_node_page_dirty(struct page * page)27 static void clear_node_page_dirty(struct page *page)
28 {
29 struct address_space *mapping = page->mapping;
30 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
31 unsigned int long flags;
32
33 if (PageDirty(page)) {
34 spin_lock_irqsave(&mapping->tree_lock, flags);
35 radix_tree_tag_clear(&mapping->page_tree,
36 page_index(page),
37 PAGECACHE_TAG_DIRTY);
38 spin_unlock_irqrestore(&mapping->tree_lock, flags);
39
40 clear_page_dirty_for_io(page);
41 dec_page_count(sbi, F2FS_DIRTY_NODES);
42 }
43 ClearPageUptodate(page);
44 }
45
get_current_nat_page(struct f2fs_sb_info * sbi,nid_t nid)46 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
47 {
48 pgoff_t index = current_nat_addr(sbi, nid);
49 return get_meta_page(sbi, index);
50 }
51
get_next_nat_page(struct f2fs_sb_info * sbi,nid_t nid)52 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
53 {
54 struct page *src_page;
55 struct page *dst_page;
56 pgoff_t src_off;
57 pgoff_t dst_off;
58 void *src_addr;
59 void *dst_addr;
60 struct f2fs_nm_info *nm_i = NM_I(sbi);
61
62 src_off = current_nat_addr(sbi, nid);
63 dst_off = next_nat_addr(sbi, src_off);
64
65 /* get current nat block page with lock */
66 src_page = get_meta_page(sbi, src_off);
67
68 /* Dirty src_page means that it is already the new target NAT page. */
69 if (PageDirty(src_page))
70 return src_page;
71
72 dst_page = grab_meta_page(sbi, dst_off);
73
74 src_addr = page_address(src_page);
75 dst_addr = page_address(dst_page);
76 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
77 set_page_dirty(dst_page);
78 f2fs_put_page(src_page, 1);
79
80 set_to_next_nat(nm_i, nid);
81
82 return dst_page;
83 }
84
85 /*
86 * Readahead NAT pages
87 */
ra_nat_pages(struct f2fs_sb_info * sbi,int nid)88 static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid)
89 {
90 struct address_space *mapping = sbi->meta_inode->i_mapping;
91 struct f2fs_nm_info *nm_i = NM_I(sbi);
92 struct blk_plug plug;
93 struct page *page;
94 pgoff_t index;
95 int i;
96
97 blk_start_plug(&plug);
98
99 for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) {
100 if (nid >= nm_i->max_nid)
101 nid = 0;
102 index = current_nat_addr(sbi, nid);
103
104 page = grab_cache_page(mapping, index);
105 if (!page)
106 continue;
107 if (PageUptodate(page)) {
108 f2fs_put_page(page, 1);
109 continue;
110 }
111 if (f2fs_readpage(sbi, page, index, READ))
112 continue;
113
114 f2fs_put_page(page, 0);
115 }
116 blk_finish_plug(&plug);
117 }
118
__lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t n)119 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
120 {
121 return radix_tree_lookup(&nm_i->nat_root, n);
122 }
123
__gang_lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry ** ep)124 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
125 nid_t start, unsigned int nr, struct nat_entry **ep)
126 {
127 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
128 }
129
__del_from_nat_cache(struct f2fs_nm_info * nm_i,struct nat_entry * e)130 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
131 {
132 list_del(&e->list);
133 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
134 nm_i->nat_cnt--;
135 kmem_cache_free(nat_entry_slab, e);
136 }
137
is_checkpointed_node(struct f2fs_sb_info * sbi,nid_t nid)138 int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
139 {
140 struct f2fs_nm_info *nm_i = NM_I(sbi);
141 struct nat_entry *e;
142 int is_cp = 1;
143
144 read_lock(&nm_i->nat_tree_lock);
145 e = __lookup_nat_cache(nm_i, nid);
146 if (e && !e->checkpointed)
147 is_cp = 0;
148 read_unlock(&nm_i->nat_tree_lock);
149 return is_cp;
150 }
151
grab_nat_entry(struct f2fs_nm_info * nm_i,nid_t nid)152 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
153 {
154 struct nat_entry *new;
155
156 new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
157 if (!new)
158 return NULL;
159 if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
160 kmem_cache_free(nat_entry_slab, new);
161 return NULL;
162 }
163 memset(new, 0, sizeof(struct nat_entry));
164 nat_set_nid(new, nid);
165 list_add_tail(&new->list, &nm_i->nat_entries);
166 nm_i->nat_cnt++;
167 return new;
168 }
169
cache_nat_entry(struct f2fs_nm_info * nm_i,nid_t nid,struct f2fs_nat_entry * ne)170 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
171 struct f2fs_nat_entry *ne)
172 {
173 struct nat_entry *e;
174 retry:
175 write_lock(&nm_i->nat_tree_lock);
176 e = __lookup_nat_cache(nm_i, nid);
177 if (!e) {
178 e = grab_nat_entry(nm_i, nid);
179 if (!e) {
180 write_unlock(&nm_i->nat_tree_lock);
181 goto retry;
182 }
183 nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
184 nat_set_ino(e, le32_to_cpu(ne->ino));
185 nat_set_version(e, ne->version);
186 e->checkpointed = true;
187 }
188 write_unlock(&nm_i->nat_tree_lock);
189 }
190
set_node_addr(struct f2fs_sb_info * sbi,struct node_info * ni,block_t new_blkaddr)191 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
192 block_t new_blkaddr)
193 {
194 struct f2fs_nm_info *nm_i = NM_I(sbi);
195 struct nat_entry *e;
196 retry:
197 write_lock(&nm_i->nat_tree_lock);
198 e = __lookup_nat_cache(nm_i, ni->nid);
199 if (!e) {
200 e = grab_nat_entry(nm_i, ni->nid);
201 if (!e) {
202 write_unlock(&nm_i->nat_tree_lock);
203 goto retry;
204 }
205 e->ni = *ni;
206 e->checkpointed = true;
207 BUG_ON(ni->blk_addr == NEW_ADDR);
208 } else if (new_blkaddr == NEW_ADDR) {
209 /*
210 * when nid is reallocated,
211 * previous nat entry can be remained in nat cache.
212 * So, reinitialize it with new information.
213 */
214 e->ni = *ni;
215 BUG_ON(ni->blk_addr != NULL_ADDR);
216 }
217
218 if (new_blkaddr == NEW_ADDR)
219 e->checkpointed = false;
220
221 /* sanity check */
222 BUG_ON(nat_get_blkaddr(e) != ni->blk_addr);
223 BUG_ON(nat_get_blkaddr(e) == NULL_ADDR &&
224 new_blkaddr == NULL_ADDR);
225 BUG_ON(nat_get_blkaddr(e) == NEW_ADDR &&
226 new_blkaddr == NEW_ADDR);
227 BUG_ON(nat_get_blkaddr(e) != NEW_ADDR &&
228 nat_get_blkaddr(e) != NULL_ADDR &&
229 new_blkaddr == NEW_ADDR);
230
231 /* increament version no as node is removed */
232 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
233 unsigned char version = nat_get_version(e);
234 nat_set_version(e, inc_node_version(version));
235 }
236
237 /* change address */
238 nat_set_blkaddr(e, new_blkaddr);
239 __set_nat_cache_dirty(nm_i, e);
240 write_unlock(&nm_i->nat_tree_lock);
241 }
242
try_to_free_nats(struct f2fs_sb_info * sbi,int nr_shrink)243 static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
244 {
245 struct f2fs_nm_info *nm_i = NM_I(sbi);
246
247 if (nm_i->nat_cnt <= NM_WOUT_THRESHOLD)
248 return 0;
249
250 write_lock(&nm_i->nat_tree_lock);
251 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
252 struct nat_entry *ne;
253 ne = list_first_entry(&nm_i->nat_entries,
254 struct nat_entry, list);
255 __del_from_nat_cache(nm_i, ne);
256 nr_shrink--;
257 }
258 write_unlock(&nm_i->nat_tree_lock);
259 return nr_shrink;
260 }
261
262 /*
263 * This function returns always success
264 */
get_node_info(struct f2fs_sb_info * sbi,nid_t nid,struct node_info * ni)265 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
266 {
267 struct f2fs_nm_info *nm_i = NM_I(sbi);
268 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
269 struct f2fs_summary_block *sum = curseg->sum_blk;
270 nid_t start_nid = START_NID(nid);
271 struct f2fs_nat_block *nat_blk;
272 struct page *page = NULL;
273 struct f2fs_nat_entry ne;
274 struct nat_entry *e;
275 int i;
276
277 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
278 ni->nid = nid;
279
280 /* Check nat cache */
281 read_lock(&nm_i->nat_tree_lock);
282 e = __lookup_nat_cache(nm_i, nid);
283 if (e) {
284 ni->ino = nat_get_ino(e);
285 ni->blk_addr = nat_get_blkaddr(e);
286 ni->version = nat_get_version(e);
287 }
288 read_unlock(&nm_i->nat_tree_lock);
289 if (e)
290 return;
291
292 /* Check current segment summary */
293 mutex_lock(&curseg->curseg_mutex);
294 i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
295 if (i >= 0) {
296 ne = nat_in_journal(sum, i);
297 node_info_from_raw_nat(ni, &ne);
298 }
299 mutex_unlock(&curseg->curseg_mutex);
300 if (i >= 0)
301 goto cache;
302
303 /* Fill node_info from nat page */
304 page = get_current_nat_page(sbi, start_nid);
305 nat_blk = (struct f2fs_nat_block *)page_address(page);
306 ne = nat_blk->entries[nid - start_nid];
307 node_info_from_raw_nat(ni, &ne);
308 f2fs_put_page(page, 1);
309 cache:
310 /* cache nat entry */
311 cache_nat_entry(NM_I(sbi), nid, &ne);
312 }
313
314 /*
315 * The maximum depth is four.
316 * Offset[0] will have raw inode offset.
317 */
get_node_path(long block,int offset[4],unsigned int noffset[4])318 static int get_node_path(long block, int offset[4], unsigned int noffset[4])
319 {
320 const long direct_index = ADDRS_PER_INODE;
321 const long direct_blks = ADDRS_PER_BLOCK;
322 const long dptrs_per_blk = NIDS_PER_BLOCK;
323 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
324 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
325 int n = 0;
326 int level = 0;
327
328 noffset[0] = 0;
329
330 if (block < direct_index) {
331 offset[n] = block;
332 goto got;
333 }
334 block -= direct_index;
335 if (block < direct_blks) {
336 offset[n++] = NODE_DIR1_BLOCK;
337 noffset[n] = 1;
338 offset[n] = block;
339 level = 1;
340 goto got;
341 }
342 block -= direct_blks;
343 if (block < direct_blks) {
344 offset[n++] = NODE_DIR2_BLOCK;
345 noffset[n] = 2;
346 offset[n] = block;
347 level = 1;
348 goto got;
349 }
350 block -= direct_blks;
351 if (block < indirect_blks) {
352 offset[n++] = NODE_IND1_BLOCK;
353 noffset[n] = 3;
354 offset[n++] = block / direct_blks;
355 noffset[n] = 4 + offset[n - 1];
356 offset[n] = block % direct_blks;
357 level = 2;
358 goto got;
359 }
360 block -= indirect_blks;
361 if (block < indirect_blks) {
362 offset[n++] = NODE_IND2_BLOCK;
363 noffset[n] = 4 + dptrs_per_blk;
364 offset[n++] = block / direct_blks;
365 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
366 offset[n] = block % direct_blks;
367 level = 2;
368 goto got;
369 }
370 block -= indirect_blks;
371 if (block < dindirect_blks) {
372 offset[n++] = NODE_DIND_BLOCK;
373 noffset[n] = 5 + (dptrs_per_blk * 2);
374 offset[n++] = block / indirect_blks;
375 noffset[n] = 6 + (dptrs_per_blk * 2) +
376 offset[n - 1] * (dptrs_per_blk + 1);
377 offset[n++] = (block / direct_blks) % dptrs_per_blk;
378 noffset[n] = 7 + (dptrs_per_blk * 2) +
379 offset[n - 2] * (dptrs_per_blk + 1) +
380 offset[n - 1];
381 offset[n] = block % direct_blks;
382 level = 3;
383 goto got;
384 } else {
385 BUG();
386 }
387 got:
388 return level;
389 }
390
391 /*
392 * Caller should call f2fs_put_dnode(dn).
393 * Also, it should grab and release a mutex by calling mutex_lock_op() and
394 * mutex_unlock_op() only if ro is not set RDONLY_NODE.
395 * In the case of RDONLY_NODE, we don't need to care about mutex.
396 */
get_dnode_of_data(struct dnode_of_data * dn,pgoff_t index,int mode)397 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
398 {
399 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
400 struct page *npage[4];
401 struct page *parent;
402 int offset[4];
403 unsigned int noffset[4];
404 nid_t nids[4];
405 int level, i;
406 int err = 0;
407
408 level = get_node_path(index, offset, noffset);
409
410 nids[0] = dn->inode->i_ino;
411 npage[0] = get_node_page(sbi, nids[0]);
412 if (IS_ERR(npage[0]))
413 return PTR_ERR(npage[0]);
414
415 parent = npage[0];
416 if (level != 0)
417 nids[1] = get_nid(parent, offset[0], true);
418 dn->inode_page = npage[0];
419 dn->inode_page_locked = true;
420
421 /* get indirect or direct nodes */
422 for (i = 1; i <= level; i++) {
423 bool done = false;
424
425 if (!nids[i] && mode == ALLOC_NODE) {
426 /* alloc new node */
427 if (!alloc_nid(sbi, &(nids[i]))) {
428 err = -ENOSPC;
429 goto release_pages;
430 }
431
432 dn->nid = nids[i];
433 npage[i] = new_node_page(dn, noffset[i]);
434 if (IS_ERR(npage[i])) {
435 alloc_nid_failed(sbi, nids[i]);
436 err = PTR_ERR(npage[i]);
437 goto release_pages;
438 }
439
440 set_nid(parent, offset[i - 1], nids[i], i == 1);
441 alloc_nid_done(sbi, nids[i]);
442 done = true;
443 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
444 npage[i] = get_node_page_ra(parent, offset[i - 1]);
445 if (IS_ERR(npage[i])) {
446 err = PTR_ERR(npage[i]);
447 goto release_pages;
448 }
449 done = true;
450 }
451 if (i == 1) {
452 dn->inode_page_locked = false;
453 unlock_page(parent);
454 } else {
455 f2fs_put_page(parent, 1);
456 }
457
458 if (!done) {
459 npage[i] = get_node_page(sbi, nids[i]);
460 if (IS_ERR(npage[i])) {
461 err = PTR_ERR(npage[i]);
462 f2fs_put_page(npage[0], 0);
463 goto release_out;
464 }
465 }
466 if (i < level) {
467 parent = npage[i];
468 nids[i + 1] = get_nid(parent, offset[i], false);
469 }
470 }
471 dn->nid = nids[level];
472 dn->ofs_in_node = offset[level];
473 dn->node_page = npage[level];
474 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
475 return 0;
476
477 release_pages:
478 f2fs_put_page(parent, 1);
479 if (i > 1)
480 f2fs_put_page(npage[0], 0);
481 release_out:
482 dn->inode_page = NULL;
483 dn->node_page = NULL;
484 return err;
485 }
486
truncate_node(struct dnode_of_data * dn)487 static void truncate_node(struct dnode_of_data *dn)
488 {
489 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
490 struct node_info ni;
491
492 get_node_info(sbi, dn->nid, &ni);
493 if (dn->inode->i_blocks == 0) {
494 BUG_ON(ni.blk_addr != NULL_ADDR);
495 goto invalidate;
496 }
497 BUG_ON(ni.blk_addr == NULL_ADDR);
498
499 /* Deallocate node address */
500 invalidate_blocks(sbi, ni.blk_addr);
501 dec_valid_node_count(sbi, dn->inode, 1);
502 set_node_addr(sbi, &ni, NULL_ADDR);
503
504 if (dn->nid == dn->inode->i_ino) {
505 remove_orphan_inode(sbi, dn->nid);
506 dec_valid_inode_count(sbi);
507 } else {
508 sync_inode_page(dn);
509 }
510 invalidate:
511 clear_node_page_dirty(dn->node_page);
512 F2FS_SET_SB_DIRT(sbi);
513
514 f2fs_put_page(dn->node_page, 1);
515 dn->node_page = NULL;
516 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
517 }
518
truncate_dnode(struct dnode_of_data * dn)519 static int truncate_dnode(struct dnode_of_data *dn)
520 {
521 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
522 struct page *page;
523
524 if (dn->nid == 0)
525 return 1;
526
527 /* get direct node */
528 page = get_node_page(sbi, dn->nid);
529 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
530 return 1;
531 else if (IS_ERR(page))
532 return PTR_ERR(page);
533
534 /* Make dnode_of_data for parameter */
535 dn->node_page = page;
536 dn->ofs_in_node = 0;
537 truncate_data_blocks(dn);
538 truncate_node(dn);
539 return 1;
540 }
541
truncate_nodes(struct dnode_of_data * dn,unsigned int nofs,int ofs,int depth)542 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
543 int ofs, int depth)
544 {
545 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
546 struct dnode_of_data rdn = *dn;
547 struct page *page;
548 struct f2fs_node *rn;
549 nid_t child_nid;
550 unsigned int child_nofs;
551 int freed = 0;
552 int i, ret;
553
554 if (dn->nid == 0)
555 return NIDS_PER_BLOCK + 1;
556
557 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
558
559 page = get_node_page(sbi, dn->nid);
560 if (IS_ERR(page)) {
561 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
562 return PTR_ERR(page);
563 }
564
565 rn = (struct f2fs_node *)page_address(page);
566 if (depth < 3) {
567 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
568 child_nid = le32_to_cpu(rn->in.nid[i]);
569 if (child_nid == 0)
570 continue;
571 rdn.nid = child_nid;
572 ret = truncate_dnode(&rdn);
573 if (ret < 0)
574 goto out_err;
575 set_nid(page, i, 0, false);
576 }
577 } else {
578 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
579 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
580 child_nid = le32_to_cpu(rn->in.nid[i]);
581 if (child_nid == 0) {
582 child_nofs += NIDS_PER_BLOCK + 1;
583 continue;
584 }
585 rdn.nid = child_nid;
586 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
587 if (ret == (NIDS_PER_BLOCK + 1)) {
588 set_nid(page, i, 0, false);
589 child_nofs += ret;
590 } else if (ret < 0 && ret != -ENOENT) {
591 goto out_err;
592 }
593 }
594 freed = child_nofs;
595 }
596
597 if (!ofs) {
598 /* remove current indirect node */
599 dn->node_page = page;
600 truncate_node(dn);
601 freed++;
602 } else {
603 f2fs_put_page(page, 1);
604 }
605 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
606 return freed;
607
608 out_err:
609 f2fs_put_page(page, 1);
610 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
611 return ret;
612 }
613
truncate_partial_nodes(struct dnode_of_data * dn,struct f2fs_inode * ri,int * offset,int depth)614 static int truncate_partial_nodes(struct dnode_of_data *dn,
615 struct f2fs_inode *ri, int *offset, int depth)
616 {
617 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
618 struct page *pages[2];
619 nid_t nid[3];
620 nid_t child_nid;
621 int err = 0;
622 int i;
623 int idx = depth - 2;
624
625 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
626 if (!nid[0])
627 return 0;
628
629 /* get indirect nodes in the path */
630 for (i = 0; i < depth - 1; i++) {
631 /* refernece count'll be increased */
632 pages[i] = get_node_page(sbi, nid[i]);
633 if (IS_ERR(pages[i])) {
634 depth = i + 1;
635 err = PTR_ERR(pages[i]);
636 goto fail;
637 }
638 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
639 }
640
641 /* free direct nodes linked to a partial indirect node */
642 for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) {
643 child_nid = get_nid(pages[idx], i, false);
644 if (!child_nid)
645 continue;
646 dn->nid = child_nid;
647 err = truncate_dnode(dn);
648 if (err < 0)
649 goto fail;
650 set_nid(pages[idx], i, 0, false);
651 }
652
653 if (offset[depth - 1] == 0) {
654 dn->node_page = pages[idx];
655 dn->nid = nid[idx];
656 truncate_node(dn);
657 } else {
658 f2fs_put_page(pages[idx], 1);
659 }
660 offset[idx]++;
661 offset[depth - 1] = 0;
662 fail:
663 for (i = depth - 3; i >= 0; i--)
664 f2fs_put_page(pages[i], 1);
665
666 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
667
668 return err;
669 }
670
671 /*
672 * All the block addresses of data and nodes should be nullified.
673 */
truncate_inode_blocks(struct inode * inode,pgoff_t from)674 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
675 {
676 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
677 struct address_space *node_mapping = sbi->node_inode->i_mapping;
678 int err = 0, cont = 1;
679 int level, offset[4], noffset[4];
680 unsigned int nofs = 0;
681 struct f2fs_node *rn;
682 struct dnode_of_data dn;
683 struct page *page;
684
685 trace_f2fs_truncate_inode_blocks_enter(inode, from);
686
687 level = get_node_path(from, offset, noffset);
688 restart:
689 page = get_node_page(sbi, inode->i_ino);
690 if (IS_ERR(page)) {
691 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
692 return PTR_ERR(page);
693 }
694
695 set_new_dnode(&dn, inode, page, NULL, 0);
696 unlock_page(page);
697
698 rn = page_address(page);
699 switch (level) {
700 case 0:
701 case 1:
702 nofs = noffset[1];
703 break;
704 case 2:
705 nofs = noffset[1];
706 if (!offset[level - 1])
707 goto skip_partial;
708 err = truncate_partial_nodes(&dn, &rn->i, offset, level);
709 if (err < 0 && err != -ENOENT)
710 goto fail;
711 nofs += 1 + NIDS_PER_BLOCK;
712 break;
713 case 3:
714 nofs = 5 + 2 * NIDS_PER_BLOCK;
715 if (!offset[level - 1])
716 goto skip_partial;
717 err = truncate_partial_nodes(&dn, &rn->i, offset, level);
718 if (err < 0 && err != -ENOENT)
719 goto fail;
720 break;
721 default:
722 BUG();
723 }
724
725 skip_partial:
726 while (cont) {
727 dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]);
728 switch (offset[0]) {
729 case NODE_DIR1_BLOCK:
730 case NODE_DIR2_BLOCK:
731 err = truncate_dnode(&dn);
732 break;
733
734 case NODE_IND1_BLOCK:
735 case NODE_IND2_BLOCK:
736 err = truncate_nodes(&dn, nofs, offset[1], 2);
737 break;
738
739 case NODE_DIND_BLOCK:
740 err = truncate_nodes(&dn, nofs, offset[1], 3);
741 cont = 0;
742 break;
743
744 default:
745 BUG();
746 }
747 if (err < 0 && err != -ENOENT)
748 goto fail;
749 if (offset[1] == 0 &&
750 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) {
751 lock_page(page);
752 if (page->mapping != node_mapping) {
753 f2fs_put_page(page, 1);
754 goto restart;
755 }
756 wait_on_page_writeback(page);
757 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
758 set_page_dirty(page);
759 unlock_page(page);
760 }
761 offset[1] = 0;
762 offset[0]++;
763 nofs += err;
764 }
765 fail:
766 f2fs_put_page(page, 0);
767 trace_f2fs_truncate_inode_blocks_exit(inode, err);
768 return err > 0 ? 0 : err;
769 }
770
771 /*
772 * Caller should grab and release a mutex by calling mutex_lock_op() and
773 * mutex_unlock_op().
774 */
remove_inode_page(struct inode * inode)775 int remove_inode_page(struct inode *inode)
776 {
777 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
778 struct page *page;
779 nid_t ino = inode->i_ino;
780 struct dnode_of_data dn;
781
782 page = get_node_page(sbi, ino);
783 if (IS_ERR(page))
784 return PTR_ERR(page);
785
786 if (F2FS_I(inode)->i_xattr_nid) {
787 nid_t nid = F2FS_I(inode)->i_xattr_nid;
788 struct page *npage = get_node_page(sbi, nid);
789
790 if (IS_ERR(npage))
791 return PTR_ERR(npage);
792
793 F2FS_I(inode)->i_xattr_nid = 0;
794 set_new_dnode(&dn, inode, page, npage, nid);
795 dn.inode_page_locked = 1;
796 truncate_node(&dn);
797 }
798
799 /* 0 is possible, after f2fs_new_inode() is failed */
800 BUG_ON(inode->i_blocks != 0 && inode->i_blocks != 1);
801 set_new_dnode(&dn, inode, page, page, ino);
802 truncate_node(&dn);
803 return 0;
804 }
805
new_inode_page(struct inode * inode,const struct qstr * name)806 int new_inode_page(struct inode *inode, const struct qstr *name)
807 {
808 struct page *page;
809 struct dnode_of_data dn;
810
811 /* allocate inode page for new inode */
812 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
813 page = new_node_page(&dn, 0);
814 init_dent_inode(name, page);
815 if (IS_ERR(page))
816 return PTR_ERR(page);
817 f2fs_put_page(page, 1);
818 return 0;
819 }
820
new_node_page(struct dnode_of_data * dn,unsigned int ofs)821 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs)
822 {
823 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
824 struct address_space *mapping = sbi->node_inode->i_mapping;
825 struct node_info old_ni, new_ni;
826 struct page *page;
827 int err;
828
829 if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
830 return ERR_PTR(-EPERM);
831
832 page = grab_cache_page(mapping, dn->nid);
833 if (!page)
834 return ERR_PTR(-ENOMEM);
835
836 get_node_info(sbi, dn->nid, &old_ni);
837
838 SetPageUptodate(page);
839 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
840
841 /* Reinitialize old_ni with new node page */
842 BUG_ON(old_ni.blk_addr != NULL_ADDR);
843 new_ni = old_ni;
844 new_ni.ino = dn->inode->i_ino;
845
846 if (!inc_valid_node_count(sbi, dn->inode, 1)) {
847 err = -ENOSPC;
848 goto fail;
849 }
850 set_node_addr(sbi, &new_ni, NEW_ADDR);
851 set_cold_node(dn->inode, page);
852
853 dn->node_page = page;
854 sync_inode_page(dn);
855 set_page_dirty(page);
856 if (ofs == 0)
857 inc_valid_inode_count(sbi);
858
859 return page;
860
861 fail:
862 clear_node_page_dirty(page);
863 f2fs_put_page(page, 1);
864 return ERR_PTR(err);
865 }
866
867 /*
868 * Caller should do after getting the following values.
869 * 0: f2fs_put_page(page, 0)
870 * LOCKED_PAGE: f2fs_put_page(page, 1)
871 * error: nothing
872 */
read_node_page(struct page * page,int type)873 static int read_node_page(struct page *page, int type)
874 {
875 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
876 struct node_info ni;
877
878 get_node_info(sbi, page->index, &ni);
879
880 if (ni.blk_addr == NULL_ADDR) {
881 f2fs_put_page(page, 1);
882 return -ENOENT;
883 }
884
885 if (PageUptodate(page))
886 return LOCKED_PAGE;
887
888 return f2fs_readpage(sbi, page, ni.blk_addr, type);
889 }
890
891 /*
892 * Readahead a node page
893 */
ra_node_page(struct f2fs_sb_info * sbi,nid_t nid)894 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
895 {
896 struct address_space *mapping = sbi->node_inode->i_mapping;
897 struct page *apage;
898 int err;
899
900 apage = find_get_page(mapping, nid);
901 if (apage && PageUptodate(apage)) {
902 f2fs_put_page(apage, 0);
903 return;
904 }
905 f2fs_put_page(apage, 0);
906
907 apage = grab_cache_page(mapping, nid);
908 if (!apage)
909 return;
910
911 err = read_node_page(apage, READA);
912 if (err == 0)
913 f2fs_put_page(apage, 0);
914 else if (err == LOCKED_PAGE)
915 f2fs_put_page(apage, 1);
916 return;
917 }
918
get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid)919 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
920 {
921 struct address_space *mapping = sbi->node_inode->i_mapping;
922 struct page *page;
923 int err;
924 repeat:
925 page = grab_cache_page(mapping, nid);
926 if (!page)
927 return ERR_PTR(-ENOMEM);
928
929 err = read_node_page(page, READ_SYNC);
930 if (err < 0)
931 return ERR_PTR(err);
932 else if (err == LOCKED_PAGE)
933 goto got_it;
934
935 lock_page(page);
936 if (!PageUptodate(page)) {
937 f2fs_put_page(page, 1);
938 return ERR_PTR(-EIO);
939 }
940 if (page->mapping != mapping) {
941 f2fs_put_page(page, 1);
942 goto repeat;
943 }
944 got_it:
945 BUG_ON(nid != nid_of_node(page));
946 mark_page_accessed(page);
947 return page;
948 }
949
950 /*
951 * Return a locked page for the desired node page.
952 * And, readahead MAX_RA_NODE number of node pages.
953 */
get_node_page_ra(struct page * parent,int start)954 struct page *get_node_page_ra(struct page *parent, int start)
955 {
956 struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
957 struct address_space *mapping = sbi->node_inode->i_mapping;
958 struct blk_plug plug;
959 struct page *page;
960 int err, i, end;
961 nid_t nid;
962
963 /* First, try getting the desired direct node. */
964 nid = get_nid(parent, start, false);
965 if (!nid)
966 return ERR_PTR(-ENOENT);
967 repeat:
968 page = grab_cache_page(mapping, nid);
969 if (!page)
970 return ERR_PTR(-ENOMEM);
971
972 err = read_node_page(page, READ_SYNC);
973 if (err < 0)
974 return ERR_PTR(err);
975 else if (err == LOCKED_PAGE)
976 goto page_hit;
977
978 blk_start_plug(&plug);
979
980 /* Then, try readahead for siblings of the desired node */
981 end = start + MAX_RA_NODE;
982 end = min(end, NIDS_PER_BLOCK);
983 for (i = start + 1; i < end; i++) {
984 nid = get_nid(parent, i, false);
985 if (!nid)
986 continue;
987 ra_node_page(sbi, nid);
988 }
989
990 blk_finish_plug(&plug);
991
992 lock_page(page);
993 if (page->mapping != mapping) {
994 f2fs_put_page(page, 1);
995 goto repeat;
996 }
997 page_hit:
998 if (!PageUptodate(page)) {
999 f2fs_put_page(page, 1);
1000 return ERR_PTR(-EIO);
1001 }
1002 mark_page_accessed(page);
1003 return page;
1004 }
1005
sync_inode_page(struct dnode_of_data * dn)1006 void sync_inode_page(struct dnode_of_data *dn)
1007 {
1008 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1009 update_inode(dn->inode, dn->node_page);
1010 } else if (dn->inode_page) {
1011 if (!dn->inode_page_locked)
1012 lock_page(dn->inode_page);
1013 update_inode(dn->inode, dn->inode_page);
1014 if (!dn->inode_page_locked)
1015 unlock_page(dn->inode_page);
1016 } else {
1017 update_inode_page(dn->inode);
1018 }
1019 }
1020
sync_node_pages(struct f2fs_sb_info * sbi,nid_t ino,struct writeback_control * wbc)1021 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1022 struct writeback_control *wbc)
1023 {
1024 struct address_space *mapping = sbi->node_inode->i_mapping;
1025 pgoff_t index, end;
1026 struct pagevec pvec;
1027 int step = ino ? 2 : 0;
1028 int nwritten = 0, wrote = 0;
1029
1030 pagevec_init(&pvec, 0);
1031
1032 next_step:
1033 index = 0;
1034 end = LONG_MAX;
1035
1036 while (index <= end) {
1037 int i, nr_pages;
1038 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1039 PAGECACHE_TAG_DIRTY,
1040 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1041 if (nr_pages == 0)
1042 break;
1043
1044 for (i = 0; i < nr_pages; i++) {
1045 struct page *page = pvec.pages[i];
1046
1047 /*
1048 * flushing sequence with step:
1049 * 0. indirect nodes
1050 * 1. dentry dnodes
1051 * 2. file dnodes
1052 */
1053 if (step == 0 && IS_DNODE(page))
1054 continue;
1055 if (step == 1 && (!IS_DNODE(page) ||
1056 is_cold_node(page)))
1057 continue;
1058 if (step == 2 && (!IS_DNODE(page) ||
1059 !is_cold_node(page)))
1060 continue;
1061
1062 /*
1063 * If an fsync mode,
1064 * we should not skip writing node pages.
1065 */
1066 if (ino && ino_of_node(page) == ino)
1067 lock_page(page);
1068 else if (!trylock_page(page))
1069 continue;
1070
1071 if (unlikely(page->mapping != mapping)) {
1072 continue_unlock:
1073 unlock_page(page);
1074 continue;
1075 }
1076 if (ino && ino_of_node(page) != ino)
1077 goto continue_unlock;
1078
1079 if (!PageDirty(page)) {
1080 /* someone wrote it for us */
1081 goto continue_unlock;
1082 }
1083
1084 if (!clear_page_dirty_for_io(page))
1085 goto continue_unlock;
1086
1087 /* called by fsync() */
1088 if (ino && IS_DNODE(page)) {
1089 int mark = !is_checkpointed_node(sbi, ino);
1090 set_fsync_mark(page, 1);
1091 if (IS_INODE(page))
1092 set_dentry_mark(page, mark);
1093 nwritten++;
1094 } else {
1095 set_fsync_mark(page, 0);
1096 set_dentry_mark(page, 0);
1097 }
1098 mapping->a_ops->writepage(page, wbc);
1099 wrote++;
1100
1101 if (--wbc->nr_to_write == 0)
1102 break;
1103 }
1104 pagevec_release(&pvec);
1105 cond_resched();
1106
1107 if (wbc->nr_to_write == 0) {
1108 step = 2;
1109 break;
1110 }
1111 }
1112
1113 if (step < 2) {
1114 step++;
1115 goto next_step;
1116 }
1117
1118 if (wrote)
1119 f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL);
1120
1121 return nwritten;
1122 }
1123
f2fs_write_node_page(struct page * page,struct writeback_control * wbc)1124 static int f2fs_write_node_page(struct page *page,
1125 struct writeback_control *wbc)
1126 {
1127 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1128 nid_t nid;
1129 block_t new_addr;
1130 struct node_info ni;
1131
1132 wait_on_page_writeback(page);
1133
1134 /* get old block addr of this node page */
1135 nid = nid_of_node(page);
1136 BUG_ON(page->index != nid);
1137
1138 get_node_info(sbi, nid, &ni);
1139
1140 /* This page is already truncated */
1141 if (ni.blk_addr == NULL_ADDR) {
1142 dec_page_count(sbi, F2FS_DIRTY_NODES);
1143 unlock_page(page);
1144 return 0;
1145 }
1146
1147 if (wbc->for_reclaim) {
1148 dec_page_count(sbi, F2FS_DIRTY_NODES);
1149 wbc->pages_skipped++;
1150 set_page_dirty(page);
1151 return AOP_WRITEPAGE_ACTIVATE;
1152 }
1153
1154 mutex_lock(&sbi->node_write);
1155 set_page_writeback(page);
1156 write_node_page(sbi, page, nid, ni.blk_addr, &new_addr);
1157 set_node_addr(sbi, &ni, new_addr);
1158 dec_page_count(sbi, F2FS_DIRTY_NODES);
1159 mutex_unlock(&sbi->node_write);
1160 unlock_page(page);
1161 return 0;
1162 }
1163
1164 /*
1165 * It is very important to gather dirty pages and write at once, so that we can
1166 * submit a big bio without interfering other data writes.
1167 * Be default, 512 pages (2MB), a segment size, is quite reasonable.
1168 */
1169 #define COLLECT_DIRTY_NODES 512
f2fs_write_node_pages(struct address_space * mapping,struct writeback_control * wbc)1170 static int f2fs_write_node_pages(struct address_space *mapping,
1171 struct writeback_control *wbc)
1172 {
1173 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1174 long nr_to_write = wbc->nr_to_write;
1175
1176 /* First check balancing cached NAT entries */
1177 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK)) {
1178 f2fs_sync_fs(sbi->sb, true);
1179 return 0;
1180 }
1181
1182 /* collect a number of dirty node pages and write together */
1183 if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES)
1184 return 0;
1185
1186 /* if mounting is failed, skip writing node pages */
1187 wbc->nr_to_write = max_hw_blocks(sbi);
1188 sync_node_pages(sbi, 0, wbc);
1189 wbc->nr_to_write = nr_to_write - (max_hw_blocks(sbi) - wbc->nr_to_write);
1190 return 0;
1191 }
1192
f2fs_set_node_page_dirty(struct page * page)1193 static int f2fs_set_node_page_dirty(struct page *page)
1194 {
1195 struct address_space *mapping = page->mapping;
1196 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1197
1198 SetPageUptodate(page);
1199 if (!PageDirty(page)) {
1200 __set_page_dirty_nobuffers(page);
1201 inc_page_count(sbi, F2FS_DIRTY_NODES);
1202 SetPagePrivate(page);
1203 return 1;
1204 }
1205 return 0;
1206 }
1207
f2fs_invalidate_node_page(struct page * page,unsigned int offset,unsigned int length)1208 static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
1209 unsigned int length)
1210 {
1211 struct inode *inode = page->mapping->host;
1212 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1213 if (PageDirty(page))
1214 dec_page_count(sbi, F2FS_DIRTY_NODES);
1215 ClearPagePrivate(page);
1216 }
1217
f2fs_release_node_page(struct page * page,gfp_t wait)1218 static int f2fs_release_node_page(struct page *page, gfp_t wait)
1219 {
1220 ClearPagePrivate(page);
1221 return 1;
1222 }
1223
1224 /*
1225 * Structure of the f2fs node operations
1226 */
1227 const struct address_space_operations f2fs_node_aops = {
1228 .writepage = f2fs_write_node_page,
1229 .writepages = f2fs_write_node_pages,
1230 .set_page_dirty = f2fs_set_node_page_dirty,
1231 .invalidatepage = f2fs_invalidate_node_page,
1232 .releasepage = f2fs_release_node_page,
1233 };
1234
__lookup_free_nid_list(nid_t n,struct list_head * head)1235 static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head)
1236 {
1237 struct list_head *this;
1238 struct free_nid *i;
1239 list_for_each(this, head) {
1240 i = list_entry(this, struct free_nid, list);
1241 if (i->nid == n)
1242 return i;
1243 }
1244 return NULL;
1245 }
1246
__del_from_free_nid_list(struct free_nid * i)1247 static void __del_from_free_nid_list(struct free_nid *i)
1248 {
1249 list_del(&i->list);
1250 kmem_cache_free(free_nid_slab, i);
1251 }
1252
add_free_nid(struct f2fs_nm_info * nm_i,nid_t nid,bool build)1253 static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid, bool build)
1254 {
1255 struct free_nid *i;
1256 struct nat_entry *ne;
1257 bool allocated = false;
1258
1259 if (nm_i->fcnt > 2 * MAX_FREE_NIDS)
1260 return -1;
1261
1262 /* 0 nid should not be used */
1263 if (nid == 0)
1264 return 0;
1265
1266 if (!build)
1267 goto retry;
1268
1269 /* do not add allocated nids */
1270 read_lock(&nm_i->nat_tree_lock);
1271 ne = __lookup_nat_cache(nm_i, nid);
1272 if (ne && nat_get_blkaddr(ne) != NULL_ADDR)
1273 allocated = true;
1274 read_unlock(&nm_i->nat_tree_lock);
1275 if (allocated)
1276 return 0;
1277 retry:
1278 i = kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1279 if (!i) {
1280 cond_resched();
1281 goto retry;
1282 }
1283 i->nid = nid;
1284 i->state = NID_NEW;
1285
1286 spin_lock(&nm_i->free_nid_list_lock);
1287 if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) {
1288 spin_unlock(&nm_i->free_nid_list_lock);
1289 kmem_cache_free(free_nid_slab, i);
1290 return 0;
1291 }
1292 list_add_tail(&i->list, &nm_i->free_nid_list);
1293 nm_i->fcnt++;
1294 spin_unlock(&nm_i->free_nid_list_lock);
1295 return 1;
1296 }
1297
remove_free_nid(struct f2fs_nm_info * nm_i,nid_t nid)1298 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1299 {
1300 struct free_nid *i;
1301 spin_lock(&nm_i->free_nid_list_lock);
1302 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1303 if (i && i->state == NID_NEW) {
1304 __del_from_free_nid_list(i);
1305 nm_i->fcnt--;
1306 }
1307 spin_unlock(&nm_i->free_nid_list_lock);
1308 }
1309
scan_nat_page(struct f2fs_nm_info * nm_i,struct page * nat_page,nid_t start_nid)1310 static void scan_nat_page(struct f2fs_nm_info *nm_i,
1311 struct page *nat_page, nid_t start_nid)
1312 {
1313 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1314 block_t blk_addr;
1315 int i;
1316
1317 i = start_nid % NAT_ENTRY_PER_BLOCK;
1318
1319 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1320
1321 if (start_nid >= nm_i->max_nid)
1322 break;
1323
1324 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1325 BUG_ON(blk_addr == NEW_ADDR);
1326 if (blk_addr == NULL_ADDR) {
1327 if (add_free_nid(nm_i, start_nid, true) < 0)
1328 break;
1329 }
1330 }
1331 }
1332
build_free_nids(struct f2fs_sb_info * sbi)1333 static void build_free_nids(struct f2fs_sb_info *sbi)
1334 {
1335 struct f2fs_nm_info *nm_i = NM_I(sbi);
1336 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1337 struct f2fs_summary_block *sum = curseg->sum_blk;
1338 int i = 0;
1339 nid_t nid = nm_i->next_scan_nid;
1340
1341 /* Enough entries */
1342 if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1343 return;
1344
1345 /* readahead nat pages to be scanned */
1346 ra_nat_pages(sbi, nid);
1347
1348 while (1) {
1349 struct page *page = get_current_nat_page(sbi, nid);
1350
1351 scan_nat_page(nm_i, page, nid);
1352 f2fs_put_page(page, 1);
1353
1354 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1355 if (nid >= nm_i->max_nid)
1356 nid = 0;
1357
1358 if (i++ == FREE_NID_PAGES)
1359 break;
1360 }
1361
1362 /* go to the next free nat pages to find free nids abundantly */
1363 nm_i->next_scan_nid = nid;
1364
1365 /* find free nids from current sum_pages */
1366 mutex_lock(&curseg->curseg_mutex);
1367 for (i = 0; i < nats_in_cursum(sum); i++) {
1368 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1369 nid = le32_to_cpu(nid_in_journal(sum, i));
1370 if (addr == NULL_ADDR)
1371 add_free_nid(nm_i, nid, true);
1372 else
1373 remove_free_nid(nm_i, nid);
1374 }
1375 mutex_unlock(&curseg->curseg_mutex);
1376 }
1377
1378 /*
1379 * If this function returns success, caller can obtain a new nid
1380 * from second parameter of this function.
1381 * The returned nid could be used ino as well as nid when inode is created.
1382 */
alloc_nid(struct f2fs_sb_info * sbi,nid_t * nid)1383 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1384 {
1385 struct f2fs_nm_info *nm_i = NM_I(sbi);
1386 struct free_nid *i = NULL;
1387 struct list_head *this;
1388 retry:
1389 if (sbi->total_valid_node_count + 1 >= nm_i->max_nid)
1390 return false;
1391
1392 spin_lock(&nm_i->free_nid_list_lock);
1393
1394 /* We should not use stale free nids created by build_free_nids */
1395 if (nm_i->fcnt && !sbi->on_build_free_nids) {
1396 BUG_ON(list_empty(&nm_i->free_nid_list));
1397 list_for_each(this, &nm_i->free_nid_list) {
1398 i = list_entry(this, struct free_nid, list);
1399 if (i->state == NID_NEW)
1400 break;
1401 }
1402
1403 BUG_ON(i->state != NID_NEW);
1404 *nid = i->nid;
1405 i->state = NID_ALLOC;
1406 nm_i->fcnt--;
1407 spin_unlock(&nm_i->free_nid_list_lock);
1408 return true;
1409 }
1410 spin_unlock(&nm_i->free_nid_list_lock);
1411
1412 /* Let's scan nat pages and its caches to get free nids */
1413 mutex_lock(&nm_i->build_lock);
1414 sbi->on_build_free_nids = 1;
1415 build_free_nids(sbi);
1416 sbi->on_build_free_nids = 0;
1417 mutex_unlock(&nm_i->build_lock);
1418 goto retry;
1419 }
1420
1421 /*
1422 * alloc_nid() should be called prior to this function.
1423 */
alloc_nid_done(struct f2fs_sb_info * sbi,nid_t nid)1424 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1425 {
1426 struct f2fs_nm_info *nm_i = NM_I(sbi);
1427 struct free_nid *i;
1428
1429 spin_lock(&nm_i->free_nid_list_lock);
1430 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1431 BUG_ON(!i || i->state != NID_ALLOC);
1432 __del_from_free_nid_list(i);
1433 spin_unlock(&nm_i->free_nid_list_lock);
1434 }
1435
1436 /*
1437 * alloc_nid() should be called prior to this function.
1438 */
alloc_nid_failed(struct f2fs_sb_info * sbi,nid_t nid)1439 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1440 {
1441 struct f2fs_nm_info *nm_i = NM_I(sbi);
1442 struct free_nid *i;
1443
1444 spin_lock(&nm_i->free_nid_list_lock);
1445 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1446 BUG_ON(!i || i->state != NID_ALLOC);
1447 if (nm_i->fcnt > 2 * MAX_FREE_NIDS) {
1448 __del_from_free_nid_list(i);
1449 } else {
1450 i->state = NID_NEW;
1451 nm_i->fcnt++;
1452 }
1453 spin_unlock(&nm_i->free_nid_list_lock);
1454 }
1455
recover_node_page(struct f2fs_sb_info * sbi,struct page * page,struct f2fs_summary * sum,struct node_info * ni,block_t new_blkaddr)1456 void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1457 struct f2fs_summary *sum, struct node_info *ni,
1458 block_t new_blkaddr)
1459 {
1460 rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1461 set_node_addr(sbi, ni, new_blkaddr);
1462 clear_node_page_dirty(page);
1463 }
1464
recover_inode_page(struct f2fs_sb_info * sbi,struct page * page)1465 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1466 {
1467 struct address_space *mapping = sbi->node_inode->i_mapping;
1468 struct f2fs_node *src, *dst;
1469 nid_t ino = ino_of_node(page);
1470 struct node_info old_ni, new_ni;
1471 struct page *ipage;
1472
1473 ipage = grab_cache_page(mapping, ino);
1474 if (!ipage)
1475 return -ENOMEM;
1476
1477 /* Should not use this inode from free nid list */
1478 remove_free_nid(NM_I(sbi), ino);
1479
1480 get_node_info(sbi, ino, &old_ni);
1481 SetPageUptodate(ipage);
1482 fill_node_footer(ipage, ino, ino, 0, true);
1483
1484 src = (struct f2fs_node *)page_address(page);
1485 dst = (struct f2fs_node *)page_address(ipage);
1486
1487 memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i);
1488 dst->i.i_size = 0;
1489 dst->i.i_blocks = cpu_to_le64(1);
1490 dst->i.i_links = cpu_to_le32(1);
1491 dst->i.i_xattr_nid = 0;
1492
1493 new_ni = old_ni;
1494 new_ni.ino = ino;
1495
1496 set_node_addr(sbi, &new_ni, NEW_ADDR);
1497 inc_valid_inode_count(sbi);
1498
1499 f2fs_put_page(ipage, 1);
1500 return 0;
1501 }
1502
restore_node_summary(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_summary_block * sum)1503 int restore_node_summary(struct f2fs_sb_info *sbi,
1504 unsigned int segno, struct f2fs_summary_block *sum)
1505 {
1506 struct f2fs_node *rn;
1507 struct f2fs_summary *sum_entry;
1508 struct page *page;
1509 block_t addr;
1510 int i, last_offset;
1511
1512 /* alloc temporal page for read node */
1513 page = alloc_page(GFP_NOFS | __GFP_ZERO);
1514 if (IS_ERR(page))
1515 return PTR_ERR(page);
1516 lock_page(page);
1517
1518 /* scan the node segment */
1519 last_offset = sbi->blocks_per_seg;
1520 addr = START_BLOCK(sbi, segno);
1521 sum_entry = &sum->entries[0];
1522
1523 for (i = 0; i < last_offset; i++, sum_entry++) {
1524 /*
1525 * In order to read next node page,
1526 * we must clear PageUptodate flag.
1527 */
1528 ClearPageUptodate(page);
1529
1530 if (f2fs_readpage(sbi, page, addr, READ_SYNC))
1531 goto out;
1532
1533 lock_page(page);
1534 rn = (struct f2fs_node *)page_address(page);
1535 sum_entry->nid = rn->footer.nid;
1536 sum_entry->version = 0;
1537 sum_entry->ofs_in_node = 0;
1538 addr++;
1539 }
1540 unlock_page(page);
1541 out:
1542 __free_pages(page, 0);
1543 return 0;
1544 }
1545
flush_nats_in_journal(struct f2fs_sb_info * sbi)1546 static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
1547 {
1548 struct f2fs_nm_info *nm_i = NM_I(sbi);
1549 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1550 struct f2fs_summary_block *sum = curseg->sum_blk;
1551 int i;
1552
1553 mutex_lock(&curseg->curseg_mutex);
1554
1555 if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
1556 mutex_unlock(&curseg->curseg_mutex);
1557 return false;
1558 }
1559
1560 for (i = 0; i < nats_in_cursum(sum); i++) {
1561 struct nat_entry *ne;
1562 struct f2fs_nat_entry raw_ne;
1563 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1564
1565 raw_ne = nat_in_journal(sum, i);
1566 retry:
1567 write_lock(&nm_i->nat_tree_lock);
1568 ne = __lookup_nat_cache(nm_i, nid);
1569 if (ne) {
1570 __set_nat_cache_dirty(nm_i, ne);
1571 write_unlock(&nm_i->nat_tree_lock);
1572 continue;
1573 }
1574 ne = grab_nat_entry(nm_i, nid);
1575 if (!ne) {
1576 write_unlock(&nm_i->nat_tree_lock);
1577 goto retry;
1578 }
1579 nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
1580 nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
1581 nat_set_version(ne, raw_ne.version);
1582 __set_nat_cache_dirty(nm_i, ne);
1583 write_unlock(&nm_i->nat_tree_lock);
1584 }
1585 update_nats_in_cursum(sum, -i);
1586 mutex_unlock(&curseg->curseg_mutex);
1587 return true;
1588 }
1589
1590 /*
1591 * This function is called during the checkpointing process.
1592 */
flush_nat_entries(struct f2fs_sb_info * sbi)1593 void flush_nat_entries(struct f2fs_sb_info *sbi)
1594 {
1595 struct f2fs_nm_info *nm_i = NM_I(sbi);
1596 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1597 struct f2fs_summary_block *sum = curseg->sum_blk;
1598 struct list_head *cur, *n;
1599 struct page *page = NULL;
1600 struct f2fs_nat_block *nat_blk = NULL;
1601 nid_t start_nid = 0, end_nid = 0;
1602 bool flushed;
1603
1604 flushed = flush_nats_in_journal(sbi);
1605
1606 if (!flushed)
1607 mutex_lock(&curseg->curseg_mutex);
1608
1609 /* 1) flush dirty nat caches */
1610 list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) {
1611 struct nat_entry *ne;
1612 nid_t nid;
1613 struct f2fs_nat_entry raw_ne;
1614 int offset = -1;
1615 block_t new_blkaddr;
1616
1617 ne = list_entry(cur, struct nat_entry, list);
1618 nid = nat_get_nid(ne);
1619
1620 if (nat_get_blkaddr(ne) == NEW_ADDR)
1621 continue;
1622 if (flushed)
1623 goto to_nat_page;
1624
1625 /* if there is room for nat enries in curseg->sumpage */
1626 offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
1627 if (offset >= 0) {
1628 raw_ne = nat_in_journal(sum, offset);
1629 goto flush_now;
1630 }
1631 to_nat_page:
1632 if (!page || (start_nid > nid || nid > end_nid)) {
1633 if (page) {
1634 f2fs_put_page(page, 1);
1635 page = NULL;
1636 }
1637 start_nid = START_NID(nid);
1638 end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
1639
1640 /*
1641 * get nat block with dirty flag, increased reference
1642 * count, mapped and lock
1643 */
1644 page = get_next_nat_page(sbi, start_nid);
1645 nat_blk = page_address(page);
1646 }
1647
1648 BUG_ON(!nat_blk);
1649 raw_ne = nat_blk->entries[nid - start_nid];
1650 flush_now:
1651 new_blkaddr = nat_get_blkaddr(ne);
1652
1653 raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
1654 raw_ne.block_addr = cpu_to_le32(new_blkaddr);
1655 raw_ne.version = nat_get_version(ne);
1656
1657 if (offset < 0) {
1658 nat_blk->entries[nid - start_nid] = raw_ne;
1659 } else {
1660 nat_in_journal(sum, offset) = raw_ne;
1661 nid_in_journal(sum, offset) = cpu_to_le32(nid);
1662 }
1663
1664 if (nat_get_blkaddr(ne) == NULL_ADDR &&
1665 add_free_nid(NM_I(sbi), nid, false) <= 0) {
1666 write_lock(&nm_i->nat_tree_lock);
1667 __del_from_nat_cache(nm_i, ne);
1668 write_unlock(&nm_i->nat_tree_lock);
1669 } else {
1670 write_lock(&nm_i->nat_tree_lock);
1671 __clear_nat_cache_dirty(nm_i, ne);
1672 ne->checkpointed = true;
1673 write_unlock(&nm_i->nat_tree_lock);
1674 }
1675 }
1676 if (!flushed)
1677 mutex_unlock(&curseg->curseg_mutex);
1678 f2fs_put_page(page, 1);
1679
1680 /* 2) shrink nat caches if necessary */
1681 try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD);
1682 }
1683
init_node_manager(struct f2fs_sb_info * sbi)1684 static int init_node_manager(struct f2fs_sb_info *sbi)
1685 {
1686 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1687 struct f2fs_nm_info *nm_i = NM_I(sbi);
1688 unsigned char *version_bitmap;
1689 unsigned int nat_segs, nat_blocks;
1690
1691 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1692
1693 /* segment_count_nat includes pair segment so divide to 2. */
1694 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1695 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1696 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1697 nm_i->fcnt = 0;
1698 nm_i->nat_cnt = 0;
1699
1700 INIT_LIST_HEAD(&nm_i->free_nid_list);
1701 INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1702 INIT_LIST_HEAD(&nm_i->nat_entries);
1703 INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1704
1705 mutex_init(&nm_i->build_lock);
1706 spin_lock_init(&nm_i->free_nid_list_lock);
1707 rwlock_init(&nm_i->nat_tree_lock);
1708
1709 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1710 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1711 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1712 if (!version_bitmap)
1713 return -EFAULT;
1714
1715 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1716 GFP_KERNEL);
1717 if (!nm_i->nat_bitmap)
1718 return -ENOMEM;
1719 return 0;
1720 }
1721
build_node_manager(struct f2fs_sb_info * sbi)1722 int build_node_manager(struct f2fs_sb_info *sbi)
1723 {
1724 int err;
1725
1726 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1727 if (!sbi->nm_info)
1728 return -ENOMEM;
1729
1730 err = init_node_manager(sbi);
1731 if (err)
1732 return err;
1733
1734 build_free_nids(sbi);
1735 return 0;
1736 }
1737
destroy_node_manager(struct f2fs_sb_info * sbi)1738 void destroy_node_manager(struct f2fs_sb_info *sbi)
1739 {
1740 struct f2fs_nm_info *nm_i = NM_I(sbi);
1741 struct free_nid *i, *next_i;
1742 struct nat_entry *natvec[NATVEC_SIZE];
1743 nid_t nid = 0;
1744 unsigned int found;
1745
1746 if (!nm_i)
1747 return;
1748
1749 /* destroy free nid list */
1750 spin_lock(&nm_i->free_nid_list_lock);
1751 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1752 BUG_ON(i->state == NID_ALLOC);
1753 __del_from_free_nid_list(i);
1754 nm_i->fcnt--;
1755 }
1756 BUG_ON(nm_i->fcnt);
1757 spin_unlock(&nm_i->free_nid_list_lock);
1758
1759 /* destroy nat cache */
1760 write_lock(&nm_i->nat_tree_lock);
1761 while ((found = __gang_lookup_nat_cache(nm_i,
1762 nid, NATVEC_SIZE, natvec))) {
1763 unsigned idx;
1764 for (idx = 0; idx < found; idx++) {
1765 struct nat_entry *e = natvec[idx];
1766 nid = nat_get_nid(e) + 1;
1767 __del_from_nat_cache(nm_i, e);
1768 }
1769 }
1770 BUG_ON(nm_i->nat_cnt);
1771 write_unlock(&nm_i->nat_tree_lock);
1772
1773 kfree(nm_i->nat_bitmap);
1774 sbi->nm_info = NULL;
1775 kfree(nm_i);
1776 }
1777
create_node_manager_caches(void)1778 int __init create_node_manager_caches(void)
1779 {
1780 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
1781 sizeof(struct nat_entry), NULL);
1782 if (!nat_entry_slab)
1783 return -ENOMEM;
1784
1785 free_nid_slab = f2fs_kmem_cache_create("free_nid",
1786 sizeof(struct free_nid), NULL);
1787 if (!free_nid_slab) {
1788 kmem_cache_destroy(nat_entry_slab);
1789 return -ENOMEM;
1790 }
1791 return 0;
1792 }
1793
destroy_node_manager_caches(void)1794 void destroy_node_manager_caches(void)
1795 {
1796 kmem_cache_destroy(free_nid_slab);
1797 kmem_cache_destroy(nat_entry_slab);
1798 }
1799