• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 ******************************************************************************/
27 
28 /* e1000_i210
29  * e1000_i211
30  */
31 
32 #include <linux/types.h>
33 #include <linux/if_ether.h>
34 
35 #include "e1000_hw.h"
36 #include "e1000_i210.h"
37 
38 /**
39  * igb_get_hw_semaphore_i210 - Acquire hardware semaphore
40  *  @hw: pointer to the HW structure
41  *
42  *  Acquire the HW semaphore to access the PHY or NVM
43  */
igb_get_hw_semaphore_i210(struct e1000_hw * hw)44 static s32 igb_get_hw_semaphore_i210(struct e1000_hw *hw)
45 {
46 	u32 swsm;
47 	s32 timeout = hw->nvm.word_size + 1;
48 	s32 i = 0;
49 
50 	/* Get the SW semaphore */
51 	while (i < timeout) {
52 		swsm = rd32(E1000_SWSM);
53 		if (!(swsm & E1000_SWSM_SMBI))
54 			break;
55 
56 		udelay(50);
57 		i++;
58 	}
59 
60 	if (i == timeout) {
61 		/* In rare circumstances, the SW semaphore may already be held
62 		 * unintentionally. Clear the semaphore once before giving up.
63 		 */
64 		if (hw->dev_spec._82575.clear_semaphore_once) {
65 			hw->dev_spec._82575.clear_semaphore_once = false;
66 			igb_put_hw_semaphore(hw);
67 			for (i = 0; i < timeout; i++) {
68 				swsm = rd32(E1000_SWSM);
69 				if (!(swsm & E1000_SWSM_SMBI))
70 					break;
71 
72 				udelay(50);
73 			}
74 		}
75 
76 		/* If we do not have the semaphore here, we have to give up. */
77 		if (i == timeout) {
78 			hw_dbg("Driver can't access device - SMBI bit is set.\n");
79 			return -E1000_ERR_NVM;
80 		}
81 	}
82 
83 	/* Get the FW semaphore. */
84 	for (i = 0; i < timeout; i++) {
85 		swsm = rd32(E1000_SWSM);
86 		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
87 
88 		/* Semaphore acquired if bit latched */
89 		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
90 			break;
91 
92 		udelay(50);
93 	}
94 
95 	if (i == timeout) {
96 		/* Release semaphores */
97 		igb_put_hw_semaphore(hw);
98 		hw_dbg("Driver can't access the NVM\n");
99 		return -E1000_ERR_NVM;
100 	}
101 
102 	return E1000_SUCCESS;
103 }
104 
105 /**
106  *  igb_acquire_nvm_i210 - Request for access to EEPROM
107  *  @hw: pointer to the HW structure
108  *
109  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
110  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
111  *  Return successful if access grant bit set, else clear the request for
112  *  EEPROM access and return -E1000_ERR_NVM (-1).
113  **/
igb_acquire_nvm_i210(struct e1000_hw * hw)114 s32 igb_acquire_nvm_i210(struct e1000_hw *hw)
115 {
116 	return igb_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
117 }
118 
119 /**
120  *  igb_release_nvm_i210 - Release exclusive access to EEPROM
121  *  @hw: pointer to the HW structure
122  *
123  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
124  *  then release the semaphores acquired.
125  **/
igb_release_nvm_i210(struct e1000_hw * hw)126 void igb_release_nvm_i210(struct e1000_hw *hw)
127 {
128 	igb_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
129 }
130 
131 /**
132  *  igb_acquire_swfw_sync_i210 - Acquire SW/FW semaphore
133  *  @hw: pointer to the HW structure
134  *  @mask: specifies which semaphore to acquire
135  *
136  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
137  *  will also specify which port we're acquiring the lock for.
138  **/
igb_acquire_swfw_sync_i210(struct e1000_hw * hw,u16 mask)139 s32 igb_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
140 {
141 	u32 swfw_sync;
142 	u32 swmask = mask;
143 	u32 fwmask = mask << 16;
144 	s32 ret_val = E1000_SUCCESS;
145 	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
146 
147 	while (i < timeout) {
148 		if (igb_get_hw_semaphore_i210(hw)) {
149 			ret_val = -E1000_ERR_SWFW_SYNC;
150 			goto out;
151 		}
152 
153 		swfw_sync = rd32(E1000_SW_FW_SYNC);
154 		if (!(swfw_sync & (fwmask | swmask)))
155 			break;
156 
157 		/* Firmware currently using resource (fwmask) */
158 		igb_put_hw_semaphore(hw);
159 		mdelay(5);
160 		i++;
161 	}
162 
163 	if (i == timeout) {
164 		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
165 		ret_val = -E1000_ERR_SWFW_SYNC;
166 		goto out;
167 	}
168 
169 	swfw_sync |= swmask;
170 	wr32(E1000_SW_FW_SYNC, swfw_sync);
171 
172 	igb_put_hw_semaphore(hw);
173 out:
174 	return ret_val;
175 }
176 
177 /**
178  *  igb_release_swfw_sync_i210 - Release SW/FW semaphore
179  *  @hw: pointer to the HW structure
180  *  @mask: specifies which semaphore to acquire
181  *
182  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
183  *  will also specify which port we're releasing the lock for.
184  **/
igb_release_swfw_sync_i210(struct e1000_hw * hw,u16 mask)185 void igb_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
186 {
187 	u32 swfw_sync;
188 
189 	while (igb_get_hw_semaphore_i210(hw) != E1000_SUCCESS)
190 		; /* Empty */
191 
192 	swfw_sync = rd32(E1000_SW_FW_SYNC);
193 	swfw_sync &= ~mask;
194 	wr32(E1000_SW_FW_SYNC, swfw_sync);
195 
196 	igb_put_hw_semaphore(hw);
197 }
198 
199 /**
200  *  igb_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register
201  *  @hw: pointer to the HW structure
202  *  @offset: offset of word in the Shadow Ram to read
203  *  @words: number of words to read
204  *  @data: word read from the Shadow Ram
205  *
206  *  Reads a 16 bit word from the Shadow Ram using the EERD register.
207  *  Uses necessary synchronization semaphores.
208  **/
igb_read_nvm_srrd_i210(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)209 s32 igb_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
210 			     u16 *data)
211 {
212 	s32 status = E1000_SUCCESS;
213 	u16 i, count;
214 
215 	/* We cannot hold synchronization semaphores for too long,
216 	 * because of forceful takeover procedure. However it is more efficient
217 	 * to read in bursts than synchronizing access for each word.
218 	 */
219 	for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
220 		count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
221 			E1000_EERD_EEWR_MAX_COUNT : (words - i);
222 		if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
223 			status = igb_read_nvm_eerd(hw, offset, count,
224 						     data + i);
225 			hw->nvm.ops.release(hw);
226 		} else {
227 			status = E1000_ERR_SWFW_SYNC;
228 		}
229 
230 		if (status != E1000_SUCCESS)
231 			break;
232 	}
233 
234 	return status;
235 }
236 
237 /**
238  *  igb_write_nvm_srwr - Write to Shadow Ram using EEWR
239  *  @hw: pointer to the HW structure
240  *  @offset: offset within the Shadow Ram to be written to
241  *  @words: number of words to write
242  *  @data: 16 bit word(s) to be written to the Shadow Ram
243  *
244  *  Writes data to Shadow Ram at offset using EEWR register.
245  *
246  *  If igb_update_nvm_checksum is not called after this function , the
247  *  Shadow Ram will most likely contain an invalid checksum.
248  **/
igb_write_nvm_srwr(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)249 static s32 igb_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
250 				u16 *data)
251 {
252 	struct e1000_nvm_info *nvm = &hw->nvm;
253 	u32 i, k, eewr = 0;
254 	u32 attempts = 100000;
255 	s32 ret_val = E1000_SUCCESS;
256 
257 	/* A check for invalid values:  offset too large, too many words,
258 	 * too many words for the offset, and not enough words.
259 	 */
260 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
261 	    (words == 0)) {
262 		hw_dbg("nvm parameter(s) out of bounds\n");
263 		ret_val = -E1000_ERR_NVM;
264 		goto out;
265 	}
266 
267 	for (i = 0; i < words; i++) {
268 		eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
269 			(data[i] << E1000_NVM_RW_REG_DATA) |
270 			E1000_NVM_RW_REG_START;
271 
272 		wr32(E1000_SRWR, eewr);
273 
274 		for (k = 0; k < attempts; k++) {
275 			if (E1000_NVM_RW_REG_DONE &
276 			    rd32(E1000_SRWR)) {
277 				ret_val = E1000_SUCCESS;
278 				break;
279 			}
280 			udelay(5);
281 	}
282 
283 		if (ret_val != E1000_SUCCESS) {
284 			hw_dbg("Shadow RAM write EEWR timed out\n");
285 			break;
286 		}
287 	}
288 
289 out:
290 	return ret_val;
291 }
292 
293 /**
294  *  igb_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR
295  *  @hw: pointer to the HW structure
296  *  @offset: offset within the Shadow RAM to be written to
297  *  @words: number of words to write
298  *  @data: 16 bit word(s) to be written to the Shadow RAM
299  *
300  *  Writes data to Shadow RAM at offset using EEWR register.
301  *
302  *  If e1000_update_nvm_checksum is not called after this function , the
303  *  data will not be committed to FLASH and also Shadow RAM will most likely
304  *  contain an invalid checksum.
305  *
306  *  If error code is returned, data and Shadow RAM may be inconsistent - buffer
307  *  partially written.
308  **/
igb_write_nvm_srwr_i210(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)309 s32 igb_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
310 			      u16 *data)
311 {
312 	s32 status = E1000_SUCCESS;
313 	u16 i, count;
314 
315 	/* We cannot hold synchronization semaphores for too long,
316 	 * because of forceful takeover procedure. However it is more efficient
317 	 * to write in bursts than synchronizing access for each word.
318 	 */
319 	for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
320 		count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
321 			E1000_EERD_EEWR_MAX_COUNT : (words - i);
322 		if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
323 			status = igb_write_nvm_srwr(hw, offset, count,
324 						      data + i);
325 			hw->nvm.ops.release(hw);
326 		} else {
327 			status = E1000_ERR_SWFW_SYNC;
328 		}
329 
330 		if (status != E1000_SUCCESS)
331 			break;
332 	}
333 
334 	return status;
335 }
336 
337 /**
338  *  igb_read_nvm_i211 - Read NVM wrapper function for I211
339  *  @hw: pointer to the HW structure
340  *  @words: number of words to read
341  *  @data: pointer to the data read
342  *
343  *  Wrapper function to return data formerly found in the NVM.
344  **/
igb_read_nvm_i211(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)345 s32 igb_read_nvm_i211(struct e1000_hw *hw, u16 offset, u16 words,
346 			       u16 *data)
347 {
348 	s32 ret_val = E1000_SUCCESS;
349 
350 	/* Only the MAC addr is required to be present in the iNVM */
351 	switch (offset) {
352 	case NVM_MAC_ADDR:
353 		ret_val = igb_read_invm_i211(hw, offset, &data[0]);
354 		ret_val |= igb_read_invm_i211(hw, offset+1, &data[1]);
355 		ret_val |= igb_read_invm_i211(hw, offset+2, &data[2]);
356 		if (ret_val != E1000_SUCCESS)
357 			hw_dbg("MAC Addr not found in iNVM\n");
358 		break;
359 	case NVM_INIT_CTRL_2:
360 		ret_val = igb_read_invm_i211(hw, (u8)offset, data);
361 		if (ret_val != E1000_SUCCESS) {
362 			*data = NVM_INIT_CTRL_2_DEFAULT_I211;
363 			ret_val = E1000_SUCCESS;
364 		}
365 		break;
366 	case NVM_INIT_CTRL_4:
367 		ret_val = igb_read_invm_i211(hw, (u8)offset, data);
368 		if (ret_val != E1000_SUCCESS) {
369 			*data = NVM_INIT_CTRL_4_DEFAULT_I211;
370 			ret_val = E1000_SUCCESS;
371 		}
372 		break;
373 	case NVM_LED_1_CFG:
374 		ret_val = igb_read_invm_i211(hw, (u8)offset, data);
375 		if (ret_val != E1000_SUCCESS) {
376 			*data = NVM_LED_1_CFG_DEFAULT_I211;
377 			ret_val = E1000_SUCCESS;
378 		}
379 		break;
380 	case NVM_LED_0_2_CFG:
381 		igb_read_invm_i211(hw, offset, data);
382 		if (ret_val != E1000_SUCCESS) {
383 			*data = NVM_LED_0_2_CFG_DEFAULT_I211;
384 			ret_val = E1000_SUCCESS;
385 		}
386 		break;
387 	case NVM_ID_LED_SETTINGS:
388 		ret_val = igb_read_invm_i211(hw, (u8)offset, data);
389 		if (ret_val != E1000_SUCCESS) {
390 			*data = ID_LED_RESERVED_FFFF;
391 			ret_val = E1000_SUCCESS;
392 		}
393 	case NVM_SUB_DEV_ID:
394 		*data = hw->subsystem_device_id;
395 		break;
396 	case NVM_SUB_VEN_ID:
397 		*data = hw->subsystem_vendor_id;
398 		break;
399 	case NVM_DEV_ID:
400 		*data = hw->device_id;
401 		break;
402 	case NVM_VEN_ID:
403 		*data = hw->vendor_id;
404 		break;
405 	default:
406 		hw_dbg("NVM word 0x%02x is not mapped.\n", offset);
407 		*data = NVM_RESERVED_WORD;
408 		break;
409 	}
410 	return ret_val;
411 }
412 
413 /**
414  *  igb_read_invm_i211 - Reads OTP
415  *  @hw: pointer to the HW structure
416  *  @address: the word address (aka eeprom offset) to read
417  *  @data: pointer to the data read
418  *
419  *  Reads 16-bit words from the OTP. Return error when the word is not
420  *  stored in OTP.
421  **/
igb_read_invm_i211(struct e1000_hw * hw,u16 address,u16 * data)422 s32 igb_read_invm_i211(struct e1000_hw *hw, u16 address, u16 *data)
423 {
424 	s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
425 	u32 invm_dword;
426 	u16 i;
427 	u8 record_type, word_address;
428 
429 	for (i = 0; i < E1000_INVM_SIZE; i++) {
430 		invm_dword = rd32(E1000_INVM_DATA_REG(i));
431 		/* Get record type */
432 		record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
433 		if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE)
434 			break;
435 		if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE)
436 			i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
437 		if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE)
438 			i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
439 		if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) {
440 			word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
441 			if (word_address == (u8)address) {
442 				*data = INVM_DWORD_TO_WORD_DATA(invm_dword);
443 				hw_dbg("Read INVM Word 0x%02x = %x",
444 					  address, *data);
445 				status = E1000_SUCCESS;
446 				break;
447 			}
448 		}
449 	}
450 	if (status != E1000_SUCCESS)
451 		hw_dbg("Requested word 0x%02x not found in OTP\n", address);
452 	return status;
453 }
454 
455 /**
456  *  igb_read_invm_version - Reads iNVM version and image type
457  *  @hw: pointer to the HW structure
458  *  @invm_ver: version structure for the version read
459  *
460  *  Reads iNVM version and image type.
461  **/
igb_read_invm_version(struct e1000_hw * hw,struct e1000_fw_version * invm_ver)462 s32 igb_read_invm_version(struct e1000_hw *hw,
463 			  struct e1000_fw_version *invm_ver) {
464 	u32 *record = NULL;
465 	u32 *next_record = NULL;
466 	u32 i = 0;
467 	u32 invm_dword = 0;
468 	u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE /
469 					     E1000_INVM_RECORD_SIZE_IN_BYTES);
470 	u32 buffer[E1000_INVM_SIZE];
471 	s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
472 	u16 version = 0;
473 
474 	/* Read iNVM memory */
475 	for (i = 0; i < E1000_INVM_SIZE; i++) {
476 		invm_dword = rd32(E1000_INVM_DATA_REG(i));
477 		buffer[i] = invm_dword;
478 	}
479 
480 	/* Read version number */
481 	for (i = 1; i < invm_blocks; i++) {
482 		record = &buffer[invm_blocks - i];
483 		next_record = &buffer[invm_blocks - i + 1];
484 
485 		/* Check if we have first version location used */
486 		if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) {
487 			version = 0;
488 			status = E1000_SUCCESS;
489 			break;
490 		}
491 		/* Check if we have second version location used */
492 		else if ((i == 1) &&
493 			 ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) {
494 			version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
495 			status = E1000_SUCCESS;
496 			break;
497 		}
498 		/* Check if we have odd version location
499 		 * used and it is the last one used
500 		 */
501 		else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) &&
502 			 ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) &&
503 			 (i != 1))) {
504 			version = (*next_record & E1000_INVM_VER_FIELD_TWO)
505 				  >> 13;
506 			status = E1000_SUCCESS;
507 			break;
508 		}
509 		/* Check if we have even version location
510 		 * used and it is the last one used
511 		 */
512 		else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) &&
513 			 ((*record & 0x3) == 0)) {
514 			version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
515 			status = E1000_SUCCESS;
516 			break;
517 		}
518 	}
519 
520 	if (status == E1000_SUCCESS) {
521 		invm_ver->invm_major = (version & E1000_INVM_MAJOR_MASK)
522 					>> E1000_INVM_MAJOR_SHIFT;
523 		invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK;
524 	}
525 	/* Read Image Type */
526 	for (i = 1; i < invm_blocks; i++) {
527 		record = &buffer[invm_blocks - i];
528 		next_record = &buffer[invm_blocks - i + 1];
529 
530 		/* Check if we have image type in first location used */
531 		if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) {
532 			invm_ver->invm_img_type = 0;
533 			status = E1000_SUCCESS;
534 			break;
535 		}
536 		/* Check if we have image type in first location used */
537 		else if ((((*record & 0x3) == 0) &&
538 			 ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) ||
539 			 ((((*record & 0x3) != 0) && (i != 1)))) {
540 			invm_ver->invm_img_type =
541 				(*next_record & E1000_INVM_IMGTYPE_FIELD) >> 23;
542 			status = E1000_SUCCESS;
543 			break;
544 		}
545 	}
546 	return status;
547 }
548 
549 /**
550  *  igb_validate_nvm_checksum_i210 - Validate EEPROM checksum
551  *  @hw: pointer to the HW structure
552  *
553  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
554  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
555  **/
igb_validate_nvm_checksum_i210(struct e1000_hw * hw)556 s32 igb_validate_nvm_checksum_i210(struct e1000_hw *hw)
557 {
558 	s32 status = E1000_SUCCESS;
559 	s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *);
560 
561 	if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
562 
563 		/* Replace the read function with semaphore grabbing with
564 		 * the one that skips this for a while.
565 		 * We have semaphore taken already here.
566 		 */
567 		read_op_ptr = hw->nvm.ops.read;
568 		hw->nvm.ops.read = igb_read_nvm_eerd;
569 
570 		status = igb_validate_nvm_checksum(hw);
571 
572 		/* Revert original read operation. */
573 		hw->nvm.ops.read = read_op_ptr;
574 
575 		hw->nvm.ops.release(hw);
576 	} else {
577 		status = E1000_ERR_SWFW_SYNC;
578 	}
579 
580 	return status;
581 }
582 
583 /**
584  *  igb_update_nvm_checksum_i210 - Update EEPROM checksum
585  *  @hw: pointer to the HW structure
586  *
587  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
588  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
589  *  value to the EEPROM. Next commit EEPROM data onto the Flash.
590  **/
igb_update_nvm_checksum_i210(struct e1000_hw * hw)591 s32 igb_update_nvm_checksum_i210(struct e1000_hw *hw)
592 {
593 	s32 ret_val = E1000_SUCCESS;
594 	u16 checksum = 0;
595 	u16 i, nvm_data;
596 
597 	/* Read the first word from the EEPROM. If this times out or fails, do
598 	 * not continue or we could be in for a very long wait while every
599 	 * EEPROM read fails
600 	 */
601 	ret_val = igb_read_nvm_eerd(hw, 0, 1, &nvm_data);
602 	if (ret_val != E1000_SUCCESS) {
603 		hw_dbg("EEPROM read failed\n");
604 		goto out;
605 	}
606 
607 	if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
608 		/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
609 		 * because we do not want to take the synchronization
610 		 * semaphores twice here.
611 		 */
612 
613 		for (i = 0; i < NVM_CHECKSUM_REG; i++) {
614 			ret_val = igb_read_nvm_eerd(hw, i, 1, &nvm_data);
615 			if (ret_val) {
616 				hw->nvm.ops.release(hw);
617 				hw_dbg("NVM Read Error while updating checksum.\n");
618 				goto out;
619 			}
620 			checksum += nvm_data;
621 		}
622 		checksum = (u16) NVM_SUM - checksum;
623 		ret_val = igb_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
624 						&checksum);
625 		if (ret_val != E1000_SUCCESS) {
626 			hw->nvm.ops.release(hw);
627 			hw_dbg("NVM Write Error while updating checksum.\n");
628 			goto out;
629 		}
630 
631 		hw->nvm.ops.release(hw);
632 
633 		ret_val = igb_update_flash_i210(hw);
634 	} else {
635 		ret_val = -E1000_ERR_SWFW_SYNC;
636 	}
637 out:
638 	return ret_val;
639 }
640 
641 /**
642  *  igb_pool_flash_update_done_i210 - Pool FLUDONE status.
643  *  @hw: pointer to the HW structure
644  *
645  **/
igb_pool_flash_update_done_i210(struct e1000_hw * hw)646 static s32 igb_pool_flash_update_done_i210(struct e1000_hw *hw)
647 {
648 	s32 ret_val = -E1000_ERR_NVM;
649 	u32 i, reg;
650 
651 	for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
652 		reg = rd32(E1000_EECD);
653 		if (reg & E1000_EECD_FLUDONE_I210) {
654 			ret_val = E1000_SUCCESS;
655 			break;
656 		}
657 		udelay(5);
658 	}
659 
660 	return ret_val;
661 }
662 
663 /**
664  *  igb_update_flash_i210 - Commit EEPROM to the flash
665  *  @hw: pointer to the HW structure
666  *
667  **/
igb_update_flash_i210(struct e1000_hw * hw)668 s32 igb_update_flash_i210(struct e1000_hw *hw)
669 {
670 	s32 ret_val = E1000_SUCCESS;
671 	u32 flup;
672 
673 	ret_val = igb_pool_flash_update_done_i210(hw);
674 	if (ret_val == -E1000_ERR_NVM) {
675 		hw_dbg("Flash update time out\n");
676 		goto out;
677 	}
678 
679 	flup = rd32(E1000_EECD) | E1000_EECD_FLUPD_I210;
680 	wr32(E1000_EECD, flup);
681 
682 	ret_val = igb_pool_flash_update_done_i210(hw);
683 	if (ret_val == E1000_SUCCESS)
684 		hw_dbg("Flash update complete\n");
685 	else
686 		hw_dbg("Flash update time out\n");
687 
688 out:
689 	return ret_val;
690 }
691 
692 /**
693  *  igb_valid_led_default_i210 - Verify a valid default LED config
694  *  @hw: pointer to the HW structure
695  *  @data: pointer to the NVM (EEPROM)
696  *
697  *  Read the EEPROM for the current default LED configuration.  If the
698  *  LED configuration is not valid, set to a valid LED configuration.
699  **/
igb_valid_led_default_i210(struct e1000_hw * hw,u16 * data)700 s32 igb_valid_led_default_i210(struct e1000_hw *hw, u16 *data)
701 {
702 	s32 ret_val;
703 
704 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
705 	if (ret_val) {
706 		hw_dbg("NVM Read Error\n");
707 		goto out;
708 	}
709 
710 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
711 		switch (hw->phy.media_type) {
712 		case e1000_media_type_internal_serdes:
713 			*data = ID_LED_DEFAULT_I210_SERDES;
714 			break;
715 		case e1000_media_type_copper:
716 		default:
717 			*data = ID_LED_DEFAULT_I210;
718 			break;
719 		}
720 	}
721 out:
722 	return ret_val;
723 }
724 
725 /**
726  *  __igb_access_xmdio_reg - Read/write XMDIO register
727  *  @hw: pointer to the HW structure
728  *  @address: XMDIO address to program
729  *  @dev_addr: device address to program
730  *  @data: pointer to value to read/write from/to the XMDIO address
731  *  @read: boolean flag to indicate read or write
732  **/
__igb_access_xmdio_reg(struct e1000_hw * hw,u16 address,u8 dev_addr,u16 * data,bool read)733 static s32 __igb_access_xmdio_reg(struct e1000_hw *hw, u16 address,
734 				  u8 dev_addr, u16 *data, bool read)
735 {
736 	s32 ret_val = E1000_SUCCESS;
737 
738 	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr);
739 	if (ret_val)
740 		return ret_val;
741 
742 	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address);
743 	if (ret_val)
744 		return ret_val;
745 
746 	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA |
747 							 dev_addr);
748 	if (ret_val)
749 		return ret_val;
750 
751 	if (read)
752 		ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data);
753 	else
754 		ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data);
755 	if (ret_val)
756 		return ret_val;
757 
758 	/* Recalibrate the device back to 0 */
759 	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0);
760 	if (ret_val)
761 		return ret_val;
762 
763 	return ret_val;
764 }
765 
766 /**
767  *  igb_read_xmdio_reg - Read XMDIO register
768  *  @hw: pointer to the HW structure
769  *  @addr: XMDIO address to program
770  *  @dev_addr: device address to program
771  *  @data: value to be read from the EMI address
772  **/
igb_read_xmdio_reg(struct e1000_hw * hw,u16 addr,u8 dev_addr,u16 * data)773 s32 igb_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data)
774 {
775 	return __igb_access_xmdio_reg(hw, addr, dev_addr, data, true);
776 }
777 
778 /**
779  *  igb_write_xmdio_reg - Write XMDIO register
780  *  @hw: pointer to the HW structure
781  *  @addr: XMDIO address to program
782  *  @dev_addr: device address to program
783  *  @data: value to be written to the XMDIO address
784  **/
igb_write_xmdio_reg(struct e1000_hw * hw,u16 addr,u8 dev_addr,u16 data)785 s32 igb_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data)
786 {
787 	return __igb_access_xmdio_reg(hw, addr, dev_addr, &data, false);
788 }
789