• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38 
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 						    unsigned alignment,
43 						    bool map_and_fenceable,
44 						    bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46 				struct drm_i915_gem_object *obj,
47 				struct drm_i915_gem_pwrite *args,
48 				struct drm_file *file);
49 
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 				 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 					 struct drm_i915_fence_reg *fence,
54 					 bool enable);
55 
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57 				    struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61 
i915_gem_object_fence_lost(struct drm_i915_gem_object * obj)62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64 	if (obj->tiling_mode)
65 		i915_gem_release_mmap(obj);
66 
67 	/* As we do not have an associated fence register, we will force
68 	 * a tiling change if we ever need to acquire one.
69 	 */
70 	obj->fence_dirty = false;
71 	obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73 
74 /* some bookkeeping */
i915_gem_info_add_obj(struct drm_i915_private * dev_priv,size_t size)75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 				  size_t size)
77 {
78 	dev_priv->mm.object_count++;
79 	dev_priv->mm.object_memory += size;
80 }
81 
i915_gem_info_remove_obj(struct drm_i915_private * dev_priv,size_t size)82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 				     size_t size)
84 {
85 	dev_priv->mm.object_count--;
86 	dev_priv->mm.object_memory -= size;
87 }
88 
89 static int
i915_gem_wait_for_error(struct i915_gpu_error * error)90 i915_gem_wait_for_error(struct i915_gpu_error *error)
91 {
92 	int ret;
93 
94 #define EXIT_COND (!i915_reset_in_progress(error) || \
95 		   i915_terminally_wedged(error))
96 	if (EXIT_COND)
97 		return 0;
98 
99 	/*
100 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
101 	 * userspace. If it takes that long something really bad is going on and
102 	 * we should simply try to bail out and fail as gracefully as possible.
103 	 */
104 	ret = wait_event_interruptible_timeout(error->reset_queue,
105 					       EXIT_COND,
106 					       10*HZ);
107 	if (ret == 0) {
108 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
109 		return -EIO;
110 	} else if (ret < 0) {
111 		return ret;
112 	}
113 #undef EXIT_COND
114 
115 	return 0;
116 }
117 
i915_mutex_lock_interruptible(struct drm_device * dev)118 int i915_mutex_lock_interruptible(struct drm_device *dev)
119 {
120 	struct drm_i915_private *dev_priv = dev->dev_private;
121 	int ret;
122 
123 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
124 	if (ret)
125 		return ret;
126 
127 	ret = mutex_lock_interruptible(&dev->struct_mutex);
128 	if (ret)
129 		return ret;
130 
131 	WARN_ON(i915_verify_lists(dev));
132 	return 0;
133 }
134 
135 static inline bool
i915_gem_object_is_inactive(struct drm_i915_gem_object * obj)136 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
137 {
138 	return obj->gtt_space && !obj->active;
139 }
140 
141 int
i915_gem_init_ioctl(struct drm_device * dev,void * data,struct drm_file * file)142 i915_gem_init_ioctl(struct drm_device *dev, void *data,
143 		    struct drm_file *file)
144 {
145 	struct drm_i915_private *dev_priv = dev->dev_private;
146 	struct drm_i915_gem_init *args = data;
147 
148 	if (drm_core_check_feature(dev, DRIVER_MODESET))
149 		return -ENODEV;
150 
151 	if (args->gtt_start >= args->gtt_end ||
152 	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
153 		return -EINVAL;
154 
155 	/* GEM with user mode setting was never supported on ilk and later. */
156 	if (INTEL_INFO(dev)->gen >= 5)
157 		return -ENODEV;
158 
159 	mutex_lock(&dev->struct_mutex);
160 	i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
161 				  args->gtt_end);
162 	dev_priv->gtt.mappable_end = args->gtt_end;
163 	mutex_unlock(&dev->struct_mutex);
164 
165 	return 0;
166 }
167 
168 int
i915_gem_get_aperture_ioctl(struct drm_device * dev,void * data,struct drm_file * file)169 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
170 			    struct drm_file *file)
171 {
172 	struct drm_i915_private *dev_priv = dev->dev_private;
173 	struct drm_i915_gem_get_aperture *args = data;
174 	struct drm_i915_gem_object *obj;
175 	size_t pinned;
176 
177 	pinned = 0;
178 	mutex_lock(&dev->struct_mutex);
179 	list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
180 		if (obj->pin_count)
181 			pinned += obj->gtt_space->size;
182 	mutex_unlock(&dev->struct_mutex);
183 
184 	args->aper_size = dev_priv->gtt.total;
185 	args->aper_available_size = args->aper_size - pinned;
186 
187 	return 0;
188 }
189 
i915_gem_object_alloc(struct drm_device * dev)190 void *i915_gem_object_alloc(struct drm_device *dev)
191 {
192 	struct drm_i915_private *dev_priv = dev->dev_private;
193 	return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
194 }
195 
i915_gem_object_free(struct drm_i915_gem_object * obj)196 void i915_gem_object_free(struct drm_i915_gem_object *obj)
197 {
198 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
199 	kmem_cache_free(dev_priv->slab, obj);
200 }
201 
202 static int
i915_gem_create(struct drm_file * file,struct drm_device * dev,uint64_t size,uint32_t * handle_p)203 i915_gem_create(struct drm_file *file,
204 		struct drm_device *dev,
205 		uint64_t size,
206 		uint32_t *handle_p)
207 {
208 	struct drm_i915_gem_object *obj;
209 	int ret;
210 	u32 handle;
211 
212 	size = roundup(size, PAGE_SIZE);
213 	if (size == 0)
214 		return -EINVAL;
215 
216 	/* Allocate the new object */
217 	obj = i915_gem_alloc_object(dev, size);
218 	if (obj == NULL)
219 		return -ENOMEM;
220 
221 	ret = drm_gem_handle_create(file, &obj->base, &handle);
222 	if (ret) {
223 		drm_gem_object_release(&obj->base);
224 		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
225 		i915_gem_object_free(obj);
226 		return ret;
227 	}
228 
229 	/* drop reference from allocate - handle holds it now */
230 	drm_gem_object_unreference(&obj->base);
231 	trace_i915_gem_object_create(obj);
232 
233 	*handle_p = handle;
234 	return 0;
235 }
236 
237 int
i915_gem_dumb_create(struct drm_file * file,struct drm_device * dev,struct drm_mode_create_dumb * args)238 i915_gem_dumb_create(struct drm_file *file,
239 		     struct drm_device *dev,
240 		     struct drm_mode_create_dumb *args)
241 {
242 	/* have to work out size/pitch and return them */
243 	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
244 	args->size = args->pitch * args->height;
245 	return i915_gem_create(file, dev,
246 			       args->size, &args->handle);
247 }
248 
i915_gem_dumb_destroy(struct drm_file * file,struct drm_device * dev,uint32_t handle)249 int i915_gem_dumb_destroy(struct drm_file *file,
250 			  struct drm_device *dev,
251 			  uint32_t handle)
252 {
253 	return drm_gem_handle_delete(file, handle);
254 }
255 
256 /**
257  * Creates a new mm object and returns a handle to it.
258  */
259 int
i915_gem_create_ioctl(struct drm_device * dev,void * data,struct drm_file * file)260 i915_gem_create_ioctl(struct drm_device *dev, void *data,
261 		      struct drm_file *file)
262 {
263 	struct drm_i915_gem_create *args = data;
264 
265 	return i915_gem_create(file, dev,
266 			       args->size, &args->handle);
267 }
268 
269 static inline int
__copy_to_user_swizzled(char __user * cpu_vaddr,const char * gpu_vaddr,int gpu_offset,int length)270 __copy_to_user_swizzled(char __user *cpu_vaddr,
271 			const char *gpu_vaddr, int gpu_offset,
272 			int length)
273 {
274 	int ret, cpu_offset = 0;
275 
276 	while (length > 0) {
277 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
278 		int this_length = min(cacheline_end - gpu_offset, length);
279 		int swizzled_gpu_offset = gpu_offset ^ 64;
280 
281 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
282 				     gpu_vaddr + swizzled_gpu_offset,
283 				     this_length);
284 		if (ret)
285 			return ret + length;
286 
287 		cpu_offset += this_length;
288 		gpu_offset += this_length;
289 		length -= this_length;
290 	}
291 
292 	return 0;
293 }
294 
295 static inline int
__copy_from_user_swizzled(char * gpu_vaddr,int gpu_offset,const char __user * cpu_vaddr,int length)296 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
297 			  const char __user *cpu_vaddr,
298 			  int length)
299 {
300 	int ret, cpu_offset = 0;
301 
302 	while (length > 0) {
303 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
304 		int this_length = min(cacheline_end - gpu_offset, length);
305 		int swizzled_gpu_offset = gpu_offset ^ 64;
306 
307 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
308 				       cpu_vaddr + cpu_offset,
309 				       this_length);
310 		if (ret)
311 			return ret + length;
312 
313 		cpu_offset += this_length;
314 		gpu_offset += this_length;
315 		length -= this_length;
316 	}
317 
318 	return 0;
319 }
320 
321 /* Per-page copy function for the shmem pread fastpath.
322  * Flushes invalid cachelines before reading the target if
323  * needs_clflush is set. */
324 static int
shmem_pread_fast(struct page * page,int shmem_page_offset,int page_length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush)325 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
326 		 char __user *user_data,
327 		 bool page_do_bit17_swizzling, bool needs_clflush)
328 {
329 	char *vaddr;
330 	int ret;
331 
332 	if (unlikely(page_do_bit17_swizzling))
333 		return -EINVAL;
334 
335 	vaddr = kmap_atomic(page);
336 	if (needs_clflush)
337 		drm_clflush_virt_range(vaddr + shmem_page_offset,
338 				       page_length);
339 	ret = __copy_to_user_inatomic(user_data,
340 				      vaddr + shmem_page_offset,
341 				      page_length);
342 	kunmap_atomic(vaddr);
343 
344 	return ret ? -EFAULT : 0;
345 }
346 
347 static void
shmem_clflush_swizzled_range(char * addr,unsigned long length,bool swizzled)348 shmem_clflush_swizzled_range(char *addr, unsigned long length,
349 			     bool swizzled)
350 {
351 	if (unlikely(swizzled)) {
352 		unsigned long start = (unsigned long) addr;
353 		unsigned long end = (unsigned long) addr + length;
354 
355 		/* For swizzling simply ensure that we always flush both
356 		 * channels. Lame, but simple and it works. Swizzled
357 		 * pwrite/pread is far from a hotpath - current userspace
358 		 * doesn't use it at all. */
359 		start = round_down(start, 128);
360 		end = round_up(end, 128);
361 
362 		drm_clflush_virt_range((void *)start, end - start);
363 	} else {
364 		drm_clflush_virt_range(addr, length);
365 	}
366 
367 }
368 
369 /* Only difference to the fast-path function is that this can handle bit17
370  * and uses non-atomic copy and kmap functions. */
371 static int
shmem_pread_slow(struct page * page,int shmem_page_offset,int page_length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush)372 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
373 		 char __user *user_data,
374 		 bool page_do_bit17_swizzling, bool needs_clflush)
375 {
376 	char *vaddr;
377 	int ret;
378 
379 	vaddr = kmap(page);
380 	if (needs_clflush)
381 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
382 					     page_length,
383 					     page_do_bit17_swizzling);
384 
385 	if (page_do_bit17_swizzling)
386 		ret = __copy_to_user_swizzled(user_data,
387 					      vaddr, shmem_page_offset,
388 					      page_length);
389 	else
390 		ret = __copy_to_user(user_data,
391 				     vaddr + shmem_page_offset,
392 				     page_length);
393 	kunmap(page);
394 
395 	return ret ? - EFAULT : 0;
396 }
397 
398 static int
i915_gem_shmem_pread(struct drm_device * dev,struct drm_i915_gem_object * obj,struct drm_i915_gem_pread * args,struct drm_file * file)399 i915_gem_shmem_pread(struct drm_device *dev,
400 		     struct drm_i915_gem_object *obj,
401 		     struct drm_i915_gem_pread *args,
402 		     struct drm_file *file)
403 {
404 	char __user *user_data;
405 	ssize_t remain;
406 	loff_t offset;
407 	int shmem_page_offset, page_length, ret = 0;
408 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
409 	int prefaulted = 0;
410 	int needs_clflush = 0;
411 	struct sg_page_iter sg_iter;
412 
413 	user_data = to_user_ptr(args->data_ptr);
414 	remain = args->size;
415 
416 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
417 
418 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
419 		/* If we're not in the cpu read domain, set ourself into the gtt
420 		 * read domain and manually flush cachelines (if required). This
421 		 * optimizes for the case when the gpu will dirty the data
422 		 * anyway again before the next pread happens. */
423 		if (obj->cache_level == I915_CACHE_NONE)
424 			needs_clflush = 1;
425 		if (obj->gtt_space) {
426 			ret = i915_gem_object_set_to_gtt_domain(obj, false);
427 			if (ret)
428 				return ret;
429 		}
430 	}
431 
432 	ret = i915_gem_object_get_pages(obj);
433 	if (ret)
434 		return ret;
435 
436 	i915_gem_object_pin_pages(obj);
437 
438 	offset = args->offset;
439 
440 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
441 			 offset >> PAGE_SHIFT) {
442 		struct page *page = sg_page_iter_page(&sg_iter);
443 
444 		if (remain <= 0)
445 			break;
446 
447 		/* Operation in this page
448 		 *
449 		 * shmem_page_offset = offset within page in shmem file
450 		 * page_length = bytes to copy for this page
451 		 */
452 		shmem_page_offset = offset_in_page(offset);
453 		page_length = remain;
454 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
455 			page_length = PAGE_SIZE - shmem_page_offset;
456 
457 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
458 			(page_to_phys(page) & (1 << 17)) != 0;
459 
460 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
461 				       user_data, page_do_bit17_swizzling,
462 				       needs_clflush);
463 		if (ret == 0)
464 			goto next_page;
465 
466 		mutex_unlock(&dev->struct_mutex);
467 
468 		if (!prefaulted) {
469 			ret = fault_in_multipages_writeable(user_data, remain);
470 			/* Userspace is tricking us, but we've already clobbered
471 			 * its pages with the prefault and promised to write the
472 			 * data up to the first fault. Hence ignore any errors
473 			 * and just continue. */
474 			(void)ret;
475 			prefaulted = 1;
476 		}
477 
478 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
479 				       user_data, page_do_bit17_swizzling,
480 				       needs_clflush);
481 
482 		mutex_lock(&dev->struct_mutex);
483 
484 next_page:
485 		mark_page_accessed(page);
486 
487 		if (ret)
488 			goto out;
489 
490 		remain -= page_length;
491 		user_data += page_length;
492 		offset += page_length;
493 	}
494 
495 out:
496 	i915_gem_object_unpin_pages(obj);
497 
498 	return ret;
499 }
500 
501 /**
502  * Reads data from the object referenced by handle.
503  *
504  * On error, the contents of *data are undefined.
505  */
506 int
i915_gem_pread_ioctl(struct drm_device * dev,void * data,struct drm_file * file)507 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
508 		     struct drm_file *file)
509 {
510 	struct drm_i915_gem_pread *args = data;
511 	struct drm_i915_gem_object *obj;
512 	int ret = 0;
513 
514 	if (args->size == 0)
515 		return 0;
516 
517 	if (!access_ok(VERIFY_WRITE,
518 		       to_user_ptr(args->data_ptr),
519 		       args->size))
520 		return -EFAULT;
521 
522 	ret = i915_mutex_lock_interruptible(dev);
523 	if (ret)
524 		return ret;
525 
526 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
527 	if (&obj->base == NULL) {
528 		ret = -ENOENT;
529 		goto unlock;
530 	}
531 
532 	/* Bounds check source.  */
533 	if (args->offset > obj->base.size ||
534 	    args->size > obj->base.size - args->offset) {
535 		ret = -EINVAL;
536 		goto out;
537 	}
538 
539 	/* prime objects have no backing filp to GEM pread/pwrite
540 	 * pages from.
541 	 */
542 	if (!obj->base.filp) {
543 		ret = -EINVAL;
544 		goto out;
545 	}
546 
547 	trace_i915_gem_object_pread(obj, args->offset, args->size);
548 
549 	ret = i915_gem_shmem_pread(dev, obj, args, file);
550 
551 out:
552 	drm_gem_object_unreference(&obj->base);
553 unlock:
554 	mutex_unlock(&dev->struct_mutex);
555 	return ret;
556 }
557 
558 /* This is the fast write path which cannot handle
559  * page faults in the source data
560  */
561 
562 static inline int
fast_user_write(struct io_mapping * mapping,loff_t page_base,int page_offset,char __user * user_data,int length)563 fast_user_write(struct io_mapping *mapping,
564 		loff_t page_base, int page_offset,
565 		char __user *user_data,
566 		int length)
567 {
568 	void __iomem *vaddr_atomic;
569 	void *vaddr;
570 	unsigned long unwritten;
571 
572 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
573 	/* We can use the cpu mem copy function because this is X86. */
574 	vaddr = (void __force*)vaddr_atomic + page_offset;
575 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
576 						      user_data, length);
577 	io_mapping_unmap_atomic(vaddr_atomic);
578 	return unwritten;
579 }
580 
581 /**
582  * This is the fast pwrite path, where we copy the data directly from the
583  * user into the GTT, uncached.
584  */
585 static int
i915_gem_gtt_pwrite_fast(struct drm_device * dev,struct drm_i915_gem_object * obj,struct drm_i915_gem_pwrite * args,struct drm_file * file)586 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
587 			 struct drm_i915_gem_object *obj,
588 			 struct drm_i915_gem_pwrite *args,
589 			 struct drm_file *file)
590 {
591 	drm_i915_private_t *dev_priv = dev->dev_private;
592 	ssize_t remain;
593 	loff_t offset, page_base;
594 	char __user *user_data;
595 	int page_offset, page_length, ret;
596 
597 	ret = i915_gem_object_pin(obj, 0, true, true);
598 	if (ret)
599 		goto out;
600 
601 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
602 	if (ret)
603 		goto out_unpin;
604 
605 	ret = i915_gem_object_put_fence(obj);
606 	if (ret)
607 		goto out_unpin;
608 
609 	user_data = to_user_ptr(args->data_ptr);
610 	remain = args->size;
611 
612 	offset = obj->gtt_offset + args->offset;
613 
614 	while (remain > 0) {
615 		/* Operation in this page
616 		 *
617 		 * page_base = page offset within aperture
618 		 * page_offset = offset within page
619 		 * page_length = bytes to copy for this page
620 		 */
621 		page_base = offset & PAGE_MASK;
622 		page_offset = offset_in_page(offset);
623 		page_length = remain;
624 		if ((page_offset + remain) > PAGE_SIZE)
625 			page_length = PAGE_SIZE - page_offset;
626 
627 		/* If we get a fault while copying data, then (presumably) our
628 		 * source page isn't available.  Return the error and we'll
629 		 * retry in the slow path.
630 		 */
631 		if (fast_user_write(dev_priv->gtt.mappable, page_base,
632 				    page_offset, user_data, page_length)) {
633 			ret = -EFAULT;
634 			goto out_unpin;
635 		}
636 
637 		remain -= page_length;
638 		user_data += page_length;
639 		offset += page_length;
640 	}
641 
642 out_unpin:
643 	i915_gem_object_unpin(obj);
644 out:
645 	return ret;
646 }
647 
648 /* Per-page copy function for the shmem pwrite fastpath.
649  * Flushes invalid cachelines before writing to the target if
650  * needs_clflush_before is set and flushes out any written cachelines after
651  * writing if needs_clflush is set. */
652 static int
shmem_pwrite_fast(struct page * page,int shmem_page_offset,int page_length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush_before,bool needs_clflush_after)653 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
654 		  char __user *user_data,
655 		  bool page_do_bit17_swizzling,
656 		  bool needs_clflush_before,
657 		  bool needs_clflush_after)
658 {
659 	char *vaddr;
660 	int ret;
661 
662 	if (unlikely(page_do_bit17_swizzling))
663 		return -EINVAL;
664 
665 	vaddr = kmap_atomic(page);
666 	if (needs_clflush_before)
667 		drm_clflush_virt_range(vaddr + shmem_page_offset,
668 				       page_length);
669 	ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
670 						user_data,
671 						page_length);
672 	if (needs_clflush_after)
673 		drm_clflush_virt_range(vaddr + shmem_page_offset,
674 				       page_length);
675 	kunmap_atomic(vaddr);
676 
677 	return ret ? -EFAULT : 0;
678 }
679 
680 /* Only difference to the fast-path function is that this can handle bit17
681  * and uses non-atomic copy and kmap functions. */
682 static int
shmem_pwrite_slow(struct page * page,int shmem_page_offset,int page_length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush_before,bool needs_clflush_after)683 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
684 		  char __user *user_data,
685 		  bool page_do_bit17_swizzling,
686 		  bool needs_clflush_before,
687 		  bool needs_clflush_after)
688 {
689 	char *vaddr;
690 	int ret;
691 
692 	vaddr = kmap(page);
693 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
694 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
695 					     page_length,
696 					     page_do_bit17_swizzling);
697 	if (page_do_bit17_swizzling)
698 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
699 						user_data,
700 						page_length);
701 	else
702 		ret = __copy_from_user(vaddr + shmem_page_offset,
703 				       user_data,
704 				       page_length);
705 	if (needs_clflush_after)
706 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
707 					     page_length,
708 					     page_do_bit17_swizzling);
709 	kunmap(page);
710 
711 	return ret ? -EFAULT : 0;
712 }
713 
714 static int
i915_gem_shmem_pwrite(struct drm_device * dev,struct drm_i915_gem_object * obj,struct drm_i915_gem_pwrite * args,struct drm_file * file)715 i915_gem_shmem_pwrite(struct drm_device *dev,
716 		      struct drm_i915_gem_object *obj,
717 		      struct drm_i915_gem_pwrite *args,
718 		      struct drm_file *file)
719 {
720 	ssize_t remain;
721 	loff_t offset;
722 	char __user *user_data;
723 	int shmem_page_offset, page_length, ret = 0;
724 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
725 	int hit_slowpath = 0;
726 	int needs_clflush_after = 0;
727 	int needs_clflush_before = 0;
728 	struct sg_page_iter sg_iter;
729 
730 	user_data = to_user_ptr(args->data_ptr);
731 	remain = args->size;
732 
733 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
734 
735 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
736 		/* If we're not in the cpu write domain, set ourself into the gtt
737 		 * write domain and manually flush cachelines (if required). This
738 		 * optimizes for the case when the gpu will use the data
739 		 * right away and we therefore have to clflush anyway. */
740 		if (obj->cache_level == I915_CACHE_NONE)
741 			needs_clflush_after = 1;
742 		if (obj->gtt_space) {
743 			ret = i915_gem_object_set_to_gtt_domain(obj, true);
744 			if (ret)
745 				return ret;
746 		}
747 	}
748 	/* Same trick applies for invalidate partially written cachelines before
749 	 * writing.  */
750 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
751 	    && obj->cache_level == I915_CACHE_NONE)
752 		needs_clflush_before = 1;
753 
754 	ret = i915_gem_object_get_pages(obj);
755 	if (ret)
756 		return ret;
757 
758 	i915_gem_object_pin_pages(obj);
759 
760 	offset = args->offset;
761 	obj->dirty = 1;
762 
763 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
764 			 offset >> PAGE_SHIFT) {
765 		struct page *page = sg_page_iter_page(&sg_iter);
766 		int partial_cacheline_write;
767 
768 		if (remain <= 0)
769 			break;
770 
771 		/* Operation in this page
772 		 *
773 		 * shmem_page_offset = offset within page in shmem file
774 		 * page_length = bytes to copy for this page
775 		 */
776 		shmem_page_offset = offset_in_page(offset);
777 
778 		page_length = remain;
779 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
780 			page_length = PAGE_SIZE - shmem_page_offset;
781 
782 		/* If we don't overwrite a cacheline completely we need to be
783 		 * careful to have up-to-date data by first clflushing. Don't
784 		 * overcomplicate things and flush the entire patch. */
785 		partial_cacheline_write = needs_clflush_before &&
786 			((shmem_page_offset | page_length)
787 				& (boot_cpu_data.x86_clflush_size - 1));
788 
789 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
790 			(page_to_phys(page) & (1 << 17)) != 0;
791 
792 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
793 					user_data, page_do_bit17_swizzling,
794 					partial_cacheline_write,
795 					needs_clflush_after);
796 		if (ret == 0)
797 			goto next_page;
798 
799 		hit_slowpath = 1;
800 		mutex_unlock(&dev->struct_mutex);
801 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
802 					user_data, page_do_bit17_swizzling,
803 					partial_cacheline_write,
804 					needs_clflush_after);
805 
806 		mutex_lock(&dev->struct_mutex);
807 
808 next_page:
809 		set_page_dirty(page);
810 		mark_page_accessed(page);
811 
812 		if (ret)
813 			goto out;
814 
815 		remain -= page_length;
816 		user_data += page_length;
817 		offset += page_length;
818 	}
819 
820 out:
821 	i915_gem_object_unpin_pages(obj);
822 
823 	if (hit_slowpath) {
824 		/*
825 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
826 		 * cachelines in-line while writing and the object moved
827 		 * out of the cpu write domain while we've dropped the lock.
828 		 */
829 		if (!needs_clflush_after &&
830 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
831 			i915_gem_clflush_object(obj);
832 			i915_gem_chipset_flush(dev);
833 		}
834 	}
835 
836 	if (needs_clflush_after)
837 		i915_gem_chipset_flush(dev);
838 
839 	return ret;
840 }
841 
842 /**
843  * Writes data to the object referenced by handle.
844  *
845  * On error, the contents of the buffer that were to be modified are undefined.
846  */
847 int
i915_gem_pwrite_ioctl(struct drm_device * dev,void * data,struct drm_file * file)848 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
849 		      struct drm_file *file)
850 {
851 	struct drm_i915_gem_pwrite *args = data;
852 	struct drm_i915_gem_object *obj;
853 	int ret;
854 
855 	if (args->size == 0)
856 		return 0;
857 
858 	if (!access_ok(VERIFY_READ,
859 		       to_user_ptr(args->data_ptr),
860 		       args->size))
861 		return -EFAULT;
862 
863 	ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
864 					   args->size);
865 	if (ret)
866 		return -EFAULT;
867 
868 	ret = i915_mutex_lock_interruptible(dev);
869 	if (ret)
870 		return ret;
871 
872 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
873 	if (&obj->base == NULL) {
874 		ret = -ENOENT;
875 		goto unlock;
876 	}
877 
878 	/* Bounds check destination. */
879 	if (args->offset > obj->base.size ||
880 	    args->size > obj->base.size - args->offset) {
881 		ret = -EINVAL;
882 		goto out;
883 	}
884 
885 	/* prime objects have no backing filp to GEM pread/pwrite
886 	 * pages from.
887 	 */
888 	if (!obj->base.filp) {
889 		ret = -EINVAL;
890 		goto out;
891 	}
892 
893 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
894 
895 	ret = -EFAULT;
896 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
897 	 * it would end up going through the fenced access, and we'll get
898 	 * different detiling behavior between reading and writing.
899 	 * pread/pwrite currently are reading and writing from the CPU
900 	 * perspective, requiring manual detiling by the client.
901 	 */
902 	if (obj->phys_obj) {
903 		ret = i915_gem_phys_pwrite(dev, obj, args, file);
904 		goto out;
905 	}
906 
907 	if (obj->cache_level == I915_CACHE_NONE &&
908 	    obj->tiling_mode == I915_TILING_NONE &&
909 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
910 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
911 		/* Note that the gtt paths might fail with non-page-backed user
912 		 * pointers (e.g. gtt mappings when moving data between
913 		 * textures). Fallback to the shmem path in that case. */
914 	}
915 
916 	if (ret == -EFAULT || ret == -ENOSPC)
917 		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
918 
919 out:
920 	drm_gem_object_unreference(&obj->base);
921 unlock:
922 	mutex_unlock(&dev->struct_mutex);
923 	return ret;
924 }
925 
926 int
i915_gem_check_wedge(struct i915_gpu_error * error,bool interruptible)927 i915_gem_check_wedge(struct i915_gpu_error *error,
928 		     bool interruptible)
929 {
930 	if (i915_reset_in_progress(error)) {
931 		/* Non-interruptible callers can't handle -EAGAIN, hence return
932 		 * -EIO unconditionally for these. */
933 		if (!interruptible)
934 			return -EIO;
935 
936 		/* Recovery complete, but the reset failed ... */
937 		if (i915_terminally_wedged(error))
938 			return -EIO;
939 
940 		return -EAGAIN;
941 	}
942 
943 	return 0;
944 }
945 
946 /*
947  * Compare seqno against outstanding lazy request. Emit a request if they are
948  * equal.
949  */
950 static int
i915_gem_check_olr(struct intel_ring_buffer * ring,u32 seqno)951 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
952 {
953 	int ret;
954 
955 	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
956 
957 	ret = 0;
958 	if (seqno == ring->outstanding_lazy_request)
959 		ret = i915_add_request(ring, NULL, NULL);
960 
961 	return ret;
962 }
963 
964 /**
965  * __wait_seqno - wait until execution of seqno has finished
966  * @ring: the ring expected to report seqno
967  * @seqno: duh!
968  * @reset_counter: reset sequence associated with the given seqno
969  * @interruptible: do an interruptible wait (normally yes)
970  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
971  *
972  * Note: It is of utmost importance that the passed in seqno and reset_counter
973  * values have been read by the caller in an smp safe manner. Where read-side
974  * locks are involved, it is sufficient to read the reset_counter before
975  * unlocking the lock that protects the seqno. For lockless tricks, the
976  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
977  * inserted.
978  *
979  * Returns 0 if the seqno was found within the alloted time. Else returns the
980  * errno with remaining time filled in timeout argument.
981  */
__wait_seqno(struct intel_ring_buffer * ring,u32 seqno,unsigned reset_counter,bool interruptible,struct timespec * timeout)982 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
983 			unsigned reset_counter,
984 			bool interruptible, struct timespec *timeout)
985 {
986 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
987 	struct timespec before, now, wait_time={1,0};
988 	unsigned long timeout_jiffies;
989 	long end;
990 	bool wait_forever = true;
991 	int ret;
992 
993 	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
994 		return 0;
995 
996 	trace_i915_gem_request_wait_begin(ring, seqno);
997 
998 	if (timeout != NULL) {
999 		wait_time = *timeout;
1000 		wait_forever = false;
1001 	}
1002 
1003 	timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
1004 
1005 	if (WARN_ON(!ring->irq_get(ring)))
1006 		return -ENODEV;
1007 
1008 	/* Record current time in case interrupted by signal, or wedged * */
1009 	getrawmonotonic(&before);
1010 
1011 #define EXIT_COND \
1012 	(i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1013 	 i915_reset_in_progress(&dev_priv->gpu_error) || \
1014 	 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1015 	do {
1016 		if (interruptible)
1017 			end = wait_event_interruptible_timeout(ring->irq_queue,
1018 							       EXIT_COND,
1019 							       timeout_jiffies);
1020 		else
1021 			end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1022 						 timeout_jiffies);
1023 
1024 		/* We need to check whether any gpu reset happened in between
1025 		 * the caller grabbing the seqno and now ... */
1026 		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1027 			end = -EAGAIN;
1028 
1029 		/* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1030 		 * gone. */
1031 		ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1032 		if (ret)
1033 			end = ret;
1034 	} while (end == 0 && wait_forever);
1035 
1036 	getrawmonotonic(&now);
1037 
1038 	ring->irq_put(ring);
1039 	trace_i915_gem_request_wait_end(ring, seqno);
1040 #undef EXIT_COND
1041 
1042 	if (timeout) {
1043 		struct timespec sleep_time = timespec_sub(now, before);
1044 		*timeout = timespec_sub(*timeout, sleep_time);
1045 		if (!timespec_valid(timeout)) /* i.e. negative time remains */
1046 			set_normalized_timespec(timeout, 0, 0);
1047 	}
1048 
1049 	switch (end) {
1050 	case -EIO:
1051 	case -EAGAIN: /* Wedged */
1052 	case -ERESTARTSYS: /* Signal */
1053 		return (int)end;
1054 	case 0: /* Timeout */
1055 		return -ETIME;
1056 	default: /* Completed */
1057 		WARN_ON(end < 0); /* We're not aware of other errors */
1058 		return 0;
1059 	}
1060 }
1061 
1062 /**
1063  * Waits for a sequence number to be signaled, and cleans up the
1064  * request and object lists appropriately for that event.
1065  */
1066 int
i915_wait_seqno(struct intel_ring_buffer * ring,uint32_t seqno)1067 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1068 {
1069 	struct drm_device *dev = ring->dev;
1070 	struct drm_i915_private *dev_priv = dev->dev_private;
1071 	bool interruptible = dev_priv->mm.interruptible;
1072 	int ret;
1073 
1074 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1075 	BUG_ON(seqno == 0);
1076 
1077 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1078 	if (ret)
1079 		return ret;
1080 
1081 	ret = i915_gem_check_olr(ring, seqno);
1082 	if (ret)
1083 		return ret;
1084 
1085 	return __wait_seqno(ring, seqno,
1086 			    atomic_read(&dev_priv->gpu_error.reset_counter),
1087 			    interruptible, NULL);
1088 }
1089 
1090 /**
1091  * Ensures that all rendering to the object has completed and the object is
1092  * safe to unbind from the GTT or access from the CPU.
1093  */
1094 static __must_check int
i915_gem_object_wait_rendering(struct drm_i915_gem_object * obj,bool readonly)1095 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1096 			       bool readonly)
1097 {
1098 	struct intel_ring_buffer *ring = obj->ring;
1099 	u32 seqno;
1100 	int ret;
1101 
1102 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1103 	if (seqno == 0)
1104 		return 0;
1105 
1106 	ret = i915_wait_seqno(ring, seqno);
1107 	if (ret)
1108 		return ret;
1109 
1110 	i915_gem_retire_requests_ring(ring);
1111 
1112 	/* Manually manage the write flush as we may have not yet
1113 	 * retired the buffer.
1114 	 */
1115 	if (obj->last_write_seqno &&
1116 	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
1117 		obj->last_write_seqno = 0;
1118 		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1119 	}
1120 
1121 	return 0;
1122 }
1123 
1124 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1125  * as the object state may change during this call.
1126  */
1127 static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object * obj,bool readonly)1128 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1129 					    bool readonly)
1130 {
1131 	struct drm_device *dev = obj->base.dev;
1132 	struct drm_i915_private *dev_priv = dev->dev_private;
1133 	struct intel_ring_buffer *ring = obj->ring;
1134 	unsigned reset_counter;
1135 	u32 seqno;
1136 	int ret;
1137 
1138 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1139 	BUG_ON(!dev_priv->mm.interruptible);
1140 
1141 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1142 	if (seqno == 0)
1143 		return 0;
1144 
1145 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1146 	if (ret)
1147 		return ret;
1148 
1149 	ret = i915_gem_check_olr(ring, seqno);
1150 	if (ret)
1151 		return ret;
1152 
1153 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1154 	mutex_unlock(&dev->struct_mutex);
1155 	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1156 	mutex_lock(&dev->struct_mutex);
1157 
1158 	i915_gem_retire_requests_ring(ring);
1159 
1160 	/* Manually manage the write flush as we may have not yet
1161 	 * retired the buffer.
1162 	 */
1163 	if (obj->last_write_seqno &&
1164 	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
1165 		obj->last_write_seqno = 0;
1166 		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1167 	}
1168 
1169 	return ret;
1170 }
1171 
1172 /**
1173  * Called when user space prepares to use an object with the CPU, either
1174  * through the mmap ioctl's mapping or a GTT mapping.
1175  */
1176 int
i915_gem_set_domain_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1177 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1178 			  struct drm_file *file)
1179 {
1180 	struct drm_i915_gem_set_domain *args = data;
1181 	struct drm_i915_gem_object *obj;
1182 	uint32_t read_domains = args->read_domains;
1183 	uint32_t write_domain = args->write_domain;
1184 	int ret;
1185 
1186 	/* Only handle setting domains to types used by the CPU. */
1187 	if (write_domain & I915_GEM_GPU_DOMAINS)
1188 		return -EINVAL;
1189 
1190 	if (read_domains & I915_GEM_GPU_DOMAINS)
1191 		return -EINVAL;
1192 
1193 	/* Having something in the write domain implies it's in the read
1194 	 * domain, and only that read domain.  Enforce that in the request.
1195 	 */
1196 	if (write_domain != 0 && read_domains != write_domain)
1197 		return -EINVAL;
1198 
1199 	ret = i915_mutex_lock_interruptible(dev);
1200 	if (ret)
1201 		return ret;
1202 
1203 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1204 	if (&obj->base == NULL) {
1205 		ret = -ENOENT;
1206 		goto unlock;
1207 	}
1208 
1209 	/* Try to flush the object off the GPU without holding the lock.
1210 	 * We will repeat the flush holding the lock in the normal manner
1211 	 * to catch cases where we are gazumped.
1212 	 */
1213 	ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1214 	if (ret)
1215 		goto unref;
1216 
1217 	if (read_domains & I915_GEM_DOMAIN_GTT) {
1218 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1219 
1220 		/* Silently promote "you're not bound, there was nothing to do"
1221 		 * to success, since the client was just asking us to
1222 		 * make sure everything was done.
1223 		 */
1224 		if (ret == -EINVAL)
1225 			ret = 0;
1226 	} else {
1227 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1228 	}
1229 
1230 unref:
1231 	drm_gem_object_unreference(&obj->base);
1232 unlock:
1233 	mutex_unlock(&dev->struct_mutex);
1234 	return ret;
1235 }
1236 
1237 /**
1238  * Called when user space has done writes to this buffer
1239  */
1240 int
i915_gem_sw_finish_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1241 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1242 			 struct drm_file *file)
1243 {
1244 	struct drm_i915_gem_sw_finish *args = data;
1245 	struct drm_i915_gem_object *obj;
1246 	int ret = 0;
1247 
1248 	ret = i915_mutex_lock_interruptible(dev);
1249 	if (ret)
1250 		return ret;
1251 
1252 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1253 	if (&obj->base == NULL) {
1254 		ret = -ENOENT;
1255 		goto unlock;
1256 	}
1257 
1258 	/* Pinned buffers may be scanout, so flush the cache */
1259 	if (obj->pin_count)
1260 		i915_gem_object_flush_cpu_write_domain(obj);
1261 
1262 	drm_gem_object_unreference(&obj->base);
1263 unlock:
1264 	mutex_unlock(&dev->struct_mutex);
1265 	return ret;
1266 }
1267 
1268 /**
1269  * Maps the contents of an object, returning the address it is mapped
1270  * into.
1271  *
1272  * While the mapping holds a reference on the contents of the object, it doesn't
1273  * imply a ref on the object itself.
1274  */
1275 int
i915_gem_mmap_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1276 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1277 		    struct drm_file *file)
1278 {
1279 	struct drm_i915_gem_mmap *args = data;
1280 	struct drm_gem_object *obj;
1281 	unsigned long addr;
1282 
1283 	obj = drm_gem_object_lookup(dev, file, args->handle);
1284 	if (obj == NULL)
1285 		return -ENOENT;
1286 
1287 	/* prime objects have no backing filp to GEM mmap
1288 	 * pages from.
1289 	 */
1290 	if (!obj->filp) {
1291 		drm_gem_object_unreference_unlocked(obj);
1292 		return -EINVAL;
1293 	}
1294 
1295 	addr = vm_mmap(obj->filp, 0, args->size,
1296 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1297 		       args->offset);
1298 	drm_gem_object_unreference_unlocked(obj);
1299 	if (IS_ERR((void *)addr))
1300 		return addr;
1301 
1302 	args->addr_ptr = (uint64_t) addr;
1303 
1304 	return 0;
1305 }
1306 
1307 /**
1308  * i915_gem_fault - fault a page into the GTT
1309  * vma: VMA in question
1310  * vmf: fault info
1311  *
1312  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1313  * from userspace.  The fault handler takes care of binding the object to
1314  * the GTT (if needed), allocating and programming a fence register (again,
1315  * only if needed based on whether the old reg is still valid or the object
1316  * is tiled) and inserting a new PTE into the faulting process.
1317  *
1318  * Note that the faulting process may involve evicting existing objects
1319  * from the GTT and/or fence registers to make room.  So performance may
1320  * suffer if the GTT working set is large or there are few fence registers
1321  * left.
1322  */
i915_gem_fault(struct vm_area_struct * vma,struct vm_fault * vmf)1323 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1324 {
1325 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1326 	struct drm_device *dev = obj->base.dev;
1327 	drm_i915_private_t *dev_priv = dev->dev_private;
1328 	pgoff_t page_offset;
1329 	unsigned long pfn;
1330 	int ret = 0;
1331 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1332 
1333 	/* We don't use vmf->pgoff since that has the fake offset */
1334 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1335 		PAGE_SHIFT;
1336 
1337 	ret = i915_mutex_lock_interruptible(dev);
1338 	if (ret)
1339 		goto out;
1340 
1341 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1342 
1343 	/* Access to snoopable pages through the GTT is incoherent. */
1344 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1345 		ret = -EINVAL;
1346 		goto unlock;
1347 	}
1348 
1349 	/* Now bind it into the GTT if needed */
1350 	ret = i915_gem_object_pin(obj, 0, true, false);
1351 	if (ret)
1352 		goto unlock;
1353 
1354 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1355 	if (ret)
1356 		goto unpin;
1357 
1358 	ret = i915_gem_object_get_fence(obj);
1359 	if (ret)
1360 		goto unpin;
1361 
1362 	obj->fault_mappable = true;
1363 
1364 	pfn = ((dev_priv->gtt.mappable_base + obj->gtt_offset) >> PAGE_SHIFT) +
1365 		page_offset;
1366 
1367 	/* Finally, remap it using the new GTT offset */
1368 	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1369 unpin:
1370 	i915_gem_object_unpin(obj);
1371 unlock:
1372 	mutex_unlock(&dev->struct_mutex);
1373 out:
1374 	switch (ret) {
1375 	case -EIO:
1376 		/* If this -EIO is due to a gpu hang, give the reset code a
1377 		 * chance to clean up the mess. Otherwise return the proper
1378 		 * SIGBUS. */
1379 		if (i915_terminally_wedged(&dev_priv->gpu_error))
1380 			return VM_FAULT_SIGBUS;
1381 	case -EAGAIN:
1382 		/* Give the error handler a chance to run and move the
1383 		 * objects off the GPU active list. Next time we service the
1384 		 * fault, we should be able to transition the page into the
1385 		 * GTT without touching the GPU (and so avoid further
1386 		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1387 		 * with coherency, just lost writes.
1388 		 */
1389 		set_need_resched();
1390 	case 0:
1391 	case -ERESTARTSYS:
1392 	case -EINTR:
1393 	case -EBUSY:
1394 		/*
1395 		 * EBUSY is ok: this just means that another thread
1396 		 * already did the job.
1397 		 */
1398 		return VM_FAULT_NOPAGE;
1399 	case -ENOMEM:
1400 		return VM_FAULT_OOM;
1401 	case -ENOSPC:
1402 		return VM_FAULT_SIGBUS;
1403 	default:
1404 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1405 		return VM_FAULT_SIGBUS;
1406 	}
1407 }
1408 
1409 /**
1410  * i915_gem_release_mmap - remove physical page mappings
1411  * @obj: obj in question
1412  *
1413  * Preserve the reservation of the mmapping with the DRM core code, but
1414  * relinquish ownership of the pages back to the system.
1415  *
1416  * It is vital that we remove the page mapping if we have mapped a tiled
1417  * object through the GTT and then lose the fence register due to
1418  * resource pressure. Similarly if the object has been moved out of the
1419  * aperture, than pages mapped into userspace must be revoked. Removing the
1420  * mapping will then trigger a page fault on the next user access, allowing
1421  * fixup by i915_gem_fault().
1422  */
1423 void
i915_gem_release_mmap(struct drm_i915_gem_object * obj)1424 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1425 {
1426 	if (!obj->fault_mappable)
1427 		return;
1428 
1429 	if (obj->base.dev->dev_mapping)
1430 		unmap_mapping_range(obj->base.dev->dev_mapping,
1431 				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1432 				    obj->base.size, 1);
1433 
1434 	obj->fault_mappable = false;
1435 }
1436 
1437 uint32_t
i915_gem_get_gtt_size(struct drm_device * dev,uint32_t size,int tiling_mode)1438 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1439 {
1440 	uint32_t gtt_size;
1441 
1442 	if (INTEL_INFO(dev)->gen >= 4 ||
1443 	    tiling_mode == I915_TILING_NONE)
1444 		return size;
1445 
1446 	/* Previous chips need a power-of-two fence region when tiling */
1447 	if (INTEL_INFO(dev)->gen == 3)
1448 		gtt_size = 1024*1024;
1449 	else
1450 		gtt_size = 512*1024;
1451 
1452 	while (gtt_size < size)
1453 		gtt_size <<= 1;
1454 
1455 	return gtt_size;
1456 }
1457 
1458 /**
1459  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1460  * @obj: object to check
1461  *
1462  * Return the required GTT alignment for an object, taking into account
1463  * potential fence register mapping.
1464  */
1465 uint32_t
i915_gem_get_gtt_alignment(struct drm_device * dev,uint32_t size,int tiling_mode,bool fenced)1466 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1467 			   int tiling_mode, bool fenced)
1468 {
1469 	/*
1470 	 * Minimum alignment is 4k (GTT page size), but might be greater
1471 	 * if a fence register is needed for the object.
1472 	 */
1473 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1474 	    tiling_mode == I915_TILING_NONE)
1475 		return 4096;
1476 
1477 	/*
1478 	 * Previous chips need to be aligned to the size of the smallest
1479 	 * fence register that can contain the object.
1480 	 */
1481 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1482 }
1483 
i915_gem_object_create_mmap_offset(struct drm_i915_gem_object * obj)1484 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1485 {
1486 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1487 	int ret;
1488 
1489 	if (obj->base.map_list.map)
1490 		return 0;
1491 
1492 	dev_priv->mm.shrinker_no_lock_stealing = true;
1493 
1494 	ret = drm_gem_create_mmap_offset(&obj->base);
1495 	if (ret != -ENOSPC)
1496 		goto out;
1497 
1498 	/* Badly fragmented mmap space? The only way we can recover
1499 	 * space is by destroying unwanted objects. We can't randomly release
1500 	 * mmap_offsets as userspace expects them to be persistent for the
1501 	 * lifetime of the objects. The closest we can is to release the
1502 	 * offsets on purgeable objects by truncating it and marking it purged,
1503 	 * which prevents userspace from ever using that object again.
1504 	 */
1505 	i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1506 	ret = drm_gem_create_mmap_offset(&obj->base);
1507 	if (ret != -ENOSPC)
1508 		goto out;
1509 
1510 	i915_gem_shrink_all(dev_priv);
1511 	ret = drm_gem_create_mmap_offset(&obj->base);
1512 out:
1513 	dev_priv->mm.shrinker_no_lock_stealing = false;
1514 
1515 	return ret;
1516 }
1517 
i915_gem_object_free_mmap_offset(struct drm_i915_gem_object * obj)1518 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1519 {
1520 	if (!obj->base.map_list.map)
1521 		return;
1522 
1523 	drm_gem_free_mmap_offset(&obj->base);
1524 }
1525 
1526 int
i915_gem_mmap_gtt(struct drm_file * file,struct drm_device * dev,uint32_t handle,uint64_t * offset)1527 i915_gem_mmap_gtt(struct drm_file *file,
1528 		  struct drm_device *dev,
1529 		  uint32_t handle,
1530 		  uint64_t *offset)
1531 {
1532 	struct drm_i915_private *dev_priv = dev->dev_private;
1533 	struct drm_i915_gem_object *obj;
1534 	int ret;
1535 
1536 	ret = i915_mutex_lock_interruptible(dev);
1537 	if (ret)
1538 		return ret;
1539 
1540 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1541 	if (&obj->base == NULL) {
1542 		ret = -ENOENT;
1543 		goto unlock;
1544 	}
1545 
1546 	if (obj->base.size > dev_priv->gtt.mappable_end) {
1547 		ret = -E2BIG;
1548 		goto out;
1549 	}
1550 
1551 	if (obj->madv != I915_MADV_WILLNEED) {
1552 		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1553 		ret = -EINVAL;
1554 		goto out;
1555 	}
1556 
1557 	ret = i915_gem_object_create_mmap_offset(obj);
1558 	if (ret)
1559 		goto out;
1560 
1561 	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1562 
1563 out:
1564 	drm_gem_object_unreference(&obj->base);
1565 unlock:
1566 	mutex_unlock(&dev->struct_mutex);
1567 	return ret;
1568 }
1569 
1570 /**
1571  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1572  * @dev: DRM device
1573  * @data: GTT mapping ioctl data
1574  * @file: GEM object info
1575  *
1576  * Simply returns the fake offset to userspace so it can mmap it.
1577  * The mmap call will end up in drm_gem_mmap(), which will set things
1578  * up so we can get faults in the handler above.
1579  *
1580  * The fault handler will take care of binding the object into the GTT
1581  * (since it may have been evicted to make room for something), allocating
1582  * a fence register, and mapping the appropriate aperture address into
1583  * userspace.
1584  */
1585 int
i915_gem_mmap_gtt_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1586 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1587 			struct drm_file *file)
1588 {
1589 	struct drm_i915_gem_mmap_gtt *args = data;
1590 
1591 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1592 }
1593 
1594 /* Immediately discard the backing storage */
1595 static void
i915_gem_object_truncate(struct drm_i915_gem_object * obj)1596 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1597 {
1598 	struct inode *inode;
1599 
1600 	i915_gem_object_free_mmap_offset(obj);
1601 
1602 	if (obj->base.filp == NULL)
1603 		return;
1604 
1605 	/* Our goal here is to return as much of the memory as
1606 	 * is possible back to the system as we are called from OOM.
1607 	 * To do this we must instruct the shmfs to drop all of its
1608 	 * backing pages, *now*.
1609 	 */
1610 	inode = file_inode(obj->base.filp);
1611 	shmem_truncate_range(inode, 0, (loff_t)-1);
1612 
1613 	obj->madv = __I915_MADV_PURGED;
1614 }
1615 
1616 static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object * obj)1617 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1618 {
1619 	return obj->madv == I915_MADV_DONTNEED;
1620 }
1621 
1622 static void
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object * obj)1623 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1624 {
1625 	struct sg_page_iter sg_iter;
1626 	int ret;
1627 
1628 	BUG_ON(obj->madv == __I915_MADV_PURGED);
1629 
1630 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
1631 	if (ret) {
1632 		/* In the event of a disaster, abandon all caches and
1633 		 * hope for the best.
1634 		 */
1635 		WARN_ON(ret != -EIO);
1636 		i915_gem_clflush_object(obj);
1637 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1638 	}
1639 
1640 	if (i915_gem_object_needs_bit17_swizzle(obj))
1641 		i915_gem_object_save_bit_17_swizzle(obj);
1642 
1643 	if (obj->madv == I915_MADV_DONTNEED)
1644 		obj->dirty = 0;
1645 
1646 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1647 		struct page *page = sg_page_iter_page(&sg_iter);
1648 
1649 		if (obj->dirty)
1650 			set_page_dirty(page);
1651 
1652 		if (obj->madv == I915_MADV_WILLNEED)
1653 			mark_page_accessed(page);
1654 
1655 		page_cache_release(page);
1656 	}
1657 	obj->dirty = 0;
1658 
1659 	sg_free_table(obj->pages);
1660 	kfree(obj->pages);
1661 }
1662 
1663 int
i915_gem_object_put_pages(struct drm_i915_gem_object * obj)1664 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1665 {
1666 	const struct drm_i915_gem_object_ops *ops = obj->ops;
1667 
1668 	if (obj->pages == NULL)
1669 		return 0;
1670 
1671 	BUG_ON(obj->gtt_space);
1672 
1673 	if (obj->pages_pin_count)
1674 		return -EBUSY;
1675 
1676 	/* ->put_pages might need to allocate memory for the bit17 swizzle
1677 	 * array, hence protect them from being reaped by removing them from gtt
1678 	 * lists early. */
1679 	list_del(&obj->gtt_list);
1680 
1681 	ops->put_pages(obj);
1682 	obj->pages = NULL;
1683 
1684 	if (i915_gem_object_is_purgeable(obj))
1685 		i915_gem_object_truncate(obj);
1686 
1687 	return 0;
1688 }
1689 
1690 static long
__i915_gem_shrink(struct drm_i915_private * dev_priv,long target,bool purgeable_only)1691 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1692 		  bool purgeable_only)
1693 {
1694 	struct drm_i915_gem_object *obj, *next;
1695 	long count = 0;
1696 
1697 	list_for_each_entry_safe(obj, next,
1698 				 &dev_priv->mm.unbound_list,
1699 				 gtt_list) {
1700 		if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1701 		    i915_gem_object_put_pages(obj) == 0) {
1702 			count += obj->base.size >> PAGE_SHIFT;
1703 			if (count >= target)
1704 				return count;
1705 		}
1706 	}
1707 
1708 	list_for_each_entry_safe(obj, next,
1709 				 &dev_priv->mm.inactive_list,
1710 				 mm_list) {
1711 		if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1712 		    i915_gem_object_unbind(obj) == 0 &&
1713 		    i915_gem_object_put_pages(obj) == 0) {
1714 			count += obj->base.size >> PAGE_SHIFT;
1715 			if (count >= target)
1716 				return count;
1717 		}
1718 	}
1719 
1720 	return count;
1721 }
1722 
1723 static long
i915_gem_purge(struct drm_i915_private * dev_priv,long target)1724 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1725 {
1726 	return __i915_gem_shrink(dev_priv, target, true);
1727 }
1728 
1729 static void
i915_gem_shrink_all(struct drm_i915_private * dev_priv)1730 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1731 {
1732 	struct drm_i915_gem_object *obj, *next;
1733 
1734 	i915_gem_evict_everything(dev_priv->dev);
1735 
1736 	list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1737 		i915_gem_object_put_pages(obj);
1738 }
1739 
1740 static int
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object * obj)1741 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1742 {
1743 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1744 	int page_count, i;
1745 	struct address_space *mapping;
1746 	struct sg_table *st;
1747 	struct scatterlist *sg;
1748 	struct sg_page_iter sg_iter;
1749 	struct page *page;
1750 	unsigned long last_pfn = 0;	/* suppress gcc warning */
1751 	gfp_t gfp;
1752 
1753 	/* Assert that the object is not currently in any GPU domain. As it
1754 	 * wasn't in the GTT, there shouldn't be any way it could have been in
1755 	 * a GPU cache
1756 	 */
1757 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1758 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1759 
1760 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1761 	if (st == NULL)
1762 		return -ENOMEM;
1763 
1764 	page_count = obj->base.size / PAGE_SIZE;
1765 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1766 		sg_free_table(st);
1767 		kfree(st);
1768 		return -ENOMEM;
1769 	}
1770 
1771 	/* Get the list of pages out of our struct file.  They'll be pinned
1772 	 * at this point until we release them.
1773 	 *
1774 	 * Fail silently without starting the shrinker
1775 	 */
1776 	mapping = file_inode(obj->base.filp)->i_mapping;
1777 	gfp = mapping_gfp_mask(mapping);
1778 	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1779 	gfp &= ~(__GFP_IO | __GFP_WAIT);
1780 	sg = st->sgl;
1781 	st->nents = 0;
1782 	for (i = 0; i < page_count; i++) {
1783 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1784 		if (IS_ERR(page)) {
1785 			i915_gem_purge(dev_priv, page_count);
1786 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1787 		}
1788 		if (IS_ERR(page)) {
1789 			/* We've tried hard to allocate the memory by reaping
1790 			 * our own buffer, now let the real VM do its job and
1791 			 * go down in flames if truly OOM.
1792 			 */
1793 			gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1794 			gfp |= __GFP_IO | __GFP_WAIT;
1795 
1796 			i915_gem_shrink_all(dev_priv);
1797 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1798 			if (IS_ERR(page))
1799 				goto err_pages;
1800 
1801 			gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1802 			gfp &= ~(__GFP_IO | __GFP_WAIT);
1803 		}
1804 #ifdef CONFIG_SWIOTLB
1805 		if (swiotlb_nr_tbl()) {
1806 			st->nents++;
1807 			sg_set_page(sg, page, PAGE_SIZE, 0);
1808 			sg = sg_next(sg);
1809 			continue;
1810 		}
1811 #endif
1812 		if (!i || page_to_pfn(page) != last_pfn + 1) {
1813 			if (i)
1814 				sg = sg_next(sg);
1815 			st->nents++;
1816 			sg_set_page(sg, page, PAGE_SIZE, 0);
1817 		} else {
1818 			sg->length += PAGE_SIZE;
1819 		}
1820 		last_pfn = page_to_pfn(page);
1821 	}
1822 #ifdef CONFIG_SWIOTLB
1823 	if (!swiotlb_nr_tbl())
1824 #endif
1825 		sg_mark_end(sg);
1826 	obj->pages = st;
1827 
1828 	if (i915_gem_object_needs_bit17_swizzle(obj))
1829 		i915_gem_object_do_bit_17_swizzle(obj);
1830 
1831 	return 0;
1832 
1833 err_pages:
1834 	sg_mark_end(sg);
1835 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1836 		page_cache_release(sg_page_iter_page(&sg_iter));
1837 	sg_free_table(st);
1838 	kfree(st);
1839 	return PTR_ERR(page);
1840 }
1841 
1842 /* Ensure that the associated pages are gathered from the backing storage
1843  * and pinned into our object. i915_gem_object_get_pages() may be called
1844  * multiple times before they are released by a single call to
1845  * i915_gem_object_put_pages() - once the pages are no longer referenced
1846  * either as a result of memory pressure (reaping pages under the shrinker)
1847  * or as the object is itself released.
1848  */
1849 int
i915_gem_object_get_pages(struct drm_i915_gem_object * obj)1850 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1851 {
1852 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1853 	const struct drm_i915_gem_object_ops *ops = obj->ops;
1854 	int ret;
1855 
1856 	if (obj->pages)
1857 		return 0;
1858 
1859 	if (obj->madv != I915_MADV_WILLNEED) {
1860 		DRM_ERROR("Attempting to obtain a purgeable object\n");
1861 		return -EINVAL;
1862 	}
1863 
1864 	BUG_ON(obj->pages_pin_count);
1865 
1866 	ret = ops->get_pages(obj);
1867 	if (ret)
1868 		return ret;
1869 
1870 	list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1871 	return 0;
1872 }
1873 
1874 void
i915_gem_object_move_to_active(struct drm_i915_gem_object * obj,struct intel_ring_buffer * ring)1875 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1876 			       struct intel_ring_buffer *ring)
1877 {
1878 	struct drm_device *dev = obj->base.dev;
1879 	struct drm_i915_private *dev_priv = dev->dev_private;
1880 	u32 seqno = intel_ring_get_seqno(ring);
1881 
1882 	BUG_ON(ring == NULL);
1883 	obj->ring = ring;
1884 
1885 	/* Add a reference if we're newly entering the active list. */
1886 	if (!obj->active) {
1887 		drm_gem_object_reference(&obj->base);
1888 		obj->active = 1;
1889 	}
1890 
1891 	/* Move from whatever list we were on to the tail of execution. */
1892 	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1893 	list_move_tail(&obj->ring_list, &ring->active_list);
1894 
1895 	obj->last_read_seqno = seqno;
1896 
1897 	if (obj->fenced_gpu_access) {
1898 		obj->last_fenced_seqno = seqno;
1899 
1900 		/* Bump MRU to take account of the delayed flush */
1901 		if (obj->fence_reg != I915_FENCE_REG_NONE) {
1902 			struct drm_i915_fence_reg *reg;
1903 
1904 			reg = &dev_priv->fence_regs[obj->fence_reg];
1905 			list_move_tail(&reg->lru_list,
1906 				       &dev_priv->mm.fence_list);
1907 		}
1908 	}
1909 }
1910 
1911 static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object * obj)1912 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1913 {
1914 	struct drm_device *dev = obj->base.dev;
1915 	struct drm_i915_private *dev_priv = dev->dev_private;
1916 
1917 	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1918 	BUG_ON(!obj->active);
1919 
1920 	list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1921 
1922 	list_del_init(&obj->ring_list);
1923 	obj->ring = NULL;
1924 
1925 	obj->last_read_seqno = 0;
1926 	obj->last_write_seqno = 0;
1927 	obj->base.write_domain = 0;
1928 
1929 	obj->last_fenced_seqno = 0;
1930 	obj->fenced_gpu_access = false;
1931 
1932 	obj->active = 0;
1933 	drm_gem_object_unreference(&obj->base);
1934 
1935 	WARN_ON(i915_verify_lists(dev));
1936 }
1937 
1938 static int
i915_gem_init_seqno(struct drm_device * dev,u32 seqno)1939 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1940 {
1941 	struct drm_i915_private *dev_priv = dev->dev_private;
1942 	struct intel_ring_buffer *ring;
1943 	int ret, i, j;
1944 
1945 	/* Carefully retire all requests without writing to the rings */
1946 	for_each_ring(ring, dev_priv, i) {
1947 		ret = intel_ring_idle(ring);
1948 		if (ret)
1949 			return ret;
1950 	}
1951 	i915_gem_retire_requests(dev);
1952 
1953 	/* Finally reset hw state */
1954 	for_each_ring(ring, dev_priv, i) {
1955 		intel_ring_init_seqno(ring, seqno);
1956 
1957 		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1958 			ring->sync_seqno[j] = 0;
1959 	}
1960 
1961 	return 0;
1962 }
1963 
i915_gem_set_seqno(struct drm_device * dev,u32 seqno)1964 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1965 {
1966 	struct drm_i915_private *dev_priv = dev->dev_private;
1967 	int ret;
1968 
1969 	if (seqno == 0)
1970 		return -EINVAL;
1971 
1972 	/* HWS page needs to be set less than what we
1973 	 * will inject to ring
1974 	 */
1975 	ret = i915_gem_init_seqno(dev, seqno - 1);
1976 	if (ret)
1977 		return ret;
1978 
1979 	/* Carefully set the last_seqno value so that wrap
1980 	 * detection still works
1981 	 */
1982 	dev_priv->next_seqno = seqno;
1983 	dev_priv->last_seqno = seqno - 1;
1984 	if (dev_priv->last_seqno == 0)
1985 		dev_priv->last_seqno--;
1986 
1987 	return 0;
1988 }
1989 
1990 int
i915_gem_get_seqno(struct drm_device * dev,u32 * seqno)1991 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1992 {
1993 	struct drm_i915_private *dev_priv = dev->dev_private;
1994 
1995 	/* reserve 0 for non-seqno */
1996 	if (dev_priv->next_seqno == 0) {
1997 		int ret = i915_gem_init_seqno(dev, 0);
1998 		if (ret)
1999 			return ret;
2000 
2001 		dev_priv->next_seqno = 1;
2002 	}
2003 
2004 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2005 	return 0;
2006 }
2007 
2008 int
i915_add_request(struct intel_ring_buffer * ring,struct drm_file * file,u32 * out_seqno)2009 i915_add_request(struct intel_ring_buffer *ring,
2010 		 struct drm_file *file,
2011 		 u32 *out_seqno)
2012 {
2013 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
2014 	struct drm_i915_gem_request *request;
2015 	u32 request_ring_position;
2016 	int was_empty;
2017 	int ret;
2018 
2019 	/*
2020 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
2021 	 * after having emitted the batchbuffer command. Hence we need to fix
2022 	 * things up similar to emitting the lazy request. The difference here
2023 	 * is that the flush _must_ happen before the next request, no matter
2024 	 * what.
2025 	 */
2026 	ret = intel_ring_flush_all_caches(ring);
2027 	if (ret)
2028 		return ret;
2029 
2030 	request = kmalloc(sizeof(*request), GFP_KERNEL);
2031 	if (request == NULL)
2032 		return -ENOMEM;
2033 
2034 
2035 	/* Record the position of the start of the request so that
2036 	 * should we detect the updated seqno part-way through the
2037 	 * GPU processing the request, we never over-estimate the
2038 	 * position of the head.
2039 	 */
2040 	request_ring_position = intel_ring_get_tail(ring);
2041 
2042 	ret = ring->add_request(ring);
2043 	if (ret) {
2044 		kfree(request);
2045 		return ret;
2046 	}
2047 
2048 	request->seqno = intel_ring_get_seqno(ring);
2049 	request->ring = ring;
2050 	request->tail = request_ring_position;
2051 	request->emitted_jiffies = jiffies;
2052 	was_empty = list_empty(&ring->request_list);
2053 	list_add_tail(&request->list, &ring->request_list);
2054 	request->file_priv = NULL;
2055 
2056 	if (file) {
2057 		struct drm_i915_file_private *file_priv = file->driver_priv;
2058 
2059 		spin_lock(&file_priv->mm.lock);
2060 		request->file_priv = file_priv;
2061 		list_add_tail(&request->client_list,
2062 			      &file_priv->mm.request_list);
2063 		spin_unlock(&file_priv->mm.lock);
2064 	}
2065 
2066 	trace_i915_gem_request_add(ring, request->seqno);
2067 	ring->outstanding_lazy_request = 0;
2068 
2069 	if (!dev_priv->mm.suspended) {
2070 		if (i915_enable_hangcheck) {
2071 			mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2072 				  round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2073 		}
2074 		if (was_empty) {
2075 			queue_delayed_work(dev_priv->wq,
2076 					   &dev_priv->mm.retire_work,
2077 					   round_jiffies_up_relative(HZ));
2078 			intel_mark_busy(dev_priv->dev);
2079 		}
2080 	}
2081 
2082 	if (out_seqno)
2083 		*out_seqno = request->seqno;
2084 	return 0;
2085 }
2086 
2087 static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request * request)2088 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2089 {
2090 	struct drm_i915_file_private *file_priv = request->file_priv;
2091 
2092 	if (!file_priv)
2093 		return;
2094 
2095 	spin_lock(&file_priv->mm.lock);
2096 	if (request->file_priv) {
2097 		list_del(&request->client_list);
2098 		request->file_priv = NULL;
2099 	}
2100 	spin_unlock(&file_priv->mm.lock);
2101 }
2102 
i915_gem_reset_ring_lists(struct drm_i915_private * dev_priv,struct intel_ring_buffer * ring)2103 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2104 				      struct intel_ring_buffer *ring)
2105 {
2106 	while (!list_empty(&ring->request_list)) {
2107 		struct drm_i915_gem_request *request;
2108 
2109 		request = list_first_entry(&ring->request_list,
2110 					   struct drm_i915_gem_request,
2111 					   list);
2112 
2113 		list_del(&request->list);
2114 		i915_gem_request_remove_from_client(request);
2115 		kfree(request);
2116 	}
2117 
2118 	while (!list_empty(&ring->active_list)) {
2119 		struct drm_i915_gem_object *obj;
2120 
2121 		obj = list_first_entry(&ring->active_list,
2122 				       struct drm_i915_gem_object,
2123 				       ring_list);
2124 
2125 		i915_gem_object_move_to_inactive(obj);
2126 	}
2127 }
2128 
i915_gem_restore_fences(struct drm_device * dev)2129 void i915_gem_restore_fences(struct drm_device *dev)
2130 {
2131 	struct drm_i915_private *dev_priv = dev->dev_private;
2132 	int i;
2133 
2134 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2135 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2136 		i915_gem_write_fence(dev, i, reg->obj);
2137 	}
2138 }
2139 
i915_gem_reset(struct drm_device * dev)2140 void i915_gem_reset(struct drm_device *dev)
2141 {
2142 	struct drm_i915_private *dev_priv = dev->dev_private;
2143 	struct drm_i915_gem_object *obj;
2144 	struct intel_ring_buffer *ring;
2145 	int i;
2146 
2147 	for_each_ring(ring, dev_priv, i)
2148 		i915_gem_reset_ring_lists(dev_priv, ring);
2149 
2150 	/* Move everything out of the GPU domains to ensure we do any
2151 	 * necessary invalidation upon reuse.
2152 	 */
2153 	list_for_each_entry(obj,
2154 			    &dev_priv->mm.inactive_list,
2155 			    mm_list)
2156 	{
2157 		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2158 	}
2159 
2160 	i915_gem_restore_fences(dev);
2161 }
2162 
2163 /**
2164  * This function clears the request list as sequence numbers are passed.
2165  */
2166 void
i915_gem_retire_requests_ring(struct intel_ring_buffer * ring)2167 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2168 {
2169 	uint32_t seqno;
2170 
2171 	if (list_empty(&ring->request_list))
2172 		return;
2173 
2174 	WARN_ON(i915_verify_lists(ring->dev));
2175 
2176 	seqno = ring->get_seqno(ring, true);
2177 
2178 	while (!list_empty(&ring->request_list)) {
2179 		struct drm_i915_gem_request *request;
2180 
2181 		request = list_first_entry(&ring->request_list,
2182 					   struct drm_i915_gem_request,
2183 					   list);
2184 
2185 		if (!i915_seqno_passed(seqno, request->seqno))
2186 			break;
2187 
2188 		trace_i915_gem_request_retire(ring, request->seqno);
2189 		/* We know the GPU must have read the request to have
2190 		 * sent us the seqno + interrupt, so use the position
2191 		 * of tail of the request to update the last known position
2192 		 * of the GPU head.
2193 		 */
2194 		ring->last_retired_head = request->tail;
2195 
2196 		list_del(&request->list);
2197 		i915_gem_request_remove_from_client(request);
2198 		kfree(request);
2199 	}
2200 
2201 	/* Move any buffers on the active list that are no longer referenced
2202 	 * by the ringbuffer to the flushing/inactive lists as appropriate.
2203 	 */
2204 	while (!list_empty(&ring->active_list)) {
2205 		struct drm_i915_gem_object *obj;
2206 
2207 		obj = list_first_entry(&ring->active_list,
2208 				      struct drm_i915_gem_object,
2209 				      ring_list);
2210 
2211 		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2212 			break;
2213 
2214 		i915_gem_object_move_to_inactive(obj);
2215 	}
2216 
2217 	if (unlikely(ring->trace_irq_seqno &&
2218 		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2219 		ring->irq_put(ring);
2220 		ring->trace_irq_seqno = 0;
2221 	}
2222 
2223 	WARN_ON(i915_verify_lists(ring->dev));
2224 }
2225 
2226 void
i915_gem_retire_requests(struct drm_device * dev)2227 i915_gem_retire_requests(struct drm_device *dev)
2228 {
2229 	drm_i915_private_t *dev_priv = dev->dev_private;
2230 	struct intel_ring_buffer *ring;
2231 	int i;
2232 
2233 	for_each_ring(ring, dev_priv, i)
2234 		i915_gem_retire_requests_ring(ring);
2235 }
2236 
2237 static void
i915_gem_retire_work_handler(struct work_struct * work)2238 i915_gem_retire_work_handler(struct work_struct *work)
2239 {
2240 	drm_i915_private_t *dev_priv;
2241 	struct drm_device *dev;
2242 	struct intel_ring_buffer *ring;
2243 	bool idle;
2244 	int i;
2245 
2246 	dev_priv = container_of(work, drm_i915_private_t,
2247 				mm.retire_work.work);
2248 	dev = dev_priv->dev;
2249 
2250 	/* Come back later if the device is busy... */
2251 	if (!mutex_trylock(&dev->struct_mutex)) {
2252 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2253 				   round_jiffies_up_relative(HZ));
2254 		return;
2255 	}
2256 
2257 	i915_gem_retire_requests(dev);
2258 
2259 	/* Send a periodic flush down the ring so we don't hold onto GEM
2260 	 * objects indefinitely.
2261 	 */
2262 	idle = true;
2263 	for_each_ring(ring, dev_priv, i) {
2264 		if (ring->gpu_caches_dirty)
2265 			i915_add_request(ring, NULL, NULL);
2266 
2267 		idle &= list_empty(&ring->request_list);
2268 	}
2269 
2270 	if (!dev_priv->mm.suspended && !idle)
2271 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2272 				   round_jiffies_up_relative(HZ));
2273 	if (idle)
2274 		intel_mark_idle(dev);
2275 
2276 	mutex_unlock(&dev->struct_mutex);
2277 }
2278 
2279 /**
2280  * Ensures that an object will eventually get non-busy by flushing any required
2281  * write domains, emitting any outstanding lazy request and retiring and
2282  * completed requests.
2283  */
2284 static int
i915_gem_object_flush_active(struct drm_i915_gem_object * obj)2285 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2286 {
2287 	int ret;
2288 
2289 	if (obj->active) {
2290 		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2291 		if (ret)
2292 			return ret;
2293 
2294 		i915_gem_retire_requests_ring(obj->ring);
2295 	}
2296 
2297 	return 0;
2298 }
2299 
2300 /**
2301  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2302  * @DRM_IOCTL_ARGS: standard ioctl arguments
2303  *
2304  * Returns 0 if successful, else an error is returned with the remaining time in
2305  * the timeout parameter.
2306  *  -ETIME: object is still busy after timeout
2307  *  -ERESTARTSYS: signal interrupted the wait
2308  *  -ENONENT: object doesn't exist
2309  * Also possible, but rare:
2310  *  -EAGAIN: GPU wedged
2311  *  -ENOMEM: damn
2312  *  -ENODEV: Internal IRQ fail
2313  *  -E?: The add request failed
2314  *
2315  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2316  * non-zero timeout parameter the wait ioctl will wait for the given number of
2317  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2318  * without holding struct_mutex the object may become re-busied before this
2319  * function completes. A similar but shorter * race condition exists in the busy
2320  * ioctl
2321  */
2322 int
i915_gem_wait_ioctl(struct drm_device * dev,void * data,struct drm_file * file)2323 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2324 {
2325 	drm_i915_private_t *dev_priv = dev->dev_private;
2326 	struct drm_i915_gem_wait *args = data;
2327 	struct drm_i915_gem_object *obj;
2328 	struct intel_ring_buffer *ring = NULL;
2329 	struct timespec timeout_stack, *timeout = NULL;
2330 	unsigned reset_counter;
2331 	u32 seqno = 0;
2332 	int ret = 0;
2333 
2334 	if (args->timeout_ns >= 0) {
2335 		timeout_stack = ns_to_timespec(args->timeout_ns);
2336 		timeout = &timeout_stack;
2337 	}
2338 
2339 	ret = i915_mutex_lock_interruptible(dev);
2340 	if (ret)
2341 		return ret;
2342 
2343 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2344 	if (&obj->base == NULL) {
2345 		mutex_unlock(&dev->struct_mutex);
2346 		return -ENOENT;
2347 	}
2348 
2349 	/* Need to make sure the object gets inactive eventually. */
2350 	ret = i915_gem_object_flush_active(obj);
2351 	if (ret)
2352 		goto out;
2353 
2354 	if (obj->active) {
2355 		seqno = obj->last_read_seqno;
2356 		ring = obj->ring;
2357 	}
2358 
2359 	if (seqno == 0)
2360 		 goto out;
2361 
2362 	/* Do this after OLR check to make sure we make forward progress polling
2363 	 * on this IOCTL with a 0 timeout (like busy ioctl)
2364 	 */
2365 	if (!args->timeout_ns) {
2366 		ret = -ETIME;
2367 		goto out;
2368 	}
2369 
2370 	drm_gem_object_unreference(&obj->base);
2371 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2372 	mutex_unlock(&dev->struct_mutex);
2373 
2374 	ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2375 	if (timeout)
2376 		args->timeout_ns = timespec_to_ns(timeout);
2377 	return ret;
2378 
2379 out:
2380 	drm_gem_object_unreference(&obj->base);
2381 	mutex_unlock(&dev->struct_mutex);
2382 	return ret;
2383 }
2384 
2385 /**
2386  * i915_gem_object_sync - sync an object to a ring.
2387  *
2388  * @obj: object which may be in use on another ring.
2389  * @to: ring we wish to use the object on. May be NULL.
2390  *
2391  * This code is meant to abstract object synchronization with the GPU.
2392  * Calling with NULL implies synchronizing the object with the CPU
2393  * rather than a particular GPU ring.
2394  *
2395  * Returns 0 if successful, else propagates up the lower layer error.
2396  */
2397 int
i915_gem_object_sync(struct drm_i915_gem_object * obj,struct intel_ring_buffer * to)2398 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2399 		     struct intel_ring_buffer *to)
2400 {
2401 	struct intel_ring_buffer *from = obj->ring;
2402 	u32 seqno;
2403 	int ret, idx;
2404 
2405 	if (from == NULL || to == from)
2406 		return 0;
2407 
2408 	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2409 		return i915_gem_object_wait_rendering(obj, false);
2410 
2411 	idx = intel_ring_sync_index(from, to);
2412 
2413 	seqno = obj->last_read_seqno;
2414 	if (seqno <= from->sync_seqno[idx])
2415 		return 0;
2416 
2417 	ret = i915_gem_check_olr(obj->ring, seqno);
2418 	if (ret)
2419 		return ret;
2420 
2421 	ret = to->sync_to(to, from, seqno);
2422 	if (!ret)
2423 		/* We use last_read_seqno because sync_to()
2424 		 * might have just caused seqno wrap under
2425 		 * the radar.
2426 		 */
2427 		from->sync_seqno[idx] = obj->last_read_seqno;
2428 
2429 	return ret;
2430 }
2431 
i915_gem_object_finish_gtt(struct drm_i915_gem_object * obj)2432 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2433 {
2434 	u32 old_write_domain, old_read_domains;
2435 
2436 	/* Force a pagefault for domain tracking on next user access */
2437 	i915_gem_release_mmap(obj);
2438 
2439 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2440 		return;
2441 
2442 	/* Wait for any direct GTT access to complete */
2443 	mb();
2444 
2445 	old_read_domains = obj->base.read_domains;
2446 	old_write_domain = obj->base.write_domain;
2447 
2448 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2449 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2450 
2451 	trace_i915_gem_object_change_domain(obj,
2452 					    old_read_domains,
2453 					    old_write_domain);
2454 }
2455 
2456 /**
2457  * Unbinds an object from the GTT aperture.
2458  */
2459 int
i915_gem_object_unbind(struct drm_i915_gem_object * obj)2460 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2461 {
2462 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2463 	int ret;
2464 
2465 	if (obj->gtt_space == NULL)
2466 		return 0;
2467 
2468 	if (obj->pin_count)
2469 		return -EBUSY;
2470 
2471 	BUG_ON(obj->pages == NULL);
2472 
2473 	ret = i915_gem_object_finish_gpu(obj);
2474 	if (ret)
2475 		return ret;
2476 	/* Continue on if we fail due to EIO, the GPU is hung so we
2477 	 * should be safe and we need to cleanup or else we might
2478 	 * cause memory corruption through use-after-free.
2479 	 */
2480 
2481 	i915_gem_object_finish_gtt(obj);
2482 
2483 	/* release the fence reg _after_ flushing */
2484 	ret = i915_gem_object_put_fence(obj);
2485 	if (ret)
2486 		return ret;
2487 
2488 	trace_i915_gem_object_unbind(obj);
2489 
2490 	if (obj->has_global_gtt_mapping)
2491 		i915_gem_gtt_unbind_object(obj);
2492 	if (obj->has_aliasing_ppgtt_mapping) {
2493 		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2494 		obj->has_aliasing_ppgtt_mapping = 0;
2495 	}
2496 	i915_gem_gtt_finish_object(obj);
2497 
2498 	list_del(&obj->mm_list);
2499 	list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2500 	/* Avoid an unnecessary call to unbind on rebind. */
2501 	obj->map_and_fenceable = true;
2502 
2503 	drm_mm_put_block(obj->gtt_space);
2504 	obj->gtt_space = NULL;
2505 	obj->gtt_offset = 0;
2506 
2507 	return 0;
2508 }
2509 
i915_gpu_idle(struct drm_device * dev)2510 int i915_gpu_idle(struct drm_device *dev)
2511 {
2512 	drm_i915_private_t *dev_priv = dev->dev_private;
2513 	struct intel_ring_buffer *ring;
2514 	int ret, i;
2515 
2516 	/* Flush everything onto the inactive list. */
2517 	for_each_ring(ring, dev_priv, i) {
2518 		ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2519 		if (ret)
2520 			return ret;
2521 
2522 		ret = intel_ring_idle(ring);
2523 		if (ret)
2524 			return ret;
2525 	}
2526 
2527 	return 0;
2528 }
2529 
i965_write_fence_reg(struct drm_device * dev,int reg,struct drm_i915_gem_object * obj)2530 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2531 				 struct drm_i915_gem_object *obj)
2532 {
2533 	drm_i915_private_t *dev_priv = dev->dev_private;
2534 	int fence_reg;
2535 	int fence_pitch_shift;
2536 	uint64_t val;
2537 
2538 	if (INTEL_INFO(dev)->gen >= 6) {
2539 		fence_reg = FENCE_REG_SANDYBRIDGE_0;
2540 		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2541 	} else {
2542 		fence_reg = FENCE_REG_965_0;
2543 		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2544 	}
2545 
2546 	if (obj) {
2547 		u32 size = obj->gtt_space->size;
2548 
2549 		val = (uint64_t)((obj->gtt_offset + size - 4096) &
2550 				 0xfffff000) << 32;
2551 		val |= obj->gtt_offset & 0xfffff000;
2552 		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2553 		if (obj->tiling_mode == I915_TILING_Y)
2554 			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2555 		val |= I965_FENCE_REG_VALID;
2556 	} else
2557 		val = 0;
2558 
2559 	fence_reg += reg * 8;
2560 	I915_WRITE64(fence_reg, val);
2561 	POSTING_READ(fence_reg);
2562 }
2563 
i915_write_fence_reg(struct drm_device * dev,int reg,struct drm_i915_gem_object * obj)2564 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2565 				 struct drm_i915_gem_object *obj)
2566 {
2567 	drm_i915_private_t *dev_priv = dev->dev_private;
2568 	u32 val;
2569 
2570 	if (obj) {
2571 		u32 size = obj->gtt_space->size;
2572 		int pitch_val;
2573 		int tile_width;
2574 
2575 		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2576 		     (size & -size) != size ||
2577 		     (obj->gtt_offset & (size - 1)),
2578 		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2579 		     obj->gtt_offset, obj->map_and_fenceable, size);
2580 
2581 		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2582 			tile_width = 128;
2583 		else
2584 			tile_width = 512;
2585 
2586 		/* Note: pitch better be a power of two tile widths */
2587 		pitch_val = obj->stride / tile_width;
2588 		pitch_val = ffs(pitch_val) - 1;
2589 
2590 		val = obj->gtt_offset;
2591 		if (obj->tiling_mode == I915_TILING_Y)
2592 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2593 		val |= I915_FENCE_SIZE_BITS(size);
2594 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2595 		val |= I830_FENCE_REG_VALID;
2596 	} else
2597 		val = 0;
2598 
2599 	if (reg < 8)
2600 		reg = FENCE_REG_830_0 + reg * 4;
2601 	else
2602 		reg = FENCE_REG_945_8 + (reg - 8) * 4;
2603 
2604 	I915_WRITE(reg, val);
2605 	POSTING_READ(reg);
2606 }
2607 
i830_write_fence_reg(struct drm_device * dev,int reg,struct drm_i915_gem_object * obj)2608 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2609 				struct drm_i915_gem_object *obj)
2610 {
2611 	drm_i915_private_t *dev_priv = dev->dev_private;
2612 	uint32_t val;
2613 
2614 	if (obj) {
2615 		u32 size = obj->gtt_space->size;
2616 		uint32_t pitch_val;
2617 
2618 		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2619 		     (size & -size) != size ||
2620 		     (obj->gtt_offset & (size - 1)),
2621 		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2622 		     obj->gtt_offset, size);
2623 
2624 		pitch_val = obj->stride / 128;
2625 		pitch_val = ffs(pitch_val) - 1;
2626 
2627 		val = obj->gtt_offset;
2628 		if (obj->tiling_mode == I915_TILING_Y)
2629 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2630 		val |= I830_FENCE_SIZE_BITS(size);
2631 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2632 		val |= I830_FENCE_REG_VALID;
2633 	} else
2634 		val = 0;
2635 
2636 	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2637 	POSTING_READ(FENCE_REG_830_0 + reg * 4);
2638 }
2639 
i915_gem_object_needs_mb(struct drm_i915_gem_object * obj)2640 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2641 {
2642 	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2643 }
2644 
i915_gem_write_fence(struct drm_device * dev,int reg,struct drm_i915_gem_object * obj)2645 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2646 				 struct drm_i915_gem_object *obj)
2647 {
2648 	struct drm_i915_private *dev_priv = dev->dev_private;
2649 
2650 	/* Ensure that all CPU reads are completed before installing a fence
2651 	 * and all writes before removing the fence.
2652 	 */
2653 	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2654 		mb();
2655 
2656 	switch (INTEL_INFO(dev)->gen) {
2657 	case 7:
2658 	case 6:
2659 	case 5:
2660 	case 4: i965_write_fence_reg(dev, reg, obj); break;
2661 	case 3: i915_write_fence_reg(dev, reg, obj); break;
2662 	case 2: i830_write_fence_reg(dev, reg, obj); break;
2663 	default: BUG();
2664 	}
2665 
2666 	/* And similarly be paranoid that no direct access to this region
2667 	 * is reordered to before the fence is installed.
2668 	 */
2669 	if (i915_gem_object_needs_mb(obj))
2670 		mb();
2671 }
2672 
fence_number(struct drm_i915_private * dev_priv,struct drm_i915_fence_reg * fence)2673 static inline int fence_number(struct drm_i915_private *dev_priv,
2674 			       struct drm_i915_fence_reg *fence)
2675 {
2676 	return fence - dev_priv->fence_regs;
2677 }
2678 
i915_gem_write_fence__ipi(void * data)2679 static void i915_gem_write_fence__ipi(void *data)
2680 {
2681 	wbinvd();
2682 }
2683 
i915_gem_object_update_fence(struct drm_i915_gem_object * obj,struct drm_i915_fence_reg * fence,bool enable)2684 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2685 					 struct drm_i915_fence_reg *fence,
2686 					 bool enable)
2687 {
2688 	struct drm_device *dev = obj->base.dev;
2689 	struct drm_i915_private *dev_priv = dev->dev_private;
2690 	int fence_reg = fence_number(dev_priv, fence);
2691 
2692 	/* In order to fully serialize access to the fenced region and
2693 	 * the update to the fence register we need to take extreme
2694 	 * measures on SNB+. In theory, the write to the fence register
2695 	 * flushes all memory transactions before, and coupled with the
2696 	 * mb() placed around the register write we serialise all memory
2697 	 * operations with respect to the changes in the tiler. Yet, on
2698 	 * SNB+ we need to take a step further and emit an explicit wbinvd()
2699 	 * on each processor in order to manually flush all memory
2700 	 * transactions before updating the fence register.
2701 	 */
2702 	if (HAS_LLC(obj->base.dev))
2703 		on_each_cpu(i915_gem_write_fence__ipi, NULL, 1);
2704 	i915_gem_write_fence(dev, fence_reg, enable ? obj : NULL);
2705 
2706 	if (enable) {
2707 		obj->fence_reg = fence_reg;
2708 		fence->obj = obj;
2709 		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2710 	} else {
2711 		obj->fence_reg = I915_FENCE_REG_NONE;
2712 		fence->obj = NULL;
2713 		list_del_init(&fence->lru_list);
2714 	}
2715 }
2716 
2717 static int
i915_gem_object_wait_fence(struct drm_i915_gem_object * obj)2718 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2719 {
2720 	if (obj->last_fenced_seqno) {
2721 		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2722 		if (ret)
2723 			return ret;
2724 
2725 		obj->last_fenced_seqno = 0;
2726 	}
2727 
2728 	obj->fenced_gpu_access = false;
2729 	return 0;
2730 }
2731 
2732 int
i915_gem_object_put_fence(struct drm_i915_gem_object * obj)2733 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2734 {
2735 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2736 	struct drm_i915_fence_reg *fence;
2737 	int ret;
2738 
2739 	ret = i915_gem_object_wait_fence(obj);
2740 	if (ret)
2741 		return ret;
2742 
2743 	if (obj->fence_reg == I915_FENCE_REG_NONE)
2744 		return 0;
2745 
2746 	fence = &dev_priv->fence_regs[obj->fence_reg];
2747 
2748 	i915_gem_object_fence_lost(obj);
2749 	i915_gem_object_update_fence(obj, fence, false);
2750 
2751 	return 0;
2752 }
2753 
2754 static struct drm_i915_fence_reg *
i915_find_fence_reg(struct drm_device * dev)2755 i915_find_fence_reg(struct drm_device *dev)
2756 {
2757 	struct drm_i915_private *dev_priv = dev->dev_private;
2758 	struct drm_i915_fence_reg *reg, *avail;
2759 	int i;
2760 
2761 	/* First try to find a free reg */
2762 	avail = NULL;
2763 	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2764 		reg = &dev_priv->fence_regs[i];
2765 		if (!reg->obj)
2766 			return reg;
2767 
2768 		if (!reg->pin_count)
2769 			avail = reg;
2770 	}
2771 
2772 	if (avail == NULL)
2773 		return NULL;
2774 
2775 	/* None available, try to steal one or wait for a user to finish */
2776 	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2777 		if (reg->pin_count)
2778 			continue;
2779 
2780 		return reg;
2781 	}
2782 
2783 	return NULL;
2784 }
2785 
2786 /**
2787  * i915_gem_object_get_fence - set up fencing for an object
2788  * @obj: object to map through a fence reg
2789  *
2790  * When mapping objects through the GTT, userspace wants to be able to write
2791  * to them without having to worry about swizzling if the object is tiled.
2792  * This function walks the fence regs looking for a free one for @obj,
2793  * stealing one if it can't find any.
2794  *
2795  * It then sets up the reg based on the object's properties: address, pitch
2796  * and tiling format.
2797  *
2798  * For an untiled surface, this removes any existing fence.
2799  */
2800 int
i915_gem_object_get_fence(struct drm_i915_gem_object * obj)2801 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2802 {
2803 	struct drm_device *dev = obj->base.dev;
2804 	struct drm_i915_private *dev_priv = dev->dev_private;
2805 	bool enable = obj->tiling_mode != I915_TILING_NONE;
2806 	struct drm_i915_fence_reg *reg;
2807 	int ret;
2808 
2809 	/* Have we updated the tiling parameters upon the object and so
2810 	 * will need to serialise the write to the associated fence register?
2811 	 */
2812 	if (obj->fence_dirty) {
2813 		ret = i915_gem_object_wait_fence(obj);
2814 		if (ret)
2815 			return ret;
2816 	}
2817 
2818 	/* Just update our place in the LRU if our fence is getting reused. */
2819 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
2820 		reg = &dev_priv->fence_regs[obj->fence_reg];
2821 		if (!obj->fence_dirty) {
2822 			list_move_tail(&reg->lru_list,
2823 				       &dev_priv->mm.fence_list);
2824 			return 0;
2825 		}
2826 	} else if (enable) {
2827 		reg = i915_find_fence_reg(dev);
2828 		if (reg == NULL)
2829 			return -EDEADLK;
2830 
2831 		if (reg->obj) {
2832 			struct drm_i915_gem_object *old = reg->obj;
2833 
2834 			ret = i915_gem_object_wait_fence(old);
2835 			if (ret)
2836 				return ret;
2837 
2838 			i915_gem_object_fence_lost(old);
2839 		}
2840 	} else
2841 		return 0;
2842 
2843 	i915_gem_object_update_fence(obj, reg, enable);
2844 	obj->fence_dirty = false;
2845 
2846 	return 0;
2847 }
2848 
i915_gem_valid_gtt_space(struct drm_device * dev,struct drm_mm_node * gtt_space,unsigned long cache_level)2849 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2850 				     struct drm_mm_node *gtt_space,
2851 				     unsigned long cache_level)
2852 {
2853 	struct drm_mm_node *other;
2854 
2855 	/* On non-LLC machines we have to be careful when putting differing
2856 	 * types of snoopable memory together to avoid the prefetcher
2857 	 * crossing memory domains and dying.
2858 	 */
2859 	if (HAS_LLC(dev))
2860 		return true;
2861 
2862 	if (gtt_space == NULL)
2863 		return true;
2864 
2865 	if (list_empty(&gtt_space->node_list))
2866 		return true;
2867 
2868 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2869 	if (other->allocated && !other->hole_follows && other->color != cache_level)
2870 		return false;
2871 
2872 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2873 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2874 		return false;
2875 
2876 	return true;
2877 }
2878 
i915_gem_verify_gtt(struct drm_device * dev)2879 static void i915_gem_verify_gtt(struct drm_device *dev)
2880 {
2881 #if WATCH_GTT
2882 	struct drm_i915_private *dev_priv = dev->dev_private;
2883 	struct drm_i915_gem_object *obj;
2884 	int err = 0;
2885 
2886 	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2887 		if (obj->gtt_space == NULL) {
2888 			printk(KERN_ERR "object found on GTT list with no space reserved\n");
2889 			err++;
2890 			continue;
2891 		}
2892 
2893 		if (obj->cache_level != obj->gtt_space->color) {
2894 			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2895 			       obj->gtt_space->start,
2896 			       obj->gtt_space->start + obj->gtt_space->size,
2897 			       obj->cache_level,
2898 			       obj->gtt_space->color);
2899 			err++;
2900 			continue;
2901 		}
2902 
2903 		if (!i915_gem_valid_gtt_space(dev,
2904 					      obj->gtt_space,
2905 					      obj->cache_level)) {
2906 			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2907 			       obj->gtt_space->start,
2908 			       obj->gtt_space->start + obj->gtt_space->size,
2909 			       obj->cache_level);
2910 			err++;
2911 			continue;
2912 		}
2913 	}
2914 
2915 	WARN_ON(err);
2916 #endif
2917 }
2918 
2919 /**
2920  * Finds free space in the GTT aperture and binds the object there.
2921  */
2922 static int
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object * obj,unsigned alignment,bool map_and_fenceable,bool nonblocking)2923 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2924 			    unsigned alignment,
2925 			    bool map_and_fenceable,
2926 			    bool nonblocking)
2927 {
2928 	struct drm_device *dev = obj->base.dev;
2929 	drm_i915_private_t *dev_priv = dev->dev_private;
2930 	struct drm_mm_node *node;
2931 	u32 size, fence_size, fence_alignment, unfenced_alignment;
2932 	bool mappable, fenceable;
2933 	int ret;
2934 
2935 	fence_size = i915_gem_get_gtt_size(dev,
2936 					   obj->base.size,
2937 					   obj->tiling_mode);
2938 	fence_alignment = i915_gem_get_gtt_alignment(dev,
2939 						     obj->base.size,
2940 						     obj->tiling_mode, true);
2941 	unfenced_alignment =
2942 		i915_gem_get_gtt_alignment(dev,
2943 						    obj->base.size,
2944 						    obj->tiling_mode, false);
2945 
2946 	if (alignment == 0)
2947 		alignment = map_and_fenceable ? fence_alignment :
2948 						unfenced_alignment;
2949 	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2950 		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2951 		return -EINVAL;
2952 	}
2953 
2954 	size = map_and_fenceable ? fence_size : obj->base.size;
2955 
2956 	/* If the object is bigger than the entire aperture, reject it early
2957 	 * before evicting everything in a vain attempt to find space.
2958 	 */
2959 	if (obj->base.size >
2960 	    (map_and_fenceable ? dev_priv->gtt.mappable_end : dev_priv->gtt.total)) {
2961 		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2962 		return -E2BIG;
2963 	}
2964 
2965 	ret = i915_gem_object_get_pages(obj);
2966 	if (ret)
2967 		return ret;
2968 
2969 	i915_gem_object_pin_pages(obj);
2970 
2971 	node = kzalloc(sizeof(*node), GFP_KERNEL);
2972 	if (node == NULL) {
2973 		i915_gem_object_unpin_pages(obj);
2974 		return -ENOMEM;
2975 	}
2976 
2977  search_free:
2978 	if (map_and_fenceable)
2979 		ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
2980 							  size, alignment, obj->cache_level,
2981 							  0, dev_priv->gtt.mappable_end);
2982 	else
2983 		ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
2984 						 size, alignment, obj->cache_level);
2985 	if (ret) {
2986 		ret = i915_gem_evict_something(dev, size, alignment,
2987 					       obj->cache_level,
2988 					       map_and_fenceable,
2989 					       nonblocking);
2990 		if (ret == 0)
2991 			goto search_free;
2992 
2993 		i915_gem_object_unpin_pages(obj);
2994 		kfree(node);
2995 		return ret;
2996 	}
2997 	if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
2998 		i915_gem_object_unpin_pages(obj);
2999 		drm_mm_put_block(node);
3000 		return -EINVAL;
3001 	}
3002 
3003 	ret = i915_gem_gtt_prepare_object(obj);
3004 	if (ret) {
3005 		i915_gem_object_unpin_pages(obj);
3006 		drm_mm_put_block(node);
3007 		return ret;
3008 	}
3009 
3010 	list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
3011 	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3012 
3013 	obj->gtt_space = node;
3014 	obj->gtt_offset = node->start;
3015 
3016 	fenceable =
3017 		node->size == fence_size &&
3018 		(node->start & (fence_alignment - 1)) == 0;
3019 
3020 	mappable =
3021 		obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end;
3022 
3023 	obj->map_and_fenceable = mappable && fenceable;
3024 
3025 	i915_gem_object_unpin_pages(obj);
3026 	trace_i915_gem_object_bind(obj, map_and_fenceable);
3027 	i915_gem_verify_gtt(dev);
3028 	return 0;
3029 }
3030 
3031 void
i915_gem_clflush_object(struct drm_i915_gem_object * obj)3032 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3033 {
3034 	/* If we don't have a page list set up, then we're not pinned
3035 	 * to GPU, and we can ignore the cache flush because it'll happen
3036 	 * again at bind time.
3037 	 */
3038 	if (obj->pages == NULL)
3039 		return;
3040 
3041 	/*
3042 	 * Stolen memory is always coherent with the GPU as it is explicitly
3043 	 * marked as wc by the system, or the system is cache-coherent.
3044 	 */
3045 	if (obj->stolen)
3046 		return;
3047 
3048 	/* If the GPU is snooping the contents of the CPU cache,
3049 	 * we do not need to manually clear the CPU cache lines.  However,
3050 	 * the caches are only snooped when the render cache is
3051 	 * flushed/invalidated.  As we always have to emit invalidations
3052 	 * and flushes when moving into and out of the RENDER domain, correct
3053 	 * snooping behaviour occurs naturally as the result of our domain
3054 	 * tracking.
3055 	 */
3056 	if (obj->cache_level != I915_CACHE_NONE)
3057 		return;
3058 
3059 	trace_i915_gem_object_clflush(obj);
3060 
3061 	drm_clflush_sg(obj->pages);
3062 }
3063 
3064 /** Flushes the GTT write domain for the object if it's dirty. */
3065 static void
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object * obj)3066 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3067 {
3068 	uint32_t old_write_domain;
3069 
3070 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3071 		return;
3072 
3073 	/* No actual flushing is required for the GTT write domain.  Writes
3074 	 * to it immediately go to main memory as far as we know, so there's
3075 	 * no chipset flush.  It also doesn't land in render cache.
3076 	 *
3077 	 * However, we do have to enforce the order so that all writes through
3078 	 * the GTT land before any writes to the device, such as updates to
3079 	 * the GATT itself.
3080 	 */
3081 	wmb();
3082 
3083 	old_write_domain = obj->base.write_domain;
3084 	obj->base.write_domain = 0;
3085 
3086 	trace_i915_gem_object_change_domain(obj,
3087 					    obj->base.read_domains,
3088 					    old_write_domain);
3089 }
3090 
3091 /** Flushes the CPU write domain for the object if it's dirty. */
3092 static void
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object * obj)3093 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3094 {
3095 	uint32_t old_write_domain;
3096 
3097 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3098 		return;
3099 
3100 	i915_gem_clflush_object(obj);
3101 	i915_gem_chipset_flush(obj->base.dev);
3102 	old_write_domain = obj->base.write_domain;
3103 	obj->base.write_domain = 0;
3104 
3105 	trace_i915_gem_object_change_domain(obj,
3106 					    obj->base.read_domains,
3107 					    old_write_domain);
3108 }
3109 
3110 /**
3111  * Moves a single object to the GTT read, and possibly write domain.
3112  *
3113  * This function returns when the move is complete, including waiting on
3114  * flushes to occur.
3115  */
3116 int
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object * obj,bool write)3117 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3118 {
3119 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3120 	uint32_t old_write_domain, old_read_domains;
3121 	int ret;
3122 
3123 	/* Not valid to be called on unbound objects. */
3124 	if (obj->gtt_space == NULL)
3125 		return -EINVAL;
3126 
3127 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3128 		return 0;
3129 
3130 	ret = i915_gem_object_wait_rendering(obj, !write);
3131 	if (ret)
3132 		return ret;
3133 
3134 	i915_gem_object_flush_cpu_write_domain(obj);
3135 
3136 	/* Serialise direct access to this object with the barriers for
3137 	 * coherent writes from the GPU, by effectively invalidating the
3138 	 * GTT domain upon first access.
3139 	 */
3140 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3141 		mb();
3142 
3143 	old_write_domain = obj->base.write_domain;
3144 	old_read_domains = obj->base.read_domains;
3145 
3146 	/* It should now be out of any other write domains, and we can update
3147 	 * the domain values for our changes.
3148 	 */
3149 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3150 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3151 	if (write) {
3152 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3153 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3154 		obj->dirty = 1;
3155 	}
3156 
3157 	trace_i915_gem_object_change_domain(obj,
3158 					    old_read_domains,
3159 					    old_write_domain);
3160 
3161 	/* And bump the LRU for this access */
3162 	if (i915_gem_object_is_inactive(obj))
3163 		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3164 
3165 	return 0;
3166 }
3167 
i915_gem_object_set_cache_level(struct drm_i915_gem_object * obj,enum i915_cache_level cache_level)3168 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3169 				    enum i915_cache_level cache_level)
3170 {
3171 	struct drm_device *dev = obj->base.dev;
3172 	drm_i915_private_t *dev_priv = dev->dev_private;
3173 	int ret;
3174 
3175 	if (obj->cache_level == cache_level)
3176 		return 0;
3177 
3178 	if (obj->pin_count) {
3179 		DRM_DEBUG("can not change the cache level of pinned objects\n");
3180 		return -EBUSY;
3181 	}
3182 
3183 	if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3184 		ret = i915_gem_object_unbind(obj);
3185 		if (ret)
3186 			return ret;
3187 	}
3188 
3189 	if (obj->gtt_space) {
3190 		ret = i915_gem_object_finish_gpu(obj);
3191 		if (ret)
3192 			return ret;
3193 
3194 		i915_gem_object_finish_gtt(obj);
3195 
3196 		/* Before SandyBridge, you could not use tiling or fence
3197 		 * registers with snooped memory, so relinquish any fences
3198 		 * currently pointing to our region in the aperture.
3199 		 */
3200 		if (INTEL_INFO(dev)->gen < 6) {
3201 			ret = i915_gem_object_put_fence(obj);
3202 			if (ret)
3203 				return ret;
3204 		}
3205 
3206 		if (obj->has_global_gtt_mapping)
3207 			i915_gem_gtt_bind_object(obj, cache_level);
3208 		if (obj->has_aliasing_ppgtt_mapping)
3209 			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3210 					       obj, cache_level);
3211 
3212 		obj->gtt_space->color = cache_level;
3213 	}
3214 
3215 	if (cache_level == I915_CACHE_NONE) {
3216 		u32 old_read_domains, old_write_domain;
3217 
3218 		/* If we're coming from LLC cached, then we haven't
3219 		 * actually been tracking whether the data is in the
3220 		 * CPU cache or not, since we only allow one bit set
3221 		 * in obj->write_domain and have been skipping the clflushes.
3222 		 * Just set it to the CPU cache for now.
3223 		 */
3224 		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3225 		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3226 
3227 		old_read_domains = obj->base.read_domains;
3228 		old_write_domain = obj->base.write_domain;
3229 
3230 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3231 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3232 
3233 		trace_i915_gem_object_change_domain(obj,
3234 						    old_read_domains,
3235 						    old_write_domain);
3236 	}
3237 
3238 	obj->cache_level = cache_level;
3239 	i915_gem_verify_gtt(dev);
3240 	return 0;
3241 }
3242 
i915_gem_get_caching_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3243 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3244 			       struct drm_file *file)
3245 {
3246 	struct drm_i915_gem_caching *args = data;
3247 	struct drm_i915_gem_object *obj;
3248 	int ret;
3249 
3250 	ret = i915_mutex_lock_interruptible(dev);
3251 	if (ret)
3252 		return ret;
3253 
3254 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3255 	if (&obj->base == NULL) {
3256 		ret = -ENOENT;
3257 		goto unlock;
3258 	}
3259 
3260 	args->caching = obj->cache_level != I915_CACHE_NONE;
3261 
3262 	drm_gem_object_unreference(&obj->base);
3263 unlock:
3264 	mutex_unlock(&dev->struct_mutex);
3265 	return ret;
3266 }
3267 
i915_gem_set_caching_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3268 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3269 			       struct drm_file *file)
3270 {
3271 	struct drm_i915_gem_caching *args = data;
3272 	struct drm_i915_gem_object *obj;
3273 	enum i915_cache_level level;
3274 	int ret;
3275 
3276 	switch (args->caching) {
3277 	case I915_CACHING_NONE:
3278 		level = I915_CACHE_NONE;
3279 		break;
3280 	case I915_CACHING_CACHED:
3281 		level = I915_CACHE_LLC;
3282 		break;
3283 	default:
3284 		return -EINVAL;
3285 	}
3286 
3287 	ret = i915_mutex_lock_interruptible(dev);
3288 	if (ret)
3289 		return ret;
3290 
3291 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3292 	if (&obj->base == NULL) {
3293 		ret = -ENOENT;
3294 		goto unlock;
3295 	}
3296 
3297 	ret = i915_gem_object_set_cache_level(obj, level);
3298 
3299 	drm_gem_object_unreference(&obj->base);
3300 unlock:
3301 	mutex_unlock(&dev->struct_mutex);
3302 	return ret;
3303 }
3304 
3305 /*
3306  * Prepare buffer for display plane (scanout, cursors, etc).
3307  * Can be called from an uninterruptible phase (modesetting) and allows
3308  * any flushes to be pipelined (for pageflips).
3309  */
3310 int
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object * obj,u32 alignment,struct intel_ring_buffer * pipelined)3311 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3312 				     u32 alignment,
3313 				     struct intel_ring_buffer *pipelined)
3314 {
3315 	u32 old_read_domains, old_write_domain;
3316 	int ret;
3317 
3318 	if (pipelined != obj->ring) {
3319 		ret = i915_gem_object_sync(obj, pipelined);
3320 		if (ret)
3321 			return ret;
3322 	}
3323 
3324 	/* The display engine is not coherent with the LLC cache on gen6.  As
3325 	 * a result, we make sure that the pinning that is about to occur is
3326 	 * done with uncached PTEs. This is lowest common denominator for all
3327 	 * chipsets.
3328 	 *
3329 	 * However for gen6+, we could do better by using the GFDT bit instead
3330 	 * of uncaching, which would allow us to flush all the LLC-cached data
3331 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3332 	 */
3333 	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3334 	if (ret)
3335 		return ret;
3336 
3337 	/* As the user may map the buffer once pinned in the display plane
3338 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3339 	 * always use map_and_fenceable for all scanout buffers.
3340 	 */
3341 	ret = i915_gem_object_pin(obj, alignment, true, false);
3342 	if (ret)
3343 		return ret;
3344 
3345 	i915_gem_object_flush_cpu_write_domain(obj);
3346 
3347 	old_write_domain = obj->base.write_domain;
3348 	old_read_domains = obj->base.read_domains;
3349 
3350 	/* It should now be out of any other write domains, and we can update
3351 	 * the domain values for our changes.
3352 	 */
3353 	obj->base.write_domain = 0;
3354 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3355 
3356 	trace_i915_gem_object_change_domain(obj,
3357 					    old_read_domains,
3358 					    old_write_domain);
3359 
3360 	return 0;
3361 }
3362 
3363 int
i915_gem_object_finish_gpu(struct drm_i915_gem_object * obj)3364 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3365 {
3366 	int ret;
3367 
3368 	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3369 		return 0;
3370 
3371 	ret = i915_gem_object_wait_rendering(obj, false);
3372 	if (ret)
3373 		return ret;
3374 
3375 	/* Ensure that we invalidate the GPU's caches and TLBs. */
3376 	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3377 	return 0;
3378 }
3379 
3380 /**
3381  * Moves a single object to the CPU read, and possibly write domain.
3382  *
3383  * This function returns when the move is complete, including waiting on
3384  * flushes to occur.
3385  */
3386 int
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object * obj,bool write)3387 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3388 {
3389 	uint32_t old_write_domain, old_read_domains;
3390 	int ret;
3391 
3392 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3393 		return 0;
3394 
3395 	ret = i915_gem_object_wait_rendering(obj, !write);
3396 	if (ret)
3397 		return ret;
3398 
3399 	i915_gem_object_flush_gtt_write_domain(obj);
3400 
3401 	old_write_domain = obj->base.write_domain;
3402 	old_read_domains = obj->base.read_domains;
3403 
3404 	/* Flush the CPU cache if it's still invalid. */
3405 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3406 		i915_gem_clflush_object(obj);
3407 
3408 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3409 	}
3410 
3411 	/* It should now be out of any other write domains, and we can update
3412 	 * the domain values for our changes.
3413 	 */
3414 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3415 
3416 	/* If we're writing through the CPU, then the GPU read domains will
3417 	 * need to be invalidated at next use.
3418 	 */
3419 	if (write) {
3420 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3421 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3422 	}
3423 
3424 	trace_i915_gem_object_change_domain(obj,
3425 					    old_read_domains,
3426 					    old_write_domain);
3427 
3428 	return 0;
3429 }
3430 
3431 /* Throttle our rendering by waiting until the ring has completed our requests
3432  * emitted over 20 msec ago.
3433  *
3434  * Note that if we were to use the current jiffies each time around the loop,
3435  * we wouldn't escape the function with any frames outstanding if the time to
3436  * render a frame was over 20ms.
3437  *
3438  * This should get us reasonable parallelism between CPU and GPU but also
3439  * relatively low latency when blocking on a particular request to finish.
3440  */
3441 static int
i915_gem_ring_throttle(struct drm_device * dev,struct drm_file * file)3442 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3443 {
3444 	struct drm_i915_private *dev_priv = dev->dev_private;
3445 	struct drm_i915_file_private *file_priv = file->driver_priv;
3446 	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3447 	struct drm_i915_gem_request *request;
3448 	struct intel_ring_buffer *ring = NULL;
3449 	unsigned reset_counter;
3450 	u32 seqno = 0;
3451 	int ret;
3452 
3453 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3454 	if (ret)
3455 		return ret;
3456 
3457 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3458 	if (ret)
3459 		return ret;
3460 
3461 	spin_lock(&file_priv->mm.lock);
3462 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3463 		if (time_after_eq(request->emitted_jiffies, recent_enough))
3464 			break;
3465 
3466 		ring = request->ring;
3467 		seqno = request->seqno;
3468 	}
3469 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3470 	spin_unlock(&file_priv->mm.lock);
3471 
3472 	if (seqno == 0)
3473 		return 0;
3474 
3475 	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3476 	if (ret == 0)
3477 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3478 
3479 	return ret;
3480 }
3481 
3482 int
i915_gem_object_pin(struct drm_i915_gem_object * obj,uint32_t alignment,bool map_and_fenceable,bool nonblocking)3483 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3484 		    uint32_t alignment,
3485 		    bool map_and_fenceable,
3486 		    bool nonblocking)
3487 {
3488 	int ret;
3489 
3490 	if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3491 		return -EBUSY;
3492 
3493 	if (obj->gtt_space != NULL) {
3494 		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3495 		    (map_and_fenceable && !obj->map_and_fenceable)) {
3496 			WARN(obj->pin_count,
3497 			     "bo is already pinned with incorrect alignment:"
3498 			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3499 			     " obj->map_and_fenceable=%d\n",
3500 			     obj->gtt_offset, alignment,
3501 			     map_and_fenceable,
3502 			     obj->map_and_fenceable);
3503 			ret = i915_gem_object_unbind(obj);
3504 			if (ret)
3505 				return ret;
3506 		}
3507 	}
3508 
3509 	if (obj->gtt_space == NULL) {
3510 		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3511 
3512 		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3513 						  map_and_fenceable,
3514 						  nonblocking);
3515 		if (ret)
3516 			return ret;
3517 
3518 		if (!dev_priv->mm.aliasing_ppgtt)
3519 			i915_gem_gtt_bind_object(obj, obj->cache_level);
3520 	}
3521 
3522 	if (!obj->has_global_gtt_mapping && map_and_fenceable)
3523 		i915_gem_gtt_bind_object(obj, obj->cache_level);
3524 
3525 	obj->pin_count++;
3526 	obj->pin_mappable |= map_and_fenceable;
3527 
3528 	return 0;
3529 }
3530 
3531 void
i915_gem_object_unpin(struct drm_i915_gem_object * obj)3532 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3533 {
3534 	BUG_ON(obj->pin_count == 0);
3535 	BUG_ON(obj->gtt_space == NULL);
3536 
3537 	if (--obj->pin_count == 0)
3538 		obj->pin_mappable = false;
3539 }
3540 
3541 int
i915_gem_pin_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3542 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3543 		   struct drm_file *file)
3544 {
3545 	struct drm_i915_gem_pin *args = data;
3546 	struct drm_i915_gem_object *obj;
3547 	int ret;
3548 
3549 	ret = i915_mutex_lock_interruptible(dev);
3550 	if (ret)
3551 		return ret;
3552 
3553 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3554 	if (&obj->base == NULL) {
3555 		ret = -ENOENT;
3556 		goto unlock;
3557 	}
3558 
3559 	if (obj->madv != I915_MADV_WILLNEED) {
3560 		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3561 		ret = -EINVAL;
3562 		goto out;
3563 	}
3564 
3565 	if (obj->pin_filp != NULL && obj->pin_filp != file) {
3566 		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3567 			  args->handle);
3568 		ret = -EINVAL;
3569 		goto out;
3570 	}
3571 
3572 	if (obj->user_pin_count == 0) {
3573 		ret = i915_gem_object_pin(obj, args->alignment, true, false);
3574 		if (ret)
3575 			goto out;
3576 	}
3577 
3578 	obj->user_pin_count++;
3579 	obj->pin_filp = file;
3580 
3581 	/* XXX - flush the CPU caches for pinned objects
3582 	 * as the X server doesn't manage domains yet
3583 	 */
3584 	i915_gem_object_flush_cpu_write_domain(obj);
3585 	args->offset = obj->gtt_offset;
3586 out:
3587 	drm_gem_object_unreference(&obj->base);
3588 unlock:
3589 	mutex_unlock(&dev->struct_mutex);
3590 	return ret;
3591 }
3592 
3593 int
i915_gem_unpin_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3594 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3595 		     struct drm_file *file)
3596 {
3597 	struct drm_i915_gem_pin *args = data;
3598 	struct drm_i915_gem_object *obj;
3599 	int ret;
3600 
3601 	ret = i915_mutex_lock_interruptible(dev);
3602 	if (ret)
3603 		return ret;
3604 
3605 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3606 	if (&obj->base == NULL) {
3607 		ret = -ENOENT;
3608 		goto unlock;
3609 	}
3610 
3611 	if (obj->pin_filp != file) {
3612 		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3613 			  args->handle);
3614 		ret = -EINVAL;
3615 		goto out;
3616 	}
3617 	obj->user_pin_count--;
3618 	if (obj->user_pin_count == 0) {
3619 		obj->pin_filp = NULL;
3620 		i915_gem_object_unpin(obj);
3621 	}
3622 
3623 out:
3624 	drm_gem_object_unreference(&obj->base);
3625 unlock:
3626 	mutex_unlock(&dev->struct_mutex);
3627 	return ret;
3628 }
3629 
3630 int
i915_gem_busy_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3631 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3632 		    struct drm_file *file)
3633 {
3634 	struct drm_i915_gem_busy *args = data;
3635 	struct drm_i915_gem_object *obj;
3636 	int ret;
3637 
3638 	ret = i915_mutex_lock_interruptible(dev);
3639 	if (ret)
3640 		return ret;
3641 
3642 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3643 	if (&obj->base == NULL) {
3644 		ret = -ENOENT;
3645 		goto unlock;
3646 	}
3647 
3648 	/* Count all active objects as busy, even if they are currently not used
3649 	 * by the gpu. Users of this interface expect objects to eventually
3650 	 * become non-busy without any further actions, therefore emit any
3651 	 * necessary flushes here.
3652 	 */
3653 	ret = i915_gem_object_flush_active(obj);
3654 
3655 	args->busy = obj->active;
3656 	if (obj->ring) {
3657 		BUILD_BUG_ON(I915_NUM_RINGS > 16);
3658 		args->busy |= intel_ring_flag(obj->ring) << 16;
3659 	}
3660 
3661 	drm_gem_object_unreference(&obj->base);
3662 unlock:
3663 	mutex_unlock(&dev->struct_mutex);
3664 	return ret;
3665 }
3666 
3667 int
i915_gem_throttle_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)3668 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3669 			struct drm_file *file_priv)
3670 {
3671 	return i915_gem_ring_throttle(dev, file_priv);
3672 }
3673 
3674 int
i915_gem_madvise_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)3675 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3676 		       struct drm_file *file_priv)
3677 {
3678 	struct drm_i915_gem_madvise *args = data;
3679 	struct drm_i915_gem_object *obj;
3680 	int ret;
3681 
3682 	switch (args->madv) {
3683 	case I915_MADV_DONTNEED:
3684 	case I915_MADV_WILLNEED:
3685 	    break;
3686 	default:
3687 	    return -EINVAL;
3688 	}
3689 
3690 	ret = i915_mutex_lock_interruptible(dev);
3691 	if (ret)
3692 		return ret;
3693 
3694 	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3695 	if (&obj->base == NULL) {
3696 		ret = -ENOENT;
3697 		goto unlock;
3698 	}
3699 
3700 	if (obj->pin_count) {
3701 		ret = -EINVAL;
3702 		goto out;
3703 	}
3704 
3705 	if (obj->madv != __I915_MADV_PURGED)
3706 		obj->madv = args->madv;
3707 
3708 	/* if the object is no longer attached, discard its backing storage */
3709 	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3710 		i915_gem_object_truncate(obj);
3711 
3712 	args->retained = obj->madv != __I915_MADV_PURGED;
3713 
3714 out:
3715 	drm_gem_object_unreference(&obj->base);
3716 unlock:
3717 	mutex_unlock(&dev->struct_mutex);
3718 	return ret;
3719 }
3720 
i915_gem_object_init(struct drm_i915_gem_object * obj,const struct drm_i915_gem_object_ops * ops)3721 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3722 			  const struct drm_i915_gem_object_ops *ops)
3723 {
3724 	INIT_LIST_HEAD(&obj->mm_list);
3725 	INIT_LIST_HEAD(&obj->gtt_list);
3726 	INIT_LIST_HEAD(&obj->ring_list);
3727 	INIT_LIST_HEAD(&obj->exec_list);
3728 
3729 	obj->ops = ops;
3730 
3731 	obj->fence_reg = I915_FENCE_REG_NONE;
3732 	obj->madv = I915_MADV_WILLNEED;
3733 	/* Avoid an unnecessary call to unbind on the first bind. */
3734 	obj->map_and_fenceable = true;
3735 
3736 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3737 }
3738 
3739 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3740 	.get_pages = i915_gem_object_get_pages_gtt,
3741 	.put_pages = i915_gem_object_put_pages_gtt,
3742 };
3743 
i915_gem_alloc_object(struct drm_device * dev,size_t size)3744 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3745 						  size_t size)
3746 {
3747 	struct drm_i915_gem_object *obj;
3748 	struct address_space *mapping;
3749 	gfp_t mask;
3750 
3751 	obj = i915_gem_object_alloc(dev);
3752 	if (obj == NULL)
3753 		return NULL;
3754 
3755 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3756 		i915_gem_object_free(obj);
3757 		return NULL;
3758 	}
3759 
3760 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3761 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3762 		/* 965gm cannot relocate objects above 4GiB. */
3763 		mask &= ~__GFP_HIGHMEM;
3764 		mask |= __GFP_DMA32;
3765 	}
3766 
3767 	mapping = file_inode(obj->base.filp)->i_mapping;
3768 	mapping_set_gfp_mask(mapping, mask);
3769 
3770 	i915_gem_object_init(obj, &i915_gem_object_ops);
3771 
3772 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3773 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3774 
3775 	if (HAS_LLC(dev)) {
3776 		/* On some devices, we can have the GPU use the LLC (the CPU
3777 		 * cache) for about a 10% performance improvement
3778 		 * compared to uncached.  Graphics requests other than
3779 		 * display scanout are coherent with the CPU in
3780 		 * accessing this cache.  This means in this mode we
3781 		 * don't need to clflush on the CPU side, and on the
3782 		 * GPU side we only need to flush internal caches to
3783 		 * get data visible to the CPU.
3784 		 *
3785 		 * However, we maintain the display planes as UC, and so
3786 		 * need to rebind when first used as such.
3787 		 */
3788 		obj->cache_level = I915_CACHE_LLC;
3789 	} else
3790 		obj->cache_level = I915_CACHE_NONE;
3791 
3792 	return obj;
3793 }
3794 
i915_gem_init_object(struct drm_gem_object * obj)3795 int i915_gem_init_object(struct drm_gem_object *obj)
3796 {
3797 	BUG();
3798 
3799 	return 0;
3800 }
3801 
i915_gem_free_object(struct drm_gem_object * gem_obj)3802 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3803 {
3804 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3805 	struct drm_device *dev = obj->base.dev;
3806 	drm_i915_private_t *dev_priv = dev->dev_private;
3807 
3808 	trace_i915_gem_object_destroy(obj);
3809 
3810 	if (obj->phys_obj)
3811 		i915_gem_detach_phys_object(dev, obj);
3812 
3813 	obj->pin_count = 0;
3814 	if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3815 		bool was_interruptible;
3816 
3817 		was_interruptible = dev_priv->mm.interruptible;
3818 		dev_priv->mm.interruptible = false;
3819 
3820 		WARN_ON(i915_gem_object_unbind(obj));
3821 
3822 		dev_priv->mm.interruptible = was_interruptible;
3823 	}
3824 
3825 	obj->pages_pin_count = 0;
3826 	i915_gem_object_put_pages(obj);
3827 	i915_gem_object_free_mmap_offset(obj);
3828 	i915_gem_object_release_stolen(obj);
3829 
3830 	BUG_ON(obj->pages);
3831 
3832 	if (obj->base.import_attach)
3833 		drm_prime_gem_destroy(&obj->base, NULL);
3834 
3835 	drm_gem_object_release(&obj->base);
3836 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3837 
3838 	kfree(obj->bit_17);
3839 	i915_gem_object_free(obj);
3840 }
3841 
3842 int
i915_gem_idle(struct drm_device * dev)3843 i915_gem_idle(struct drm_device *dev)
3844 {
3845 	drm_i915_private_t *dev_priv = dev->dev_private;
3846 	int ret;
3847 
3848 	mutex_lock(&dev->struct_mutex);
3849 
3850 	if (dev_priv->mm.suspended) {
3851 		mutex_unlock(&dev->struct_mutex);
3852 		return 0;
3853 	}
3854 
3855 	ret = i915_gpu_idle(dev);
3856 	if (ret) {
3857 		mutex_unlock(&dev->struct_mutex);
3858 		return ret;
3859 	}
3860 	i915_gem_retire_requests(dev);
3861 
3862 	/* Under UMS, be paranoid and evict. */
3863 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
3864 		i915_gem_evict_everything(dev);
3865 
3866 	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
3867 	 * We need to replace this with a semaphore, or something.
3868 	 * And not confound mm.suspended!
3869 	 */
3870 	dev_priv->mm.suspended = 1;
3871 	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
3872 
3873 	i915_kernel_lost_context(dev);
3874 	i915_gem_cleanup_ringbuffer(dev);
3875 
3876 	mutex_unlock(&dev->struct_mutex);
3877 
3878 	/* Cancel the retire work handler, which should be idle now. */
3879 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3880 
3881 	return 0;
3882 }
3883 
i915_gem_l3_remap(struct drm_device * dev)3884 void i915_gem_l3_remap(struct drm_device *dev)
3885 {
3886 	drm_i915_private_t *dev_priv = dev->dev_private;
3887 	u32 misccpctl;
3888 	int i;
3889 
3890 	if (!HAS_L3_GPU_CACHE(dev))
3891 		return;
3892 
3893 	if (!dev_priv->l3_parity.remap_info)
3894 		return;
3895 
3896 	misccpctl = I915_READ(GEN7_MISCCPCTL);
3897 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3898 	POSTING_READ(GEN7_MISCCPCTL);
3899 
3900 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3901 		u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3902 		if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3903 			DRM_DEBUG("0x%x was already programmed to %x\n",
3904 				  GEN7_L3LOG_BASE + i, remap);
3905 		if (remap && !dev_priv->l3_parity.remap_info[i/4])
3906 			DRM_DEBUG_DRIVER("Clearing remapped register\n");
3907 		I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3908 	}
3909 
3910 	/* Make sure all the writes land before disabling dop clock gating */
3911 	POSTING_READ(GEN7_L3LOG_BASE);
3912 
3913 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3914 }
3915 
i915_gem_init_swizzling(struct drm_device * dev)3916 void i915_gem_init_swizzling(struct drm_device *dev)
3917 {
3918 	drm_i915_private_t *dev_priv = dev->dev_private;
3919 
3920 	if (INTEL_INFO(dev)->gen < 5 ||
3921 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3922 		return;
3923 
3924 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3925 				 DISP_TILE_SURFACE_SWIZZLING);
3926 
3927 	if (IS_GEN5(dev))
3928 		return;
3929 
3930 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3931 	if (IS_GEN6(dev))
3932 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3933 	else if (IS_GEN7(dev))
3934 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3935 	else
3936 		BUG();
3937 }
3938 
3939 static bool
intel_enable_blt(struct drm_device * dev)3940 intel_enable_blt(struct drm_device *dev)
3941 {
3942 	if (!HAS_BLT(dev))
3943 		return false;
3944 
3945 	/* The blitter was dysfunctional on early prototypes */
3946 	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3947 		DRM_INFO("BLT not supported on this pre-production hardware;"
3948 			 " graphics performance will be degraded.\n");
3949 		return false;
3950 	}
3951 
3952 	return true;
3953 }
3954 
i915_gem_init_rings(struct drm_device * dev)3955 static int i915_gem_init_rings(struct drm_device *dev)
3956 {
3957 	struct drm_i915_private *dev_priv = dev->dev_private;
3958 	int ret;
3959 
3960 	ret = intel_init_render_ring_buffer(dev);
3961 	if (ret)
3962 		return ret;
3963 
3964 	if (HAS_BSD(dev)) {
3965 		ret = intel_init_bsd_ring_buffer(dev);
3966 		if (ret)
3967 			goto cleanup_render_ring;
3968 	}
3969 
3970 	if (intel_enable_blt(dev)) {
3971 		ret = intel_init_blt_ring_buffer(dev);
3972 		if (ret)
3973 			goto cleanup_bsd_ring;
3974 	}
3975 
3976 	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
3977 	if (ret)
3978 		goto cleanup_blt_ring;
3979 
3980 	return 0;
3981 
3982 cleanup_blt_ring:
3983 	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
3984 cleanup_bsd_ring:
3985 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3986 cleanup_render_ring:
3987 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3988 
3989 	return ret;
3990 }
3991 
3992 int
i915_gem_init_hw(struct drm_device * dev)3993 i915_gem_init_hw(struct drm_device *dev)
3994 {
3995 	drm_i915_private_t *dev_priv = dev->dev_private;
3996 	int ret;
3997 
3998 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3999 		return -EIO;
4000 
4001 	if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
4002 		I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
4003 
4004 	if (HAS_PCH_NOP(dev)) {
4005 		u32 temp = I915_READ(GEN7_MSG_CTL);
4006 		temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4007 		I915_WRITE(GEN7_MSG_CTL, temp);
4008 	}
4009 
4010 	i915_gem_l3_remap(dev);
4011 
4012 	i915_gem_init_swizzling(dev);
4013 
4014 	ret = i915_gem_init_rings(dev);
4015 	if (ret)
4016 		return ret;
4017 
4018 	/*
4019 	 * XXX: There was some w/a described somewhere suggesting loading
4020 	 * contexts before PPGTT.
4021 	 */
4022 	i915_gem_context_init(dev);
4023 	if (dev_priv->mm.aliasing_ppgtt) {
4024 		ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4025 		if (ret) {
4026 			i915_gem_cleanup_aliasing_ppgtt(dev);
4027 			DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4028 		}
4029 	}
4030 
4031 	return 0;
4032 }
4033 
i915_gem_init(struct drm_device * dev)4034 int i915_gem_init(struct drm_device *dev)
4035 {
4036 	struct drm_i915_private *dev_priv = dev->dev_private;
4037 	int ret;
4038 
4039 	mutex_lock(&dev->struct_mutex);
4040 
4041 	if (IS_VALLEYVIEW(dev)) {
4042 		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4043 		I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4044 		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4045 			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4046 	}
4047 
4048 	i915_gem_init_global_gtt(dev);
4049 
4050 	ret = i915_gem_init_hw(dev);
4051 	mutex_unlock(&dev->struct_mutex);
4052 	if (ret) {
4053 		i915_gem_cleanup_aliasing_ppgtt(dev);
4054 		return ret;
4055 	}
4056 
4057 	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4058 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4059 		dev_priv->dri1.allow_batchbuffer = 1;
4060 	return 0;
4061 }
4062 
4063 void
i915_gem_cleanup_ringbuffer(struct drm_device * dev)4064 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4065 {
4066 	drm_i915_private_t *dev_priv = dev->dev_private;
4067 	struct intel_ring_buffer *ring;
4068 	int i;
4069 
4070 	for_each_ring(ring, dev_priv, i)
4071 		intel_cleanup_ring_buffer(ring);
4072 }
4073 
4074 int
i915_gem_entervt_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)4075 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4076 		       struct drm_file *file_priv)
4077 {
4078 	drm_i915_private_t *dev_priv = dev->dev_private;
4079 	int ret;
4080 
4081 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4082 		return 0;
4083 
4084 	if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4085 		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4086 		atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4087 	}
4088 
4089 	mutex_lock(&dev->struct_mutex);
4090 	dev_priv->mm.suspended = 0;
4091 
4092 	ret = i915_gem_init_hw(dev);
4093 	if (ret != 0) {
4094 		mutex_unlock(&dev->struct_mutex);
4095 		return ret;
4096 	}
4097 
4098 	BUG_ON(!list_empty(&dev_priv->mm.active_list));
4099 	mutex_unlock(&dev->struct_mutex);
4100 
4101 	ret = drm_irq_install(dev);
4102 	if (ret)
4103 		goto cleanup_ringbuffer;
4104 
4105 	return 0;
4106 
4107 cleanup_ringbuffer:
4108 	mutex_lock(&dev->struct_mutex);
4109 	i915_gem_cleanup_ringbuffer(dev);
4110 	dev_priv->mm.suspended = 1;
4111 	mutex_unlock(&dev->struct_mutex);
4112 
4113 	return ret;
4114 }
4115 
4116 int
i915_gem_leavevt_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)4117 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4118 		       struct drm_file *file_priv)
4119 {
4120 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4121 		return 0;
4122 
4123 	drm_irq_uninstall(dev);
4124 	return i915_gem_idle(dev);
4125 }
4126 
4127 void
i915_gem_lastclose(struct drm_device * dev)4128 i915_gem_lastclose(struct drm_device *dev)
4129 {
4130 	int ret;
4131 
4132 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4133 		return;
4134 
4135 	ret = i915_gem_idle(dev);
4136 	if (ret)
4137 		DRM_ERROR("failed to idle hardware: %d\n", ret);
4138 }
4139 
4140 static void
init_ring_lists(struct intel_ring_buffer * ring)4141 init_ring_lists(struct intel_ring_buffer *ring)
4142 {
4143 	INIT_LIST_HEAD(&ring->active_list);
4144 	INIT_LIST_HEAD(&ring->request_list);
4145 }
4146 
4147 void
i915_gem_load(struct drm_device * dev)4148 i915_gem_load(struct drm_device *dev)
4149 {
4150 	drm_i915_private_t *dev_priv = dev->dev_private;
4151 	int i;
4152 
4153 	dev_priv->slab =
4154 		kmem_cache_create("i915_gem_object",
4155 				  sizeof(struct drm_i915_gem_object), 0,
4156 				  SLAB_HWCACHE_ALIGN,
4157 				  NULL);
4158 
4159 	INIT_LIST_HEAD(&dev_priv->mm.active_list);
4160 	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4161 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4162 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4163 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4164 	for (i = 0; i < I915_NUM_RINGS; i++)
4165 		init_ring_lists(&dev_priv->ring[i]);
4166 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4167 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4168 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4169 			  i915_gem_retire_work_handler);
4170 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4171 
4172 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4173 	if (IS_GEN3(dev)) {
4174 		I915_WRITE(MI_ARB_STATE,
4175 			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4176 	}
4177 
4178 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4179 
4180 	/* Old X drivers will take 0-2 for front, back, depth buffers */
4181 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4182 		dev_priv->fence_reg_start = 3;
4183 
4184 	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4185 		dev_priv->num_fence_regs = 32;
4186 	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4187 		dev_priv->num_fence_regs = 16;
4188 	else
4189 		dev_priv->num_fence_regs = 8;
4190 
4191 	/* Initialize fence registers to zero */
4192 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4193 	i915_gem_restore_fences(dev);
4194 
4195 	i915_gem_detect_bit_6_swizzle(dev);
4196 	init_waitqueue_head(&dev_priv->pending_flip_queue);
4197 
4198 	dev_priv->mm.interruptible = true;
4199 
4200 	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4201 	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4202 	register_shrinker(&dev_priv->mm.inactive_shrinker);
4203 }
4204 
4205 /*
4206  * Create a physically contiguous memory object for this object
4207  * e.g. for cursor + overlay regs
4208  */
i915_gem_init_phys_object(struct drm_device * dev,int id,int size,int align)4209 static int i915_gem_init_phys_object(struct drm_device *dev,
4210 				     int id, int size, int align)
4211 {
4212 	drm_i915_private_t *dev_priv = dev->dev_private;
4213 	struct drm_i915_gem_phys_object *phys_obj;
4214 	int ret;
4215 
4216 	if (dev_priv->mm.phys_objs[id - 1] || !size)
4217 		return 0;
4218 
4219 	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4220 	if (!phys_obj)
4221 		return -ENOMEM;
4222 
4223 	phys_obj->id = id;
4224 
4225 	phys_obj->handle = drm_pci_alloc(dev, size, align);
4226 	if (!phys_obj->handle) {
4227 		ret = -ENOMEM;
4228 		goto kfree_obj;
4229 	}
4230 #ifdef CONFIG_X86
4231 	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4232 #endif
4233 
4234 	dev_priv->mm.phys_objs[id - 1] = phys_obj;
4235 
4236 	return 0;
4237 kfree_obj:
4238 	kfree(phys_obj);
4239 	return ret;
4240 }
4241 
i915_gem_free_phys_object(struct drm_device * dev,int id)4242 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4243 {
4244 	drm_i915_private_t *dev_priv = dev->dev_private;
4245 	struct drm_i915_gem_phys_object *phys_obj;
4246 
4247 	if (!dev_priv->mm.phys_objs[id - 1])
4248 		return;
4249 
4250 	phys_obj = dev_priv->mm.phys_objs[id - 1];
4251 	if (phys_obj->cur_obj) {
4252 		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4253 	}
4254 
4255 #ifdef CONFIG_X86
4256 	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4257 #endif
4258 	drm_pci_free(dev, phys_obj->handle);
4259 	kfree(phys_obj);
4260 	dev_priv->mm.phys_objs[id - 1] = NULL;
4261 }
4262 
i915_gem_free_all_phys_object(struct drm_device * dev)4263 void i915_gem_free_all_phys_object(struct drm_device *dev)
4264 {
4265 	int i;
4266 
4267 	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4268 		i915_gem_free_phys_object(dev, i);
4269 }
4270 
i915_gem_detach_phys_object(struct drm_device * dev,struct drm_i915_gem_object * obj)4271 void i915_gem_detach_phys_object(struct drm_device *dev,
4272 				 struct drm_i915_gem_object *obj)
4273 {
4274 	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4275 	char *vaddr;
4276 	int i;
4277 	int page_count;
4278 
4279 	if (!obj->phys_obj)
4280 		return;
4281 	vaddr = obj->phys_obj->handle->vaddr;
4282 
4283 	page_count = obj->base.size / PAGE_SIZE;
4284 	for (i = 0; i < page_count; i++) {
4285 		struct page *page = shmem_read_mapping_page(mapping, i);
4286 		if (!IS_ERR(page)) {
4287 			char *dst = kmap_atomic(page);
4288 			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4289 			kunmap_atomic(dst);
4290 
4291 			drm_clflush_pages(&page, 1);
4292 
4293 			set_page_dirty(page);
4294 			mark_page_accessed(page);
4295 			page_cache_release(page);
4296 		}
4297 	}
4298 	i915_gem_chipset_flush(dev);
4299 
4300 	obj->phys_obj->cur_obj = NULL;
4301 	obj->phys_obj = NULL;
4302 }
4303 
4304 int
i915_gem_attach_phys_object(struct drm_device * dev,struct drm_i915_gem_object * obj,int id,int align)4305 i915_gem_attach_phys_object(struct drm_device *dev,
4306 			    struct drm_i915_gem_object *obj,
4307 			    int id,
4308 			    int align)
4309 {
4310 	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4311 	drm_i915_private_t *dev_priv = dev->dev_private;
4312 	int ret = 0;
4313 	int page_count;
4314 	int i;
4315 
4316 	if (id > I915_MAX_PHYS_OBJECT)
4317 		return -EINVAL;
4318 
4319 	if (obj->phys_obj) {
4320 		if (obj->phys_obj->id == id)
4321 			return 0;
4322 		i915_gem_detach_phys_object(dev, obj);
4323 	}
4324 
4325 	/* create a new object */
4326 	if (!dev_priv->mm.phys_objs[id - 1]) {
4327 		ret = i915_gem_init_phys_object(dev, id,
4328 						obj->base.size, align);
4329 		if (ret) {
4330 			DRM_ERROR("failed to init phys object %d size: %zu\n",
4331 				  id, obj->base.size);
4332 			return ret;
4333 		}
4334 	}
4335 
4336 	/* bind to the object */
4337 	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4338 	obj->phys_obj->cur_obj = obj;
4339 
4340 	page_count = obj->base.size / PAGE_SIZE;
4341 
4342 	for (i = 0; i < page_count; i++) {
4343 		struct page *page;
4344 		char *dst, *src;
4345 
4346 		page = shmem_read_mapping_page(mapping, i);
4347 		if (IS_ERR(page))
4348 			return PTR_ERR(page);
4349 
4350 		src = kmap_atomic(page);
4351 		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4352 		memcpy(dst, src, PAGE_SIZE);
4353 		kunmap_atomic(src);
4354 
4355 		mark_page_accessed(page);
4356 		page_cache_release(page);
4357 	}
4358 
4359 	return 0;
4360 }
4361 
4362 static int
i915_gem_phys_pwrite(struct drm_device * dev,struct drm_i915_gem_object * obj,struct drm_i915_gem_pwrite * args,struct drm_file * file_priv)4363 i915_gem_phys_pwrite(struct drm_device *dev,
4364 		     struct drm_i915_gem_object *obj,
4365 		     struct drm_i915_gem_pwrite *args,
4366 		     struct drm_file *file_priv)
4367 {
4368 	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4369 	char __user *user_data = to_user_ptr(args->data_ptr);
4370 
4371 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4372 		unsigned long unwritten;
4373 
4374 		/* The physical object once assigned is fixed for the lifetime
4375 		 * of the obj, so we can safely drop the lock and continue
4376 		 * to access vaddr.
4377 		 */
4378 		mutex_unlock(&dev->struct_mutex);
4379 		unwritten = copy_from_user(vaddr, user_data, args->size);
4380 		mutex_lock(&dev->struct_mutex);
4381 		if (unwritten)
4382 			return -EFAULT;
4383 	}
4384 
4385 	i915_gem_chipset_flush(dev);
4386 	return 0;
4387 }
4388 
i915_gem_release(struct drm_device * dev,struct drm_file * file)4389 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4390 {
4391 	struct drm_i915_file_private *file_priv = file->driver_priv;
4392 
4393 	/* Clean up our request list when the client is going away, so that
4394 	 * later retire_requests won't dereference our soon-to-be-gone
4395 	 * file_priv.
4396 	 */
4397 	spin_lock(&file_priv->mm.lock);
4398 	while (!list_empty(&file_priv->mm.request_list)) {
4399 		struct drm_i915_gem_request *request;
4400 
4401 		request = list_first_entry(&file_priv->mm.request_list,
4402 					   struct drm_i915_gem_request,
4403 					   client_list);
4404 		list_del(&request->client_list);
4405 		request->file_priv = NULL;
4406 	}
4407 	spin_unlock(&file_priv->mm.lock);
4408 }
4409 
mutex_is_locked_by(struct mutex * mutex,struct task_struct * task)4410 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4411 {
4412 	if (!mutex_is_locked(mutex))
4413 		return false;
4414 
4415 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4416 	return mutex->owner == task;
4417 #else
4418 	/* Since UP may be pre-empted, we cannot assume that we own the lock */
4419 	return false;
4420 #endif
4421 }
4422 
4423 static int
i915_gem_inactive_shrink(struct shrinker * shrinker,struct shrink_control * sc)4424 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4425 {
4426 	struct drm_i915_private *dev_priv =
4427 		container_of(shrinker,
4428 			     struct drm_i915_private,
4429 			     mm.inactive_shrinker);
4430 	struct drm_device *dev = dev_priv->dev;
4431 	struct drm_i915_gem_object *obj;
4432 	int nr_to_scan = sc->nr_to_scan;
4433 	bool unlock = true;
4434 	int cnt;
4435 
4436 	if (!mutex_trylock(&dev->struct_mutex)) {
4437 		if (!mutex_is_locked_by(&dev->struct_mutex, current))
4438 			return 0;
4439 
4440 		if (dev_priv->mm.shrinker_no_lock_stealing)
4441 			return 0;
4442 
4443 		unlock = false;
4444 	}
4445 
4446 	if (nr_to_scan) {
4447 		nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4448 		if (nr_to_scan > 0)
4449 			nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4450 							false);
4451 		if (nr_to_scan > 0)
4452 			i915_gem_shrink_all(dev_priv);
4453 	}
4454 
4455 	cnt = 0;
4456 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4457 		if (obj->pages_pin_count == 0)
4458 			cnt += obj->base.size >> PAGE_SHIFT;
4459 	list_for_each_entry(obj, &dev_priv->mm.inactive_list, gtt_list)
4460 		if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4461 			cnt += obj->base.size >> PAGE_SHIFT;
4462 
4463 	if (unlock)
4464 		mutex_unlock(&dev->struct_mutex);
4465 	return cnt;
4466 }
4467