• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18 
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include <trace/events/f2fs.h>
23 
24 static struct kmem_cache *nat_entry_slab;
25 static struct kmem_cache *free_nid_slab;
26 
clear_node_page_dirty(struct page * page)27 static void clear_node_page_dirty(struct page *page)
28 {
29 	struct address_space *mapping = page->mapping;
30 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
31 	unsigned int long flags;
32 
33 	if (PageDirty(page)) {
34 		spin_lock_irqsave(&mapping->tree_lock, flags);
35 		radix_tree_tag_clear(&mapping->page_tree,
36 				page_index(page),
37 				PAGECACHE_TAG_DIRTY);
38 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
39 
40 		clear_page_dirty_for_io(page);
41 		dec_page_count(sbi, F2FS_DIRTY_NODES);
42 	}
43 	ClearPageUptodate(page);
44 }
45 
get_current_nat_page(struct f2fs_sb_info * sbi,nid_t nid)46 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
47 {
48 	pgoff_t index = current_nat_addr(sbi, nid);
49 	return get_meta_page(sbi, index);
50 }
51 
get_next_nat_page(struct f2fs_sb_info * sbi,nid_t nid)52 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
53 {
54 	struct page *src_page;
55 	struct page *dst_page;
56 	pgoff_t src_off;
57 	pgoff_t dst_off;
58 	void *src_addr;
59 	void *dst_addr;
60 	struct f2fs_nm_info *nm_i = NM_I(sbi);
61 
62 	src_off = current_nat_addr(sbi, nid);
63 	dst_off = next_nat_addr(sbi, src_off);
64 
65 	/* get current nat block page with lock */
66 	src_page = get_meta_page(sbi, src_off);
67 
68 	/* Dirty src_page means that it is already the new target NAT page. */
69 	if (PageDirty(src_page))
70 		return src_page;
71 
72 	dst_page = grab_meta_page(sbi, dst_off);
73 
74 	src_addr = page_address(src_page);
75 	dst_addr = page_address(dst_page);
76 	memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
77 	set_page_dirty(dst_page);
78 	f2fs_put_page(src_page, 1);
79 
80 	set_to_next_nat(nm_i, nid);
81 
82 	return dst_page;
83 }
84 
85 /*
86  * Readahead NAT pages
87  */
ra_nat_pages(struct f2fs_sb_info * sbi,int nid)88 static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid)
89 {
90 	struct address_space *mapping = sbi->meta_inode->i_mapping;
91 	struct f2fs_nm_info *nm_i = NM_I(sbi);
92 	struct blk_plug plug;
93 	struct page *page;
94 	pgoff_t index;
95 	int i;
96 
97 	blk_start_plug(&plug);
98 
99 	for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) {
100 		if (nid >= nm_i->max_nid)
101 			nid = 0;
102 		index = current_nat_addr(sbi, nid);
103 
104 		page = grab_cache_page(mapping, index);
105 		if (!page)
106 			continue;
107 		if (PageUptodate(page)) {
108 			f2fs_put_page(page, 1);
109 			continue;
110 		}
111 		if (f2fs_readpage(sbi, page, index, READ))
112 			continue;
113 
114 		f2fs_put_page(page, 0);
115 	}
116 	blk_finish_plug(&plug);
117 }
118 
__lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t n)119 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
120 {
121 	return radix_tree_lookup(&nm_i->nat_root, n);
122 }
123 
__gang_lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry ** ep)124 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
125 		nid_t start, unsigned int nr, struct nat_entry **ep)
126 {
127 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
128 }
129 
__del_from_nat_cache(struct f2fs_nm_info * nm_i,struct nat_entry * e)130 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
131 {
132 	list_del(&e->list);
133 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
134 	nm_i->nat_cnt--;
135 	kmem_cache_free(nat_entry_slab, e);
136 }
137 
is_checkpointed_node(struct f2fs_sb_info * sbi,nid_t nid)138 int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
139 {
140 	struct f2fs_nm_info *nm_i = NM_I(sbi);
141 	struct nat_entry *e;
142 	int is_cp = 1;
143 
144 	read_lock(&nm_i->nat_tree_lock);
145 	e = __lookup_nat_cache(nm_i, nid);
146 	if (e && !e->checkpointed)
147 		is_cp = 0;
148 	read_unlock(&nm_i->nat_tree_lock);
149 	return is_cp;
150 }
151 
grab_nat_entry(struct f2fs_nm_info * nm_i,nid_t nid)152 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
153 {
154 	struct nat_entry *new;
155 
156 	new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
157 	if (!new)
158 		return NULL;
159 	if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
160 		kmem_cache_free(nat_entry_slab, new);
161 		return NULL;
162 	}
163 	memset(new, 0, sizeof(struct nat_entry));
164 	nat_set_nid(new, nid);
165 	list_add_tail(&new->list, &nm_i->nat_entries);
166 	nm_i->nat_cnt++;
167 	return new;
168 }
169 
cache_nat_entry(struct f2fs_nm_info * nm_i,nid_t nid,struct f2fs_nat_entry * ne)170 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
171 						struct f2fs_nat_entry *ne)
172 {
173 	struct nat_entry *e;
174 retry:
175 	write_lock(&nm_i->nat_tree_lock);
176 	e = __lookup_nat_cache(nm_i, nid);
177 	if (!e) {
178 		e = grab_nat_entry(nm_i, nid);
179 		if (!e) {
180 			write_unlock(&nm_i->nat_tree_lock);
181 			goto retry;
182 		}
183 		nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
184 		nat_set_ino(e, le32_to_cpu(ne->ino));
185 		nat_set_version(e, ne->version);
186 		e->checkpointed = true;
187 	}
188 	write_unlock(&nm_i->nat_tree_lock);
189 }
190 
set_node_addr(struct f2fs_sb_info * sbi,struct node_info * ni,block_t new_blkaddr)191 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
192 			block_t new_blkaddr)
193 {
194 	struct f2fs_nm_info *nm_i = NM_I(sbi);
195 	struct nat_entry *e;
196 retry:
197 	write_lock(&nm_i->nat_tree_lock);
198 	e = __lookup_nat_cache(nm_i, ni->nid);
199 	if (!e) {
200 		e = grab_nat_entry(nm_i, ni->nid);
201 		if (!e) {
202 			write_unlock(&nm_i->nat_tree_lock);
203 			goto retry;
204 		}
205 		e->ni = *ni;
206 		e->checkpointed = true;
207 		BUG_ON(ni->blk_addr == NEW_ADDR);
208 	} else if (new_blkaddr == NEW_ADDR) {
209 		/*
210 		 * when nid is reallocated,
211 		 * previous nat entry can be remained in nat cache.
212 		 * So, reinitialize it with new information.
213 		 */
214 		e->ni = *ni;
215 		BUG_ON(ni->blk_addr != NULL_ADDR);
216 	}
217 
218 	if (new_blkaddr == NEW_ADDR)
219 		e->checkpointed = false;
220 
221 	/* sanity check */
222 	BUG_ON(nat_get_blkaddr(e) != ni->blk_addr);
223 	BUG_ON(nat_get_blkaddr(e) == NULL_ADDR &&
224 			new_blkaddr == NULL_ADDR);
225 	BUG_ON(nat_get_blkaddr(e) == NEW_ADDR &&
226 			new_blkaddr == NEW_ADDR);
227 	BUG_ON(nat_get_blkaddr(e) != NEW_ADDR &&
228 			nat_get_blkaddr(e) != NULL_ADDR &&
229 			new_blkaddr == NEW_ADDR);
230 
231 	/* increament version no as node is removed */
232 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
233 		unsigned char version = nat_get_version(e);
234 		nat_set_version(e, inc_node_version(version));
235 	}
236 
237 	/* change address */
238 	nat_set_blkaddr(e, new_blkaddr);
239 	__set_nat_cache_dirty(nm_i, e);
240 	write_unlock(&nm_i->nat_tree_lock);
241 }
242 
try_to_free_nats(struct f2fs_sb_info * sbi,int nr_shrink)243 static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
244 {
245 	struct f2fs_nm_info *nm_i = NM_I(sbi);
246 
247 	if (nm_i->nat_cnt <= NM_WOUT_THRESHOLD)
248 		return 0;
249 
250 	write_lock(&nm_i->nat_tree_lock);
251 	while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
252 		struct nat_entry *ne;
253 		ne = list_first_entry(&nm_i->nat_entries,
254 					struct nat_entry, list);
255 		__del_from_nat_cache(nm_i, ne);
256 		nr_shrink--;
257 	}
258 	write_unlock(&nm_i->nat_tree_lock);
259 	return nr_shrink;
260 }
261 
262 /*
263  * This function returns always success
264  */
get_node_info(struct f2fs_sb_info * sbi,nid_t nid,struct node_info * ni)265 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
266 {
267 	struct f2fs_nm_info *nm_i = NM_I(sbi);
268 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
269 	struct f2fs_summary_block *sum = curseg->sum_blk;
270 	nid_t start_nid = START_NID(nid);
271 	struct f2fs_nat_block *nat_blk;
272 	struct page *page = NULL;
273 	struct f2fs_nat_entry ne;
274 	struct nat_entry *e;
275 	int i;
276 
277 	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
278 	ni->nid = nid;
279 
280 	/* Check nat cache */
281 	read_lock(&nm_i->nat_tree_lock);
282 	e = __lookup_nat_cache(nm_i, nid);
283 	if (e) {
284 		ni->ino = nat_get_ino(e);
285 		ni->blk_addr = nat_get_blkaddr(e);
286 		ni->version = nat_get_version(e);
287 	}
288 	read_unlock(&nm_i->nat_tree_lock);
289 	if (e)
290 		return;
291 
292 	/* Check current segment summary */
293 	mutex_lock(&curseg->curseg_mutex);
294 	i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
295 	if (i >= 0) {
296 		ne = nat_in_journal(sum, i);
297 		node_info_from_raw_nat(ni, &ne);
298 	}
299 	mutex_unlock(&curseg->curseg_mutex);
300 	if (i >= 0)
301 		goto cache;
302 
303 	/* Fill node_info from nat page */
304 	page = get_current_nat_page(sbi, start_nid);
305 	nat_blk = (struct f2fs_nat_block *)page_address(page);
306 	ne = nat_blk->entries[nid - start_nid];
307 	node_info_from_raw_nat(ni, &ne);
308 	f2fs_put_page(page, 1);
309 cache:
310 	/* cache nat entry */
311 	cache_nat_entry(NM_I(sbi), nid, &ne);
312 }
313 
314 /*
315  * The maximum depth is four.
316  * Offset[0] will have raw inode offset.
317  */
get_node_path(long block,int offset[4],unsigned int noffset[4])318 static int get_node_path(long block, int offset[4], unsigned int noffset[4])
319 {
320 	const long direct_index = ADDRS_PER_INODE;
321 	const long direct_blks = ADDRS_PER_BLOCK;
322 	const long dptrs_per_blk = NIDS_PER_BLOCK;
323 	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
324 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
325 	int n = 0;
326 	int level = 0;
327 
328 	noffset[0] = 0;
329 
330 	if (block < direct_index) {
331 		offset[n] = block;
332 		goto got;
333 	}
334 	block -= direct_index;
335 	if (block < direct_blks) {
336 		offset[n++] = NODE_DIR1_BLOCK;
337 		noffset[n] = 1;
338 		offset[n] = block;
339 		level = 1;
340 		goto got;
341 	}
342 	block -= direct_blks;
343 	if (block < direct_blks) {
344 		offset[n++] = NODE_DIR2_BLOCK;
345 		noffset[n] = 2;
346 		offset[n] = block;
347 		level = 1;
348 		goto got;
349 	}
350 	block -= direct_blks;
351 	if (block < indirect_blks) {
352 		offset[n++] = NODE_IND1_BLOCK;
353 		noffset[n] = 3;
354 		offset[n++] = block / direct_blks;
355 		noffset[n] = 4 + offset[n - 1];
356 		offset[n] = block % direct_blks;
357 		level = 2;
358 		goto got;
359 	}
360 	block -= indirect_blks;
361 	if (block < indirect_blks) {
362 		offset[n++] = NODE_IND2_BLOCK;
363 		noffset[n] = 4 + dptrs_per_blk;
364 		offset[n++] = block / direct_blks;
365 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
366 		offset[n] = block % direct_blks;
367 		level = 2;
368 		goto got;
369 	}
370 	block -= indirect_blks;
371 	if (block < dindirect_blks) {
372 		offset[n++] = NODE_DIND_BLOCK;
373 		noffset[n] = 5 + (dptrs_per_blk * 2);
374 		offset[n++] = block / indirect_blks;
375 		noffset[n] = 6 + (dptrs_per_blk * 2) +
376 			      offset[n - 1] * (dptrs_per_blk + 1);
377 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
378 		noffset[n] = 7 + (dptrs_per_blk * 2) +
379 			      offset[n - 2] * (dptrs_per_blk + 1) +
380 			      offset[n - 1];
381 		offset[n] = block % direct_blks;
382 		level = 3;
383 		goto got;
384 	} else {
385 		BUG();
386 	}
387 got:
388 	return level;
389 }
390 
391 /*
392  * Caller should call f2fs_put_dnode(dn).
393  * Also, it should grab and release a mutex by calling mutex_lock_op() and
394  * mutex_unlock_op() only if ro is not set RDONLY_NODE.
395  * In the case of RDONLY_NODE, we don't need to care about mutex.
396  */
get_dnode_of_data(struct dnode_of_data * dn,pgoff_t index,int mode)397 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
398 {
399 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
400 	struct page *npage[4];
401 	struct page *parent;
402 	int offset[4];
403 	unsigned int noffset[4];
404 	nid_t nids[4];
405 	int level, i;
406 	int err = 0;
407 
408 	level = get_node_path(index, offset, noffset);
409 
410 	nids[0] = dn->inode->i_ino;
411 	npage[0] = get_node_page(sbi, nids[0]);
412 	if (IS_ERR(npage[0]))
413 		return PTR_ERR(npage[0]);
414 
415 	parent = npage[0];
416 	if (level != 0)
417 		nids[1] = get_nid(parent, offset[0], true);
418 	dn->inode_page = npage[0];
419 	dn->inode_page_locked = true;
420 
421 	/* get indirect or direct nodes */
422 	for (i = 1; i <= level; i++) {
423 		bool done = false;
424 
425 		if (!nids[i] && mode == ALLOC_NODE) {
426 			/* alloc new node */
427 			if (!alloc_nid(sbi, &(nids[i]))) {
428 				err = -ENOSPC;
429 				goto release_pages;
430 			}
431 
432 			dn->nid = nids[i];
433 			npage[i] = new_node_page(dn, noffset[i]);
434 			if (IS_ERR(npage[i])) {
435 				alloc_nid_failed(sbi, nids[i]);
436 				err = PTR_ERR(npage[i]);
437 				goto release_pages;
438 			}
439 
440 			set_nid(parent, offset[i - 1], nids[i], i == 1);
441 			alloc_nid_done(sbi, nids[i]);
442 			done = true;
443 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
444 			npage[i] = get_node_page_ra(parent, offset[i - 1]);
445 			if (IS_ERR(npage[i])) {
446 				err = PTR_ERR(npage[i]);
447 				goto release_pages;
448 			}
449 			done = true;
450 		}
451 		if (i == 1) {
452 			dn->inode_page_locked = false;
453 			unlock_page(parent);
454 		} else {
455 			f2fs_put_page(parent, 1);
456 		}
457 
458 		if (!done) {
459 			npage[i] = get_node_page(sbi, nids[i]);
460 			if (IS_ERR(npage[i])) {
461 				err = PTR_ERR(npage[i]);
462 				f2fs_put_page(npage[0], 0);
463 				goto release_out;
464 			}
465 		}
466 		if (i < level) {
467 			parent = npage[i];
468 			nids[i + 1] = get_nid(parent, offset[i], false);
469 		}
470 	}
471 	dn->nid = nids[level];
472 	dn->ofs_in_node = offset[level];
473 	dn->node_page = npage[level];
474 	dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
475 	return 0;
476 
477 release_pages:
478 	f2fs_put_page(parent, 1);
479 	if (i > 1)
480 		f2fs_put_page(npage[0], 0);
481 release_out:
482 	dn->inode_page = NULL;
483 	dn->node_page = NULL;
484 	return err;
485 }
486 
truncate_node(struct dnode_of_data * dn)487 static void truncate_node(struct dnode_of_data *dn)
488 {
489 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
490 	struct node_info ni;
491 
492 	get_node_info(sbi, dn->nid, &ni);
493 	if (dn->inode->i_blocks == 0) {
494 		BUG_ON(ni.blk_addr != NULL_ADDR);
495 		goto invalidate;
496 	}
497 	BUG_ON(ni.blk_addr == NULL_ADDR);
498 
499 	/* Deallocate node address */
500 	invalidate_blocks(sbi, ni.blk_addr);
501 	dec_valid_node_count(sbi, dn->inode, 1);
502 	set_node_addr(sbi, &ni, NULL_ADDR);
503 
504 	if (dn->nid == dn->inode->i_ino) {
505 		remove_orphan_inode(sbi, dn->nid);
506 		dec_valid_inode_count(sbi);
507 	} else {
508 		sync_inode_page(dn);
509 	}
510 invalidate:
511 	clear_node_page_dirty(dn->node_page);
512 	F2FS_SET_SB_DIRT(sbi);
513 
514 	f2fs_put_page(dn->node_page, 1);
515 	dn->node_page = NULL;
516 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
517 }
518 
truncate_dnode(struct dnode_of_data * dn)519 static int truncate_dnode(struct dnode_of_data *dn)
520 {
521 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
522 	struct page *page;
523 
524 	if (dn->nid == 0)
525 		return 1;
526 
527 	/* get direct node */
528 	page = get_node_page(sbi, dn->nid);
529 	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
530 		return 1;
531 	else if (IS_ERR(page))
532 		return PTR_ERR(page);
533 
534 	/* Make dnode_of_data for parameter */
535 	dn->node_page = page;
536 	dn->ofs_in_node = 0;
537 	truncate_data_blocks(dn);
538 	truncate_node(dn);
539 	return 1;
540 }
541 
truncate_nodes(struct dnode_of_data * dn,unsigned int nofs,int ofs,int depth)542 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
543 						int ofs, int depth)
544 {
545 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
546 	struct dnode_of_data rdn = *dn;
547 	struct page *page;
548 	struct f2fs_node *rn;
549 	nid_t child_nid;
550 	unsigned int child_nofs;
551 	int freed = 0;
552 	int i, ret;
553 
554 	if (dn->nid == 0)
555 		return NIDS_PER_BLOCK + 1;
556 
557 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
558 
559 	page = get_node_page(sbi, dn->nid);
560 	if (IS_ERR(page)) {
561 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
562 		return PTR_ERR(page);
563 	}
564 
565 	rn = (struct f2fs_node *)page_address(page);
566 	if (depth < 3) {
567 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
568 			child_nid = le32_to_cpu(rn->in.nid[i]);
569 			if (child_nid == 0)
570 				continue;
571 			rdn.nid = child_nid;
572 			ret = truncate_dnode(&rdn);
573 			if (ret < 0)
574 				goto out_err;
575 			set_nid(page, i, 0, false);
576 		}
577 	} else {
578 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
579 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
580 			child_nid = le32_to_cpu(rn->in.nid[i]);
581 			if (child_nid == 0) {
582 				child_nofs += NIDS_PER_BLOCK + 1;
583 				continue;
584 			}
585 			rdn.nid = child_nid;
586 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
587 			if (ret == (NIDS_PER_BLOCK + 1)) {
588 				set_nid(page, i, 0, false);
589 				child_nofs += ret;
590 			} else if (ret < 0 && ret != -ENOENT) {
591 				goto out_err;
592 			}
593 		}
594 		freed = child_nofs;
595 	}
596 
597 	if (!ofs) {
598 		/* remove current indirect node */
599 		dn->node_page = page;
600 		truncate_node(dn);
601 		freed++;
602 	} else {
603 		f2fs_put_page(page, 1);
604 	}
605 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
606 	return freed;
607 
608 out_err:
609 	f2fs_put_page(page, 1);
610 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
611 	return ret;
612 }
613 
truncate_partial_nodes(struct dnode_of_data * dn,struct f2fs_inode * ri,int * offset,int depth)614 static int truncate_partial_nodes(struct dnode_of_data *dn,
615 			struct f2fs_inode *ri, int *offset, int depth)
616 {
617 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
618 	struct page *pages[2];
619 	nid_t nid[3];
620 	nid_t child_nid;
621 	int err = 0;
622 	int i;
623 	int idx = depth - 2;
624 
625 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
626 	if (!nid[0])
627 		return 0;
628 
629 	/* get indirect nodes in the path */
630 	for (i = 0; i < depth - 1; i++) {
631 		/* refernece count'll be increased */
632 		pages[i] = get_node_page(sbi, nid[i]);
633 		if (IS_ERR(pages[i])) {
634 			depth = i + 1;
635 			err = PTR_ERR(pages[i]);
636 			goto fail;
637 		}
638 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
639 	}
640 
641 	/* free direct nodes linked to a partial indirect node */
642 	for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) {
643 		child_nid = get_nid(pages[idx], i, false);
644 		if (!child_nid)
645 			continue;
646 		dn->nid = child_nid;
647 		err = truncate_dnode(dn);
648 		if (err < 0)
649 			goto fail;
650 		set_nid(pages[idx], i, 0, false);
651 	}
652 
653 	if (offset[depth - 1] == 0) {
654 		dn->node_page = pages[idx];
655 		dn->nid = nid[idx];
656 		truncate_node(dn);
657 	} else {
658 		f2fs_put_page(pages[idx], 1);
659 	}
660 	offset[idx]++;
661 	offset[depth - 1] = 0;
662 fail:
663 	for (i = depth - 3; i >= 0; i--)
664 		f2fs_put_page(pages[i], 1);
665 
666 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
667 
668 	return err;
669 }
670 
671 /*
672  * All the block addresses of data and nodes should be nullified.
673  */
truncate_inode_blocks(struct inode * inode,pgoff_t from)674 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
675 {
676 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
677 	struct address_space *node_mapping = sbi->node_inode->i_mapping;
678 	int err = 0, cont = 1;
679 	int level, offset[4], noffset[4];
680 	unsigned int nofs = 0;
681 	struct f2fs_node *rn;
682 	struct dnode_of_data dn;
683 	struct page *page;
684 
685 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
686 
687 	level = get_node_path(from, offset, noffset);
688 restart:
689 	page = get_node_page(sbi, inode->i_ino);
690 	if (IS_ERR(page)) {
691 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
692 		return PTR_ERR(page);
693 	}
694 
695 	set_new_dnode(&dn, inode, page, NULL, 0);
696 	unlock_page(page);
697 
698 	rn = page_address(page);
699 	switch (level) {
700 	case 0:
701 	case 1:
702 		nofs = noffset[1];
703 		break;
704 	case 2:
705 		nofs = noffset[1];
706 		if (!offset[level - 1])
707 			goto skip_partial;
708 		err = truncate_partial_nodes(&dn, &rn->i, offset, level);
709 		if (err < 0 && err != -ENOENT)
710 			goto fail;
711 		nofs += 1 + NIDS_PER_BLOCK;
712 		break;
713 	case 3:
714 		nofs = 5 + 2 * NIDS_PER_BLOCK;
715 		if (!offset[level - 1])
716 			goto skip_partial;
717 		err = truncate_partial_nodes(&dn, &rn->i, offset, level);
718 		if (err < 0 && err != -ENOENT)
719 			goto fail;
720 		break;
721 	default:
722 		BUG();
723 	}
724 
725 skip_partial:
726 	while (cont) {
727 		dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]);
728 		switch (offset[0]) {
729 		case NODE_DIR1_BLOCK:
730 		case NODE_DIR2_BLOCK:
731 			err = truncate_dnode(&dn);
732 			break;
733 
734 		case NODE_IND1_BLOCK:
735 		case NODE_IND2_BLOCK:
736 			err = truncate_nodes(&dn, nofs, offset[1], 2);
737 			break;
738 
739 		case NODE_DIND_BLOCK:
740 			err = truncate_nodes(&dn, nofs, offset[1], 3);
741 			cont = 0;
742 			break;
743 
744 		default:
745 			BUG();
746 		}
747 		if (err < 0 && err != -ENOENT)
748 			goto fail;
749 		if (offset[1] == 0 &&
750 				rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) {
751 			lock_page(page);
752 			if (page->mapping != node_mapping) {
753 				f2fs_put_page(page, 1);
754 				goto restart;
755 			}
756 			wait_on_page_writeback(page);
757 			rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
758 			set_page_dirty(page);
759 			unlock_page(page);
760 		}
761 		offset[1] = 0;
762 		offset[0]++;
763 		nofs += err;
764 	}
765 fail:
766 	f2fs_put_page(page, 0);
767 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
768 	return err > 0 ? 0 : err;
769 }
770 
771 /*
772  * Caller should grab and release a mutex by calling mutex_lock_op() and
773  * mutex_unlock_op().
774  */
remove_inode_page(struct inode * inode)775 int remove_inode_page(struct inode *inode)
776 {
777 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
778 	struct page *page;
779 	nid_t ino = inode->i_ino;
780 	struct dnode_of_data dn;
781 
782 	page = get_node_page(sbi, ino);
783 	if (IS_ERR(page))
784 		return PTR_ERR(page);
785 
786 	if (F2FS_I(inode)->i_xattr_nid) {
787 		nid_t nid = F2FS_I(inode)->i_xattr_nid;
788 		struct page *npage = get_node_page(sbi, nid);
789 
790 		if (IS_ERR(npage))
791 			return PTR_ERR(npage);
792 
793 		F2FS_I(inode)->i_xattr_nid = 0;
794 		set_new_dnode(&dn, inode, page, npage, nid);
795 		dn.inode_page_locked = 1;
796 		truncate_node(&dn);
797 	}
798 
799 	/* 0 is possible, after f2fs_new_inode() is failed */
800 	BUG_ON(inode->i_blocks != 0 && inode->i_blocks != 1);
801 	set_new_dnode(&dn, inode, page, page, ino);
802 	truncate_node(&dn);
803 	return 0;
804 }
805 
new_inode_page(struct inode * inode,const struct qstr * name)806 int new_inode_page(struct inode *inode, const struct qstr *name)
807 {
808 	struct page *page;
809 	struct dnode_of_data dn;
810 
811 	/* allocate inode page for new inode */
812 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
813 	page = new_node_page(&dn, 0);
814 	init_dent_inode(name, page);
815 	if (IS_ERR(page))
816 		return PTR_ERR(page);
817 	f2fs_put_page(page, 1);
818 	return 0;
819 }
820 
new_node_page(struct dnode_of_data * dn,unsigned int ofs)821 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs)
822 {
823 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
824 	struct address_space *mapping = sbi->node_inode->i_mapping;
825 	struct node_info old_ni, new_ni;
826 	struct page *page;
827 	int err;
828 
829 	if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
830 		return ERR_PTR(-EPERM);
831 
832 	page = grab_cache_page(mapping, dn->nid);
833 	if (!page)
834 		return ERR_PTR(-ENOMEM);
835 
836 	get_node_info(sbi, dn->nid, &old_ni);
837 
838 	SetPageUptodate(page);
839 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
840 
841 	/* Reinitialize old_ni with new node page */
842 	BUG_ON(old_ni.blk_addr != NULL_ADDR);
843 	new_ni = old_ni;
844 	new_ni.ino = dn->inode->i_ino;
845 
846 	if (!inc_valid_node_count(sbi, dn->inode, 1)) {
847 		err = -ENOSPC;
848 		goto fail;
849 	}
850 	set_node_addr(sbi, &new_ni, NEW_ADDR);
851 	set_cold_node(dn->inode, page);
852 
853 	dn->node_page = page;
854 	sync_inode_page(dn);
855 	set_page_dirty(page);
856 	if (ofs == 0)
857 		inc_valid_inode_count(sbi);
858 
859 	return page;
860 
861 fail:
862 	clear_node_page_dirty(page);
863 	f2fs_put_page(page, 1);
864 	return ERR_PTR(err);
865 }
866 
867 /*
868  * Caller should do after getting the following values.
869  * 0: f2fs_put_page(page, 0)
870  * LOCKED_PAGE: f2fs_put_page(page, 1)
871  * error: nothing
872  */
read_node_page(struct page * page,int type)873 static int read_node_page(struct page *page, int type)
874 {
875 	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
876 	struct node_info ni;
877 
878 	get_node_info(sbi, page->index, &ni);
879 
880 	if (ni.blk_addr == NULL_ADDR) {
881 		f2fs_put_page(page, 1);
882 		return -ENOENT;
883 	}
884 
885 	if (PageUptodate(page))
886 		return LOCKED_PAGE;
887 
888 	return f2fs_readpage(sbi, page, ni.blk_addr, type);
889 }
890 
891 /*
892  * Readahead a node page
893  */
ra_node_page(struct f2fs_sb_info * sbi,nid_t nid)894 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
895 {
896 	struct address_space *mapping = sbi->node_inode->i_mapping;
897 	struct page *apage;
898 	int err;
899 
900 	apage = find_get_page(mapping, nid);
901 	if (apage && PageUptodate(apage)) {
902 		f2fs_put_page(apage, 0);
903 		return;
904 	}
905 	f2fs_put_page(apage, 0);
906 
907 	apage = grab_cache_page(mapping, nid);
908 	if (!apage)
909 		return;
910 
911 	err = read_node_page(apage, READA);
912 	if (err == 0)
913 		f2fs_put_page(apage, 0);
914 	else if (err == LOCKED_PAGE)
915 		f2fs_put_page(apage, 1);
916 	return;
917 }
918 
get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid)919 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
920 {
921 	struct address_space *mapping = sbi->node_inode->i_mapping;
922 	struct page *page;
923 	int err;
924 repeat:
925 	page = grab_cache_page(mapping, nid);
926 	if (!page)
927 		return ERR_PTR(-ENOMEM);
928 
929 	err = read_node_page(page, READ_SYNC);
930 	if (err < 0)
931 		return ERR_PTR(err);
932 	else if (err == LOCKED_PAGE)
933 		goto got_it;
934 
935 	lock_page(page);
936 	if (!PageUptodate(page)) {
937 		f2fs_put_page(page, 1);
938 		return ERR_PTR(-EIO);
939 	}
940 	if (page->mapping != mapping) {
941 		f2fs_put_page(page, 1);
942 		goto repeat;
943 	}
944 got_it:
945 	BUG_ON(nid != nid_of_node(page));
946 	mark_page_accessed(page);
947 	return page;
948 }
949 
950 /*
951  * Return a locked page for the desired node page.
952  * And, readahead MAX_RA_NODE number of node pages.
953  */
get_node_page_ra(struct page * parent,int start)954 struct page *get_node_page_ra(struct page *parent, int start)
955 {
956 	struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
957 	struct address_space *mapping = sbi->node_inode->i_mapping;
958 	struct blk_plug plug;
959 	struct page *page;
960 	int err, i, end;
961 	nid_t nid;
962 
963 	/* First, try getting the desired direct node. */
964 	nid = get_nid(parent, start, false);
965 	if (!nid)
966 		return ERR_PTR(-ENOENT);
967 repeat:
968 	page = grab_cache_page(mapping, nid);
969 	if (!page)
970 		return ERR_PTR(-ENOMEM);
971 
972 	err = read_node_page(page, READ_SYNC);
973 	if (err < 0)
974 		return ERR_PTR(err);
975 	else if (err == LOCKED_PAGE)
976 		goto page_hit;
977 
978 	blk_start_plug(&plug);
979 
980 	/* Then, try readahead for siblings of the desired node */
981 	end = start + MAX_RA_NODE;
982 	end = min(end, NIDS_PER_BLOCK);
983 	for (i = start + 1; i < end; i++) {
984 		nid = get_nid(parent, i, false);
985 		if (!nid)
986 			continue;
987 		ra_node_page(sbi, nid);
988 	}
989 
990 	blk_finish_plug(&plug);
991 
992 	lock_page(page);
993 	if (page->mapping != mapping) {
994 		f2fs_put_page(page, 1);
995 		goto repeat;
996 	}
997 page_hit:
998 	if (!PageUptodate(page)) {
999 		f2fs_put_page(page, 1);
1000 		return ERR_PTR(-EIO);
1001 	}
1002 	mark_page_accessed(page);
1003 	return page;
1004 }
1005 
sync_inode_page(struct dnode_of_data * dn)1006 void sync_inode_page(struct dnode_of_data *dn)
1007 {
1008 	if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1009 		update_inode(dn->inode, dn->node_page);
1010 	} else if (dn->inode_page) {
1011 		if (!dn->inode_page_locked)
1012 			lock_page(dn->inode_page);
1013 		update_inode(dn->inode, dn->inode_page);
1014 		if (!dn->inode_page_locked)
1015 			unlock_page(dn->inode_page);
1016 	} else {
1017 		update_inode_page(dn->inode);
1018 	}
1019 }
1020 
sync_node_pages(struct f2fs_sb_info * sbi,nid_t ino,struct writeback_control * wbc)1021 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1022 					struct writeback_control *wbc)
1023 {
1024 	struct address_space *mapping = sbi->node_inode->i_mapping;
1025 	pgoff_t index, end;
1026 	struct pagevec pvec;
1027 	int step = ino ? 2 : 0;
1028 	int nwritten = 0, wrote = 0;
1029 
1030 	pagevec_init(&pvec, 0);
1031 
1032 next_step:
1033 	index = 0;
1034 	end = LONG_MAX;
1035 
1036 	while (index <= end) {
1037 		int i, nr_pages;
1038 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1039 				PAGECACHE_TAG_DIRTY,
1040 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1041 		if (nr_pages == 0)
1042 			break;
1043 
1044 		for (i = 0; i < nr_pages; i++) {
1045 			struct page *page = pvec.pages[i];
1046 
1047 			/*
1048 			 * flushing sequence with step:
1049 			 * 0. indirect nodes
1050 			 * 1. dentry dnodes
1051 			 * 2. file dnodes
1052 			 */
1053 			if (step == 0 && IS_DNODE(page))
1054 				continue;
1055 			if (step == 1 && (!IS_DNODE(page) ||
1056 						is_cold_node(page)))
1057 				continue;
1058 			if (step == 2 && (!IS_DNODE(page) ||
1059 						!is_cold_node(page)))
1060 				continue;
1061 
1062 			/*
1063 			 * If an fsync mode,
1064 			 * we should not skip writing node pages.
1065 			 */
1066 			if (ino && ino_of_node(page) == ino)
1067 				lock_page(page);
1068 			else if (!trylock_page(page))
1069 				continue;
1070 
1071 			if (unlikely(page->mapping != mapping)) {
1072 continue_unlock:
1073 				unlock_page(page);
1074 				continue;
1075 			}
1076 			if (ino && ino_of_node(page) != ino)
1077 				goto continue_unlock;
1078 
1079 			if (!PageDirty(page)) {
1080 				/* someone wrote it for us */
1081 				goto continue_unlock;
1082 			}
1083 
1084 			if (!clear_page_dirty_for_io(page))
1085 				goto continue_unlock;
1086 
1087 			/* called by fsync() */
1088 			if (ino && IS_DNODE(page)) {
1089 				int mark = !is_checkpointed_node(sbi, ino);
1090 				set_fsync_mark(page, 1);
1091 				if (IS_INODE(page))
1092 					set_dentry_mark(page, mark);
1093 				nwritten++;
1094 			} else {
1095 				set_fsync_mark(page, 0);
1096 				set_dentry_mark(page, 0);
1097 			}
1098 			mapping->a_ops->writepage(page, wbc);
1099 			wrote++;
1100 
1101 			if (--wbc->nr_to_write == 0)
1102 				break;
1103 		}
1104 		pagevec_release(&pvec);
1105 		cond_resched();
1106 
1107 		if (wbc->nr_to_write == 0) {
1108 			step = 2;
1109 			break;
1110 		}
1111 	}
1112 
1113 	if (step < 2) {
1114 		step++;
1115 		goto next_step;
1116 	}
1117 
1118 	if (wrote)
1119 		f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL);
1120 
1121 	return nwritten;
1122 }
1123 
f2fs_write_node_page(struct page * page,struct writeback_control * wbc)1124 static int f2fs_write_node_page(struct page *page,
1125 				struct writeback_control *wbc)
1126 {
1127 	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1128 	nid_t nid;
1129 	block_t new_addr;
1130 	struct node_info ni;
1131 
1132 	wait_on_page_writeback(page);
1133 
1134 	/* get old block addr of this node page */
1135 	nid = nid_of_node(page);
1136 	BUG_ON(page->index != nid);
1137 
1138 	get_node_info(sbi, nid, &ni);
1139 
1140 	/* This page is already truncated */
1141 	if (ni.blk_addr == NULL_ADDR) {
1142 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1143 		unlock_page(page);
1144 		return 0;
1145 	}
1146 
1147 	if (wbc->for_reclaim) {
1148 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1149 		wbc->pages_skipped++;
1150 		set_page_dirty(page);
1151 		return AOP_WRITEPAGE_ACTIVATE;
1152 	}
1153 
1154 	mutex_lock(&sbi->node_write);
1155 	set_page_writeback(page);
1156 	write_node_page(sbi, page, nid, ni.blk_addr, &new_addr);
1157 	set_node_addr(sbi, &ni, new_addr);
1158 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1159 	mutex_unlock(&sbi->node_write);
1160 	unlock_page(page);
1161 	return 0;
1162 }
1163 
1164 /*
1165  * It is very important to gather dirty pages and write at once, so that we can
1166  * submit a big bio without interfering other data writes.
1167  * Be default, 512 pages (2MB), a segment size, is quite reasonable.
1168  */
1169 #define COLLECT_DIRTY_NODES	512
f2fs_write_node_pages(struct address_space * mapping,struct writeback_control * wbc)1170 static int f2fs_write_node_pages(struct address_space *mapping,
1171 			    struct writeback_control *wbc)
1172 {
1173 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1174 	long nr_to_write = wbc->nr_to_write;
1175 
1176 	/* First check balancing cached NAT entries */
1177 	if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK)) {
1178 		f2fs_sync_fs(sbi->sb, true);
1179 		return 0;
1180 	}
1181 
1182 	/* collect a number of dirty node pages and write together */
1183 	if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES)
1184 		return 0;
1185 
1186 	/* if mounting is failed, skip writing node pages */
1187 	wbc->nr_to_write = max_hw_blocks(sbi);
1188 	sync_node_pages(sbi, 0, wbc);
1189 	wbc->nr_to_write = nr_to_write - (max_hw_blocks(sbi) - wbc->nr_to_write);
1190 	return 0;
1191 }
1192 
f2fs_set_node_page_dirty(struct page * page)1193 static int f2fs_set_node_page_dirty(struct page *page)
1194 {
1195 	struct address_space *mapping = page->mapping;
1196 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1197 
1198 	SetPageUptodate(page);
1199 	if (!PageDirty(page)) {
1200 		__set_page_dirty_nobuffers(page);
1201 		inc_page_count(sbi, F2FS_DIRTY_NODES);
1202 		SetPagePrivate(page);
1203 		return 1;
1204 	}
1205 	return 0;
1206 }
1207 
f2fs_invalidate_node_page(struct page * page,unsigned int offset,unsigned int length)1208 static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
1209 				      unsigned int length)
1210 {
1211 	struct inode *inode = page->mapping->host;
1212 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1213 	if (PageDirty(page))
1214 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1215 	ClearPagePrivate(page);
1216 }
1217 
f2fs_release_node_page(struct page * page,gfp_t wait)1218 static int f2fs_release_node_page(struct page *page, gfp_t wait)
1219 {
1220 	ClearPagePrivate(page);
1221 	return 1;
1222 }
1223 
1224 /*
1225  * Structure of the f2fs node operations
1226  */
1227 const struct address_space_operations f2fs_node_aops = {
1228 	.writepage	= f2fs_write_node_page,
1229 	.writepages	= f2fs_write_node_pages,
1230 	.set_page_dirty	= f2fs_set_node_page_dirty,
1231 	.invalidatepage	= f2fs_invalidate_node_page,
1232 	.releasepage	= f2fs_release_node_page,
1233 };
1234 
__lookup_free_nid_list(nid_t n,struct list_head * head)1235 static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head)
1236 {
1237 	struct list_head *this;
1238 	struct free_nid *i;
1239 	list_for_each(this, head) {
1240 		i = list_entry(this, struct free_nid, list);
1241 		if (i->nid == n)
1242 			return i;
1243 	}
1244 	return NULL;
1245 }
1246 
__del_from_free_nid_list(struct free_nid * i)1247 static void __del_from_free_nid_list(struct free_nid *i)
1248 {
1249 	list_del(&i->list);
1250 	kmem_cache_free(free_nid_slab, i);
1251 }
1252 
add_free_nid(struct f2fs_nm_info * nm_i,nid_t nid,bool build)1253 static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid, bool build)
1254 {
1255 	struct free_nid *i;
1256 	struct nat_entry *ne;
1257 	bool allocated = false;
1258 
1259 	if (nm_i->fcnt > 2 * MAX_FREE_NIDS)
1260 		return -1;
1261 
1262 	/* 0 nid should not be used */
1263 	if (nid == 0)
1264 		return 0;
1265 
1266 	if (!build)
1267 		goto retry;
1268 
1269 	/* do not add allocated nids */
1270 	read_lock(&nm_i->nat_tree_lock);
1271 	ne = __lookup_nat_cache(nm_i, nid);
1272 	if (ne && nat_get_blkaddr(ne) != NULL_ADDR)
1273 		allocated = true;
1274 	read_unlock(&nm_i->nat_tree_lock);
1275 	if (allocated)
1276 		return 0;
1277 retry:
1278 	i = kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1279 	if (!i) {
1280 		cond_resched();
1281 		goto retry;
1282 	}
1283 	i->nid = nid;
1284 	i->state = NID_NEW;
1285 
1286 	spin_lock(&nm_i->free_nid_list_lock);
1287 	if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) {
1288 		spin_unlock(&nm_i->free_nid_list_lock);
1289 		kmem_cache_free(free_nid_slab, i);
1290 		return 0;
1291 	}
1292 	list_add_tail(&i->list, &nm_i->free_nid_list);
1293 	nm_i->fcnt++;
1294 	spin_unlock(&nm_i->free_nid_list_lock);
1295 	return 1;
1296 }
1297 
remove_free_nid(struct f2fs_nm_info * nm_i,nid_t nid)1298 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1299 {
1300 	struct free_nid *i;
1301 	spin_lock(&nm_i->free_nid_list_lock);
1302 	i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1303 	if (i && i->state == NID_NEW) {
1304 		__del_from_free_nid_list(i);
1305 		nm_i->fcnt--;
1306 	}
1307 	spin_unlock(&nm_i->free_nid_list_lock);
1308 }
1309 
scan_nat_page(struct f2fs_nm_info * nm_i,struct page * nat_page,nid_t start_nid)1310 static void scan_nat_page(struct f2fs_nm_info *nm_i,
1311 			struct page *nat_page, nid_t start_nid)
1312 {
1313 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
1314 	block_t blk_addr;
1315 	int i;
1316 
1317 	i = start_nid % NAT_ENTRY_PER_BLOCK;
1318 
1319 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1320 
1321 		if (start_nid >= nm_i->max_nid)
1322 			break;
1323 
1324 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1325 		BUG_ON(blk_addr == NEW_ADDR);
1326 		if (blk_addr == NULL_ADDR) {
1327 			if (add_free_nid(nm_i, start_nid, true) < 0)
1328 				break;
1329 		}
1330 	}
1331 }
1332 
build_free_nids(struct f2fs_sb_info * sbi)1333 static void build_free_nids(struct f2fs_sb_info *sbi)
1334 {
1335 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1336 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1337 	struct f2fs_summary_block *sum = curseg->sum_blk;
1338 	int i = 0;
1339 	nid_t nid = nm_i->next_scan_nid;
1340 
1341 	/* Enough entries */
1342 	if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1343 		return;
1344 
1345 	/* readahead nat pages to be scanned */
1346 	ra_nat_pages(sbi, nid);
1347 
1348 	while (1) {
1349 		struct page *page = get_current_nat_page(sbi, nid);
1350 
1351 		scan_nat_page(nm_i, page, nid);
1352 		f2fs_put_page(page, 1);
1353 
1354 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1355 		if (nid >= nm_i->max_nid)
1356 			nid = 0;
1357 
1358 		if (i++ == FREE_NID_PAGES)
1359 			break;
1360 	}
1361 
1362 	/* go to the next free nat pages to find free nids abundantly */
1363 	nm_i->next_scan_nid = nid;
1364 
1365 	/* find free nids from current sum_pages */
1366 	mutex_lock(&curseg->curseg_mutex);
1367 	for (i = 0; i < nats_in_cursum(sum); i++) {
1368 		block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1369 		nid = le32_to_cpu(nid_in_journal(sum, i));
1370 		if (addr == NULL_ADDR)
1371 			add_free_nid(nm_i, nid, true);
1372 		else
1373 			remove_free_nid(nm_i, nid);
1374 	}
1375 	mutex_unlock(&curseg->curseg_mutex);
1376 }
1377 
1378 /*
1379  * If this function returns success, caller can obtain a new nid
1380  * from second parameter of this function.
1381  * The returned nid could be used ino as well as nid when inode is created.
1382  */
alloc_nid(struct f2fs_sb_info * sbi,nid_t * nid)1383 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1384 {
1385 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1386 	struct free_nid *i = NULL;
1387 	struct list_head *this;
1388 retry:
1389 	if (sbi->total_valid_node_count + 1 >= nm_i->max_nid)
1390 		return false;
1391 
1392 	spin_lock(&nm_i->free_nid_list_lock);
1393 
1394 	/* We should not use stale free nids created by build_free_nids */
1395 	if (nm_i->fcnt && !sbi->on_build_free_nids) {
1396 		BUG_ON(list_empty(&nm_i->free_nid_list));
1397 		list_for_each(this, &nm_i->free_nid_list) {
1398 			i = list_entry(this, struct free_nid, list);
1399 			if (i->state == NID_NEW)
1400 				break;
1401 		}
1402 
1403 		BUG_ON(i->state != NID_NEW);
1404 		*nid = i->nid;
1405 		i->state = NID_ALLOC;
1406 		nm_i->fcnt--;
1407 		spin_unlock(&nm_i->free_nid_list_lock);
1408 		return true;
1409 	}
1410 	spin_unlock(&nm_i->free_nid_list_lock);
1411 
1412 	/* Let's scan nat pages and its caches to get free nids */
1413 	mutex_lock(&nm_i->build_lock);
1414 	sbi->on_build_free_nids = 1;
1415 	build_free_nids(sbi);
1416 	sbi->on_build_free_nids = 0;
1417 	mutex_unlock(&nm_i->build_lock);
1418 	goto retry;
1419 }
1420 
1421 /*
1422  * alloc_nid() should be called prior to this function.
1423  */
alloc_nid_done(struct f2fs_sb_info * sbi,nid_t nid)1424 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1425 {
1426 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1427 	struct free_nid *i;
1428 
1429 	spin_lock(&nm_i->free_nid_list_lock);
1430 	i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1431 	BUG_ON(!i || i->state != NID_ALLOC);
1432 	__del_from_free_nid_list(i);
1433 	spin_unlock(&nm_i->free_nid_list_lock);
1434 }
1435 
1436 /*
1437  * alloc_nid() should be called prior to this function.
1438  */
alloc_nid_failed(struct f2fs_sb_info * sbi,nid_t nid)1439 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1440 {
1441 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1442 	struct free_nid *i;
1443 
1444 	spin_lock(&nm_i->free_nid_list_lock);
1445 	i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1446 	BUG_ON(!i || i->state != NID_ALLOC);
1447 	if (nm_i->fcnt > 2 * MAX_FREE_NIDS) {
1448 		__del_from_free_nid_list(i);
1449 	} else {
1450 		i->state = NID_NEW;
1451 		nm_i->fcnt++;
1452 	}
1453 	spin_unlock(&nm_i->free_nid_list_lock);
1454 }
1455 
recover_node_page(struct f2fs_sb_info * sbi,struct page * page,struct f2fs_summary * sum,struct node_info * ni,block_t new_blkaddr)1456 void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1457 		struct f2fs_summary *sum, struct node_info *ni,
1458 		block_t new_blkaddr)
1459 {
1460 	rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1461 	set_node_addr(sbi, ni, new_blkaddr);
1462 	clear_node_page_dirty(page);
1463 }
1464 
recover_inode_page(struct f2fs_sb_info * sbi,struct page * page)1465 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1466 {
1467 	struct address_space *mapping = sbi->node_inode->i_mapping;
1468 	struct f2fs_node *src, *dst;
1469 	nid_t ino = ino_of_node(page);
1470 	struct node_info old_ni, new_ni;
1471 	struct page *ipage;
1472 
1473 	ipage = grab_cache_page(mapping, ino);
1474 	if (!ipage)
1475 		return -ENOMEM;
1476 
1477 	/* Should not use this inode  from free nid list */
1478 	remove_free_nid(NM_I(sbi), ino);
1479 
1480 	get_node_info(sbi, ino, &old_ni);
1481 	SetPageUptodate(ipage);
1482 	fill_node_footer(ipage, ino, ino, 0, true);
1483 
1484 	src = (struct f2fs_node *)page_address(page);
1485 	dst = (struct f2fs_node *)page_address(ipage);
1486 
1487 	memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i);
1488 	dst->i.i_size = 0;
1489 	dst->i.i_blocks = cpu_to_le64(1);
1490 	dst->i.i_links = cpu_to_le32(1);
1491 	dst->i.i_xattr_nid = 0;
1492 
1493 	new_ni = old_ni;
1494 	new_ni.ino = ino;
1495 
1496 	set_node_addr(sbi, &new_ni, NEW_ADDR);
1497 	inc_valid_inode_count(sbi);
1498 
1499 	f2fs_put_page(ipage, 1);
1500 	return 0;
1501 }
1502 
restore_node_summary(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_summary_block * sum)1503 int restore_node_summary(struct f2fs_sb_info *sbi,
1504 			unsigned int segno, struct f2fs_summary_block *sum)
1505 {
1506 	struct f2fs_node *rn;
1507 	struct f2fs_summary *sum_entry;
1508 	struct page *page;
1509 	block_t addr;
1510 	int i, last_offset;
1511 
1512 	/* alloc temporal page for read node */
1513 	page = alloc_page(GFP_NOFS | __GFP_ZERO);
1514 	if (IS_ERR(page))
1515 		return PTR_ERR(page);
1516 	lock_page(page);
1517 
1518 	/* scan the node segment */
1519 	last_offset = sbi->blocks_per_seg;
1520 	addr = START_BLOCK(sbi, segno);
1521 	sum_entry = &sum->entries[0];
1522 
1523 	for (i = 0; i < last_offset; i++, sum_entry++) {
1524 		/*
1525 		 * In order to read next node page,
1526 		 * we must clear PageUptodate flag.
1527 		 */
1528 		ClearPageUptodate(page);
1529 
1530 		if (f2fs_readpage(sbi, page, addr, READ_SYNC))
1531 			goto out;
1532 
1533 		lock_page(page);
1534 		rn = (struct f2fs_node *)page_address(page);
1535 		sum_entry->nid = rn->footer.nid;
1536 		sum_entry->version = 0;
1537 		sum_entry->ofs_in_node = 0;
1538 		addr++;
1539 	}
1540 	unlock_page(page);
1541 out:
1542 	__free_pages(page, 0);
1543 	return 0;
1544 }
1545 
flush_nats_in_journal(struct f2fs_sb_info * sbi)1546 static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
1547 {
1548 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1549 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1550 	struct f2fs_summary_block *sum = curseg->sum_blk;
1551 	int i;
1552 
1553 	mutex_lock(&curseg->curseg_mutex);
1554 
1555 	if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
1556 		mutex_unlock(&curseg->curseg_mutex);
1557 		return false;
1558 	}
1559 
1560 	for (i = 0; i < nats_in_cursum(sum); i++) {
1561 		struct nat_entry *ne;
1562 		struct f2fs_nat_entry raw_ne;
1563 		nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1564 
1565 		raw_ne = nat_in_journal(sum, i);
1566 retry:
1567 		write_lock(&nm_i->nat_tree_lock);
1568 		ne = __lookup_nat_cache(nm_i, nid);
1569 		if (ne) {
1570 			__set_nat_cache_dirty(nm_i, ne);
1571 			write_unlock(&nm_i->nat_tree_lock);
1572 			continue;
1573 		}
1574 		ne = grab_nat_entry(nm_i, nid);
1575 		if (!ne) {
1576 			write_unlock(&nm_i->nat_tree_lock);
1577 			goto retry;
1578 		}
1579 		nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
1580 		nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
1581 		nat_set_version(ne, raw_ne.version);
1582 		__set_nat_cache_dirty(nm_i, ne);
1583 		write_unlock(&nm_i->nat_tree_lock);
1584 	}
1585 	update_nats_in_cursum(sum, -i);
1586 	mutex_unlock(&curseg->curseg_mutex);
1587 	return true;
1588 }
1589 
1590 /*
1591  * This function is called during the checkpointing process.
1592  */
flush_nat_entries(struct f2fs_sb_info * sbi)1593 void flush_nat_entries(struct f2fs_sb_info *sbi)
1594 {
1595 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1596 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1597 	struct f2fs_summary_block *sum = curseg->sum_blk;
1598 	struct list_head *cur, *n;
1599 	struct page *page = NULL;
1600 	struct f2fs_nat_block *nat_blk = NULL;
1601 	nid_t start_nid = 0, end_nid = 0;
1602 	bool flushed;
1603 
1604 	flushed = flush_nats_in_journal(sbi);
1605 
1606 	if (!flushed)
1607 		mutex_lock(&curseg->curseg_mutex);
1608 
1609 	/* 1) flush dirty nat caches */
1610 	list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) {
1611 		struct nat_entry *ne;
1612 		nid_t nid;
1613 		struct f2fs_nat_entry raw_ne;
1614 		int offset = -1;
1615 		block_t new_blkaddr;
1616 
1617 		ne = list_entry(cur, struct nat_entry, list);
1618 		nid = nat_get_nid(ne);
1619 
1620 		if (nat_get_blkaddr(ne) == NEW_ADDR)
1621 			continue;
1622 		if (flushed)
1623 			goto to_nat_page;
1624 
1625 		/* if there is room for nat enries in curseg->sumpage */
1626 		offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
1627 		if (offset >= 0) {
1628 			raw_ne = nat_in_journal(sum, offset);
1629 			goto flush_now;
1630 		}
1631 to_nat_page:
1632 		if (!page || (start_nid > nid || nid > end_nid)) {
1633 			if (page) {
1634 				f2fs_put_page(page, 1);
1635 				page = NULL;
1636 			}
1637 			start_nid = START_NID(nid);
1638 			end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
1639 
1640 			/*
1641 			 * get nat block with dirty flag, increased reference
1642 			 * count, mapped and lock
1643 			 */
1644 			page = get_next_nat_page(sbi, start_nid);
1645 			nat_blk = page_address(page);
1646 		}
1647 
1648 		BUG_ON(!nat_blk);
1649 		raw_ne = nat_blk->entries[nid - start_nid];
1650 flush_now:
1651 		new_blkaddr = nat_get_blkaddr(ne);
1652 
1653 		raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
1654 		raw_ne.block_addr = cpu_to_le32(new_blkaddr);
1655 		raw_ne.version = nat_get_version(ne);
1656 
1657 		if (offset < 0) {
1658 			nat_blk->entries[nid - start_nid] = raw_ne;
1659 		} else {
1660 			nat_in_journal(sum, offset) = raw_ne;
1661 			nid_in_journal(sum, offset) = cpu_to_le32(nid);
1662 		}
1663 
1664 		if (nat_get_blkaddr(ne) == NULL_ADDR &&
1665 				add_free_nid(NM_I(sbi), nid, false) <= 0) {
1666 			write_lock(&nm_i->nat_tree_lock);
1667 			__del_from_nat_cache(nm_i, ne);
1668 			write_unlock(&nm_i->nat_tree_lock);
1669 		} else {
1670 			write_lock(&nm_i->nat_tree_lock);
1671 			__clear_nat_cache_dirty(nm_i, ne);
1672 			ne->checkpointed = true;
1673 			write_unlock(&nm_i->nat_tree_lock);
1674 		}
1675 	}
1676 	if (!flushed)
1677 		mutex_unlock(&curseg->curseg_mutex);
1678 	f2fs_put_page(page, 1);
1679 
1680 	/* 2) shrink nat caches if necessary */
1681 	try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD);
1682 }
1683 
init_node_manager(struct f2fs_sb_info * sbi)1684 static int init_node_manager(struct f2fs_sb_info *sbi)
1685 {
1686 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1687 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1688 	unsigned char *version_bitmap;
1689 	unsigned int nat_segs, nat_blocks;
1690 
1691 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1692 
1693 	/* segment_count_nat includes pair segment so divide to 2. */
1694 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1695 	nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1696 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1697 	nm_i->fcnt = 0;
1698 	nm_i->nat_cnt = 0;
1699 
1700 	INIT_LIST_HEAD(&nm_i->free_nid_list);
1701 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1702 	INIT_LIST_HEAD(&nm_i->nat_entries);
1703 	INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1704 
1705 	mutex_init(&nm_i->build_lock);
1706 	spin_lock_init(&nm_i->free_nid_list_lock);
1707 	rwlock_init(&nm_i->nat_tree_lock);
1708 
1709 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1710 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1711 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1712 	if (!version_bitmap)
1713 		return -EFAULT;
1714 
1715 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1716 					GFP_KERNEL);
1717 	if (!nm_i->nat_bitmap)
1718 		return -ENOMEM;
1719 	return 0;
1720 }
1721 
build_node_manager(struct f2fs_sb_info * sbi)1722 int build_node_manager(struct f2fs_sb_info *sbi)
1723 {
1724 	int err;
1725 
1726 	sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1727 	if (!sbi->nm_info)
1728 		return -ENOMEM;
1729 
1730 	err = init_node_manager(sbi);
1731 	if (err)
1732 		return err;
1733 
1734 	build_free_nids(sbi);
1735 	return 0;
1736 }
1737 
destroy_node_manager(struct f2fs_sb_info * sbi)1738 void destroy_node_manager(struct f2fs_sb_info *sbi)
1739 {
1740 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1741 	struct free_nid *i, *next_i;
1742 	struct nat_entry *natvec[NATVEC_SIZE];
1743 	nid_t nid = 0;
1744 	unsigned int found;
1745 
1746 	if (!nm_i)
1747 		return;
1748 
1749 	/* destroy free nid list */
1750 	spin_lock(&nm_i->free_nid_list_lock);
1751 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1752 		BUG_ON(i->state == NID_ALLOC);
1753 		__del_from_free_nid_list(i);
1754 		nm_i->fcnt--;
1755 	}
1756 	BUG_ON(nm_i->fcnt);
1757 	spin_unlock(&nm_i->free_nid_list_lock);
1758 
1759 	/* destroy nat cache */
1760 	write_lock(&nm_i->nat_tree_lock);
1761 	while ((found = __gang_lookup_nat_cache(nm_i,
1762 					nid, NATVEC_SIZE, natvec))) {
1763 		unsigned idx;
1764 		for (idx = 0; idx < found; idx++) {
1765 			struct nat_entry *e = natvec[idx];
1766 			nid = nat_get_nid(e) + 1;
1767 			__del_from_nat_cache(nm_i, e);
1768 		}
1769 	}
1770 	BUG_ON(nm_i->nat_cnt);
1771 	write_unlock(&nm_i->nat_tree_lock);
1772 
1773 	kfree(nm_i->nat_bitmap);
1774 	sbi->nm_info = NULL;
1775 	kfree(nm_i);
1776 }
1777 
create_node_manager_caches(void)1778 int __init create_node_manager_caches(void)
1779 {
1780 	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
1781 			sizeof(struct nat_entry), NULL);
1782 	if (!nat_entry_slab)
1783 		return -ENOMEM;
1784 
1785 	free_nid_slab = f2fs_kmem_cache_create("free_nid",
1786 			sizeof(struct free_nid), NULL);
1787 	if (!free_nid_slab) {
1788 		kmem_cache_destroy(nat_entry_slab);
1789 		return -ENOMEM;
1790 	}
1791 	return 0;
1792 }
1793 
destroy_node_manager_caches(void)1794 void destroy_node_manager_caches(void)
1795 {
1796 	kmem_cache_destroy(free_nid_slab);
1797 	kmem_cache_destroy(nat_entry_slab);
1798 }
1799