1 /*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10 #include <linux/slab.h>
11 #include <linux/spinlock.h>
12 #include <linux/completion.h>
13 #include <linux/buffer_head.h>
14 #include <linux/fs.h>
15 #include <linux/gfs2_ondisk.h>
16 #include <linux/prefetch.h>
17 #include <linux/blkdev.h>
18 #include <linux/rbtree.h>
19 #include <linux/random.h>
20
21 #include "gfs2.h"
22 #include "incore.h"
23 #include "glock.h"
24 #include "glops.h"
25 #include "lops.h"
26 #include "meta_io.h"
27 #include "quota.h"
28 #include "rgrp.h"
29 #include "super.h"
30 #include "trans.h"
31 #include "util.h"
32 #include "log.h"
33 #include "inode.h"
34 #include "trace_gfs2.h"
35
36 #define BFITNOENT ((u32)~0)
37 #define NO_BLOCK ((u64)~0)
38
39 #if BITS_PER_LONG == 32
40 #define LBITMASK (0x55555555UL)
41 #define LBITSKIP55 (0x55555555UL)
42 #define LBITSKIP00 (0x00000000UL)
43 #else
44 #define LBITMASK (0x5555555555555555UL)
45 #define LBITSKIP55 (0x5555555555555555UL)
46 #define LBITSKIP00 (0x0000000000000000UL)
47 #endif
48
49 /*
50 * These routines are used by the resource group routines (rgrp.c)
51 * to keep track of block allocation. Each block is represented by two
52 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks.
53 *
54 * 0 = Free
55 * 1 = Used (not metadata)
56 * 2 = Unlinked (still in use) inode
57 * 3 = Used (metadata)
58 */
59
60 static const char valid_change[16] = {
61 /* current */
62 /* n */ 0, 1, 1, 1,
63 /* e */ 1, 0, 0, 0,
64 /* w */ 0, 0, 0, 1,
65 1, 0, 0, 0
66 };
67
68 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 minext,
69 const struct gfs2_inode *ip, bool nowrap);
70
71
72 /**
73 * gfs2_setbit - Set a bit in the bitmaps
74 * @rbm: The position of the bit to set
75 * @do_clone: Also set the clone bitmap, if it exists
76 * @new_state: the new state of the block
77 *
78 */
79
gfs2_setbit(const struct gfs2_rbm * rbm,bool do_clone,unsigned char new_state)80 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
81 unsigned char new_state)
82 {
83 unsigned char *byte1, *byte2, *end, cur_state;
84 unsigned int buflen = rbm->bi->bi_len;
85 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
86
87 byte1 = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset + (rbm->offset / GFS2_NBBY);
88 end = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset + buflen;
89
90 BUG_ON(byte1 >= end);
91
92 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
93
94 if (unlikely(!valid_change[new_state * 4 + cur_state])) {
95 printk(KERN_WARNING "GFS2: buf_blk = 0x%x old_state=%d, "
96 "new_state=%d\n", rbm->offset, cur_state, new_state);
97 printk(KERN_WARNING "GFS2: rgrp=0x%llx bi_start=0x%x\n",
98 (unsigned long long)rbm->rgd->rd_addr,
99 rbm->bi->bi_start);
100 printk(KERN_WARNING "GFS2: bi_offset=0x%x bi_len=0x%x\n",
101 rbm->bi->bi_offset, rbm->bi->bi_len);
102 dump_stack();
103 gfs2_consist_rgrpd(rbm->rgd);
104 return;
105 }
106 *byte1 ^= (cur_state ^ new_state) << bit;
107
108 if (do_clone && rbm->bi->bi_clone) {
109 byte2 = rbm->bi->bi_clone + rbm->bi->bi_offset + (rbm->offset / GFS2_NBBY);
110 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
111 *byte2 ^= (cur_state ^ new_state) << bit;
112 }
113 }
114
115 /**
116 * gfs2_testbit - test a bit in the bitmaps
117 * @rbm: The bit to test
118 *
119 * Returns: The two bit block state of the requested bit
120 */
121
gfs2_testbit(const struct gfs2_rbm * rbm)122 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm)
123 {
124 const u8 *buffer = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset;
125 const u8 *byte;
126 unsigned int bit;
127
128 byte = buffer + (rbm->offset / GFS2_NBBY);
129 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
130
131 return (*byte >> bit) & GFS2_BIT_MASK;
132 }
133
134 /**
135 * gfs2_bit_search
136 * @ptr: Pointer to bitmap data
137 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
138 * @state: The state we are searching for
139 *
140 * We xor the bitmap data with a patter which is the bitwise opposite
141 * of what we are looking for, this gives rise to a pattern of ones
142 * wherever there is a match. Since we have two bits per entry, we
143 * take this pattern, shift it down by one place and then and it with
144 * the original. All the even bit positions (0,2,4, etc) then represent
145 * successful matches, so we mask with 0x55555..... to remove the unwanted
146 * odd bit positions.
147 *
148 * This allows searching of a whole u64 at once (32 blocks) with a
149 * single test (on 64 bit arches).
150 */
151
gfs2_bit_search(const __le64 * ptr,u64 mask,u8 state)152 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
153 {
154 u64 tmp;
155 static const u64 search[] = {
156 [0] = 0xffffffffffffffffULL,
157 [1] = 0xaaaaaaaaaaaaaaaaULL,
158 [2] = 0x5555555555555555ULL,
159 [3] = 0x0000000000000000ULL,
160 };
161 tmp = le64_to_cpu(*ptr) ^ search[state];
162 tmp &= (tmp >> 1);
163 tmp &= mask;
164 return tmp;
165 }
166
167 /**
168 * rs_cmp - multi-block reservation range compare
169 * @blk: absolute file system block number of the new reservation
170 * @len: number of blocks in the new reservation
171 * @rs: existing reservation to compare against
172 *
173 * returns: 1 if the block range is beyond the reach of the reservation
174 * -1 if the block range is before the start of the reservation
175 * 0 if the block range overlaps with the reservation
176 */
rs_cmp(u64 blk,u32 len,struct gfs2_blkreserv * rs)177 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
178 {
179 u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
180
181 if (blk >= startblk + rs->rs_free)
182 return 1;
183 if (blk + len - 1 < startblk)
184 return -1;
185 return 0;
186 }
187
188 /**
189 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
190 * a block in a given allocation state.
191 * @buf: the buffer that holds the bitmaps
192 * @len: the length (in bytes) of the buffer
193 * @goal: start search at this block's bit-pair (within @buffer)
194 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
195 *
196 * Scope of @goal and returned block number is only within this bitmap buffer,
197 * not entire rgrp or filesystem. @buffer will be offset from the actual
198 * beginning of a bitmap block buffer, skipping any header structures, but
199 * headers are always a multiple of 64 bits long so that the buffer is
200 * always aligned to a 64 bit boundary.
201 *
202 * The size of the buffer is in bytes, but is it assumed that it is
203 * always ok to read a complete multiple of 64 bits at the end
204 * of the block in case the end is no aligned to a natural boundary.
205 *
206 * Return: the block number (bitmap buffer scope) that was found
207 */
208
gfs2_bitfit(const u8 * buf,const unsigned int len,u32 goal,u8 state)209 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
210 u32 goal, u8 state)
211 {
212 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
213 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
214 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
215 u64 tmp;
216 u64 mask = 0x5555555555555555ULL;
217 u32 bit;
218
219 /* Mask off bits we don't care about at the start of the search */
220 mask <<= spoint;
221 tmp = gfs2_bit_search(ptr, mask, state);
222 ptr++;
223 while(tmp == 0 && ptr < end) {
224 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
225 ptr++;
226 }
227 /* Mask off any bits which are more than len bytes from the start */
228 if (ptr == end && (len & (sizeof(u64) - 1)))
229 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
230 /* Didn't find anything, so return */
231 if (tmp == 0)
232 return BFITNOENT;
233 ptr--;
234 bit = __ffs64(tmp);
235 bit /= 2; /* two bits per entry in the bitmap */
236 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
237 }
238
239 /**
240 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
241 * @rbm: The rbm with rgd already set correctly
242 * @block: The block number (filesystem relative)
243 *
244 * This sets the bi and offset members of an rbm based on a
245 * resource group and a filesystem relative block number. The
246 * resource group must be set in the rbm on entry, the bi and
247 * offset members will be set by this function.
248 *
249 * Returns: 0 on success, or an error code
250 */
251
gfs2_rbm_from_block(struct gfs2_rbm * rbm,u64 block)252 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
253 {
254 u64 rblock = block - rbm->rgd->rd_data0;
255 u32 x;
256
257 if (WARN_ON_ONCE(rblock > UINT_MAX))
258 return -EINVAL;
259 if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data)
260 return -E2BIG;
261
262 rbm->bi = rbm->rgd->rd_bits;
263 rbm->offset = (u32)(rblock);
264 /* Check if the block is within the first block */
265 if (rbm->offset < (rbm->bi->bi_start + rbm->bi->bi_len) * GFS2_NBBY)
266 return 0;
267
268 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
269 rbm->offset += (sizeof(struct gfs2_rgrp) -
270 sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
271 x = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
272 rbm->offset -= x * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
273 rbm->bi += x;
274 return 0;
275 }
276
277 /**
278 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
279 * @rbm: Position to search (value/result)
280 * @n_unaligned: Number of unaligned blocks to check
281 * @len: Decremented for each block found (terminate on zero)
282 *
283 * Returns: true if a non-free block is encountered
284 */
285
gfs2_unaligned_extlen(struct gfs2_rbm * rbm,u32 n_unaligned,u32 * len)286 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
287 {
288 u64 block;
289 u32 n;
290 u8 res;
291
292 for (n = 0; n < n_unaligned; n++) {
293 res = gfs2_testbit(rbm);
294 if (res != GFS2_BLKST_FREE)
295 return true;
296 (*len)--;
297 if (*len == 0)
298 return true;
299 block = gfs2_rbm_to_block(rbm);
300 if (gfs2_rbm_from_block(rbm, block + 1))
301 return true;
302 }
303
304 return false;
305 }
306
307 /**
308 * gfs2_free_extlen - Return extent length of free blocks
309 * @rbm: Starting position
310 * @len: Max length to check
311 *
312 * Starting at the block specified by the rbm, see how many free blocks
313 * there are, not reading more than len blocks ahead. This can be done
314 * using memchr_inv when the blocks are byte aligned, but has to be done
315 * on a block by block basis in case of unaligned blocks. Also this
316 * function can cope with bitmap boundaries (although it must stop on
317 * a resource group boundary)
318 *
319 * Returns: Number of free blocks in the extent
320 */
321
gfs2_free_extlen(const struct gfs2_rbm * rrbm,u32 len)322 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
323 {
324 struct gfs2_rbm rbm = *rrbm;
325 u32 n_unaligned = rbm.offset & 3;
326 u32 size = len;
327 u32 bytes;
328 u32 chunk_size;
329 u8 *ptr, *start, *end;
330 u64 block;
331
332 if (n_unaligned &&
333 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
334 goto out;
335
336 n_unaligned = len & 3;
337 /* Start is now byte aligned */
338 while (len > 3) {
339 start = rbm.bi->bi_bh->b_data;
340 if (rbm.bi->bi_clone)
341 start = rbm.bi->bi_clone;
342 end = start + rbm.bi->bi_bh->b_size;
343 start += rbm.bi->bi_offset;
344 BUG_ON(rbm.offset & 3);
345 start += (rbm.offset / GFS2_NBBY);
346 bytes = min_t(u32, len / GFS2_NBBY, (end - start));
347 ptr = memchr_inv(start, 0, bytes);
348 chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
349 chunk_size *= GFS2_NBBY;
350 BUG_ON(len < chunk_size);
351 len -= chunk_size;
352 block = gfs2_rbm_to_block(&rbm);
353 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
354 n_unaligned = 0;
355 break;
356 }
357 if (ptr) {
358 n_unaligned = 3;
359 break;
360 }
361 n_unaligned = len & 3;
362 }
363
364 /* Deal with any bits left over at the end */
365 if (n_unaligned)
366 gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
367 out:
368 return size - len;
369 }
370
371 /**
372 * gfs2_bitcount - count the number of bits in a certain state
373 * @rgd: the resource group descriptor
374 * @buffer: the buffer that holds the bitmaps
375 * @buflen: the length (in bytes) of the buffer
376 * @state: the state of the block we're looking for
377 *
378 * Returns: The number of bits
379 */
380
gfs2_bitcount(struct gfs2_rgrpd * rgd,const u8 * buffer,unsigned int buflen,u8 state)381 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
382 unsigned int buflen, u8 state)
383 {
384 const u8 *byte = buffer;
385 const u8 *end = buffer + buflen;
386 const u8 state1 = state << 2;
387 const u8 state2 = state << 4;
388 const u8 state3 = state << 6;
389 u32 count = 0;
390
391 for (; byte < end; byte++) {
392 if (((*byte) & 0x03) == state)
393 count++;
394 if (((*byte) & 0x0C) == state1)
395 count++;
396 if (((*byte) & 0x30) == state2)
397 count++;
398 if (((*byte) & 0xC0) == state3)
399 count++;
400 }
401
402 return count;
403 }
404
405 /**
406 * gfs2_rgrp_verify - Verify that a resource group is consistent
407 * @rgd: the rgrp
408 *
409 */
410
gfs2_rgrp_verify(struct gfs2_rgrpd * rgd)411 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
412 {
413 struct gfs2_sbd *sdp = rgd->rd_sbd;
414 struct gfs2_bitmap *bi = NULL;
415 u32 length = rgd->rd_length;
416 u32 count[4], tmp;
417 int buf, x;
418
419 memset(count, 0, 4 * sizeof(u32));
420
421 /* Count # blocks in each of 4 possible allocation states */
422 for (buf = 0; buf < length; buf++) {
423 bi = rgd->rd_bits + buf;
424 for (x = 0; x < 4; x++)
425 count[x] += gfs2_bitcount(rgd,
426 bi->bi_bh->b_data +
427 bi->bi_offset,
428 bi->bi_len, x);
429 }
430
431 if (count[0] != rgd->rd_free) {
432 if (gfs2_consist_rgrpd(rgd))
433 fs_err(sdp, "free data mismatch: %u != %u\n",
434 count[0], rgd->rd_free);
435 return;
436 }
437
438 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
439 if (count[1] != tmp) {
440 if (gfs2_consist_rgrpd(rgd))
441 fs_err(sdp, "used data mismatch: %u != %u\n",
442 count[1], tmp);
443 return;
444 }
445
446 if (count[2] + count[3] != rgd->rd_dinodes) {
447 if (gfs2_consist_rgrpd(rgd))
448 fs_err(sdp, "used metadata mismatch: %u != %u\n",
449 count[2] + count[3], rgd->rd_dinodes);
450 return;
451 }
452 }
453
rgrp_contains_block(struct gfs2_rgrpd * rgd,u64 block)454 static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
455 {
456 u64 first = rgd->rd_data0;
457 u64 last = first + rgd->rd_data;
458 return first <= block && block < last;
459 }
460
461 /**
462 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
463 * @sdp: The GFS2 superblock
464 * @blk: The data block number
465 * @exact: True if this needs to be an exact match
466 *
467 * Returns: The resource group, or NULL if not found
468 */
469
gfs2_blk2rgrpd(struct gfs2_sbd * sdp,u64 blk,bool exact)470 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
471 {
472 struct rb_node *n, *next;
473 struct gfs2_rgrpd *cur;
474
475 spin_lock(&sdp->sd_rindex_spin);
476 n = sdp->sd_rindex_tree.rb_node;
477 while (n) {
478 cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
479 next = NULL;
480 if (blk < cur->rd_addr)
481 next = n->rb_left;
482 else if (blk >= cur->rd_data0 + cur->rd_data)
483 next = n->rb_right;
484 if (next == NULL) {
485 spin_unlock(&sdp->sd_rindex_spin);
486 if (exact) {
487 if (blk < cur->rd_addr)
488 return NULL;
489 if (blk >= cur->rd_data0 + cur->rd_data)
490 return NULL;
491 }
492 return cur;
493 }
494 n = next;
495 }
496 spin_unlock(&sdp->sd_rindex_spin);
497
498 return NULL;
499 }
500
501 /**
502 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
503 * @sdp: The GFS2 superblock
504 *
505 * Returns: The first rgrp in the filesystem
506 */
507
gfs2_rgrpd_get_first(struct gfs2_sbd * sdp)508 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
509 {
510 const struct rb_node *n;
511 struct gfs2_rgrpd *rgd;
512
513 spin_lock(&sdp->sd_rindex_spin);
514 n = rb_first(&sdp->sd_rindex_tree);
515 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
516 spin_unlock(&sdp->sd_rindex_spin);
517
518 return rgd;
519 }
520
521 /**
522 * gfs2_rgrpd_get_next - get the next RG
523 * @rgd: the resource group descriptor
524 *
525 * Returns: The next rgrp
526 */
527
gfs2_rgrpd_get_next(struct gfs2_rgrpd * rgd)528 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
529 {
530 struct gfs2_sbd *sdp = rgd->rd_sbd;
531 const struct rb_node *n;
532
533 spin_lock(&sdp->sd_rindex_spin);
534 n = rb_next(&rgd->rd_node);
535 if (n == NULL)
536 n = rb_first(&sdp->sd_rindex_tree);
537
538 if (unlikely(&rgd->rd_node == n)) {
539 spin_unlock(&sdp->sd_rindex_spin);
540 return NULL;
541 }
542 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
543 spin_unlock(&sdp->sd_rindex_spin);
544 return rgd;
545 }
546
gfs2_free_clones(struct gfs2_rgrpd * rgd)547 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
548 {
549 int x;
550
551 for (x = 0; x < rgd->rd_length; x++) {
552 struct gfs2_bitmap *bi = rgd->rd_bits + x;
553 kfree(bi->bi_clone);
554 bi->bi_clone = NULL;
555 }
556 }
557
558 /**
559 * gfs2_rs_alloc - make sure we have a reservation assigned to the inode
560 * @ip: the inode for this reservation
561 */
gfs2_rs_alloc(struct gfs2_inode * ip)562 int gfs2_rs_alloc(struct gfs2_inode *ip)
563 {
564 int error = 0;
565
566 down_write(&ip->i_rw_mutex);
567 if (ip->i_res)
568 goto out;
569
570 ip->i_res = kmem_cache_zalloc(gfs2_rsrv_cachep, GFP_NOFS);
571 if (!ip->i_res) {
572 error = -ENOMEM;
573 goto out;
574 }
575
576 RB_CLEAR_NODE(&ip->i_res->rs_node);
577 out:
578 up_write(&ip->i_rw_mutex);
579 return error;
580 }
581
dump_rs(struct seq_file * seq,const struct gfs2_blkreserv * rs)582 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs)
583 {
584 gfs2_print_dbg(seq, " B: n:%llu s:%llu b:%u f:%u\n",
585 (unsigned long long)rs->rs_inum,
586 (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
587 rs->rs_rbm.offset, rs->rs_free);
588 }
589
590 /**
591 * __rs_deltree - remove a multi-block reservation from the rgd tree
592 * @rs: The reservation to remove
593 *
594 */
__rs_deltree(struct gfs2_blkreserv * rs)595 static void __rs_deltree(struct gfs2_blkreserv *rs)
596 {
597 struct gfs2_rgrpd *rgd;
598
599 if (!gfs2_rs_active(rs))
600 return;
601
602 rgd = rs->rs_rbm.rgd;
603 trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
604 rb_erase(&rs->rs_node, &rgd->rd_rstree);
605 RB_CLEAR_NODE(&rs->rs_node);
606
607 if (rs->rs_free) {
608 /* return reserved blocks to the rgrp */
609 BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
610 rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
611 rs->rs_free = 0;
612 clear_bit(GBF_FULL, &rs->rs_rbm.bi->bi_flags);
613 smp_mb__after_clear_bit();
614 }
615 }
616
617 /**
618 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
619 * @rs: The reservation to remove
620 *
621 */
gfs2_rs_deltree(struct gfs2_blkreserv * rs)622 void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
623 {
624 struct gfs2_rgrpd *rgd;
625
626 rgd = rs->rs_rbm.rgd;
627 if (rgd) {
628 spin_lock(&rgd->rd_rsspin);
629 __rs_deltree(rs);
630 spin_unlock(&rgd->rd_rsspin);
631 }
632 }
633
634 /**
635 * gfs2_rs_delete - delete a multi-block reservation
636 * @ip: The inode for this reservation
637 *
638 */
gfs2_rs_delete(struct gfs2_inode * ip)639 void gfs2_rs_delete(struct gfs2_inode *ip)
640 {
641 struct inode *inode = &ip->i_inode;
642
643 down_write(&ip->i_rw_mutex);
644 if (ip->i_res && atomic_read(&inode->i_writecount) <= 1) {
645 gfs2_rs_deltree(ip->i_res);
646 BUG_ON(ip->i_res->rs_free);
647 kmem_cache_free(gfs2_rsrv_cachep, ip->i_res);
648 ip->i_res = NULL;
649 }
650 up_write(&ip->i_rw_mutex);
651 }
652
653 /**
654 * return_all_reservations - return all reserved blocks back to the rgrp.
655 * @rgd: the rgrp that needs its space back
656 *
657 * We previously reserved a bunch of blocks for allocation. Now we need to
658 * give them back. This leave the reservation structures in tact, but removes
659 * all of their corresponding "no-fly zones".
660 */
return_all_reservations(struct gfs2_rgrpd * rgd)661 static void return_all_reservations(struct gfs2_rgrpd *rgd)
662 {
663 struct rb_node *n;
664 struct gfs2_blkreserv *rs;
665
666 spin_lock(&rgd->rd_rsspin);
667 while ((n = rb_first(&rgd->rd_rstree))) {
668 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
669 __rs_deltree(rs);
670 }
671 spin_unlock(&rgd->rd_rsspin);
672 }
673
gfs2_clear_rgrpd(struct gfs2_sbd * sdp)674 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
675 {
676 struct rb_node *n;
677 struct gfs2_rgrpd *rgd;
678 struct gfs2_glock *gl;
679
680 while ((n = rb_first(&sdp->sd_rindex_tree))) {
681 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
682 gl = rgd->rd_gl;
683
684 rb_erase(n, &sdp->sd_rindex_tree);
685
686 if (gl) {
687 spin_lock(&gl->gl_spin);
688 gl->gl_object = NULL;
689 spin_unlock(&gl->gl_spin);
690 gfs2_glock_add_to_lru(gl);
691 gfs2_glock_put(gl);
692 }
693
694 gfs2_free_clones(rgd);
695 kfree(rgd->rd_bits);
696 return_all_reservations(rgd);
697 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
698 }
699 }
700
gfs2_rindex_print(const struct gfs2_rgrpd * rgd)701 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
702 {
703 printk(KERN_INFO " ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
704 printk(KERN_INFO " ri_length = %u\n", rgd->rd_length);
705 printk(KERN_INFO " ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
706 printk(KERN_INFO " ri_data = %u\n", rgd->rd_data);
707 printk(KERN_INFO " ri_bitbytes = %u\n", rgd->rd_bitbytes);
708 }
709
710 /**
711 * gfs2_compute_bitstructs - Compute the bitmap sizes
712 * @rgd: The resource group descriptor
713 *
714 * Calculates bitmap descriptors, one for each block that contains bitmap data
715 *
716 * Returns: errno
717 */
718
compute_bitstructs(struct gfs2_rgrpd * rgd)719 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
720 {
721 struct gfs2_sbd *sdp = rgd->rd_sbd;
722 struct gfs2_bitmap *bi;
723 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
724 u32 bytes_left, bytes;
725 int x;
726
727 if (!length)
728 return -EINVAL;
729
730 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
731 if (!rgd->rd_bits)
732 return -ENOMEM;
733
734 bytes_left = rgd->rd_bitbytes;
735
736 for (x = 0; x < length; x++) {
737 bi = rgd->rd_bits + x;
738
739 bi->bi_flags = 0;
740 /* small rgrp; bitmap stored completely in header block */
741 if (length == 1) {
742 bytes = bytes_left;
743 bi->bi_offset = sizeof(struct gfs2_rgrp);
744 bi->bi_start = 0;
745 bi->bi_len = bytes;
746 /* header block */
747 } else if (x == 0) {
748 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
749 bi->bi_offset = sizeof(struct gfs2_rgrp);
750 bi->bi_start = 0;
751 bi->bi_len = bytes;
752 /* last block */
753 } else if (x + 1 == length) {
754 bytes = bytes_left;
755 bi->bi_offset = sizeof(struct gfs2_meta_header);
756 bi->bi_start = rgd->rd_bitbytes - bytes_left;
757 bi->bi_len = bytes;
758 /* other blocks */
759 } else {
760 bytes = sdp->sd_sb.sb_bsize -
761 sizeof(struct gfs2_meta_header);
762 bi->bi_offset = sizeof(struct gfs2_meta_header);
763 bi->bi_start = rgd->rd_bitbytes - bytes_left;
764 bi->bi_len = bytes;
765 }
766
767 bytes_left -= bytes;
768 }
769
770 if (bytes_left) {
771 gfs2_consist_rgrpd(rgd);
772 return -EIO;
773 }
774 bi = rgd->rd_bits + (length - 1);
775 if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
776 if (gfs2_consist_rgrpd(rgd)) {
777 gfs2_rindex_print(rgd);
778 fs_err(sdp, "start=%u len=%u offset=%u\n",
779 bi->bi_start, bi->bi_len, bi->bi_offset);
780 }
781 return -EIO;
782 }
783
784 return 0;
785 }
786
787 /**
788 * gfs2_ri_total - Total up the file system space, according to the rindex.
789 * @sdp: the filesystem
790 *
791 */
gfs2_ri_total(struct gfs2_sbd * sdp)792 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
793 {
794 u64 total_data = 0;
795 struct inode *inode = sdp->sd_rindex;
796 struct gfs2_inode *ip = GFS2_I(inode);
797 char buf[sizeof(struct gfs2_rindex)];
798 int error, rgrps;
799
800 for (rgrps = 0;; rgrps++) {
801 loff_t pos = rgrps * sizeof(struct gfs2_rindex);
802
803 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
804 break;
805 error = gfs2_internal_read(ip, buf, &pos,
806 sizeof(struct gfs2_rindex));
807 if (error != sizeof(struct gfs2_rindex))
808 break;
809 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
810 }
811 return total_data;
812 }
813
rgd_insert(struct gfs2_rgrpd * rgd)814 static int rgd_insert(struct gfs2_rgrpd *rgd)
815 {
816 struct gfs2_sbd *sdp = rgd->rd_sbd;
817 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
818
819 /* Figure out where to put new node */
820 while (*newn) {
821 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
822 rd_node);
823
824 parent = *newn;
825 if (rgd->rd_addr < cur->rd_addr)
826 newn = &((*newn)->rb_left);
827 else if (rgd->rd_addr > cur->rd_addr)
828 newn = &((*newn)->rb_right);
829 else
830 return -EEXIST;
831 }
832
833 rb_link_node(&rgd->rd_node, parent, newn);
834 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
835 sdp->sd_rgrps++;
836 return 0;
837 }
838
839 /**
840 * read_rindex_entry - Pull in a new resource index entry from the disk
841 * @ip: Pointer to the rindex inode
842 *
843 * Returns: 0 on success, > 0 on EOF, error code otherwise
844 */
845
read_rindex_entry(struct gfs2_inode * ip)846 static int read_rindex_entry(struct gfs2_inode *ip)
847 {
848 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
849 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
850 struct gfs2_rindex buf;
851 int error;
852 struct gfs2_rgrpd *rgd;
853
854 if (pos >= i_size_read(&ip->i_inode))
855 return 1;
856
857 error = gfs2_internal_read(ip, (char *)&buf, &pos,
858 sizeof(struct gfs2_rindex));
859
860 if (error != sizeof(struct gfs2_rindex))
861 return (error == 0) ? 1 : error;
862
863 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
864 error = -ENOMEM;
865 if (!rgd)
866 return error;
867
868 rgd->rd_sbd = sdp;
869 rgd->rd_addr = be64_to_cpu(buf.ri_addr);
870 rgd->rd_length = be32_to_cpu(buf.ri_length);
871 rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
872 rgd->rd_data = be32_to_cpu(buf.ri_data);
873 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
874 spin_lock_init(&rgd->rd_rsspin);
875
876 error = compute_bitstructs(rgd);
877 if (error)
878 goto fail;
879
880 error = gfs2_glock_get(sdp, rgd->rd_addr,
881 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
882 if (error)
883 goto fail;
884
885 rgd->rd_gl->gl_object = rgd;
886 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
887 rgd->rd_flags &= ~GFS2_RDF_UPTODATE;
888 if (rgd->rd_data > sdp->sd_max_rg_data)
889 sdp->sd_max_rg_data = rgd->rd_data;
890 spin_lock(&sdp->sd_rindex_spin);
891 error = rgd_insert(rgd);
892 spin_unlock(&sdp->sd_rindex_spin);
893 if (!error)
894 return 0;
895
896 error = 0; /* someone else read in the rgrp; free it and ignore it */
897 gfs2_glock_put(rgd->rd_gl);
898
899 fail:
900 kfree(rgd->rd_bits);
901 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
902 return error;
903 }
904
905 /**
906 * gfs2_ri_update - Pull in a new resource index from the disk
907 * @ip: pointer to the rindex inode
908 *
909 * Returns: 0 on successful update, error code otherwise
910 */
911
gfs2_ri_update(struct gfs2_inode * ip)912 static int gfs2_ri_update(struct gfs2_inode *ip)
913 {
914 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
915 int error;
916
917 do {
918 error = read_rindex_entry(ip);
919 } while (error == 0);
920
921 if (error < 0)
922 return error;
923
924 sdp->sd_rindex_uptodate = 1;
925 return 0;
926 }
927
928 /**
929 * gfs2_rindex_update - Update the rindex if required
930 * @sdp: The GFS2 superblock
931 *
932 * We grab a lock on the rindex inode to make sure that it doesn't
933 * change whilst we are performing an operation. We keep this lock
934 * for quite long periods of time compared to other locks. This
935 * doesn't matter, since it is shared and it is very, very rarely
936 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
937 *
938 * This makes sure that we're using the latest copy of the resource index
939 * special file, which might have been updated if someone expanded the
940 * filesystem (via gfs2_grow utility), which adds new resource groups.
941 *
942 * Returns: 0 on succeess, error code otherwise
943 */
944
gfs2_rindex_update(struct gfs2_sbd * sdp)945 int gfs2_rindex_update(struct gfs2_sbd *sdp)
946 {
947 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
948 struct gfs2_glock *gl = ip->i_gl;
949 struct gfs2_holder ri_gh;
950 int error = 0;
951 int unlock_required = 0;
952
953 /* Read new copy from disk if we don't have the latest */
954 if (!sdp->sd_rindex_uptodate) {
955 if (!gfs2_glock_is_locked_by_me(gl)) {
956 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
957 if (error)
958 return error;
959 unlock_required = 1;
960 }
961 if (!sdp->sd_rindex_uptodate)
962 error = gfs2_ri_update(ip);
963 if (unlock_required)
964 gfs2_glock_dq_uninit(&ri_gh);
965 }
966
967 return error;
968 }
969
gfs2_rgrp_in(struct gfs2_rgrpd * rgd,const void * buf)970 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
971 {
972 const struct gfs2_rgrp *str = buf;
973 u32 rg_flags;
974
975 rg_flags = be32_to_cpu(str->rg_flags);
976 rg_flags &= ~GFS2_RDF_MASK;
977 rgd->rd_flags &= GFS2_RDF_MASK;
978 rgd->rd_flags |= rg_flags;
979 rgd->rd_free = be32_to_cpu(str->rg_free);
980 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
981 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
982 }
983
gfs2_rgrp_out(struct gfs2_rgrpd * rgd,void * buf)984 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
985 {
986 struct gfs2_rgrp *str = buf;
987
988 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
989 str->rg_free = cpu_to_be32(rgd->rd_free);
990 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
991 str->__pad = cpu_to_be32(0);
992 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
993 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
994 }
995
gfs2_rgrp_lvb_valid(struct gfs2_rgrpd * rgd)996 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
997 {
998 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
999 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1000
1001 if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free ||
1002 rgl->rl_dinodes != str->rg_dinodes ||
1003 rgl->rl_igeneration != str->rg_igeneration)
1004 return 0;
1005 return 1;
1006 }
1007
gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb * rgl,const void * buf)1008 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1009 {
1010 const struct gfs2_rgrp *str = buf;
1011
1012 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1013 rgl->rl_flags = str->rg_flags;
1014 rgl->rl_free = str->rg_free;
1015 rgl->rl_dinodes = str->rg_dinodes;
1016 rgl->rl_igeneration = str->rg_igeneration;
1017 rgl->__pad = 0UL;
1018 }
1019
update_rgrp_lvb_unlinked(struct gfs2_rgrpd * rgd,u32 change)1020 static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change)
1021 {
1022 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1023 u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change;
1024 rgl->rl_unlinked = cpu_to_be32(unlinked);
1025 }
1026
count_unlinked(struct gfs2_rgrpd * rgd)1027 static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1028 {
1029 struct gfs2_bitmap *bi;
1030 const u32 length = rgd->rd_length;
1031 const u8 *buffer = NULL;
1032 u32 i, goal, count = 0;
1033
1034 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1035 goal = 0;
1036 buffer = bi->bi_bh->b_data + bi->bi_offset;
1037 WARN_ON(!buffer_uptodate(bi->bi_bh));
1038 while (goal < bi->bi_len * GFS2_NBBY) {
1039 goal = gfs2_bitfit(buffer, bi->bi_len, goal,
1040 GFS2_BLKST_UNLINKED);
1041 if (goal == BFITNOENT)
1042 break;
1043 count++;
1044 goal++;
1045 }
1046 }
1047
1048 return count;
1049 }
1050
1051
1052 /**
1053 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1054 * @rgd: the struct gfs2_rgrpd describing the RG to read in
1055 *
1056 * Read in all of a Resource Group's header and bitmap blocks.
1057 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
1058 *
1059 * Returns: errno
1060 */
1061
gfs2_rgrp_bh_get(struct gfs2_rgrpd * rgd)1062 int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1063 {
1064 struct gfs2_sbd *sdp = rgd->rd_sbd;
1065 struct gfs2_glock *gl = rgd->rd_gl;
1066 unsigned int length = rgd->rd_length;
1067 struct gfs2_bitmap *bi;
1068 unsigned int x, y;
1069 int error;
1070
1071 if (rgd->rd_bits[0].bi_bh != NULL)
1072 return 0;
1073
1074 for (x = 0; x < length; x++) {
1075 bi = rgd->rd_bits + x;
1076 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh);
1077 if (error)
1078 goto fail;
1079 }
1080
1081 for (y = length; y--;) {
1082 bi = rgd->rd_bits + y;
1083 error = gfs2_meta_wait(sdp, bi->bi_bh);
1084 if (error)
1085 goto fail;
1086 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1087 GFS2_METATYPE_RG)) {
1088 error = -EIO;
1089 goto fail;
1090 }
1091 }
1092
1093 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1094 for (x = 0; x < length; x++)
1095 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1096 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1097 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1098 rgd->rd_free_clone = rgd->rd_free;
1099 }
1100 if (be32_to_cpu(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1101 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1102 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1103 rgd->rd_bits[0].bi_bh->b_data);
1104 }
1105 else if (sdp->sd_args.ar_rgrplvb) {
1106 if (!gfs2_rgrp_lvb_valid(rgd)){
1107 gfs2_consist_rgrpd(rgd);
1108 error = -EIO;
1109 goto fail;
1110 }
1111 if (rgd->rd_rgl->rl_unlinked == 0)
1112 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1113 }
1114 return 0;
1115
1116 fail:
1117 while (x--) {
1118 bi = rgd->rd_bits + x;
1119 brelse(bi->bi_bh);
1120 bi->bi_bh = NULL;
1121 gfs2_assert_warn(sdp, !bi->bi_clone);
1122 }
1123
1124 return error;
1125 }
1126
update_rgrp_lvb(struct gfs2_rgrpd * rgd)1127 int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1128 {
1129 u32 rl_flags;
1130
1131 if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1132 return 0;
1133
1134 if (be32_to_cpu(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1135 return gfs2_rgrp_bh_get(rgd);
1136
1137 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1138 rl_flags &= ~GFS2_RDF_MASK;
1139 rgd->rd_flags &= GFS2_RDF_MASK;
1140 rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1141 if (rgd->rd_rgl->rl_unlinked == 0)
1142 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1143 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1144 rgd->rd_free_clone = rgd->rd_free;
1145 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1146 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1147 return 0;
1148 }
1149
gfs2_rgrp_go_lock(struct gfs2_holder * gh)1150 int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1151 {
1152 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1153 struct gfs2_sbd *sdp = rgd->rd_sbd;
1154
1155 if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1156 return 0;
1157 return gfs2_rgrp_bh_get((struct gfs2_rgrpd *)gh->gh_gl->gl_object);
1158 }
1159
1160 /**
1161 * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1162 * @gh: The glock holder for the resource group
1163 *
1164 */
1165
gfs2_rgrp_go_unlock(struct gfs2_holder * gh)1166 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1167 {
1168 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1169 int x, length = rgd->rd_length;
1170
1171 for (x = 0; x < length; x++) {
1172 struct gfs2_bitmap *bi = rgd->rd_bits + x;
1173 if (bi->bi_bh) {
1174 brelse(bi->bi_bh);
1175 bi->bi_bh = NULL;
1176 }
1177 }
1178
1179 }
1180
gfs2_rgrp_send_discards(struct gfs2_sbd * sdp,u64 offset,struct buffer_head * bh,const struct gfs2_bitmap * bi,unsigned minlen,u64 * ptrimmed)1181 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1182 struct buffer_head *bh,
1183 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1184 {
1185 struct super_block *sb = sdp->sd_vfs;
1186 u64 blk;
1187 sector_t start = 0;
1188 sector_t nr_blks = 0;
1189 int rv;
1190 unsigned int x;
1191 u32 trimmed = 0;
1192 u8 diff;
1193
1194 for (x = 0; x < bi->bi_len; x++) {
1195 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1196 clone += bi->bi_offset;
1197 clone += x;
1198 if (bh) {
1199 const u8 *orig = bh->b_data + bi->bi_offset + x;
1200 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1201 } else {
1202 diff = ~(*clone | (*clone >> 1));
1203 }
1204 diff &= 0x55;
1205 if (diff == 0)
1206 continue;
1207 blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1208 while(diff) {
1209 if (diff & 1) {
1210 if (nr_blks == 0)
1211 goto start_new_extent;
1212 if ((start + nr_blks) != blk) {
1213 if (nr_blks >= minlen) {
1214 rv = sb_issue_discard(sb,
1215 start, nr_blks,
1216 GFP_NOFS, 0);
1217 if (rv)
1218 goto fail;
1219 trimmed += nr_blks;
1220 }
1221 nr_blks = 0;
1222 start_new_extent:
1223 start = blk;
1224 }
1225 nr_blks++;
1226 }
1227 diff >>= 2;
1228 blk++;
1229 }
1230 }
1231 if (nr_blks >= minlen) {
1232 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1233 if (rv)
1234 goto fail;
1235 trimmed += nr_blks;
1236 }
1237 if (ptrimmed)
1238 *ptrimmed = trimmed;
1239 return 0;
1240
1241 fail:
1242 if (sdp->sd_args.ar_discard)
1243 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
1244 sdp->sd_args.ar_discard = 0;
1245 return -EIO;
1246 }
1247
1248 /**
1249 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1250 * @filp: Any file on the filesystem
1251 * @argp: Pointer to the arguments (also used to pass result)
1252 *
1253 * Returns: 0 on success, otherwise error code
1254 */
1255
gfs2_fitrim(struct file * filp,void __user * argp)1256 int gfs2_fitrim(struct file *filp, void __user *argp)
1257 {
1258 struct inode *inode = file_inode(filp);
1259 struct gfs2_sbd *sdp = GFS2_SB(inode);
1260 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1261 struct buffer_head *bh;
1262 struct gfs2_rgrpd *rgd;
1263 struct gfs2_rgrpd *rgd_end;
1264 struct gfs2_holder gh;
1265 struct fstrim_range r;
1266 int ret = 0;
1267 u64 amt;
1268 u64 trimmed = 0;
1269 u64 start, end, minlen;
1270 unsigned int x;
1271 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1272
1273 if (!capable(CAP_SYS_ADMIN))
1274 return -EPERM;
1275
1276 if (!blk_queue_discard(q))
1277 return -EOPNOTSUPP;
1278
1279 if (copy_from_user(&r, argp, sizeof(r)))
1280 return -EFAULT;
1281
1282 ret = gfs2_rindex_update(sdp);
1283 if (ret)
1284 return ret;
1285
1286 start = r.start >> bs_shift;
1287 end = start + (r.len >> bs_shift);
1288 minlen = max_t(u64, r.minlen,
1289 q->limits.discard_granularity) >> bs_shift;
1290
1291 rgd = gfs2_blk2rgrpd(sdp, start, 0);
1292 rgd_end = gfs2_blk2rgrpd(sdp, end - 1, 0);
1293
1294 if (end <= start ||
1295 minlen > sdp->sd_max_rg_data ||
1296 start > rgd_end->rd_data0 + rgd_end->rd_data)
1297 return -EINVAL;
1298
1299 while (1) {
1300
1301 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1302 if (ret)
1303 goto out;
1304
1305 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1306 /* Trim each bitmap in the rgrp */
1307 for (x = 0; x < rgd->rd_length; x++) {
1308 struct gfs2_bitmap *bi = rgd->rd_bits + x;
1309 ret = gfs2_rgrp_send_discards(sdp,
1310 rgd->rd_data0, NULL, bi, minlen,
1311 &amt);
1312 if (ret) {
1313 gfs2_glock_dq_uninit(&gh);
1314 goto out;
1315 }
1316 trimmed += amt;
1317 }
1318
1319 /* Mark rgrp as having been trimmed */
1320 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1321 if (ret == 0) {
1322 bh = rgd->rd_bits[0].bi_bh;
1323 rgd->rd_flags |= GFS2_RGF_TRIMMED;
1324 gfs2_trans_add_meta(rgd->rd_gl, bh);
1325 gfs2_rgrp_out(rgd, bh->b_data);
1326 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data);
1327 gfs2_trans_end(sdp);
1328 }
1329 }
1330 gfs2_glock_dq_uninit(&gh);
1331
1332 if (rgd == rgd_end)
1333 break;
1334
1335 rgd = gfs2_rgrpd_get_next(rgd);
1336 }
1337
1338 out:
1339 r.len = trimmed << 9;
1340 if (copy_to_user(argp, &r, sizeof(r)))
1341 return -EFAULT;
1342
1343 return ret;
1344 }
1345
1346 /**
1347 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1348 * @ip: the inode structure
1349 *
1350 */
rs_insert(struct gfs2_inode * ip)1351 static void rs_insert(struct gfs2_inode *ip)
1352 {
1353 struct rb_node **newn, *parent = NULL;
1354 int rc;
1355 struct gfs2_blkreserv *rs = ip->i_res;
1356 struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1357 u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1358
1359 BUG_ON(gfs2_rs_active(rs));
1360
1361 spin_lock(&rgd->rd_rsspin);
1362 newn = &rgd->rd_rstree.rb_node;
1363 while (*newn) {
1364 struct gfs2_blkreserv *cur =
1365 rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1366
1367 parent = *newn;
1368 rc = rs_cmp(fsblock, rs->rs_free, cur);
1369 if (rc > 0)
1370 newn = &((*newn)->rb_right);
1371 else if (rc < 0)
1372 newn = &((*newn)->rb_left);
1373 else {
1374 spin_unlock(&rgd->rd_rsspin);
1375 WARN_ON(1);
1376 return;
1377 }
1378 }
1379
1380 rb_link_node(&rs->rs_node, parent, newn);
1381 rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1382
1383 /* Do our rgrp accounting for the reservation */
1384 rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1385 spin_unlock(&rgd->rd_rsspin);
1386 trace_gfs2_rs(rs, TRACE_RS_INSERT);
1387 }
1388
1389 /**
1390 * rg_mblk_search - find a group of multiple free blocks to form a reservation
1391 * @rgd: the resource group descriptor
1392 * @ip: pointer to the inode for which we're reserving blocks
1393 * @requested: number of blocks required for this allocation
1394 *
1395 */
1396
rg_mblk_search(struct gfs2_rgrpd * rgd,struct gfs2_inode * ip,unsigned requested)1397 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1398 unsigned requested)
1399 {
1400 struct gfs2_rbm rbm = { .rgd = rgd, };
1401 u64 goal;
1402 struct gfs2_blkreserv *rs = ip->i_res;
1403 u32 extlen;
1404 u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved;
1405 int ret;
1406 struct inode *inode = &ip->i_inode;
1407
1408 if (S_ISDIR(inode->i_mode))
1409 extlen = 1;
1410 else {
1411 extlen = max_t(u32, atomic_read(&rs->rs_sizehint), requested);
1412 extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks);
1413 }
1414 if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1415 return;
1416
1417 /* Find bitmap block that contains bits for goal block */
1418 if (rgrp_contains_block(rgd, ip->i_goal))
1419 goal = ip->i_goal;
1420 else
1421 goal = rgd->rd_last_alloc + rgd->rd_data0;
1422
1423 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1424 return;
1425
1426 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, extlen, ip, true);
1427 if (ret == 0) {
1428 rs->rs_rbm = rbm;
1429 rs->rs_free = extlen;
1430 rs->rs_inum = ip->i_no_addr;
1431 rs_insert(ip);
1432 } else {
1433 if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1434 rgd->rd_last_alloc = 0;
1435 }
1436 }
1437
1438 /**
1439 * gfs2_next_unreserved_block - Return next block that is not reserved
1440 * @rgd: The resource group
1441 * @block: The starting block
1442 * @length: The required length
1443 * @ip: Ignore any reservations for this inode
1444 *
1445 * If the block does not appear in any reservation, then return the
1446 * block number unchanged. If it does appear in the reservation, then
1447 * keep looking through the tree of reservations in order to find the
1448 * first block number which is not reserved.
1449 */
1450
gfs2_next_unreserved_block(struct gfs2_rgrpd * rgd,u64 block,u32 length,const struct gfs2_inode * ip)1451 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1452 u32 length,
1453 const struct gfs2_inode *ip)
1454 {
1455 struct gfs2_blkreserv *rs;
1456 struct rb_node *n;
1457 int rc;
1458
1459 spin_lock(&rgd->rd_rsspin);
1460 n = rgd->rd_rstree.rb_node;
1461 while (n) {
1462 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1463 rc = rs_cmp(block, length, rs);
1464 if (rc < 0)
1465 n = n->rb_left;
1466 else if (rc > 0)
1467 n = n->rb_right;
1468 else
1469 break;
1470 }
1471
1472 if (n) {
1473 while ((rs_cmp(block, length, rs) == 0) && (ip->i_res != rs)) {
1474 block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1475 n = n->rb_right;
1476 if (n == NULL)
1477 break;
1478 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1479 }
1480 }
1481
1482 spin_unlock(&rgd->rd_rsspin);
1483 return block;
1484 }
1485
1486 /**
1487 * gfs2_reservation_check_and_update - Check for reservations during block alloc
1488 * @rbm: The current position in the resource group
1489 * @ip: The inode for which we are searching for blocks
1490 * @minext: The minimum extent length
1491 *
1492 * This checks the current position in the rgrp to see whether there is
1493 * a reservation covering this block. If not then this function is a
1494 * no-op. If there is, then the position is moved to the end of the
1495 * contiguous reservation(s) so that we are pointing at the first
1496 * non-reserved block.
1497 *
1498 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1499 */
1500
gfs2_reservation_check_and_update(struct gfs2_rbm * rbm,const struct gfs2_inode * ip,u32 minext)1501 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1502 const struct gfs2_inode *ip,
1503 u32 minext)
1504 {
1505 u64 block = gfs2_rbm_to_block(rbm);
1506 u32 extlen = 1;
1507 u64 nblock;
1508 int ret;
1509
1510 /*
1511 * If we have a minimum extent length, then skip over any extent
1512 * which is less than the min extent length in size.
1513 */
1514 if (minext) {
1515 extlen = gfs2_free_extlen(rbm, minext);
1516 nblock = block + extlen;
1517 if (extlen < minext)
1518 goto fail;
1519 }
1520
1521 /*
1522 * Check the extent which has been found against the reservations
1523 * and skip if parts of it are already reserved
1524 */
1525 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1526 if (nblock == block)
1527 return 0;
1528 fail:
1529 ret = gfs2_rbm_from_block(rbm, nblock);
1530 if (ret < 0)
1531 return ret;
1532 return 1;
1533 }
1534
1535 /**
1536 * gfs2_rbm_find - Look for blocks of a particular state
1537 * @rbm: Value/result starting position and final position
1538 * @state: The state which we want to find
1539 * @minext: The requested extent length (0 for a single block)
1540 * @ip: If set, check for reservations
1541 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1542 * around until we've reached the starting point.
1543 *
1544 * Side effects:
1545 * - If looking for free blocks, we set GBF_FULL on each bitmap which
1546 * has no free blocks in it.
1547 *
1548 * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1549 */
1550
gfs2_rbm_find(struct gfs2_rbm * rbm,u8 state,u32 minext,const struct gfs2_inode * ip,bool nowrap)1551 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 minext,
1552 const struct gfs2_inode *ip, bool nowrap)
1553 {
1554 struct buffer_head *bh;
1555 struct gfs2_bitmap *initial_bi;
1556 u32 initial_offset;
1557 u32 offset;
1558 u8 *buffer;
1559 int index;
1560 int n = 0;
1561 int iters = rbm->rgd->rd_length;
1562 int ret;
1563
1564 /* If we are not starting at the beginning of a bitmap, then we
1565 * need to add one to the bitmap count to ensure that we search
1566 * the starting bitmap twice.
1567 */
1568 if (rbm->offset != 0)
1569 iters++;
1570
1571 while(1) {
1572 if (test_bit(GBF_FULL, &rbm->bi->bi_flags) &&
1573 (state == GFS2_BLKST_FREE))
1574 goto next_bitmap;
1575
1576 bh = rbm->bi->bi_bh;
1577 buffer = bh->b_data + rbm->bi->bi_offset;
1578 WARN_ON(!buffer_uptodate(bh));
1579 if (state != GFS2_BLKST_UNLINKED && rbm->bi->bi_clone)
1580 buffer = rbm->bi->bi_clone + rbm->bi->bi_offset;
1581 initial_offset = rbm->offset;
1582 offset = gfs2_bitfit(buffer, rbm->bi->bi_len, rbm->offset, state);
1583 if (offset == BFITNOENT)
1584 goto bitmap_full;
1585 rbm->offset = offset;
1586 if (ip == NULL)
1587 return 0;
1588
1589 initial_bi = rbm->bi;
1590 ret = gfs2_reservation_check_and_update(rbm, ip, minext);
1591 if (ret == 0)
1592 return 0;
1593 if (ret > 0) {
1594 n += (rbm->bi - initial_bi);
1595 goto next_iter;
1596 }
1597 if (ret == -E2BIG) {
1598 index = 0;
1599 rbm->offset = 0;
1600 n += (rbm->bi - initial_bi);
1601 goto res_covered_end_of_rgrp;
1602 }
1603 return ret;
1604
1605 bitmap_full: /* Mark bitmap as full and fall through */
1606 if ((state == GFS2_BLKST_FREE) && initial_offset == 0)
1607 set_bit(GBF_FULL, &rbm->bi->bi_flags);
1608
1609 next_bitmap: /* Find next bitmap in the rgrp */
1610 rbm->offset = 0;
1611 index = rbm->bi - rbm->rgd->rd_bits;
1612 index++;
1613 if (index == rbm->rgd->rd_length)
1614 index = 0;
1615 res_covered_end_of_rgrp:
1616 rbm->bi = &rbm->rgd->rd_bits[index];
1617 if ((index == 0) && nowrap)
1618 break;
1619 n++;
1620 next_iter:
1621 if (n >= iters)
1622 break;
1623 }
1624
1625 return -ENOSPC;
1626 }
1627
1628 /**
1629 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1630 * @rgd: The rgrp
1631 * @last_unlinked: block address of the last dinode we unlinked
1632 * @skip: block address we should explicitly not unlink
1633 *
1634 * Returns: 0 if no error
1635 * The inode, if one has been found, in inode.
1636 */
1637
try_rgrp_unlink(struct gfs2_rgrpd * rgd,u64 * last_unlinked,u64 skip)1638 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1639 {
1640 u64 block;
1641 struct gfs2_sbd *sdp = rgd->rd_sbd;
1642 struct gfs2_glock *gl;
1643 struct gfs2_inode *ip;
1644 int error;
1645 int found = 0;
1646 struct gfs2_rbm rbm = { .rgd = rgd, .bi = rgd->rd_bits, .offset = 0 };
1647
1648 while (1) {
1649 down_write(&sdp->sd_log_flush_lock);
1650 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, 0, NULL, true);
1651 up_write(&sdp->sd_log_flush_lock);
1652 if (error == -ENOSPC)
1653 break;
1654 if (WARN_ON_ONCE(error))
1655 break;
1656
1657 block = gfs2_rbm_to_block(&rbm);
1658 if (gfs2_rbm_from_block(&rbm, block + 1))
1659 break;
1660 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1661 continue;
1662 if (block == skip)
1663 continue;
1664 *last_unlinked = block;
1665
1666 error = gfs2_glock_get(sdp, block, &gfs2_inode_glops, CREATE, &gl);
1667 if (error)
1668 continue;
1669
1670 /* If the inode is already in cache, we can ignore it here
1671 * because the existing inode disposal code will deal with
1672 * it when all refs have gone away. Accessing gl_object like
1673 * this is not safe in general. Here it is ok because we do
1674 * not dereference the pointer, and we only need an approx
1675 * answer to whether it is NULL or not.
1676 */
1677 ip = gl->gl_object;
1678
1679 if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1680 gfs2_glock_put(gl);
1681 else
1682 found++;
1683
1684 /* Limit reclaim to sensible number of tasks */
1685 if (found > NR_CPUS)
1686 return;
1687 }
1688
1689 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1690 return;
1691 }
1692
1693 /**
1694 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1695 * @rgd: The rgrp in question
1696 * @loops: An indication of how picky we can be (0=very, 1=less so)
1697 *
1698 * This function uses the recently added glock statistics in order to
1699 * figure out whether a parciular resource group is suffering from
1700 * contention from multiple nodes. This is done purely on the basis
1701 * of timings, since this is the only data we have to work with and
1702 * our aim here is to reject a resource group which is highly contended
1703 * but (very important) not to do this too often in order to ensure that
1704 * we do not land up introducing fragmentation by changing resource
1705 * groups when not actually required.
1706 *
1707 * The calculation is fairly simple, we want to know whether the SRTTB
1708 * (i.e. smoothed round trip time for blocking operations) to acquire
1709 * the lock for this rgrp's glock is significantly greater than the
1710 * time taken for resource groups on average. We introduce a margin in
1711 * the form of the variable @var which is computed as the sum of the two
1712 * respective variences, and multiplied by a factor depending on @loops
1713 * and whether we have a lot of data to base the decision on. This is
1714 * then tested against the square difference of the means in order to
1715 * decide whether the result is statistically significant or not.
1716 *
1717 * Returns: A boolean verdict on the congestion status
1718 */
1719
gfs2_rgrp_congested(const struct gfs2_rgrpd * rgd,int loops)1720 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1721 {
1722 const struct gfs2_glock *gl = rgd->rd_gl;
1723 const struct gfs2_sbd *sdp = gl->gl_sbd;
1724 struct gfs2_lkstats *st;
1725 s64 r_dcount, l_dcount;
1726 s64 r_srttb, l_srttb;
1727 s64 srttb_diff;
1728 s64 sqr_diff;
1729 s64 var;
1730
1731 preempt_disable();
1732 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1733 r_srttb = st->stats[GFS2_LKS_SRTTB];
1734 r_dcount = st->stats[GFS2_LKS_DCOUNT];
1735 var = st->stats[GFS2_LKS_SRTTVARB] +
1736 gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1737 preempt_enable();
1738
1739 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1740 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1741
1742 if ((l_dcount < 1) || (r_dcount < 1) || (r_srttb == 0))
1743 return false;
1744
1745 srttb_diff = r_srttb - l_srttb;
1746 sqr_diff = srttb_diff * srttb_diff;
1747
1748 var *= 2;
1749 if (l_dcount < 8 || r_dcount < 8)
1750 var *= 2;
1751 if (loops == 1)
1752 var *= 2;
1753
1754 return ((srttb_diff < 0) && (sqr_diff > var));
1755 }
1756
1757 /**
1758 * gfs2_rgrp_used_recently
1759 * @rs: The block reservation with the rgrp to test
1760 * @msecs: The time limit in milliseconds
1761 *
1762 * Returns: True if the rgrp glock has been used within the time limit
1763 */
gfs2_rgrp_used_recently(const struct gfs2_blkreserv * rs,u64 msecs)1764 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1765 u64 msecs)
1766 {
1767 u64 tdiff;
1768
1769 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1770 rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1771
1772 return tdiff > (msecs * 1000 * 1000);
1773 }
1774
gfs2_orlov_skip(const struct gfs2_inode * ip)1775 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1776 {
1777 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1778 u32 skip;
1779
1780 get_random_bytes(&skip, sizeof(skip));
1781 return skip % sdp->sd_rgrps;
1782 }
1783
gfs2_select_rgrp(struct gfs2_rgrpd ** pos,const struct gfs2_rgrpd * begin)1784 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1785 {
1786 struct gfs2_rgrpd *rgd = *pos;
1787 struct gfs2_sbd *sdp = rgd->rd_sbd;
1788
1789 rgd = gfs2_rgrpd_get_next(rgd);
1790 if (rgd == NULL)
1791 rgd = gfs2_rgrpd_get_first(sdp);
1792 *pos = rgd;
1793 if (rgd != begin) /* If we didn't wrap */
1794 return true;
1795 return false;
1796 }
1797
1798 /**
1799 * gfs2_inplace_reserve - Reserve space in the filesystem
1800 * @ip: the inode to reserve space for
1801 * @requested: the number of blocks to be reserved
1802 *
1803 * Returns: errno
1804 */
1805
gfs2_inplace_reserve(struct gfs2_inode * ip,u32 requested,u32 aflags)1806 int gfs2_inplace_reserve(struct gfs2_inode *ip, u32 requested, u32 aflags)
1807 {
1808 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1809 struct gfs2_rgrpd *begin = NULL;
1810 struct gfs2_blkreserv *rs = ip->i_res;
1811 int error = 0, rg_locked, flags = 0;
1812 u64 last_unlinked = NO_BLOCK;
1813 int loops = 0;
1814 u32 skip = 0;
1815
1816 if (sdp->sd_args.ar_rgrplvb)
1817 flags |= GL_SKIP;
1818 if (gfs2_assert_warn(sdp, requested))
1819 return -EINVAL;
1820 if (gfs2_rs_active(rs)) {
1821 begin = rs->rs_rbm.rgd;
1822 flags = 0; /* Yoda: Do or do not. There is no try */
1823 } else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) {
1824 rs->rs_rbm.rgd = begin = ip->i_rgd;
1825 } else {
1826 rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
1827 }
1828 if (S_ISDIR(ip->i_inode.i_mode) && (aflags & GFS2_AF_ORLOV))
1829 skip = gfs2_orlov_skip(ip);
1830 if (rs->rs_rbm.rgd == NULL)
1831 return -EBADSLT;
1832
1833 while (loops < 3) {
1834 rg_locked = 1;
1835
1836 if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
1837 rg_locked = 0;
1838 if (skip && skip--)
1839 goto next_rgrp;
1840 if (!gfs2_rs_active(rs) && (loops < 2) &&
1841 gfs2_rgrp_used_recently(rs, 1000) &&
1842 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
1843 goto next_rgrp;
1844 error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
1845 LM_ST_EXCLUSIVE, flags,
1846 &rs->rs_rgd_gh);
1847 if (unlikely(error))
1848 return error;
1849 if (!gfs2_rs_active(rs) && (loops < 2) &&
1850 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
1851 goto skip_rgrp;
1852 if (sdp->sd_args.ar_rgrplvb) {
1853 error = update_rgrp_lvb(rs->rs_rbm.rgd);
1854 if (unlikely(error)) {
1855 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1856 return error;
1857 }
1858 }
1859 }
1860
1861 /* Skip unuseable resource groups */
1862 if (rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC | GFS2_RDF_ERROR))
1863 goto skip_rgrp;
1864
1865 if (sdp->sd_args.ar_rgrplvb)
1866 gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
1867
1868 /* Get a reservation if we don't already have one */
1869 if (!gfs2_rs_active(rs))
1870 rg_mblk_search(rs->rs_rbm.rgd, ip, requested);
1871
1872 /* Skip rgrps when we can't get a reservation on first pass */
1873 if (!gfs2_rs_active(rs) && (loops < 1))
1874 goto check_rgrp;
1875
1876 /* If rgrp has enough free space, use it */
1877 if (rs->rs_rbm.rgd->rd_free_clone >= requested) {
1878 ip->i_rgd = rs->rs_rbm.rgd;
1879 return 0;
1880 }
1881
1882 /* Drop reservation, if we couldn't use reserved rgrp */
1883 if (gfs2_rs_active(rs))
1884 gfs2_rs_deltree(rs);
1885 check_rgrp:
1886 /* Check for unlinked inodes which can be reclaimed */
1887 if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
1888 try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
1889 ip->i_no_addr);
1890 skip_rgrp:
1891 /* Unlock rgrp if required */
1892 if (!rg_locked)
1893 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1894 next_rgrp:
1895 /* Find the next rgrp, and continue looking */
1896 if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
1897 continue;
1898 if (skip)
1899 continue;
1900
1901 /* If we've scanned all the rgrps, but found no free blocks
1902 * then this checks for some less likely conditions before
1903 * trying again.
1904 */
1905 loops++;
1906 /* Check that fs hasn't grown if writing to rindex */
1907 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
1908 error = gfs2_ri_update(ip);
1909 if (error)
1910 return error;
1911 }
1912 /* Flushing the log may release space */
1913 if (loops == 2)
1914 gfs2_log_flush(sdp, NULL);
1915 }
1916
1917 return -ENOSPC;
1918 }
1919
1920 /**
1921 * gfs2_inplace_release - release an inplace reservation
1922 * @ip: the inode the reservation was taken out on
1923 *
1924 * Release a reservation made by gfs2_inplace_reserve().
1925 */
1926
gfs2_inplace_release(struct gfs2_inode * ip)1927 void gfs2_inplace_release(struct gfs2_inode *ip)
1928 {
1929 struct gfs2_blkreserv *rs = ip->i_res;
1930
1931 if (rs->rs_rgd_gh.gh_gl)
1932 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1933 }
1934
1935 /**
1936 * gfs2_get_block_type - Check a block in a RG is of given type
1937 * @rgd: the resource group holding the block
1938 * @block: the block number
1939 *
1940 * Returns: The block type (GFS2_BLKST_*)
1941 */
1942
gfs2_get_block_type(struct gfs2_rgrpd * rgd,u64 block)1943 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
1944 {
1945 struct gfs2_rbm rbm = { .rgd = rgd, };
1946 int ret;
1947
1948 ret = gfs2_rbm_from_block(&rbm, block);
1949 WARN_ON_ONCE(ret != 0);
1950
1951 return gfs2_testbit(&rbm);
1952 }
1953
1954
1955 /**
1956 * gfs2_alloc_extent - allocate an extent from a given bitmap
1957 * @rbm: the resource group information
1958 * @dinode: TRUE if the first block we allocate is for a dinode
1959 * @n: The extent length (value/result)
1960 *
1961 * Add the bitmap buffer to the transaction.
1962 * Set the found bits to @new_state to change block's allocation state.
1963 */
gfs2_alloc_extent(const struct gfs2_rbm * rbm,bool dinode,unsigned int * n)1964 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
1965 unsigned int *n)
1966 {
1967 struct gfs2_rbm pos = { .rgd = rbm->rgd, };
1968 const unsigned int elen = *n;
1969 u64 block;
1970 int ret;
1971
1972 *n = 1;
1973 block = gfs2_rbm_to_block(rbm);
1974 gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm->bi->bi_bh);
1975 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
1976 block++;
1977 while (*n < elen) {
1978 ret = gfs2_rbm_from_block(&pos, block);
1979 if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE)
1980 break;
1981 gfs2_trans_add_meta(pos.rgd->rd_gl, pos.bi->bi_bh);
1982 gfs2_setbit(&pos, true, GFS2_BLKST_USED);
1983 (*n)++;
1984 block++;
1985 }
1986 }
1987
1988 /**
1989 * rgblk_free - Change alloc state of given block(s)
1990 * @sdp: the filesystem
1991 * @bstart: the start of a run of blocks to free
1992 * @blen: the length of the block run (all must lie within ONE RG!)
1993 * @new_state: GFS2_BLKST_XXX the after-allocation block state
1994 *
1995 * Returns: Resource group containing the block(s)
1996 */
1997
rgblk_free(struct gfs2_sbd * sdp,u64 bstart,u32 blen,unsigned char new_state)1998 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
1999 u32 blen, unsigned char new_state)
2000 {
2001 struct gfs2_rbm rbm;
2002
2003 rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
2004 if (!rbm.rgd) {
2005 if (gfs2_consist(sdp))
2006 fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
2007 return NULL;
2008 }
2009
2010 while (blen--) {
2011 gfs2_rbm_from_block(&rbm, bstart);
2012 bstart++;
2013 if (!rbm.bi->bi_clone) {
2014 rbm.bi->bi_clone = kmalloc(rbm.bi->bi_bh->b_size,
2015 GFP_NOFS | __GFP_NOFAIL);
2016 memcpy(rbm.bi->bi_clone + rbm.bi->bi_offset,
2017 rbm.bi->bi_bh->b_data + rbm.bi->bi_offset,
2018 rbm.bi->bi_len);
2019 }
2020 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.bi->bi_bh);
2021 gfs2_setbit(&rbm, false, new_state);
2022 }
2023
2024 return rbm.rgd;
2025 }
2026
2027 /**
2028 * gfs2_rgrp_dump - print out an rgrp
2029 * @seq: The iterator
2030 * @gl: The glock in question
2031 *
2032 */
2033
gfs2_rgrp_dump(struct seq_file * seq,const struct gfs2_glock * gl)2034 int gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
2035 {
2036 struct gfs2_rgrpd *rgd = gl->gl_object;
2037 struct gfs2_blkreserv *trs;
2038 const struct rb_node *n;
2039
2040 if (rgd == NULL)
2041 return 0;
2042 gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u\n",
2043 (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2044 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2045 rgd->rd_reserved);
2046 spin_lock(&rgd->rd_rsspin);
2047 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2048 trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2049 dump_rs(seq, trs);
2050 }
2051 spin_unlock(&rgd->rd_rsspin);
2052 return 0;
2053 }
2054
gfs2_rgrp_error(struct gfs2_rgrpd * rgd)2055 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2056 {
2057 struct gfs2_sbd *sdp = rgd->rd_sbd;
2058 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2059 (unsigned long long)rgd->rd_addr);
2060 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2061 gfs2_rgrp_dump(NULL, rgd->rd_gl);
2062 rgd->rd_flags |= GFS2_RDF_ERROR;
2063 }
2064
2065 /**
2066 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2067 * @ip: The inode we have just allocated blocks for
2068 * @rbm: The start of the allocated blocks
2069 * @len: The extent length
2070 *
2071 * Adjusts a reservation after an allocation has taken place. If the
2072 * reservation does not match the allocation, or if it is now empty
2073 * then it is removed.
2074 */
2075
gfs2_adjust_reservation(struct gfs2_inode * ip,const struct gfs2_rbm * rbm,unsigned len)2076 static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2077 const struct gfs2_rbm *rbm, unsigned len)
2078 {
2079 struct gfs2_blkreserv *rs = ip->i_res;
2080 struct gfs2_rgrpd *rgd = rbm->rgd;
2081 unsigned rlen;
2082 u64 block;
2083 int ret;
2084
2085 spin_lock(&rgd->rd_rsspin);
2086 if (gfs2_rs_active(rs)) {
2087 if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2088 block = gfs2_rbm_to_block(rbm);
2089 ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2090 rlen = min(rs->rs_free, len);
2091 rs->rs_free -= rlen;
2092 rgd->rd_reserved -= rlen;
2093 trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2094 if (rs->rs_free && !ret)
2095 goto out;
2096 }
2097 __rs_deltree(rs);
2098 }
2099 out:
2100 spin_unlock(&rgd->rd_rsspin);
2101 }
2102
2103 /**
2104 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2105 * @ip: the inode to allocate the block for
2106 * @bn: Used to return the starting block number
2107 * @nblocks: requested number of blocks/extent length (value/result)
2108 * @dinode: 1 if we're allocating a dinode block, else 0
2109 * @generation: the generation number of the inode
2110 *
2111 * Returns: 0 or error
2112 */
2113
gfs2_alloc_blocks(struct gfs2_inode * ip,u64 * bn,unsigned int * nblocks,bool dinode,u64 * generation)2114 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2115 bool dinode, u64 *generation)
2116 {
2117 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2118 struct buffer_head *dibh;
2119 struct gfs2_rbm rbm = { .rgd = ip->i_rgd, };
2120 unsigned int ndata;
2121 u64 goal;
2122 u64 block; /* block, within the file system scope */
2123 int error;
2124
2125 if (gfs2_rs_active(ip->i_res))
2126 goal = gfs2_rbm_to_block(&ip->i_res->rs_rbm);
2127 else if (!dinode && rgrp_contains_block(rbm.rgd, ip->i_goal))
2128 goal = ip->i_goal;
2129 else
2130 goal = rbm.rgd->rd_last_alloc + rbm.rgd->rd_data0;
2131
2132 gfs2_rbm_from_block(&rbm, goal);
2133 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, 0, ip, false);
2134
2135 if (error == -ENOSPC) {
2136 gfs2_rbm_from_block(&rbm, goal);
2137 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, 0, NULL, false);
2138 }
2139
2140 /* Since all blocks are reserved in advance, this shouldn't happen */
2141 if (error) {
2142 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d\n",
2143 (unsigned long long)ip->i_no_addr, error, *nblocks,
2144 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags));
2145 goto rgrp_error;
2146 }
2147
2148 gfs2_alloc_extent(&rbm, dinode, nblocks);
2149 block = gfs2_rbm_to_block(&rbm);
2150 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2151 if (gfs2_rs_active(ip->i_res))
2152 gfs2_adjust_reservation(ip, &rbm, *nblocks);
2153 ndata = *nblocks;
2154 if (dinode)
2155 ndata--;
2156
2157 if (!dinode) {
2158 ip->i_goal = block + ndata - 1;
2159 error = gfs2_meta_inode_buffer(ip, &dibh);
2160 if (error == 0) {
2161 struct gfs2_dinode *di =
2162 (struct gfs2_dinode *)dibh->b_data;
2163 gfs2_trans_add_meta(ip->i_gl, dibh);
2164 di->di_goal_meta = di->di_goal_data =
2165 cpu_to_be64(ip->i_goal);
2166 brelse(dibh);
2167 }
2168 }
2169 if (rbm.rgd->rd_free < *nblocks) {
2170 printk(KERN_WARNING "nblocks=%u\n", *nblocks);
2171 goto rgrp_error;
2172 }
2173
2174 rbm.rgd->rd_free -= *nblocks;
2175 if (dinode) {
2176 rbm.rgd->rd_dinodes++;
2177 *generation = rbm.rgd->rd_igeneration++;
2178 if (*generation == 0)
2179 *generation = rbm.rgd->rd_igeneration++;
2180 }
2181
2182 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2183 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2184 gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data);
2185
2186 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2187 if (dinode)
2188 gfs2_trans_add_unrevoke(sdp, block, 1);
2189
2190 gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2191
2192 rbm.rgd->rd_free_clone -= *nblocks;
2193 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2194 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2195 *bn = block;
2196 return 0;
2197
2198 rgrp_error:
2199 gfs2_rgrp_error(rbm.rgd);
2200 return -EIO;
2201 }
2202
2203 /**
2204 * __gfs2_free_blocks - free a contiguous run of block(s)
2205 * @ip: the inode these blocks are being freed from
2206 * @bstart: first block of a run of contiguous blocks
2207 * @blen: the length of the block run
2208 * @meta: 1 if the blocks represent metadata
2209 *
2210 */
2211
__gfs2_free_blocks(struct gfs2_inode * ip,u64 bstart,u32 blen,int meta)2212 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
2213 {
2214 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2215 struct gfs2_rgrpd *rgd;
2216
2217 rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
2218 if (!rgd)
2219 return;
2220 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2221 rgd->rd_free += blen;
2222 rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2223 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2224 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2225 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2226
2227 /* Directories keep their data in the metadata address space */
2228 if (meta || ip->i_depth)
2229 gfs2_meta_wipe(ip, bstart, blen);
2230 }
2231
2232 /**
2233 * gfs2_free_meta - free a contiguous run of data block(s)
2234 * @ip: the inode these blocks are being freed from
2235 * @bstart: first block of a run of contiguous blocks
2236 * @blen: the length of the block run
2237 *
2238 */
2239
gfs2_free_meta(struct gfs2_inode * ip,u64 bstart,u32 blen)2240 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
2241 {
2242 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2243
2244 __gfs2_free_blocks(ip, bstart, blen, 1);
2245 gfs2_statfs_change(sdp, 0, +blen, 0);
2246 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2247 }
2248
gfs2_unlink_di(struct inode * inode)2249 void gfs2_unlink_di(struct inode *inode)
2250 {
2251 struct gfs2_inode *ip = GFS2_I(inode);
2252 struct gfs2_sbd *sdp = GFS2_SB(inode);
2253 struct gfs2_rgrpd *rgd;
2254 u64 blkno = ip->i_no_addr;
2255
2256 rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
2257 if (!rgd)
2258 return;
2259 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2260 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2261 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2262 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2263 update_rgrp_lvb_unlinked(rgd, 1);
2264 }
2265
gfs2_free_uninit_di(struct gfs2_rgrpd * rgd,u64 blkno)2266 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
2267 {
2268 struct gfs2_sbd *sdp = rgd->rd_sbd;
2269 struct gfs2_rgrpd *tmp_rgd;
2270
2271 tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
2272 if (!tmp_rgd)
2273 return;
2274 gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
2275
2276 if (!rgd->rd_dinodes)
2277 gfs2_consist_rgrpd(rgd);
2278 rgd->rd_dinodes--;
2279 rgd->rd_free++;
2280
2281 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2282 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2283 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2284 update_rgrp_lvb_unlinked(rgd, -1);
2285
2286 gfs2_statfs_change(sdp, 0, +1, -1);
2287 }
2288
2289
gfs2_free_di(struct gfs2_rgrpd * rgd,struct gfs2_inode * ip)2290 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2291 {
2292 gfs2_free_uninit_di(rgd, ip->i_no_addr);
2293 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2294 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2295 gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2296 }
2297
2298 /**
2299 * gfs2_check_blk_type - Check the type of a block
2300 * @sdp: The superblock
2301 * @no_addr: The block number to check
2302 * @type: The block type we are looking for
2303 *
2304 * Returns: 0 if the block type matches the expected type
2305 * -ESTALE if it doesn't match
2306 * or -ve errno if something went wrong while checking
2307 */
2308
gfs2_check_blk_type(struct gfs2_sbd * sdp,u64 no_addr,unsigned int type)2309 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2310 {
2311 struct gfs2_rgrpd *rgd;
2312 struct gfs2_holder rgd_gh;
2313 int error = -EINVAL;
2314
2315 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2316 if (!rgd)
2317 goto fail;
2318
2319 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2320 if (error)
2321 goto fail;
2322
2323 if (gfs2_get_block_type(rgd, no_addr) != type)
2324 error = -ESTALE;
2325
2326 gfs2_glock_dq_uninit(&rgd_gh);
2327 fail:
2328 return error;
2329 }
2330
2331 /**
2332 * gfs2_rlist_add - add a RG to a list of RGs
2333 * @ip: the inode
2334 * @rlist: the list of resource groups
2335 * @block: the block
2336 *
2337 * Figure out what RG a block belongs to and add that RG to the list
2338 *
2339 * FIXME: Don't use NOFAIL
2340 *
2341 */
2342
gfs2_rlist_add(struct gfs2_inode * ip,struct gfs2_rgrp_list * rlist,u64 block)2343 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2344 u64 block)
2345 {
2346 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2347 struct gfs2_rgrpd *rgd;
2348 struct gfs2_rgrpd **tmp;
2349 unsigned int new_space;
2350 unsigned int x;
2351
2352 if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2353 return;
2354
2355 if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
2356 rgd = ip->i_rgd;
2357 else
2358 rgd = gfs2_blk2rgrpd(sdp, block, 1);
2359 if (!rgd) {
2360 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
2361 return;
2362 }
2363 ip->i_rgd = rgd;
2364
2365 for (x = 0; x < rlist->rl_rgrps; x++)
2366 if (rlist->rl_rgd[x] == rgd)
2367 return;
2368
2369 if (rlist->rl_rgrps == rlist->rl_space) {
2370 new_space = rlist->rl_space + 10;
2371
2372 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2373 GFP_NOFS | __GFP_NOFAIL);
2374
2375 if (rlist->rl_rgd) {
2376 memcpy(tmp, rlist->rl_rgd,
2377 rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2378 kfree(rlist->rl_rgd);
2379 }
2380
2381 rlist->rl_space = new_space;
2382 rlist->rl_rgd = tmp;
2383 }
2384
2385 rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2386 }
2387
2388 /**
2389 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2390 * and initialize an array of glock holders for them
2391 * @rlist: the list of resource groups
2392 * @state: the lock state to acquire the RG lock in
2393 *
2394 * FIXME: Don't use NOFAIL
2395 *
2396 */
2397
gfs2_rlist_alloc(struct gfs2_rgrp_list * rlist,unsigned int state)2398 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
2399 {
2400 unsigned int x;
2401
2402 rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
2403 GFP_NOFS | __GFP_NOFAIL);
2404 for (x = 0; x < rlist->rl_rgrps; x++)
2405 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2406 state, 0,
2407 &rlist->rl_ghs[x]);
2408 }
2409
2410 /**
2411 * gfs2_rlist_free - free a resource group list
2412 * @list: the list of resource groups
2413 *
2414 */
2415
gfs2_rlist_free(struct gfs2_rgrp_list * rlist)2416 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2417 {
2418 unsigned int x;
2419
2420 kfree(rlist->rl_rgd);
2421
2422 if (rlist->rl_ghs) {
2423 for (x = 0; x < rlist->rl_rgrps; x++)
2424 gfs2_holder_uninit(&rlist->rl_ghs[x]);
2425 kfree(rlist->rl_ghs);
2426 rlist->rl_ghs = NULL;
2427 }
2428 }
2429
2430