• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*P:700
2  * The pagetable code, on the other hand, still shows the scars of
3  * previous encounters.  It's functional, and as neat as it can be in the
4  * circumstances, but be wary, for these things are subtle and break easily.
5  * The Guest provides a virtual to physical mapping, but we can neither trust
6  * it nor use it: we verify and convert it here then point the CPU to the
7  * converted Guest pages when running the Guest.
8 :*/
9 
10 /* Copyright (C) Rusty Russell IBM Corporation 2013.
11  * GPL v2 and any later version */
12 #include <linux/mm.h>
13 #include <linux/gfp.h>
14 #include <linux/types.h>
15 #include <linux/spinlock.h>
16 #include <linux/random.h>
17 #include <linux/percpu.h>
18 #include <asm/tlbflush.h>
19 #include <asm/uaccess.h>
20 #include "lg.h"
21 
22 /*M:008
23  * We hold reference to pages, which prevents them from being swapped.
24  * It'd be nice to have a callback in the "struct mm_struct" when Linux wants
25  * to swap out.  If we had this, and a shrinker callback to trim PTE pages, we
26  * could probably consider launching Guests as non-root.
27 :*/
28 
29 /*H:300
30  * The Page Table Code
31  *
32  * We use two-level page tables for the Guest, or three-level with PAE.  If
33  * you're not entirely comfortable with virtual addresses, physical addresses
34  * and page tables then I recommend you review arch/x86/lguest/boot.c's "Page
35  * Table Handling" (with diagrams!).
36  *
37  * The Guest keeps page tables, but we maintain the actual ones here: these are
38  * called "shadow" page tables.  Which is a very Guest-centric name: these are
39  * the real page tables the CPU uses, although we keep them up to date to
40  * reflect the Guest's.  (See what I mean about weird naming?  Since when do
41  * shadows reflect anything?)
42  *
43  * Anyway, this is the most complicated part of the Host code.  There are seven
44  * parts to this:
45  *  (i) Looking up a page table entry when the Guest faults,
46  *  (ii) Making sure the Guest stack is mapped,
47  *  (iii) Setting up a page table entry when the Guest tells us one has changed,
48  *  (iv) Switching page tables,
49  *  (v) Flushing (throwing away) page tables,
50  *  (vi) Mapping the Switcher when the Guest is about to run,
51  *  (vii) Setting up the page tables initially.
52 :*/
53 
54 /*
55  * The Switcher uses the complete top PTE page.  That's 1024 PTE entries (4MB)
56  * or 512 PTE entries with PAE (2MB).
57  */
58 #define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1)
59 
60 /*
61  * For PAE we need the PMD index as well. We use the last 2MB, so we
62  * will need the last pmd entry of the last pmd page.
63  */
64 #ifdef CONFIG_X86_PAE
65 #define CHECK_GPGD_MASK		_PAGE_PRESENT
66 #else
67 #define CHECK_GPGD_MASK		_PAGE_TABLE
68 #endif
69 
70 /*H:320
71  * The page table code is curly enough to need helper functions to keep it
72  * clear and clean.  The kernel itself provides many of them; one advantage
73  * of insisting that the Guest and Host use the same CONFIG_PAE setting.
74  *
75  * There are two functions which return pointers to the shadow (aka "real")
76  * page tables.
77  *
78  * spgd_addr() takes the virtual address and returns a pointer to the top-level
79  * page directory entry (PGD) for that address.  Since we keep track of several
80  * page tables, the "i" argument tells us which one we're interested in (it's
81  * usually the current one).
82  */
spgd_addr(struct lg_cpu * cpu,u32 i,unsigned long vaddr)83 static pgd_t *spgd_addr(struct lg_cpu *cpu, u32 i, unsigned long vaddr)
84 {
85 	unsigned int index = pgd_index(vaddr);
86 
87 	/* Return a pointer index'th pgd entry for the i'th page table. */
88 	return &cpu->lg->pgdirs[i].pgdir[index];
89 }
90 
91 #ifdef CONFIG_X86_PAE
92 /*
93  * This routine then takes the PGD entry given above, which contains the
94  * address of the PMD page.  It then returns a pointer to the PMD entry for the
95  * given address.
96  */
spmd_addr(struct lg_cpu * cpu,pgd_t spgd,unsigned long vaddr)97 static pmd_t *spmd_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
98 {
99 	unsigned int index = pmd_index(vaddr);
100 	pmd_t *page;
101 
102 	/* You should never call this if the PGD entry wasn't valid */
103 	BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
104 	page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
105 
106 	return &page[index];
107 }
108 #endif
109 
110 /*
111  * This routine then takes the page directory entry returned above, which
112  * contains the address of the page table entry (PTE) page.  It then returns a
113  * pointer to the PTE entry for the given address.
114  */
spte_addr(struct lg_cpu * cpu,pgd_t spgd,unsigned long vaddr)115 static pte_t *spte_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
116 {
117 #ifdef CONFIG_X86_PAE
118 	pmd_t *pmd = spmd_addr(cpu, spgd, vaddr);
119 	pte_t *page = __va(pmd_pfn(*pmd) << PAGE_SHIFT);
120 
121 	/* You should never call this if the PMD entry wasn't valid */
122 	BUG_ON(!(pmd_flags(*pmd) & _PAGE_PRESENT));
123 #else
124 	pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
125 	/* You should never call this if the PGD entry wasn't valid */
126 	BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
127 #endif
128 
129 	return &page[pte_index(vaddr)];
130 }
131 
132 /*
133  * These functions are just like the above, except they access the Guest
134  * page tables.  Hence they return a Guest address.
135  */
gpgd_addr(struct lg_cpu * cpu,unsigned long vaddr)136 static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr)
137 {
138 	unsigned int index = vaddr >> (PGDIR_SHIFT);
139 	return cpu->lg->pgdirs[cpu->cpu_pgd].gpgdir + index * sizeof(pgd_t);
140 }
141 
142 #ifdef CONFIG_X86_PAE
143 /* Follow the PGD to the PMD. */
gpmd_addr(pgd_t gpgd,unsigned long vaddr)144 static unsigned long gpmd_addr(pgd_t gpgd, unsigned long vaddr)
145 {
146 	unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
147 	BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
148 	return gpage + pmd_index(vaddr) * sizeof(pmd_t);
149 }
150 
151 /* Follow the PMD to the PTE. */
gpte_addr(struct lg_cpu * cpu,pmd_t gpmd,unsigned long vaddr)152 static unsigned long gpte_addr(struct lg_cpu *cpu,
153 			       pmd_t gpmd, unsigned long vaddr)
154 {
155 	unsigned long gpage = pmd_pfn(gpmd) << PAGE_SHIFT;
156 
157 	BUG_ON(!(pmd_flags(gpmd) & _PAGE_PRESENT));
158 	return gpage + pte_index(vaddr) * sizeof(pte_t);
159 }
160 #else
161 /* Follow the PGD to the PTE (no mid-level for !PAE). */
gpte_addr(struct lg_cpu * cpu,pgd_t gpgd,unsigned long vaddr)162 static unsigned long gpte_addr(struct lg_cpu *cpu,
163 				pgd_t gpgd, unsigned long vaddr)
164 {
165 	unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
166 
167 	BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
168 	return gpage + pte_index(vaddr) * sizeof(pte_t);
169 }
170 #endif
171 /*:*/
172 
173 /*M:007
174  * get_pfn is slow: we could probably try to grab batches of pages here as
175  * an optimization (ie. pre-faulting).
176 :*/
177 
178 /*H:350
179  * This routine takes a page number given by the Guest and converts it to
180  * an actual, physical page number.  It can fail for several reasons: the
181  * virtual address might not be mapped by the Launcher, the write flag is set
182  * and the page is read-only, or the write flag was set and the page was
183  * shared so had to be copied, but we ran out of memory.
184  *
185  * This holds a reference to the page, so release_pte() is careful to put that
186  * back.
187  */
get_pfn(unsigned long virtpfn,int write)188 static unsigned long get_pfn(unsigned long virtpfn, int write)
189 {
190 	struct page *page;
191 
192 	/* gup me one page at this address please! */
193 	if (get_user_pages_fast(virtpfn << PAGE_SHIFT, 1, write, &page) == 1)
194 		return page_to_pfn(page);
195 
196 	/* This value indicates failure. */
197 	return -1UL;
198 }
199 
200 /*H:340
201  * Converting a Guest page table entry to a shadow (ie. real) page table
202  * entry can be a little tricky.  The flags are (almost) the same, but the
203  * Guest PTE contains a virtual page number: the CPU needs the real page
204  * number.
205  */
gpte_to_spte(struct lg_cpu * cpu,pte_t gpte,int write)206 static pte_t gpte_to_spte(struct lg_cpu *cpu, pte_t gpte, int write)
207 {
208 	unsigned long pfn, base, flags;
209 
210 	/*
211 	 * The Guest sets the global flag, because it thinks that it is using
212 	 * PGE.  We only told it to use PGE so it would tell us whether it was
213 	 * flushing a kernel mapping or a userspace mapping.  We don't actually
214 	 * use the global bit, so throw it away.
215 	 */
216 	flags = (pte_flags(gpte) & ~_PAGE_GLOBAL);
217 
218 	/* The Guest's pages are offset inside the Launcher. */
219 	base = (unsigned long)cpu->lg->mem_base / PAGE_SIZE;
220 
221 	/*
222 	 * We need a temporary "unsigned long" variable to hold the answer from
223 	 * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't
224 	 * fit in spte.pfn.  get_pfn() finds the real physical number of the
225 	 * page, given the virtual number.
226 	 */
227 	pfn = get_pfn(base + pte_pfn(gpte), write);
228 	if (pfn == -1UL) {
229 		kill_guest(cpu, "failed to get page %lu", pte_pfn(gpte));
230 		/*
231 		 * When we destroy the Guest, we'll go through the shadow page
232 		 * tables and release_pte() them.  Make sure we don't think
233 		 * this one is valid!
234 		 */
235 		flags = 0;
236 	}
237 	/* Now we assemble our shadow PTE from the page number and flags. */
238 	return pfn_pte(pfn, __pgprot(flags));
239 }
240 
241 /*H:460 And to complete the chain, release_pte() looks like this: */
release_pte(pte_t pte)242 static void release_pte(pte_t pte)
243 {
244 	/*
245 	 * Remember that get_user_pages_fast() took a reference to the page, in
246 	 * get_pfn()?  We have to put it back now.
247 	 */
248 	if (pte_flags(pte) & _PAGE_PRESENT)
249 		put_page(pte_page(pte));
250 }
251 /*:*/
252 
check_gpte(struct lg_cpu * cpu,pte_t gpte)253 static bool check_gpte(struct lg_cpu *cpu, pte_t gpte)
254 {
255 	if ((pte_flags(gpte) & _PAGE_PSE) ||
256 	    pte_pfn(gpte) >= cpu->lg->pfn_limit) {
257 		kill_guest(cpu, "bad page table entry");
258 		return false;
259 	}
260 	return true;
261 }
262 
check_gpgd(struct lg_cpu * cpu,pgd_t gpgd)263 static bool check_gpgd(struct lg_cpu *cpu, pgd_t gpgd)
264 {
265 	if ((pgd_flags(gpgd) & ~CHECK_GPGD_MASK) ||
266 	    (pgd_pfn(gpgd) >= cpu->lg->pfn_limit)) {
267 		kill_guest(cpu, "bad page directory entry");
268 		return false;
269 	}
270 	return true;
271 }
272 
273 #ifdef CONFIG_X86_PAE
check_gpmd(struct lg_cpu * cpu,pmd_t gpmd)274 static bool check_gpmd(struct lg_cpu *cpu, pmd_t gpmd)
275 {
276 	if ((pmd_flags(gpmd) & ~_PAGE_TABLE) ||
277 	    (pmd_pfn(gpmd) >= cpu->lg->pfn_limit)) {
278 		kill_guest(cpu, "bad page middle directory entry");
279 		return false;
280 	}
281 	return true;
282 }
283 #endif
284 
285 /*H:331
286  * This is the core routine to walk the shadow page tables and find the page
287  * table entry for a specific address.
288  *
289  * If allocate is set, then we allocate any missing levels, setting the flags
290  * on the new page directory and mid-level directories using the arguments
291  * (which are copied from the Guest's page table entries).
292  */
find_spte(struct lg_cpu * cpu,unsigned long vaddr,bool allocate,int pgd_flags,int pmd_flags)293 static pte_t *find_spte(struct lg_cpu *cpu, unsigned long vaddr, bool allocate,
294 			int pgd_flags, int pmd_flags)
295 {
296 	pgd_t *spgd;
297 	/* Mid level for PAE. */
298 #ifdef CONFIG_X86_PAE
299 	pmd_t *spmd;
300 #endif
301 
302 	/* Get top level entry. */
303 	spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
304 	if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) {
305 		/* No shadow entry: allocate a new shadow PTE page. */
306 		unsigned long ptepage;
307 
308 		/* If they didn't want us to allocate anything, stop. */
309 		if (!allocate)
310 			return NULL;
311 
312 		ptepage = get_zeroed_page(GFP_KERNEL);
313 		/*
314 		 * This is not really the Guest's fault, but killing it is
315 		 * simple for this corner case.
316 		 */
317 		if (!ptepage) {
318 			kill_guest(cpu, "out of memory allocating pte page");
319 			return NULL;
320 		}
321 		/*
322 		 * And we copy the flags to the shadow PGD entry.  The page
323 		 * number in the shadow PGD is the page we just allocated.
324 		 */
325 		set_pgd(spgd, __pgd(__pa(ptepage) | pgd_flags));
326 	}
327 
328 	/*
329 	 * Intel's Physical Address Extension actually uses three levels of
330 	 * page tables, so we need to look in the mid-level.
331 	 */
332 #ifdef CONFIG_X86_PAE
333 	/* Now look at the mid-level shadow entry. */
334 	spmd = spmd_addr(cpu, *spgd, vaddr);
335 
336 	if (!(pmd_flags(*spmd) & _PAGE_PRESENT)) {
337 		/* No shadow entry: allocate a new shadow PTE page. */
338 		unsigned long ptepage;
339 
340 		/* If they didn't want us to allocate anything, stop. */
341 		if (!allocate)
342 			return NULL;
343 
344 		ptepage = get_zeroed_page(GFP_KERNEL);
345 
346 		/*
347 		 * This is not really the Guest's fault, but killing it is
348 		 * simple for this corner case.
349 		 */
350 		if (!ptepage) {
351 			kill_guest(cpu, "out of memory allocating pmd page");
352 			return NULL;
353 		}
354 
355 		/*
356 		 * And we copy the flags to the shadow PMD entry.  The page
357 		 * number in the shadow PMD is the page we just allocated.
358 		 */
359 		set_pmd(spmd, __pmd(__pa(ptepage) | pmd_flags));
360 	}
361 #endif
362 
363 	/* Get the pointer to the shadow PTE entry we're going to set. */
364 	return spte_addr(cpu, *spgd, vaddr);
365 }
366 
367 /*H:330
368  * (i) Looking up a page table entry when the Guest faults.
369  *
370  * We saw this call in run_guest(): when we see a page fault in the Guest, we
371  * come here.  That's because we only set up the shadow page tables lazily as
372  * they're needed, so we get page faults all the time and quietly fix them up
373  * and return to the Guest without it knowing.
374  *
375  * If we fixed up the fault (ie. we mapped the address), this routine returns
376  * true.  Otherwise, it was a real fault and we need to tell the Guest.
377  */
demand_page(struct lg_cpu * cpu,unsigned long vaddr,int errcode)378 bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
379 {
380 	unsigned long gpte_ptr;
381 	pte_t gpte;
382 	pte_t *spte;
383 	pmd_t gpmd;
384 	pgd_t gpgd;
385 
386 	/* We never demand page the Switcher, so trying is a mistake. */
387 	if (vaddr >= switcher_addr)
388 		return false;
389 
390 	/* First step: get the top-level Guest page table entry. */
391 	if (unlikely(cpu->linear_pages)) {
392 		/* Faking up a linear mapping. */
393 		gpgd = __pgd(CHECK_GPGD_MASK);
394 	} else {
395 		gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
396 		/* Toplevel not present?  We can't map it in. */
397 		if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
398 			return false;
399 
400 		/*
401 		 * This kills the Guest if it has weird flags or tries to
402 		 * refer to a "physical" address outside the bounds.
403 		 */
404 		if (!check_gpgd(cpu, gpgd))
405 			return false;
406 	}
407 
408 	/* This "mid-level" entry is only used for non-linear, PAE mode. */
409 	gpmd = __pmd(_PAGE_TABLE);
410 
411 #ifdef CONFIG_X86_PAE
412 	if (likely(!cpu->linear_pages)) {
413 		gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
414 		/* Middle level not present?  We can't map it in. */
415 		if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
416 			return false;
417 
418 		/*
419 		 * This kills the Guest if it has weird flags or tries to
420 		 * refer to a "physical" address outside the bounds.
421 		 */
422 		if (!check_gpmd(cpu, gpmd))
423 			return false;
424 	}
425 
426 	/*
427 	 * OK, now we look at the lower level in the Guest page table: keep its
428 	 * address, because we might update it later.
429 	 */
430 	gpte_ptr = gpte_addr(cpu, gpmd, vaddr);
431 #else
432 	/*
433 	 * OK, now we look at the lower level in the Guest page table: keep its
434 	 * address, because we might update it later.
435 	 */
436 	gpte_ptr = gpte_addr(cpu, gpgd, vaddr);
437 #endif
438 
439 	if (unlikely(cpu->linear_pages)) {
440 		/* Linear?  Make up a PTE which points to same page. */
441 		gpte = __pte((vaddr & PAGE_MASK) | _PAGE_RW | _PAGE_PRESENT);
442 	} else {
443 		/* Read the actual PTE value. */
444 		gpte = lgread(cpu, gpte_ptr, pte_t);
445 	}
446 
447 	/* If this page isn't in the Guest page tables, we can't page it in. */
448 	if (!(pte_flags(gpte) & _PAGE_PRESENT))
449 		return false;
450 
451 	/*
452 	 * Check they're not trying to write to a page the Guest wants
453 	 * read-only (bit 2 of errcode == write).
454 	 */
455 	if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW))
456 		return false;
457 
458 	/* User access to a kernel-only page? (bit 3 == user access) */
459 	if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER))
460 		return false;
461 
462 	/*
463 	 * Check that the Guest PTE flags are OK, and the page number is below
464 	 * the pfn_limit (ie. not mapping the Launcher binary).
465 	 */
466 	if (!check_gpte(cpu, gpte))
467 		return false;
468 
469 	/* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
470 	gpte = pte_mkyoung(gpte);
471 	if (errcode & 2)
472 		gpte = pte_mkdirty(gpte);
473 
474 	/* Get the pointer to the shadow PTE entry we're going to set. */
475 	spte = find_spte(cpu, vaddr, true, pgd_flags(gpgd), pmd_flags(gpmd));
476 	if (!spte)
477 		return false;
478 
479 	/*
480 	 * If there was a valid shadow PTE entry here before, we release it.
481 	 * This can happen with a write to a previously read-only entry.
482 	 */
483 	release_pte(*spte);
484 
485 	/*
486 	 * If this is a write, we insist that the Guest page is writable (the
487 	 * final arg to gpte_to_spte()).
488 	 */
489 	if (pte_dirty(gpte))
490 		*spte = gpte_to_spte(cpu, gpte, 1);
491 	else
492 		/*
493 		 * If this is a read, don't set the "writable" bit in the page
494 		 * table entry, even if the Guest says it's writable.  That way
495 		 * we will come back here when a write does actually occur, so
496 		 * we can update the Guest's _PAGE_DIRTY flag.
497 		 */
498 		set_pte(spte, gpte_to_spte(cpu, pte_wrprotect(gpte), 0));
499 
500 	/*
501 	 * Finally, we write the Guest PTE entry back: we've set the
502 	 * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags.
503 	 */
504 	if (likely(!cpu->linear_pages))
505 		lgwrite(cpu, gpte_ptr, pte_t, gpte);
506 
507 	/*
508 	 * The fault is fixed, the page table is populated, the mapping
509 	 * manipulated, the result returned and the code complete.  A small
510 	 * delay and a trace of alliteration are the only indications the Guest
511 	 * has that a page fault occurred at all.
512 	 */
513 	return true;
514 }
515 
516 /*H:360
517  * (ii) Making sure the Guest stack is mapped.
518  *
519  * Remember that direct traps into the Guest need a mapped Guest kernel stack.
520  * pin_stack_pages() calls us here: we could simply call demand_page(), but as
521  * we've seen that logic is quite long, and usually the stack pages are already
522  * mapped, so it's overkill.
523  *
524  * This is a quick version which answers the question: is this virtual address
525  * mapped by the shadow page tables, and is it writable?
526  */
page_writable(struct lg_cpu * cpu,unsigned long vaddr)527 static bool page_writable(struct lg_cpu *cpu, unsigned long vaddr)
528 {
529 	pte_t *spte;
530 	unsigned long flags;
531 
532 	/* You can't put your stack in the Switcher! */
533 	if (vaddr >= switcher_addr)
534 		return false;
535 
536 	/* If there's no shadow PTE, it's not writable. */
537 	spte = find_spte(cpu, vaddr, false, 0, 0);
538 	if (!spte)
539 		return false;
540 
541 	/*
542 	 * Check the flags on the pte entry itself: it must be present and
543 	 * writable.
544 	 */
545 	flags = pte_flags(*spte);
546 	return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
547 }
548 
549 /*
550  * So, when pin_stack_pages() asks us to pin a page, we check if it's already
551  * in the page tables, and if not, we call demand_page() with error code 2
552  * (meaning "write").
553  */
pin_page(struct lg_cpu * cpu,unsigned long vaddr)554 void pin_page(struct lg_cpu *cpu, unsigned long vaddr)
555 {
556 	if (!page_writable(cpu, vaddr) && !demand_page(cpu, vaddr, 2))
557 		kill_guest(cpu, "bad stack page %#lx", vaddr);
558 }
559 /*:*/
560 
561 #ifdef CONFIG_X86_PAE
release_pmd(pmd_t * spmd)562 static void release_pmd(pmd_t *spmd)
563 {
564 	/* If the entry's not present, there's nothing to release. */
565 	if (pmd_flags(*spmd) & _PAGE_PRESENT) {
566 		unsigned int i;
567 		pte_t *ptepage = __va(pmd_pfn(*spmd) << PAGE_SHIFT);
568 		/* For each entry in the page, we might need to release it. */
569 		for (i = 0; i < PTRS_PER_PTE; i++)
570 			release_pte(ptepage[i]);
571 		/* Now we can free the page of PTEs */
572 		free_page((long)ptepage);
573 		/* And zero out the PMD entry so we never release it twice. */
574 		set_pmd(spmd, __pmd(0));
575 	}
576 }
577 
release_pgd(pgd_t * spgd)578 static void release_pgd(pgd_t *spgd)
579 {
580 	/* If the entry's not present, there's nothing to release. */
581 	if (pgd_flags(*spgd) & _PAGE_PRESENT) {
582 		unsigned int i;
583 		pmd_t *pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
584 
585 		for (i = 0; i < PTRS_PER_PMD; i++)
586 			release_pmd(&pmdpage[i]);
587 
588 		/* Now we can free the page of PMDs */
589 		free_page((long)pmdpage);
590 		/* And zero out the PGD entry so we never release it twice. */
591 		set_pgd(spgd, __pgd(0));
592 	}
593 }
594 
595 #else /* !CONFIG_X86_PAE */
596 /*H:450
597  * If we chase down the release_pgd() code, the non-PAE version looks like
598  * this.  The PAE version is almost identical, but instead of calling
599  * release_pte it calls release_pmd(), which looks much like this.
600  */
release_pgd(pgd_t * spgd)601 static void release_pgd(pgd_t *spgd)
602 {
603 	/* If the entry's not present, there's nothing to release. */
604 	if (pgd_flags(*spgd) & _PAGE_PRESENT) {
605 		unsigned int i;
606 		/*
607 		 * Converting the pfn to find the actual PTE page is easy: turn
608 		 * the page number into a physical address, then convert to a
609 		 * virtual address (easy for kernel pages like this one).
610 		 */
611 		pte_t *ptepage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
612 		/* For each entry in the page, we might need to release it. */
613 		for (i = 0; i < PTRS_PER_PTE; i++)
614 			release_pte(ptepage[i]);
615 		/* Now we can free the page of PTEs */
616 		free_page((long)ptepage);
617 		/* And zero out the PGD entry so we never release it twice. */
618 		*spgd = __pgd(0);
619 	}
620 }
621 #endif
622 
623 /*H:445
624  * We saw flush_user_mappings() twice: once from the flush_user_mappings()
625  * hypercall and once in new_pgdir() when we re-used a top-level pgdir page.
626  * It simply releases every PTE page from 0 up to the Guest's kernel address.
627  */
flush_user_mappings(struct lguest * lg,int idx)628 static void flush_user_mappings(struct lguest *lg, int idx)
629 {
630 	unsigned int i;
631 	/* Release every pgd entry up to the kernel's address. */
632 	for (i = 0; i < pgd_index(lg->kernel_address); i++)
633 		release_pgd(lg->pgdirs[idx].pgdir + i);
634 }
635 
636 /*H:440
637  * (v) Flushing (throwing away) page tables,
638  *
639  * The Guest has a hypercall to throw away the page tables: it's used when a
640  * large number of mappings have been changed.
641  */
guest_pagetable_flush_user(struct lg_cpu * cpu)642 void guest_pagetable_flush_user(struct lg_cpu *cpu)
643 {
644 	/* Drop the userspace part of the current page table. */
645 	flush_user_mappings(cpu->lg, cpu->cpu_pgd);
646 }
647 /*:*/
648 
649 /* We walk down the guest page tables to get a guest-physical address */
guest_pa(struct lg_cpu * cpu,unsigned long vaddr)650 unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
651 {
652 	pgd_t gpgd;
653 	pte_t gpte;
654 #ifdef CONFIG_X86_PAE
655 	pmd_t gpmd;
656 #endif
657 
658 	/* Still not set up?  Just map 1:1. */
659 	if (unlikely(cpu->linear_pages))
660 		return vaddr;
661 
662 	/* First step: get the top-level Guest page table entry. */
663 	gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
664 	/* Toplevel not present?  We can't map it in. */
665 	if (!(pgd_flags(gpgd) & _PAGE_PRESENT)) {
666 		kill_guest(cpu, "Bad address %#lx", vaddr);
667 		return -1UL;
668 	}
669 
670 #ifdef CONFIG_X86_PAE
671 	gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
672 	if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
673 		kill_guest(cpu, "Bad address %#lx", vaddr);
674 	gpte = lgread(cpu, gpte_addr(cpu, gpmd, vaddr), pte_t);
675 #else
676 	gpte = lgread(cpu, gpte_addr(cpu, gpgd, vaddr), pte_t);
677 #endif
678 	if (!(pte_flags(gpte) & _PAGE_PRESENT))
679 		kill_guest(cpu, "Bad address %#lx", vaddr);
680 
681 	return pte_pfn(gpte) * PAGE_SIZE | (vaddr & ~PAGE_MASK);
682 }
683 
684 /*
685  * We keep several page tables.  This is a simple routine to find the page
686  * table (if any) corresponding to this top-level address the Guest has given
687  * us.
688  */
find_pgdir(struct lguest * lg,unsigned long pgtable)689 static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
690 {
691 	unsigned int i;
692 	for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
693 		if (lg->pgdirs[i].pgdir && lg->pgdirs[i].gpgdir == pgtable)
694 			break;
695 	return i;
696 }
697 
698 /*H:435
699  * And this is us, creating the new page directory.  If we really do
700  * allocate a new one (and so the kernel parts are not there), we set
701  * blank_pgdir.
702  */
new_pgdir(struct lg_cpu * cpu,unsigned long gpgdir,int * blank_pgdir)703 static unsigned int new_pgdir(struct lg_cpu *cpu,
704 			      unsigned long gpgdir,
705 			      int *blank_pgdir)
706 {
707 	unsigned int next;
708 
709 	/*
710 	 * We pick one entry at random to throw out.  Choosing the Least
711 	 * Recently Used might be better, but this is easy.
712 	 */
713 	next = prandom_u32() % ARRAY_SIZE(cpu->lg->pgdirs);
714 	/* If it's never been allocated at all before, try now. */
715 	if (!cpu->lg->pgdirs[next].pgdir) {
716 		cpu->lg->pgdirs[next].pgdir =
717 					(pgd_t *)get_zeroed_page(GFP_KERNEL);
718 		/* If the allocation fails, just keep using the one we have */
719 		if (!cpu->lg->pgdirs[next].pgdir)
720 			next = cpu->cpu_pgd;
721 		else {
722 			/*
723 			 * This is a blank page, so there are no kernel
724 			 * mappings: caller must map the stack!
725 			 */
726 			*blank_pgdir = 1;
727 		}
728 	}
729 	/* Record which Guest toplevel this shadows. */
730 	cpu->lg->pgdirs[next].gpgdir = gpgdir;
731 	/* Release all the non-kernel mappings. */
732 	flush_user_mappings(cpu->lg, next);
733 
734 	/* This hasn't run on any CPU at all. */
735 	cpu->lg->pgdirs[next].last_host_cpu = -1;
736 
737 	return next;
738 }
739 
740 /*H:501
741  * We do need the Switcher code mapped at all times, so we allocate that
742  * part of the Guest page table here.  We map the Switcher code immediately,
743  * but defer mapping of the guest register page and IDT/LDT etc page until
744  * just before we run the guest in map_switcher_in_guest().
745  *
746  * We *could* do this setup in map_switcher_in_guest(), but at that point
747  * we've interrupts disabled, and allocating pages like that is fraught: we
748  * can't sleep if we need to free up some memory.
749  */
allocate_switcher_mapping(struct lg_cpu * cpu)750 static bool allocate_switcher_mapping(struct lg_cpu *cpu)
751 {
752 	int i;
753 
754 	for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
755 		pte_t *pte = find_spte(cpu, switcher_addr + i * PAGE_SIZE, true,
756 				       CHECK_GPGD_MASK, _PAGE_TABLE);
757 		if (!pte)
758 			return false;
759 
760 		/*
761 		 * Map the switcher page if not already there.  It might
762 		 * already be there because we call allocate_switcher_mapping()
763 		 * in guest_set_pgd() just in case it did discard our Switcher
764 		 * mapping, but it probably didn't.
765 		 */
766 		if (i == 0 && !(pte_flags(*pte) & _PAGE_PRESENT)) {
767 			/* Get a reference to the Switcher page. */
768 			get_page(lg_switcher_pages[0]);
769 			/* Create a read-only, exectuable, kernel-style PTE */
770 			set_pte(pte,
771 				mk_pte(lg_switcher_pages[0], PAGE_KERNEL_RX));
772 		}
773 	}
774 	cpu->lg->pgdirs[cpu->cpu_pgd].switcher_mapped = true;
775 	return true;
776 }
777 
778 /*H:470
779  * Finally, a routine which throws away everything: all PGD entries in all
780  * the shadow page tables, including the Guest's kernel mappings.  This is used
781  * when we destroy the Guest.
782  */
release_all_pagetables(struct lguest * lg)783 static void release_all_pagetables(struct lguest *lg)
784 {
785 	unsigned int i, j;
786 
787 	/* Every shadow pagetable this Guest has */
788 	for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) {
789 		if (!lg->pgdirs[i].pgdir)
790 			continue;
791 
792 		/* Every PGD entry. */
793 		for (j = 0; j < PTRS_PER_PGD; j++)
794 			release_pgd(lg->pgdirs[i].pgdir + j);
795 		lg->pgdirs[i].switcher_mapped = false;
796 		lg->pgdirs[i].last_host_cpu = -1;
797 	}
798 }
799 
800 /*
801  * We also throw away everything when a Guest tells us it's changed a kernel
802  * mapping.  Since kernel mappings are in every page table, it's easiest to
803  * throw them all away.  This traps the Guest in amber for a while as
804  * everything faults back in, but it's rare.
805  */
guest_pagetable_clear_all(struct lg_cpu * cpu)806 void guest_pagetable_clear_all(struct lg_cpu *cpu)
807 {
808 	release_all_pagetables(cpu->lg);
809 	/* We need the Guest kernel stack mapped again. */
810 	pin_stack_pages(cpu);
811 	/* And we need Switcher allocated. */
812 	if (!allocate_switcher_mapping(cpu))
813 		kill_guest(cpu, "Cannot populate switcher mapping");
814 }
815 
816 /*H:430
817  * (iv) Switching page tables
818  *
819  * Now we've seen all the page table setting and manipulation, let's see
820  * what happens when the Guest changes page tables (ie. changes the top-level
821  * pgdir).  This occurs on almost every context switch.
822  */
guest_new_pagetable(struct lg_cpu * cpu,unsigned long pgtable)823 void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable)
824 {
825 	int newpgdir, repin = 0;
826 
827 	/*
828 	 * The very first time they call this, we're actually running without
829 	 * any page tables; we've been making it up.  Throw them away now.
830 	 */
831 	if (unlikely(cpu->linear_pages)) {
832 		release_all_pagetables(cpu->lg);
833 		cpu->linear_pages = false;
834 		/* Force allocation of a new pgdir. */
835 		newpgdir = ARRAY_SIZE(cpu->lg->pgdirs);
836 	} else {
837 		/* Look to see if we have this one already. */
838 		newpgdir = find_pgdir(cpu->lg, pgtable);
839 	}
840 
841 	/*
842 	 * If not, we allocate or mug an existing one: if it's a fresh one,
843 	 * repin gets set to 1.
844 	 */
845 	if (newpgdir == ARRAY_SIZE(cpu->lg->pgdirs))
846 		newpgdir = new_pgdir(cpu, pgtable, &repin);
847 	/* Change the current pgd index to the new one. */
848 	cpu->cpu_pgd = newpgdir;
849 	/*
850 	 * If it was completely blank, we map in the Guest kernel stack and
851 	 * the Switcher.
852 	 */
853 	if (repin)
854 		pin_stack_pages(cpu);
855 
856 	if (!cpu->lg->pgdirs[cpu->cpu_pgd].switcher_mapped) {
857 		if (!allocate_switcher_mapping(cpu))
858 			kill_guest(cpu, "Cannot populate switcher mapping");
859 	}
860 }
861 /*:*/
862 
863 /*M:009
864  * Since we throw away all mappings when a kernel mapping changes, our
865  * performance sucks for guests using highmem.  In fact, a guest with
866  * PAGE_OFFSET 0xc0000000 (the default) and more than about 700MB of RAM is
867  * usually slower than a Guest with less memory.
868  *
869  * This, of course, cannot be fixed.  It would take some kind of... well, I
870  * don't know, but the term "puissant code-fu" comes to mind.
871 :*/
872 
873 /*H:420
874  * This is the routine which actually sets the page table entry for then
875  * "idx"'th shadow page table.
876  *
877  * Normally, we can just throw out the old entry and replace it with 0: if they
878  * use it demand_page() will put the new entry in.  We need to do this anyway:
879  * The Guest expects _PAGE_ACCESSED to be set on its PTE the first time a page
880  * is read from, and _PAGE_DIRTY when it's written to.
881  *
882  * But Avi Kivity pointed out that most Operating Systems (Linux included) set
883  * these bits on PTEs immediately anyway.  This is done to save the CPU from
884  * having to update them, but it helps us the same way: if they set
885  * _PAGE_ACCESSED then we can put a read-only PTE entry in immediately, and if
886  * they set _PAGE_DIRTY then we can put a writable PTE entry in immediately.
887  */
do_set_pte(struct lg_cpu * cpu,int idx,unsigned long vaddr,pte_t gpte)888 static void do_set_pte(struct lg_cpu *cpu, int idx,
889 		       unsigned long vaddr, pte_t gpte)
890 {
891 	/* Look up the matching shadow page directory entry. */
892 	pgd_t *spgd = spgd_addr(cpu, idx, vaddr);
893 #ifdef CONFIG_X86_PAE
894 	pmd_t *spmd;
895 #endif
896 
897 	/* If the top level isn't present, there's no entry to update. */
898 	if (pgd_flags(*spgd) & _PAGE_PRESENT) {
899 #ifdef CONFIG_X86_PAE
900 		spmd = spmd_addr(cpu, *spgd, vaddr);
901 		if (pmd_flags(*spmd) & _PAGE_PRESENT) {
902 #endif
903 			/* Otherwise, start by releasing the existing entry. */
904 			pte_t *spte = spte_addr(cpu, *spgd, vaddr);
905 			release_pte(*spte);
906 
907 			/*
908 			 * If they're setting this entry as dirty or accessed,
909 			 * we might as well put that entry they've given us in
910 			 * now.  This shaves 10% off a copy-on-write
911 			 * micro-benchmark.
912 			 */
913 			if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
914 				if (!check_gpte(cpu, gpte))
915 					return;
916 				set_pte(spte,
917 					gpte_to_spte(cpu, gpte,
918 						pte_flags(gpte) & _PAGE_DIRTY));
919 			} else {
920 				/*
921 				 * Otherwise kill it and we can demand_page()
922 				 * it in later.
923 				 */
924 				set_pte(spte, __pte(0));
925 			}
926 #ifdef CONFIG_X86_PAE
927 		}
928 #endif
929 	}
930 }
931 
932 /*H:410
933  * Updating a PTE entry is a little trickier.
934  *
935  * We keep track of several different page tables (the Guest uses one for each
936  * process, so it makes sense to cache at least a few).  Each of these have
937  * identical kernel parts: ie. every mapping above PAGE_OFFSET is the same for
938  * all processes.  So when the page table above that address changes, we update
939  * all the page tables, not just the current one.  This is rare.
940  *
941  * The benefit is that when we have to track a new page table, we can keep all
942  * the kernel mappings.  This speeds up context switch immensely.
943  */
guest_set_pte(struct lg_cpu * cpu,unsigned long gpgdir,unsigned long vaddr,pte_t gpte)944 void guest_set_pte(struct lg_cpu *cpu,
945 		   unsigned long gpgdir, unsigned long vaddr, pte_t gpte)
946 {
947 	/* We don't let you remap the Switcher; we need it to get back! */
948 	if (vaddr >= switcher_addr) {
949 		kill_guest(cpu, "attempt to set pte into Switcher pages");
950 		return;
951 	}
952 
953 	/*
954 	 * Kernel mappings must be changed on all top levels.  Slow, but doesn't
955 	 * happen often.
956 	 */
957 	if (vaddr >= cpu->lg->kernel_address) {
958 		unsigned int i;
959 		for (i = 0; i < ARRAY_SIZE(cpu->lg->pgdirs); i++)
960 			if (cpu->lg->pgdirs[i].pgdir)
961 				do_set_pte(cpu, i, vaddr, gpte);
962 	} else {
963 		/* Is this page table one we have a shadow for? */
964 		int pgdir = find_pgdir(cpu->lg, gpgdir);
965 		if (pgdir != ARRAY_SIZE(cpu->lg->pgdirs))
966 			/* If so, do the update. */
967 			do_set_pte(cpu, pgdir, vaddr, gpte);
968 	}
969 }
970 
971 /*H:400
972  * (iii) Setting up a page table entry when the Guest tells us one has changed.
973  *
974  * Just like we did in interrupts_and_traps.c, it makes sense for us to deal
975  * with the other side of page tables while we're here: what happens when the
976  * Guest asks for a page table to be updated?
977  *
978  * We already saw that demand_page() will fill in the shadow page tables when
979  * needed, so we can simply remove shadow page table entries whenever the Guest
980  * tells us they've changed.  When the Guest tries to use the new entry it will
981  * fault and demand_page() will fix it up.
982  *
983  * So with that in mind here's our code to update a (top-level) PGD entry:
984  */
guest_set_pgd(struct lguest * lg,unsigned long gpgdir,u32 idx)985 void guest_set_pgd(struct lguest *lg, unsigned long gpgdir, u32 idx)
986 {
987 	int pgdir;
988 
989 	if (idx > PTRS_PER_PGD) {
990 		kill_guest(&lg->cpus[0], "Attempt to set pgd %u/%u",
991 			   idx, PTRS_PER_PGD);
992 		return;
993 	}
994 
995 	/* If they're talking about a page table we have a shadow for... */
996 	pgdir = find_pgdir(lg, gpgdir);
997 	if (pgdir < ARRAY_SIZE(lg->pgdirs)) {
998 		/* ... throw it away. */
999 		release_pgd(lg->pgdirs[pgdir].pgdir + idx);
1000 		/* That might have been the Switcher mapping, remap it. */
1001 		if (!allocate_switcher_mapping(&lg->cpus[0])) {
1002 			kill_guest(&lg->cpus[0],
1003 				   "Cannot populate switcher mapping");
1004 		}
1005 		lg->pgdirs[pgdir].last_host_cpu = -1;
1006 	}
1007 }
1008 
1009 #ifdef CONFIG_X86_PAE
1010 /* For setting a mid-level, we just throw everything away.  It's easy. */
guest_set_pmd(struct lguest * lg,unsigned long pmdp,u32 idx)1011 void guest_set_pmd(struct lguest *lg, unsigned long pmdp, u32 idx)
1012 {
1013 	guest_pagetable_clear_all(&lg->cpus[0]);
1014 }
1015 #endif
1016 
1017 /*H:500
1018  * (vii) Setting up the page tables initially.
1019  *
1020  * When a Guest is first created, set initialize a shadow page table which
1021  * we will populate on future faults.  The Guest doesn't have any actual
1022  * pagetables yet, so we set linear_pages to tell demand_page() to fake it
1023  * for the moment.
1024  *
1025  * We do need the Switcher to be mapped at all times, so we allocate that
1026  * part of the Guest page table here.
1027  */
init_guest_pagetable(struct lguest * lg)1028 int init_guest_pagetable(struct lguest *lg)
1029 {
1030 	struct lg_cpu *cpu = &lg->cpus[0];
1031 	int allocated = 0;
1032 
1033 	/* lg (and lg->cpus[]) starts zeroed: this allocates a new pgdir */
1034 	cpu->cpu_pgd = new_pgdir(cpu, 0, &allocated);
1035 	if (!allocated)
1036 		return -ENOMEM;
1037 
1038 	/* We start with a linear mapping until the initialize. */
1039 	cpu->linear_pages = true;
1040 
1041 	/* Allocate the page tables for the Switcher. */
1042 	if (!allocate_switcher_mapping(cpu)) {
1043 		release_all_pagetables(lg);
1044 		return -ENOMEM;
1045 	}
1046 
1047 	return 0;
1048 }
1049 
1050 /*H:508 When the Guest calls LHCALL_LGUEST_INIT we do more setup. */
page_table_guest_data_init(struct lg_cpu * cpu)1051 void page_table_guest_data_init(struct lg_cpu *cpu)
1052 {
1053 	/*
1054 	 * We tell the Guest that it can't use the virtual addresses
1055 	 * used by the Switcher.  This trick is equivalent to 4GB -
1056 	 * switcher_addr.
1057 	 */
1058 	u32 top = ~switcher_addr + 1;
1059 
1060 	/* We get the kernel address: above this is all kernel memory. */
1061 	if (get_user(cpu->lg->kernel_address,
1062 		     &cpu->lg->lguest_data->kernel_address)
1063 		/*
1064 		 * We tell the Guest that it can't use the top virtual
1065 		 * addresses (used by the Switcher).
1066 		 */
1067 	    || put_user(top, &cpu->lg->lguest_data->reserve_mem)) {
1068 		kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
1069 		return;
1070 	}
1071 
1072 	/*
1073 	 * In flush_user_mappings() we loop from 0 to
1074 	 * "pgd_index(lg->kernel_address)".  This assumes it won't hit the
1075 	 * Switcher mappings, so check that now.
1076 	 */
1077 	if (cpu->lg->kernel_address >= switcher_addr)
1078 		kill_guest(cpu, "bad kernel address %#lx",
1079 				 cpu->lg->kernel_address);
1080 }
1081 
1082 /* When a Guest dies, our cleanup is fairly simple. */
free_guest_pagetable(struct lguest * lg)1083 void free_guest_pagetable(struct lguest *lg)
1084 {
1085 	unsigned int i;
1086 
1087 	/* Throw away all page table pages. */
1088 	release_all_pagetables(lg);
1089 	/* Now free the top levels: free_page() can handle 0 just fine. */
1090 	for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
1091 		free_page((long)lg->pgdirs[i].pgdir);
1092 }
1093 
1094 /*H:481
1095  * This clears the Switcher mappings for cpu #i.
1096  */
remove_switcher_percpu_map(struct lg_cpu * cpu,unsigned int i)1097 static void remove_switcher_percpu_map(struct lg_cpu *cpu, unsigned int i)
1098 {
1099 	unsigned long base = switcher_addr + PAGE_SIZE + i * PAGE_SIZE*2;
1100 	pte_t *pte;
1101 
1102 	/* Clear the mappings for both pages. */
1103 	pte = find_spte(cpu, base, false, 0, 0);
1104 	release_pte(*pte);
1105 	set_pte(pte, __pte(0));
1106 
1107 	pte = find_spte(cpu, base + PAGE_SIZE, false, 0, 0);
1108 	release_pte(*pte);
1109 	set_pte(pte, __pte(0));
1110 }
1111 
1112 /*H:480
1113  * (vi) Mapping the Switcher when the Guest is about to run.
1114  *
1115  * The Switcher and the two pages for this CPU need to be visible in the Guest
1116  * (and not the pages for other CPUs).
1117  *
1118  * The pages for the pagetables have all been allocated before: we just need
1119  * to make sure the actual PTEs are up-to-date for the CPU we're about to run
1120  * on.
1121  */
map_switcher_in_guest(struct lg_cpu * cpu,struct lguest_pages * pages)1122 void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
1123 {
1124 	unsigned long base;
1125 	struct page *percpu_switcher_page, *regs_page;
1126 	pte_t *pte;
1127 	struct pgdir *pgdir = &cpu->lg->pgdirs[cpu->cpu_pgd];
1128 
1129 	/* Switcher page should always be mapped by now! */
1130 	BUG_ON(!pgdir->switcher_mapped);
1131 
1132 	/*
1133 	 * Remember that we have two pages for each Host CPU, so we can run a
1134 	 * Guest on each CPU without them interfering.  We need to make sure
1135 	 * those pages are mapped correctly in the Guest, but since we usually
1136 	 * run on the same CPU, we cache that, and only update the mappings
1137 	 * when we move.
1138 	 */
1139 	if (pgdir->last_host_cpu == raw_smp_processor_id())
1140 		return;
1141 
1142 	/* -1 means unknown so we remove everything. */
1143 	if (pgdir->last_host_cpu == -1) {
1144 		unsigned int i;
1145 		for_each_possible_cpu(i)
1146 			remove_switcher_percpu_map(cpu, i);
1147 	} else {
1148 		/* We know exactly what CPU mapping to remove. */
1149 		remove_switcher_percpu_map(cpu, pgdir->last_host_cpu);
1150 	}
1151 
1152 	/*
1153 	 * When we're running the Guest, we want the Guest's "regs" page to
1154 	 * appear where the first Switcher page for this CPU is.  This is an
1155 	 * optimization: when the Switcher saves the Guest registers, it saves
1156 	 * them into the first page of this CPU's "struct lguest_pages": if we
1157 	 * make sure the Guest's register page is already mapped there, we
1158 	 * don't have to copy them out again.
1159 	 */
1160 	/* Find the shadow PTE for this regs page. */
1161 	base = switcher_addr + PAGE_SIZE
1162 		+ raw_smp_processor_id() * sizeof(struct lguest_pages);
1163 	pte = find_spte(cpu, base, false, 0, 0);
1164 	regs_page = pfn_to_page(__pa(cpu->regs_page) >> PAGE_SHIFT);
1165 	get_page(regs_page);
1166 	set_pte(pte, mk_pte(regs_page, __pgprot(__PAGE_KERNEL & ~_PAGE_GLOBAL)));
1167 
1168 	/*
1169 	 * We map the second page of the struct lguest_pages read-only in
1170 	 * the Guest: the IDT, GDT and other things it's not supposed to
1171 	 * change.
1172 	 */
1173 	pte = find_spte(cpu, base + PAGE_SIZE, false, 0, 0);
1174 	percpu_switcher_page
1175 		= lg_switcher_pages[1 + raw_smp_processor_id()*2 + 1];
1176 	get_page(percpu_switcher_page);
1177 	set_pte(pte, mk_pte(percpu_switcher_page,
1178 			    __pgprot(__PAGE_KERNEL_RO & ~_PAGE_GLOBAL)));
1179 
1180 	pgdir->last_host_cpu = raw_smp_processor_id();
1181 }
1182 
1183 /*H:490
1184  * We've made it through the page table code.  Perhaps our tired brains are
1185  * still processing the details, or perhaps we're simply glad it's over.
1186  *
1187  * If nothing else, note that all this complexity in juggling shadow page tables
1188  * in sync with the Guest's page tables is for one reason: for most Guests this
1189  * page table dance determines how bad performance will be.  This is why Xen
1190  * uses exotic direct Guest pagetable manipulation, and why both Intel and AMD
1191  * have implemented shadow page table support directly into hardware.
1192  *
1193  * There is just one file remaining in the Host.
1194  */
1195