1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31
32 #include <cluster/masklog.h>
33
34 #include "ocfs2.h"
35
36 #include "alloc.h"
37 #include "aops.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "file.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "suballoc.h"
44 #include "super.h"
45 #include "symlink.h"
46 #include "refcounttree.h"
47 #include "ocfs2_trace.h"
48
49 #include "buffer_head_io.h"
50
ocfs2_symlink_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 struct buffer_head *bh_result, int create)
53 {
54 int err = -EIO;
55 int status;
56 struct ocfs2_dinode *fe = NULL;
57 struct buffer_head *bh = NULL;
58 struct buffer_head *buffer_cache_bh = NULL;
59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 void *kaddr;
61
62 trace_ocfs2_symlink_get_block(
63 (unsigned long long)OCFS2_I(inode)->ip_blkno,
64 (unsigned long long)iblock, bh_result, create);
65
66 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
67
68 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
69 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
70 (unsigned long long)iblock);
71 goto bail;
72 }
73
74 status = ocfs2_read_inode_block(inode, &bh);
75 if (status < 0) {
76 mlog_errno(status);
77 goto bail;
78 }
79 fe = (struct ocfs2_dinode *) bh->b_data;
80
81 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
82 le32_to_cpu(fe->i_clusters))) {
83 mlog(ML_ERROR, "block offset is outside the allocated size: "
84 "%llu\n", (unsigned long long)iblock);
85 goto bail;
86 }
87
88 /* We don't use the page cache to create symlink data, so if
89 * need be, copy it over from the buffer cache. */
90 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
91 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
92 iblock;
93 buffer_cache_bh = sb_getblk(osb->sb, blkno);
94 if (!buffer_cache_bh) {
95 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
96 goto bail;
97 }
98
99 /* we haven't locked out transactions, so a commit
100 * could've happened. Since we've got a reference on
101 * the bh, even if it commits while we're doing the
102 * copy, the data is still good. */
103 if (buffer_jbd(buffer_cache_bh)
104 && ocfs2_inode_is_new(inode)) {
105 kaddr = kmap_atomic(bh_result->b_page);
106 if (!kaddr) {
107 mlog(ML_ERROR, "couldn't kmap!\n");
108 goto bail;
109 }
110 memcpy(kaddr + (bh_result->b_size * iblock),
111 buffer_cache_bh->b_data,
112 bh_result->b_size);
113 kunmap_atomic(kaddr);
114 set_buffer_uptodate(bh_result);
115 }
116 brelse(buffer_cache_bh);
117 }
118
119 map_bh(bh_result, inode->i_sb,
120 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
121
122 err = 0;
123
124 bail:
125 brelse(bh);
126
127 return err;
128 }
129
ocfs2_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)130 int ocfs2_get_block(struct inode *inode, sector_t iblock,
131 struct buffer_head *bh_result, int create)
132 {
133 int err = 0;
134 unsigned int ext_flags;
135 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136 u64 p_blkno, count, past_eof;
137 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
138
139 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
140 (unsigned long long)iblock, bh_result, create);
141
142 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144 inode, inode->i_ino);
145
146 if (S_ISLNK(inode->i_mode)) {
147 /* this always does I/O for some reason. */
148 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149 goto bail;
150 }
151
152 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
153 &ext_flags);
154 if (err) {
155 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
156 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157 (unsigned long long)p_blkno);
158 goto bail;
159 }
160
161 if (max_blocks < count)
162 count = max_blocks;
163
164 /*
165 * ocfs2 never allocates in this function - the only time we
166 * need to use BH_New is when we're extending i_size on a file
167 * system which doesn't support holes, in which case BH_New
168 * allows __block_write_begin() to zero.
169 *
170 * If we see this on a sparse file system, then a truncate has
171 * raced us and removed the cluster. In this case, we clear
172 * the buffers dirty and uptodate bits and let the buffer code
173 * ignore it as a hole.
174 */
175 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176 clear_buffer_dirty(bh_result);
177 clear_buffer_uptodate(bh_result);
178 goto bail;
179 }
180
181 /* Treat the unwritten extent as a hole for zeroing purposes. */
182 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
183 map_bh(bh_result, inode->i_sb, p_blkno);
184
185 bh_result->b_size = count << inode->i_blkbits;
186
187 if (!ocfs2_sparse_alloc(osb)) {
188 if (p_blkno == 0) {
189 err = -EIO;
190 mlog(ML_ERROR,
191 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 (unsigned long long)iblock,
193 (unsigned long long)p_blkno,
194 (unsigned long long)OCFS2_I(inode)->ip_blkno);
195 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196 dump_stack();
197 goto bail;
198 }
199 }
200
201 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
202
203 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
204 (unsigned long long)past_eof);
205 if (create && (iblock >= past_eof))
206 set_buffer_new(bh_result);
207
208 bail:
209 if (err < 0)
210 err = -EIO;
211
212 return err;
213 }
214
ocfs2_read_inline_data(struct inode * inode,struct page * page,struct buffer_head * di_bh)215 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216 struct buffer_head *di_bh)
217 {
218 void *kaddr;
219 loff_t size;
220 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
221
222 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224 (unsigned long long)OCFS2_I(inode)->ip_blkno);
225 return -EROFS;
226 }
227
228 size = i_size_read(inode);
229
230 if (size > PAGE_CACHE_SIZE ||
231 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
232 ocfs2_error(inode->i_sb,
233 "Inode %llu has with inline data has bad size: %Lu",
234 (unsigned long long)OCFS2_I(inode)->ip_blkno,
235 (unsigned long long)size);
236 return -EROFS;
237 }
238
239 kaddr = kmap_atomic(page);
240 if (size)
241 memcpy(kaddr, di->id2.i_data.id_data, size);
242 /* Clear the remaining part of the page */
243 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244 flush_dcache_page(page);
245 kunmap_atomic(kaddr);
246
247 SetPageUptodate(page);
248
249 return 0;
250 }
251
ocfs2_readpage_inline(struct inode * inode,struct page * page)252 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
253 {
254 int ret;
255 struct buffer_head *di_bh = NULL;
256
257 BUG_ON(!PageLocked(page));
258 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
259
260 ret = ocfs2_read_inode_block(inode, &di_bh);
261 if (ret) {
262 mlog_errno(ret);
263 goto out;
264 }
265
266 ret = ocfs2_read_inline_data(inode, page, di_bh);
267 out:
268 unlock_page(page);
269
270 brelse(di_bh);
271 return ret;
272 }
273
ocfs2_readpage(struct file * file,struct page * page)274 static int ocfs2_readpage(struct file *file, struct page *page)
275 {
276 struct inode *inode = page->mapping->host;
277 struct ocfs2_inode_info *oi = OCFS2_I(inode);
278 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279 int ret, unlock = 1;
280
281 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
282 (page ? page->index : 0));
283
284 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
285 if (ret != 0) {
286 if (ret == AOP_TRUNCATED_PAGE)
287 unlock = 0;
288 mlog_errno(ret);
289 goto out;
290 }
291
292 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
293 /*
294 * Unlock the page and cycle ip_alloc_sem so that we don't
295 * busyloop waiting for ip_alloc_sem to unlock
296 */
297 ret = AOP_TRUNCATED_PAGE;
298 unlock_page(page);
299 unlock = 0;
300 down_read(&oi->ip_alloc_sem);
301 up_read(&oi->ip_alloc_sem);
302 goto out_inode_unlock;
303 }
304
305 /*
306 * i_size might have just been updated as we grabed the meta lock. We
307 * might now be discovering a truncate that hit on another node.
308 * block_read_full_page->get_block freaks out if it is asked to read
309 * beyond the end of a file, so we check here. Callers
310 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
311 * and notice that the page they just read isn't needed.
312 *
313 * XXX sys_readahead() seems to get that wrong?
314 */
315 if (start >= i_size_read(inode)) {
316 zero_user(page, 0, PAGE_SIZE);
317 SetPageUptodate(page);
318 ret = 0;
319 goto out_alloc;
320 }
321
322 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
323 ret = ocfs2_readpage_inline(inode, page);
324 else
325 ret = block_read_full_page(page, ocfs2_get_block);
326 unlock = 0;
327
328 out_alloc:
329 up_read(&OCFS2_I(inode)->ip_alloc_sem);
330 out_inode_unlock:
331 ocfs2_inode_unlock(inode, 0);
332 out:
333 if (unlock)
334 unlock_page(page);
335 return ret;
336 }
337
338 /*
339 * This is used only for read-ahead. Failures or difficult to handle
340 * situations are safe to ignore.
341 *
342 * Right now, we don't bother with BH_Boundary - in-inode extent lists
343 * are quite large (243 extents on 4k blocks), so most inodes don't
344 * grow out to a tree. If need be, detecting boundary extents could
345 * trivially be added in a future version of ocfs2_get_block().
346 */
ocfs2_readpages(struct file * filp,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)347 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
348 struct list_head *pages, unsigned nr_pages)
349 {
350 int ret, err = -EIO;
351 struct inode *inode = mapping->host;
352 struct ocfs2_inode_info *oi = OCFS2_I(inode);
353 loff_t start;
354 struct page *last;
355
356 /*
357 * Use the nonblocking flag for the dlm code to avoid page
358 * lock inversion, but don't bother with retrying.
359 */
360 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
361 if (ret)
362 return err;
363
364 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
365 ocfs2_inode_unlock(inode, 0);
366 return err;
367 }
368
369 /*
370 * Don't bother with inline-data. There isn't anything
371 * to read-ahead in that case anyway...
372 */
373 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
374 goto out_unlock;
375
376 /*
377 * Check whether a remote node truncated this file - we just
378 * drop out in that case as it's not worth handling here.
379 */
380 last = list_entry(pages->prev, struct page, lru);
381 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
382 if (start >= i_size_read(inode))
383 goto out_unlock;
384
385 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
386
387 out_unlock:
388 up_read(&oi->ip_alloc_sem);
389 ocfs2_inode_unlock(inode, 0);
390
391 return err;
392 }
393
394 /* Note: Because we don't support holes, our allocation has
395 * already happened (allocation writes zeros to the file data)
396 * so we don't have to worry about ordered writes in
397 * ocfs2_writepage.
398 *
399 * ->writepage is called during the process of invalidating the page cache
400 * during blocked lock processing. It can't block on any cluster locks
401 * to during block mapping. It's relying on the fact that the block
402 * mapping can't have disappeared under the dirty pages that it is
403 * being asked to write back.
404 */
ocfs2_writepage(struct page * page,struct writeback_control * wbc)405 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
406 {
407 trace_ocfs2_writepage(
408 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
409 page->index);
410
411 return block_write_full_page(page, ocfs2_get_block, wbc);
412 }
413
414 /* Taken from ext3. We don't necessarily need the full blown
415 * functionality yet, but IMHO it's better to cut and paste the whole
416 * thing so we can avoid introducing our own bugs (and easily pick up
417 * their fixes when they happen) --Mark */
walk_page_buffers(handle_t * handle,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct buffer_head * bh))418 int walk_page_buffers( handle_t *handle,
419 struct buffer_head *head,
420 unsigned from,
421 unsigned to,
422 int *partial,
423 int (*fn)( handle_t *handle,
424 struct buffer_head *bh))
425 {
426 struct buffer_head *bh;
427 unsigned block_start, block_end;
428 unsigned blocksize = head->b_size;
429 int err, ret = 0;
430 struct buffer_head *next;
431
432 for ( bh = head, block_start = 0;
433 ret == 0 && (bh != head || !block_start);
434 block_start = block_end, bh = next)
435 {
436 next = bh->b_this_page;
437 block_end = block_start + blocksize;
438 if (block_end <= from || block_start >= to) {
439 if (partial && !buffer_uptodate(bh))
440 *partial = 1;
441 continue;
442 }
443 err = (*fn)(handle, bh);
444 if (!ret)
445 ret = err;
446 }
447 return ret;
448 }
449
ocfs2_bmap(struct address_space * mapping,sector_t block)450 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
451 {
452 sector_t status;
453 u64 p_blkno = 0;
454 int err = 0;
455 struct inode *inode = mapping->host;
456
457 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
458 (unsigned long long)block);
459
460 /* We don't need to lock journal system files, since they aren't
461 * accessed concurrently from multiple nodes.
462 */
463 if (!INODE_JOURNAL(inode)) {
464 err = ocfs2_inode_lock(inode, NULL, 0);
465 if (err) {
466 if (err != -ENOENT)
467 mlog_errno(err);
468 goto bail;
469 }
470 down_read(&OCFS2_I(inode)->ip_alloc_sem);
471 }
472
473 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
474 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
475 NULL);
476
477 if (!INODE_JOURNAL(inode)) {
478 up_read(&OCFS2_I(inode)->ip_alloc_sem);
479 ocfs2_inode_unlock(inode, 0);
480 }
481
482 if (err) {
483 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
484 (unsigned long long)block);
485 mlog_errno(err);
486 goto bail;
487 }
488
489 bail:
490 status = err ? 0 : p_blkno;
491
492 return status;
493 }
494
495 /*
496 * TODO: Make this into a generic get_blocks function.
497 *
498 * From do_direct_io in direct-io.c:
499 * "So what we do is to permit the ->get_blocks function to populate
500 * bh.b_size with the size of IO which is permitted at this offset and
501 * this i_blkbits."
502 *
503 * This function is called directly from get_more_blocks in direct-io.c.
504 *
505 * called like this: dio->get_blocks(dio->inode, fs_startblk,
506 * fs_count, map_bh, dio->rw == WRITE);
507 *
508 * Note that we never bother to allocate blocks here, and thus ignore the
509 * create argument.
510 */
ocfs2_direct_IO_get_blocks(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)511 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
512 struct buffer_head *bh_result, int create)
513 {
514 int ret;
515 u64 p_blkno, inode_blocks, contig_blocks;
516 unsigned int ext_flags;
517 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
518 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
519
520 /* This function won't even be called if the request isn't all
521 * nicely aligned and of the right size, so there's no need
522 * for us to check any of that. */
523
524 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
525
526 /* This figures out the size of the next contiguous block, and
527 * our logical offset */
528 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
529 &contig_blocks, &ext_flags);
530 if (ret) {
531 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
532 (unsigned long long)iblock);
533 ret = -EIO;
534 goto bail;
535 }
536
537 /* We should already CoW the refcounted extent in case of create. */
538 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
539
540 /*
541 * get_more_blocks() expects us to describe a hole by clearing
542 * the mapped bit on bh_result().
543 *
544 * Consider an unwritten extent as a hole.
545 */
546 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
547 map_bh(bh_result, inode->i_sb, p_blkno);
548 else
549 clear_buffer_mapped(bh_result);
550
551 /* make sure we don't map more than max_blocks blocks here as
552 that's all the kernel will handle at this point. */
553 if (max_blocks < contig_blocks)
554 contig_blocks = max_blocks;
555 bh_result->b_size = contig_blocks << blocksize_bits;
556 bail:
557 return ret;
558 }
559
560 /*
561 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
562 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
563 * to protect io on one node from truncation on another.
564 */
ocfs2_dio_end_io(struct kiocb * iocb,loff_t offset,ssize_t bytes,void * private)565 static void ocfs2_dio_end_io(struct kiocb *iocb,
566 loff_t offset,
567 ssize_t bytes,
568 void *private)
569 {
570 struct inode *inode = file_inode(iocb->ki_filp);
571 int level;
572 wait_queue_head_t *wq = ocfs2_ioend_wq(inode);
573
574 /* this io's submitter should not have unlocked this before we could */
575 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
576
577 if (ocfs2_iocb_is_sem_locked(iocb))
578 ocfs2_iocb_clear_sem_locked(iocb);
579
580 if (ocfs2_iocb_is_unaligned_aio(iocb)) {
581 ocfs2_iocb_clear_unaligned_aio(iocb);
582
583 if (atomic_dec_and_test(&OCFS2_I(inode)->ip_unaligned_aio) &&
584 waitqueue_active(wq)) {
585 wake_up_all(wq);
586 }
587 }
588
589 ocfs2_iocb_clear_rw_locked(iocb);
590
591 level = ocfs2_iocb_rw_locked_level(iocb);
592 ocfs2_rw_unlock(inode, level);
593 }
594
595 /*
596 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
597 * from ext3. PageChecked() bits have been removed as OCFS2 does not
598 * do journalled data.
599 */
ocfs2_invalidatepage(struct page * page,unsigned int offset,unsigned int length)600 static void ocfs2_invalidatepage(struct page *page, unsigned int offset,
601 unsigned int length)
602 {
603 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
604
605 jbd2_journal_invalidatepage(journal, page, offset);
606 }
607
ocfs2_releasepage(struct page * page,gfp_t wait)608 static int ocfs2_releasepage(struct page *page, gfp_t wait)
609 {
610 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
611
612 if (!page_has_buffers(page))
613 return 0;
614 return jbd2_journal_try_to_free_buffers(journal, page, wait);
615 }
616
ocfs2_direct_IO(int rw,struct kiocb * iocb,const struct iovec * iov,loff_t offset,unsigned long nr_segs)617 static ssize_t ocfs2_direct_IO(int rw,
618 struct kiocb *iocb,
619 const struct iovec *iov,
620 loff_t offset,
621 unsigned long nr_segs)
622 {
623 struct file *file = iocb->ki_filp;
624 struct inode *inode = file_inode(file)->i_mapping->host;
625
626 /*
627 * Fallback to buffered I/O if we see an inode without
628 * extents.
629 */
630 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
631 return 0;
632
633 /* Fallback to buffered I/O if we are appending. */
634 if (i_size_read(inode) <= offset)
635 return 0;
636
637 return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
638 iov, offset, nr_segs,
639 ocfs2_direct_IO_get_blocks,
640 ocfs2_dio_end_io, NULL, 0);
641 }
642
ocfs2_figure_cluster_boundaries(struct ocfs2_super * osb,u32 cpos,unsigned int * start,unsigned int * end)643 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
644 u32 cpos,
645 unsigned int *start,
646 unsigned int *end)
647 {
648 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
649
650 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
651 unsigned int cpp;
652
653 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
654
655 cluster_start = cpos % cpp;
656 cluster_start = cluster_start << osb->s_clustersize_bits;
657
658 cluster_end = cluster_start + osb->s_clustersize;
659 }
660
661 BUG_ON(cluster_start > PAGE_SIZE);
662 BUG_ON(cluster_end > PAGE_SIZE);
663
664 if (start)
665 *start = cluster_start;
666 if (end)
667 *end = cluster_end;
668 }
669
670 /*
671 * 'from' and 'to' are the region in the page to avoid zeroing.
672 *
673 * If pagesize > clustersize, this function will avoid zeroing outside
674 * of the cluster boundary.
675 *
676 * from == to == 0 is code for "zero the entire cluster region"
677 */
ocfs2_clear_page_regions(struct page * page,struct ocfs2_super * osb,u32 cpos,unsigned from,unsigned to)678 static void ocfs2_clear_page_regions(struct page *page,
679 struct ocfs2_super *osb, u32 cpos,
680 unsigned from, unsigned to)
681 {
682 void *kaddr;
683 unsigned int cluster_start, cluster_end;
684
685 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
686
687 kaddr = kmap_atomic(page);
688
689 if (from || to) {
690 if (from > cluster_start)
691 memset(kaddr + cluster_start, 0, from - cluster_start);
692 if (to < cluster_end)
693 memset(kaddr + to, 0, cluster_end - to);
694 } else {
695 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
696 }
697
698 kunmap_atomic(kaddr);
699 }
700
701 /*
702 * Nonsparse file systems fully allocate before we get to the write
703 * code. This prevents ocfs2_write() from tagging the write as an
704 * allocating one, which means ocfs2_map_page_blocks() might try to
705 * read-in the blocks at the tail of our file. Avoid reading them by
706 * testing i_size against each block offset.
707 */
ocfs2_should_read_blk(struct inode * inode,struct page * page,unsigned int block_start)708 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
709 unsigned int block_start)
710 {
711 u64 offset = page_offset(page) + block_start;
712
713 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
714 return 1;
715
716 if (i_size_read(inode) > offset)
717 return 1;
718
719 return 0;
720 }
721
722 /*
723 * Some of this taken from __block_write_begin(). We already have our
724 * mapping by now though, and the entire write will be allocating or
725 * it won't, so not much need to use BH_New.
726 *
727 * This will also skip zeroing, which is handled externally.
728 */
ocfs2_map_page_blocks(struct page * page,u64 * p_blkno,struct inode * inode,unsigned int from,unsigned int to,int new)729 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
730 struct inode *inode, unsigned int from,
731 unsigned int to, int new)
732 {
733 int ret = 0;
734 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
735 unsigned int block_end, block_start;
736 unsigned int bsize = 1 << inode->i_blkbits;
737
738 if (!page_has_buffers(page))
739 create_empty_buffers(page, bsize, 0);
740
741 head = page_buffers(page);
742 for (bh = head, block_start = 0; bh != head || !block_start;
743 bh = bh->b_this_page, block_start += bsize) {
744 block_end = block_start + bsize;
745
746 clear_buffer_new(bh);
747
748 /*
749 * Ignore blocks outside of our i/o range -
750 * they may belong to unallocated clusters.
751 */
752 if (block_start >= to || block_end <= from) {
753 if (PageUptodate(page))
754 set_buffer_uptodate(bh);
755 continue;
756 }
757
758 /*
759 * For an allocating write with cluster size >= page
760 * size, we always write the entire page.
761 */
762 if (new)
763 set_buffer_new(bh);
764
765 if (!buffer_mapped(bh)) {
766 map_bh(bh, inode->i_sb, *p_blkno);
767 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
768 }
769
770 if (PageUptodate(page)) {
771 if (!buffer_uptodate(bh))
772 set_buffer_uptodate(bh);
773 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
774 !buffer_new(bh) &&
775 ocfs2_should_read_blk(inode, page, block_start) &&
776 (block_start < from || block_end > to)) {
777 ll_rw_block(READ, 1, &bh);
778 *wait_bh++=bh;
779 }
780
781 *p_blkno = *p_blkno + 1;
782 }
783
784 /*
785 * If we issued read requests - let them complete.
786 */
787 while(wait_bh > wait) {
788 wait_on_buffer(*--wait_bh);
789 if (!buffer_uptodate(*wait_bh))
790 ret = -EIO;
791 }
792
793 if (ret == 0 || !new)
794 return ret;
795
796 /*
797 * If we get -EIO above, zero out any newly allocated blocks
798 * to avoid exposing stale data.
799 */
800 bh = head;
801 block_start = 0;
802 do {
803 block_end = block_start + bsize;
804 if (block_end <= from)
805 goto next_bh;
806 if (block_start >= to)
807 break;
808
809 zero_user(page, block_start, bh->b_size);
810 set_buffer_uptodate(bh);
811 mark_buffer_dirty(bh);
812
813 next_bh:
814 block_start = block_end;
815 bh = bh->b_this_page;
816 } while (bh != head);
817
818 return ret;
819 }
820
821 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
822 #define OCFS2_MAX_CTXT_PAGES 1
823 #else
824 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
825 #endif
826
827 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
828
829 /*
830 * Describe the state of a single cluster to be written to.
831 */
832 struct ocfs2_write_cluster_desc {
833 u32 c_cpos;
834 u32 c_phys;
835 /*
836 * Give this a unique field because c_phys eventually gets
837 * filled.
838 */
839 unsigned c_new;
840 unsigned c_unwritten;
841 unsigned c_needs_zero;
842 };
843
844 struct ocfs2_write_ctxt {
845 /* Logical cluster position / len of write */
846 u32 w_cpos;
847 u32 w_clen;
848
849 /* First cluster allocated in a nonsparse extend */
850 u32 w_first_new_cpos;
851
852 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
853
854 /*
855 * This is true if page_size > cluster_size.
856 *
857 * It triggers a set of special cases during write which might
858 * have to deal with allocating writes to partial pages.
859 */
860 unsigned int w_large_pages;
861
862 /*
863 * Pages involved in this write.
864 *
865 * w_target_page is the page being written to by the user.
866 *
867 * w_pages is an array of pages which always contains
868 * w_target_page, and in the case of an allocating write with
869 * page_size < cluster size, it will contain zero'd and mapped
870 * pages adjacent to w_target_page which need to be written
871 * out in so that future reads from that region will get
872 * zero's.
873 */
874 unsigned int w_num_pages;
875 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
876 struct page *w_target_page;
877
878 /*
879 * w_target_locked is used for page_mkwrite path indicating no unlocking
880 * against w_target_page in ocfs2_write_end_nolock.
881 */
882 unsigned int w_target_locked:1;
883
884 /*
885 * ocfs2_write_end() uses this to know what the real range to
886 * write in the target should be.
887 */
888 unsigned int w_target_from;
889 unsigned int w_target_to;
890
891 /*
892 * We could use journal_current_handle() but this is cleaner,
893 * IMHO -Mark
894 */
895 handle_t *w_handle;
896
897 struct buffer_head *w_di_bh;
898
899 struct ocfs2_cached_dealloc_ctxt w_dealloc;
900 };
901
ocfs2_unlock_and_free_pages(struct page ** pages,int num_pages)902 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
903 {
904 int i;
905
906 for(i = 0; i < num_pages; i++) {
907 if (pages[i]) {
908 unlock_page(pages[i]);
909 mark_page_accessed(pages[i]);
910 page_cache_release(pages[i]);
911 }
912 }
913 }
914
ocfs2_free_write_ctxt(struct ocfs2_write_ctxt * wc)915 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
916 {
917 int i;
918
919 /*
920 * w_target_locked is only set to true in the page_mkwrite() case.
921 * The intent is to allow us to lock the target page from write_begin()
922 * to write_end(). The caller must hold a ref on w_target_page.
923 */
924 if (wc->w_target_locked) {
925 BUG_ON(!wc->w_target_page);
926 for (i = 0; i < wc->w_num_pages; i++) {
927 if (wc->w_target_page == wc->w_pages[i]) {
928 wc->w_pages[i] = NULL;
929 break;
930 }
931 }
932 mark_page_accessed(wc->w_target_page);
933 page_cache_release(wc->w_target_page);
934 }
935 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
936
937 brelse(wc->w_di_bh);
938 kfree(wc);
939 }
940
ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt ** wcp,struct ocfs2_super * osb,loff_t pos,unsigned len,struct buffer_head * di_bh)941 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
942 struct ocfs2_super *osb, loff_t pos,
943 unsigned len, struct buffer_head *di_bh)
944 {
945 u32 cend;
946 struct ocfs2_write_ctxt *wc;
947
948 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
949 if (!wc)
950 return -ENOMEM;
951
952 wc->w_cpos = pos >> osb->s_clustersize_bits;
953 wc->w_first_new_cpos = UINT_MAX;
954 cend = (pos + len - 1) >> osb->s_clustersize_bits;
955 wc->w_clen = cend - wc->w_cpos + 1;
956 get_bh(di_bh);
957 wc->w_di_bh = di_bh;
958
959 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
960 wc->w_large_pages = 1;
961 else
962 wc->w_large_pages = 0;
963
964 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
965
966 *wcp = wc;
967
968 return 0;
969 }
970
971 /*
972 * If a page has any new buffers, zero them out here, and mark them uptodate
973 * and dirty so they'll be written out (in order to prevent uninitialised
974 * block data from leaking). And clear the new bit.
975 */
ocfs2_zero_new_buffers(struct page * page,unsigned from,unsigned to)976 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
977 {
978 unsigned int block_start, block_end;
979 struct buffer_head *head, *bh;
980
981 BUG_ON(!PageLocked(page));
982 if (!page_has_buffers(page))
983 return;
984
985 bh = head = page_buffers(page);
986 block_start = 0;
987 do {
988 block_end = block_start + bh->b_size;
989
990 if (buffer_new(bh)) {
991 if (block_end > from && block_start < to) {
992 if (!PageUptodate(page)) {
993 unsigned start, end;
994
995 start = max(from, block_start);
996 end = min(to, block_end);
997
998 zero_user_segment(page, start, end);
999 set_buffer_uptodate(bh);
1000 }
1001
1002 clear_buffer_new(bh);
1003 mark_buffer_dirty(bh);
1004 }
1005 }
1006
1007 block_start = block_end;
1008 bh = bh->b_this_page;
1009 } while (bh != head);
1010 }
1011
1012 /*
1013 * Only called when we have a failure during allocating write to write
1014 * zero's to the newly allocated region.
1015 */
ocfs2_write_failure(struct inode * inode,struct ocfs2_write_ctxt * wc,loff_t user_pos,unsigned user_len)1016 static void ocfs2_write_failure(struct inode *inode,
1017 struct ocfs2_write_ctxt *wc,
1018 loff_t user_pos, unsigned user_len)
1019 {
1020 int i;
1021 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1022 to = user_pos + user_len;
1023 struct page *tmppage;
1024
1025 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1026
1027 for(i = 0; i < wc->w_num_pages; i++) {
1028 tmppage = wc->w_pages[i];
1029
1030 if (page_has_buffers(tmppage)) {
1031 if (ocfs2_should_order_data(inode))
1032 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1033
1034 block_commit_write(tmppage, from, to);
1035 }
1036 }
1037 }
1038
ocfs2_prepare_page_for_write(struct inode * inode,u64 * p_blkno,struct ocfs2_write_ctxt * wc,struct page * page,u32 cpos,loff_t user_pos,unsigned user_len,int new)1039 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1040 struct ocfs2_write_ctxt *wc,
1041 struct page *page, u32 cpos,
1042 loff_t user_pos, unsigned user_len,
1043 int new)
1044 {
1045 int ret;
1046 unsigned int map_from = 0, map_to = 0;
1047 unsigned int cluster_start, cluster_end;
1048 unsigned int user_data_from = 0, user_data_to = 0;
1049
1050 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1051 &cluster_start, &cluster_end);
1052
1053 /* treat the write as new if the a hole/lseek spanned across
1054 * the page boundary.
1055 */
1056 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1057 (page_offset(page) <= user_pos));
1058
1059 if (page == wc->w_target_page) {
1060 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1061 map_to = map_from + user_len;
1062
1063 if (new)
1064 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1065 cluster_start, cluster_end,
1066 new);
1067 else
1068 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1069 map_from, map_to, new);
1070 if (ret) {
1071 mlog_errno(ret);
1072 goto out;
1073 }
1074
1075 user_data_from = map_from;
1076 user_data_to = map_to;
1077 if (new) {
1078 map_from = cluster_start;
1079 map_to = cluster_end;
1080 }
1081 } else {
1082 /*
1083 * If we haven't allocated the new page yet, we
1084 * shouldn't be writing it out without copying user
1085 * data. This is likely a math error from the caller.
1086 */
1087 BUG_ON(!new);
1088
1089 map_from = cluster_start;
1090 map_to = cluster_end;
1091
1092 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1093 cluster_start, cluster_end, new);
1094 if (ret) {
1095 mlog_errno(ret);
1096 goto out;
1097 }
1098 }
1099
1100 /*
1101 * Parts of newly allocated pages need to be zero'd.
1102 *
1103 * Above, we have also rewritten 'to' and 'from' - as far as
1104 * the rest of the function is concerned, the entire cluster
1105 * range inside of a page needs to be written.
1106 *
1107 * We can skip this if the page is up to date - it's already
1108 * been zero'd from being read in as a hole.
1109 */
1110 if (new && !PageUptodate(page))
1111 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1112 cpos, user_data_from, user_data_to);
1113
1114 flush_dcache_page(page);
1115
1116 out:
1117 return ret;
1118 }
1119
1120 /*
1121 * This function will only grab one clusters worth of pages.
1122 */
ocfs2_grab_pages_for_write(struct address_space * mapping,struct ocfs2_write_ctxt * wc,u32 cpos,loff_t user_pos,unsigned user_len,int new,struct page * mmap_page)1123 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1124 struct ocfs2_write_ctxt *wc,
1125 u32 cpos, loff_t user_pos,
1126 unsigned user_len, int new,
1127 struct page *mmap_page)
1128 {
1129 int ret = 0, i;
1130 unsigned long start, target_index, end_index, index;
1131 struct inode *inode = mapping->host;
1132 loff_t last_byte;
1133
1134 target_index = user_pos >> PAGE_CACHE_SHIFT;
1135
1136 /*
1137 * Figure out how many pages we'll be manipulating here. For
1138 * non allocating write, we just change the one
1139 * page. Otherwise, we'll need a whole clusters worth. If we're
1140 * writing past i_size, we only need enough pages to cover the
1141 * last page of the write.
1142 */
1143 if (new) {
1144 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1145 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1146 /*
1147 * We need the index *past* the last page we could possibly
1148 * touch. This is the page past the end of the write or
1149 * i_size, whichever is greater.
1150 */
1151 last_byte = max(user_pos + user_len, i_size_read(inode));
1152 BUG_ON(last_byte < 1);
1153 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1154 if ((start + wc->w_num_pages) > end_index)
1155 wc->w_num_pages = end_index - start;
1156 } else {
1157 wc->w_num_pages = 1;
1158 start = target_index;
1159 }
1160
1161 for(i = 0; i < wc->w_num_pages; i++) {
1162 index = start + i;
1163
1164 if (index == target_index && mmap_page) {
1165 /*
1166 * ocfs2_pagemkwrite() is a little different
1167 * and wants us to directly use the page
1168 * passed in.
1169 */
1170 lock_page(mmap_page);
1171
1172 /* Exit and let the caller retry */
1173 if (mmap_page->mapping != mapping) {
1174 WARN_ON(mmap_page->mapping);
1175 unlock_page(mmap_page);
1176 ret = -EAGAIN;
1177 goto out;
1178 }
1179
1180 page_cache_get(mmap_page);
1181 wc->w_pages[i] = mmap_page;
1182 wc->w_target_locked = true;
1183 } else {
1184 wc->w_pages[i] = find_or_create_page(mapping, index,
1185 GFP_NOFS);
1186 if (!wc->w_pages[i]) {
1187 ret = -ENOMEM;
1188 mlog_errno(ret);
1189 goto out;
1190 }
1191 }
1192 wait_for_stable_page(wc->w_pages[i]);
1193
1194 if (index == target_index)
1195 wc->w_target_page = wc->w_pages[i];
1196 }
1197 out:
1198 if (ret)
1199 wc->w_target_locked = false;
1200 return ret;
1201 }
1202
1203 /*
1204 * Prepare a single cluster for write one cluster into the file.
1205 */
ocfs2_write_cluster(struct address_space * mapping,u32 phys,unsigned int unwritten,unsigned int should_zero,struct ocfs2_alloc_context * data_ac,struct ocfs2_alloc_context * meta_ac,struct ocfs2_write_ctxt * wc,u32 cpos,loff_t user_pos,unsigned user_len)1206 static int ocfs2_write_cluster(struct address_space *mapping,
1207 u32 phys, unsigned int unwritten,
1208 unsigned int should_zero,
1209 struct ocfs2_alloc_context *data_ac,
1210 struct ocfs2_alloc_context *meta_ac,
1211 struct ocfs2_write_ctxt *wc, u32 cpos,
1212 loff_t user_pos, unsigned user_len)
1213 {
1214 int ret, i, new;
1215 u64 v_blkno, p_blkno;
1216 struct inode *inode = mapping->host;
1217 struct ocfs2_extent_tree et;
1218
1219 new = phys == 0 ? 1 : 0;
1220 if (new) {
1221 u32 tmp_pos;
1222
1223 /*
1224 * This is safe to call with the page locks - it won't take
1225 * any additional semaphores or cluster locks.
1226 */
1227 tmp_pos = cpos;
1228 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1229 &tmp_pos, 1, 0, wc->w_di_bh,
1230 wc->w_handle, data_ac,
1231 meta_ac, NULL);
1232 /*
1233 * This shouldn't happen because we must have already
1234 * calculated the correct meta data allocation required. The
1235 * internal tree allocation code should know how to increase
1236 * transaction credits itself.
1237 *
1238 * If need be, we could handle -EAGAIN for a
1239 * RESTART_TRANS here.
1240 */
1241 mlog_bug_on_msg(ret == -EAGAIN,
1242 "Inode %llu: EAGAIN return during allocation.\n",
1243 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1244 if (ret < 0) {
1245 mlog_errno(ret);
1246 goto out;
1247 }
1248 } else if (unwritten) {
1249 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1250 wc->w_di_bh);
1251 ret = ocfs2_mark_extent_written(inode, &et,
1252 wc->w_handle, cpos, 1, phys,
1253 meta_ac, &wc->w_dealloc);
1254 if (ret < 0) {
1255 mlog_errno(ret);
1256 goto out;
1257 }
1258 }
1259
1260 if (should_zero)
1261 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1262 else
1263 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1264
1265 /*
1266 * The only reason this should fail is due to an inability to
1267 * find the extent added.
1268 */
1269 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1270 NULL);
1271 if (ret < 0) {
1272 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1273 "at logical block %llu",
1274 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1275 (unsigned long long)v_blkno);
1276 goto out;
1277 }
1278
1279 BUG_ON(p_blkno == 0);
1280
1281 for(i = 0; i < wc->w_num_pages; i++) {
1282 int tmpret;
1283
1284 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1285 wc->w_pages[i], cpos,
1286 user_pos, user_len,
1287 should_zero);
1288 if (tmpret) {
1289 mlog_errno(tmpret);
1290 if (ret == 0)
1291 ret = tmpret;
1292 }
1293 }
1294
1295 /*
1296 * We only have cleanup to do in case of allocating write.
1297 */
1298 if (ret && new)
1299 ocfs2_write_failure(inode, wc, user_pos, user_len);
1300
1301 out:
1302
1303 return ret;
1304 }
1305
ocfs2_write_cluster_by_desc(struct address_space * mapping,struct ocfs2_alloc_context * data_ac,struct ocfs2_alloc_context * meta_ac,struct ocfs2_write_ctxt * wc,loff_t pos,unsigned len)1306 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1307 struct ocfs2_alloc_context *data_ac,
1308 struct ocfs2_alloc_context *meta_ac,
1309 struct ocfs2_write_ctxt *wc,
1310 loff_t pos, unsigned len)
1311 {
1312 int ret, i;
1313 loff_t cluster_off;
1314 unsigned int local_len = len;
1315 struct ocfs2_write_cluster_desc *desc;
1316 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1317
1318 for (i = 0; i < wc->w_clen; i++) {
1319 desc = &wc->w_desc[i];
1320
1321 /*
1322 * We have to make sure that the total write passed in
1323 * doesn't extend past a single cluster.
1324 */
1325 local_len = len;
1326 cluster_off = pos & (osb->s_clustersize - 1);
1327 if ((cluster_off + local_len) > osb->s_clustersize)
1328 local_len = osb->s_clustersize - cluster_off;
1329
1330 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1331 desc->c_unwritten,
1332 desc->c_needs_zero,
1333 data_ac, meta_ac,
1334 wc, desc->c_cpos, pos, local_len);
1335 if (ret) {
1336 mlog_errno(ret);
1337 goto out;
1338 }
1339
1340 len -= local_len;
1341 pos += local_len;
1342 }
1343
1344 ret = 0;
1345 out:
1346 return ret;
1347 }
1348
1349 /*
1350 * ocfs2_write_end() wants to know which parts of the target page it
1351 * should complete the write on. It's easiest to compute them ahead of
1352 * time when a more complete view of the write is available.
1353 */
ocfs2_set_target_boundaries(struct ocfs2_super * osb,struct ocfs2_write_ctxt * wc,loff_t pos,unsigned len,int alloc)1354 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1355 struct ocfs2_write_ctxt *wc,
1356 loff_t pos, unsigned len, int alloc)
1357 {
1358 struct ocfs2_write_cluster_desc *desc;
1359
1360 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1361 wc->w_target_to = wc->w_target_from + len;
1362
1363 if (alloc == 0)
1364 return;
1365
1366 /*
1367 * Allocating write - we may have different boundaries based
1368 * on page size and cluster size.
1369 *
1370 * NOTE: We can no longer compute one value from the other as
1371 * the actual write length and user provided length may be
1372 * different.
1373 */
1374
1375 if (wc->w_large_pages) {
1376 /*
1377 * We only care about the 1st and last cluster within
1378 * our range and whether they should be zero'd or not. Either
1379 * value may be extended out to the start/end of a
1380 * newly allocated cluster.
1381 */
1382 desc = &wc->w_desc[0];
1383 if (desc->c_needs_zero)
1384 ocfs2_figure_cluster_boundaries(osb,
1385 desc->c_cpos,
1386 &wc->w_target_from,
1387 NULL);
1388
1389 desc = &wc->w_desc[wc->w_clen - 1];
1390 if (desc->c_needs_zero)
1391 ocfs2_figure_cluster_boundaries(osb,
1392 desc->c_cpos,
1393 NULL,
1394 &wc->w_target_to);
1395 } else {
1396 wc->w_target_from = 0;
1397 wc->w_target_to = PAGE_CACHE_SIZE;
1398 }
1399 }
1400
1401 /*
1402 * Populate each single-cluster write descriptor in the write context
1403 * with information about the i/o to be done.
1404 *
1405 * Returns the number of clusters that will have to be allocated, as
1406 * well as a worst case estimate of the number of extent records that
1407 * would have to be created during a write to an unwritten region.
1408 */
ocfs2_populate_write_desc(struct inode * inode,struct ocfs2_write_ctxt * wc,unsigned int * clusters_to_alloc,unsigned int * extents_to_split)1409 static int ocfs2_populate_write_desc(struct inode *inode,
1410 struct ocfs2_write_ctxt *wc,
1411 unsigned int *clusters_to_alloc,
1412 unsigned int *extents_to_split)
1413 {
1414 int ret;
1415 struct ocfs2_write_cluster_desc *desc;
1416 unsigned int num_clusters = 0;
1417 unsigned int ext_flags = 0;
1418 u32 phys = 0;
1419 int i;
1420
1421 *clusters_to_alloc = 0;
1422 *extents_to_split = 0;
1423
1424 for (i = 0; i < wc->w_clen; i++) {
1425 desc = &wc->w_desc[i];
1426 desc->c_cpos = wc->w_cpos + i;
1427
1428 if (num_clusters == 0) {
1429 /*
1430 * Need to look up the next extent record.
1431 */
1432 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1433 &num_clusters, &ext_flags);
1434 if (ret) {
1435 mlog_errno(ret);
1436 goto out;
1437 }
1438
1439 /* We should already CoW the refcountd extent. */
1440 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1441
1442 /*
1443 * Assume worst case - that we're writing in
1444 * the middle of the extent.
1445 *
1446 * We can assume that the write proceeds from
1447 * left to right, in which case the extent
1448 * insert code is smart enough to coalesce the
1449 * next splits into the previous records created.
1450 */
1451 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1452 *extents_to_split = *extents_to_split + 2;
1453 } else if (phys) {
1454 /*
1455 * Only increment phys if it doesn't describe
1456 * a hole.
1457 */
1458 phys++;
1459 }
1460
1461 /*
1462 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1463 * file that got extended. w_first_new_cpos tells us
1464 * where the newly allocated clusters are so we can
1465 * zero them.
1466 */
1467 if (desc->c_cpos >= wc->w_first_new_cpos) {
1468 BUG_ON(phys == 0);
1469 desc->c_needs_zero = 1;
1470 }
1471
1472 desc->c_phys = phys;
1473 if (phys == 0) {
1474 desc->c_new = 1;
1475 desc->c_needs_zero = 1;
1476 *clusters_to_alloc = *clusters_to_alloc + 1;
1477 }
1478
1479 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1480 desc->c_unwritten = 1;
1481 desc->c_needs_zero = 1;
1482 }
1483
1484 num_clusters--;
1485 }
1486
1487 ret = 0;
1488 out:
1489 return ret;
1490 }
1491
ocfs2_write_begin_inline(struct address_space * mapping,struct inode * inode,struct ocfs2_write_ctxt * wc)1492 static int ocfs2_write_begin_inline(struct address_space *mapping,
1493 struct inode *inode,
1494 struct ocfs2_write_ctxt *wc)
1495 {
1496 int ret;
1497 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1498 struct page *page;
1499 handle_t *handle;
1500 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1501
1502 page = find_or_create_page(mapping, 0, GFP_NOFS);
1503 if (!page) {
1504 ret = -ENOMEM;
1505 mlog_errno(ret);
1506 goto out;
1507 }
1508 /*
1509 * If we don't set w_num_pages then this page won't get unlocked
1510 * and freed on cleanup of the write context.
1511 */
1512 wc->w_pages[0] = wc->w_target_page = page;
1513 wc->w_num_pages = 1;
1514
1515 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1516 if (IS_ERR(handle)) {
1517 ret = PTR_ERR(handle);
1518 mlog_errno(ret);
1519 goto out;
1520 }
1521
1522 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1523 OCFS2_JOURNAL_ACCESS_WRITE);
1524 if (ret) {
1525 ocfs2_commit_trans(osb, handle);
1526
1527 mlog_errno(ret);
1528 goto out;
1529 }
1530
1531 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1532 ocfs2_set_inode_data_inline(inode, di);
1533
1534 if (!PageUptodate(page)) {
1535 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1536 if (ret) {
1537 ocfs2_commit_trans(osb, handle);
1538
1539 goto out;
1540 }
1541 }
1542
1543 wc->w_handle = handle;
1544 out:
1545 return ret;
1546 }
1547
ocfs2_size_fits_inline_data(struct buffer_head * di_bh,u64 new_size)1548 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1549 {
1550 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1551
1552 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1553 return 1;
1554 return 0;
1555 }
1556
ocfs2_try_to_write_inline_data(struct address_space * mapping,struct inode * inode,loff_t pos,unsigned len,struct page * mmap_page,struct ocfs2_write_ctxt * wc)1557 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1558 struct inode *inode, loff_t pos,
1559 unsigned len, struct page *mmap_page,
1560 struct ocfs2_write_ctxt *wc)
1561 {
1562 int ret, written = 0;
1563 loff_t end = pos + len;
1564 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1565 struct ocfs2_dinode *di = NULL;
1566
1567 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1568 len, (unsigned long long)pos,
1569 oi->ip_dyn_features);
1570
1571 /*
1572 * Handle inodes which already have inline data 1st.
1573 */
1574 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1575 if (mmap_page == NULL &&
1576 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1577 goto do_inline_write;
1578
1579 /*
1580 * The write won't fit - we have to give this inode an
1581 * inline extent list now.
1582 */
1583 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1584 if (ret)
1585 mlog_errno(ret);
1586 goto out;
1587 }
1588
1589 /*
1590 * Check whether the inode can accept inline data.
1591 */
1592 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1593 return 0;
1594
1595 /*
1596 * Check whether the write can fit.
1597 */
1598 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1599 if (mmap_page ||
1600 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1601 return 0;
1602
1603 do_inline_write:
1604 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1605 if (ret) {
1606 mlog_errno(ret);
1607 goto out;
1608 }
1609
1610 /*
1611 * This signals to the caller that the data can be written
1612 * inline.
1613 */
1614 written = 1;
1615 out:
1616 return written ? written : ret;
1617 }
1618
1619 /*
1620 * This function only does anything for file systems which can't
1621 * handle sparse files.
1622 *
1623 * What we want to do here is fill in any hole between the current end
1624 * of allocation and the end of our write. That way the rest of the
1625 * write path can treat it as an non-allocating write, which has no
1626 * special case code for sparse/nonsparse files.
1627 */
ocfs2_expand_nonsparse_inode(struct inode * inode,struct buffer_head * di_bh,loff_t pos,unsigned len,struct ocfs2_write_ctxt * wc)1628 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1629 struct buffer_head *di_bh,
1630 loff_t pos, unsigned len,
1631 struct ocfs2_write_ctxt *wc)
1632 {
1633 int ret;
1634 loff_t newsize = pos + len;
1635
1636 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1637
1638 if (newsize <= i_size_read(inode))
1639 return 0;
1640
1641 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1642 if (ret)
1643 mlog_errno(ret);
1644
1645 wc->w_first_new_cpos =
1646 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1647
1648 return ret;
1649 }
1650
ocfs2_zero_tail(struct inode * inode,struct buffer_head * di_bh,loff_t pos)1651 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1652 loff_t pos)
1653 {
1654 int ret = 0;
1655
1656 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1657 if (pos > i_size_read(inode))
1658 ret = ocfs2_zero_extend(inode, di_bh, pos);
1659
1660 return ret;
1661 }
1662
1663 /*
1664 * Try to flush truncate logs if we can free enough clusters from it.
1665 * As for return value, "< 0" means error, "0" no space and "1" means
1666 * we have freed enough spaces and let the caller try to allocate again.
1667 */
ocfs2_try_to_free_truncate_log(struct ocfs2_super * osb,unsigned int needed)1668 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1669 unsigned int needed)
1670 {
1671 tid_t target;
1672 int ret = 0;
1673 unsigned int truncated_clusters;
1674
1675 mutex_lock(&osb->osb_tl_inode->i_mutex);
1676 truncated_clusters = osb->truncated_clusters;
1677 mutex_unlock(&osb->osb_tl_inode->i_mutex);
1678
1679 /*
1680 * Check whether we can succeed in allocating if we free
1681 * the truncate log.
1682 */
1683 if (truncated_clusters < needed)
1684 goto out;
1685
1686 ret = ocfs2_flush_truncate_log(osb);
1687 if (ret) {
1688 mlog_errno(ret);
1689 goto out;
1690 }
1691
1692 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1693 jbd2_log_wait_commit(osb->journal->j_journal, target);
1694 ret = 1;
1695 }
1696 out:
1697 return ret;
1698 }
1699
ocfs2_write_begin_nolock(struct file * filp,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata,struct buffer_head * di_bh,struct page * mmap_page)1700 int ocfs2_write_begin_nolock(struct file *filp,
1701 struct address_space *mapping,
1702 loff_t pos, unsigned len, unsigned flags,
1703 struct page **pagep, void **fsdata,
1704 struct buffer_head *di_bh, struct page *mmap_page)
1705 {
1706 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1707 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1708 struct ocfs2_write_ctxt *wc;
1709 struct inode *inode = mapping->host;
1710 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1711 struct ocfs2_dinode *di;
1712 struct ocfs2_alloc_context *data_ac = NULL;
1713 struct ocfs2_alloc_context *meta_ac = NULL;
1714 handle_t *handle;
1715 struct ocfs2_extent_tree et;
1716 int try_free = 1, ret1;
1717
1718 try_again:
1719 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1720 if (ret) {
1721 mlog_errno(ret);
1722 return ret;
1723 }
1724
1725 if (ocfs2_supports_inline_data(osb)) {
1726 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1727 mmap_page, wc);
1728 if (ret == 1) {
1729 ret = 0;
1730 goto success;
1731 }
1732 if (ret < 0) {
1733 mlog_errno(ret);
1734 goto out;
1735 }
1736 }
1737
1738 if (ocfs2_sparse_alloc(osb))
1739 ret = ocfs2_zero_tail(inode, di_bh, pos);
1740 else
1741 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1742 wc);
1743 if (ret) {
1744 mlog_errno(ret);
1745 goto out;
1746 }
1747
1748 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1749 if (ret < 0) {
1750 mlog_errno(ret);
1751 goto out;
1752 } else if (ret == 1) {
1753 clusters_need = wc->w_clen;
1754 ret = ocfs2_refcount_cow(inode, filp, di_bh,
1755 wc->w_cpos, wc->w_clen, UINT_MAX);
1756 if (ret) {
1757 mlog_errno(ret);
1758 goto out;
1759 }
1760 }
1761
1762 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1763 &extents_to_split);
1764 if (ret) {
1765 mlog_errno(ret);
1766 goto out;
1767 }
1768 clusters_need += clusters_to_alloc;
1769
1770 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1771
1772 trace_ocfs2_write_begin_nolock(
1773 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1774 (long long)i_size_read(inode),
1775 le32_to_cpu(di->i_clusters),
1776 pos, len, flags, mmap_page,
1777 clusters_to_alloc, extents_to_split);
1778
1779 /*
1780 * We set w_target_from, w_target_to here so that
1781 * ocfs2_write_end() knows which range in the target page to
1782 * write out. An allocation requires that we write the entire
1783 * cluster range.
1784 */
1785 if (clusters_to_alloc || extents_to_split) {
1786 /*
1787 * XXX: We are stretching the limits of
1788 * ocfs2_lock_allocators(). It greatly over-estimates
1789 * the work to be done.
1790 */
1791 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1792 wc->w_di_bh);
1793 ret = ocfs2_lock_allocators(inode, &et,
1794 clusters_to_alloc, extents_to_split,
1795 &data_ac, &meta_ac);
1796 if (ret) {
1797 mlog_errno(ret);
1798 goto out;
1799 }
1800
1801 if (data_ac)
1802 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1803
1804 credits = ocfs2_calc_extend_credits(inode->i_sb,
1805 &di->id2.i_list,
1806 clusters_to_alloc);
1807
1808 }
1809
1810 /*
1811 * We have to zero sparse allocated clusters, unwritten extent clusters,
1812 * and non-sparse clusters we just extended. For non-sparse writes,
1813 * we know zeros will only be needed in the first and/or last cluster.
1814 */
1815 if (clusters_to_alloc || extents_to_split ||
1816 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1817 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1818 cluster_of_pages = 1;
1819 else
1820 cluster_of_pages = 0;
1821
1822 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1823
1824 handle = ocfs2_start_trans(osb, credits);
1825 if (IS_ERR(handle)) {
1826 ret = PTR_ERR(handle);
1827 mlog_errno(ret);
1828 goto out;
1829 }
1830
1831 wc->w_handle = handle;
1832
1833 if (clusters_to_alloc) {
1834 ret = dquot_alloc_space_nodirty(inode,
1835 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1836 if (ret)
1837 goto out_commit;
1838 }
1839 /*
1840 * We don't want this to fail in ocfs2_write_end(), so do it
1841 * here.
1842 */
1843 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1844 OCFS2_JOURNAL_ACCESS_WRITE);
1845 if (ret) {
1846 mlog_errno(ret);
1847 goto out_quota;
1848 }
1849
1850 /*
1851 * Fill our page array first. That way we've grabbed enough so
1852 * that we can zero and flush if we error after adding the
1853 * extent.
1854 */
1855 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1856 cluster_of_pages, mmap_page);
1857 if (ret && ret != -EAGAIN) {
1858 mlog_errno(ret);
1859 goto out_quota;
1860 }
1861
1862 /*
1863 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1864 * the target page. In this case, we exit with no error and no target
1865 * page. This will trigger the caller, page_mkwrite(), to re-try
1866 * the operation.
1867 */
1868 if (ret == -EAGAIN) {
1869 BUG_ON(wc->w_target_page);
1870 ret = 0;
1871 goto out_quota;
1872 }
1873
1874 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1875 len);
1876 if (ret) {
1877 mlog_errno(ret);
1878 goto out_quota;
1879 }
1880
1881 if (data_ac)
1882 ocfs2_free_alloc_context(data_ac);
1883 if (meta_ac)
1884 ocfs2_free_alloc_context(meta_ac);
1885
1886 success:
1887 *pagep = wc->w_target_page;
1888 *fsdata = wc;
1889 return 0;
1890 out_quota:
1891 if (clusters_to_alloc)
1892 dquot_free_space(inode,
1893 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1894 out_commit:
1895 ocfs2_commit_trans(osb, handle);
1896
1897 out:
1898 ocfs2_free_write_ctxt(wc);
1899
1900 if (data_ac)
1901 ocfs2_free_alloc_context(data_ac);
1902 if (meta_ac)
1903 ocfs2_free_alloc_context(meta_ac);
1904
1905 if (ret == -ENOSPC && try_free) {
1906 /*
1907 * Try to free some truncate log so that we can have enough
1908 * clusters to allocate.
1909 */
1910 try_free = 0;
1911
1912 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1913 if (ret1 == 1)
1914 goto try_again;
1915
1916 if (ret1 < 0)
1917 mlog_errno(ret1);
1918 }
1919
1920 return ret;
1921 }
1922
ocfs2_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)1923 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1924 loff_t pos, unsigned len, unsigned flags,
1925 struct page **pagep, void **fsdata)
1926 {
1927 int ret;
1928 struct buffer_head *di_bh = NULL;
1929 struct inode *inode = mapping->host;
1930
1931 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1932 if (ret) {
1933 mlog_errno(ret);
1934 return ret;
1935 }
1936
1937 /*
1938 * Take alloc sem here to prevent concurrent lookups. That way
1939 * the mapping, zeroing and tree manipulation within
1940 * ocfs2_write() will be safe against ->readpage(). This
1941 * should also serve to lock out allocation from a shared
1942 * writeable region.
1943 */
1944 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1945
1946 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1947 fsdata, di_bh, NULL);
1948 if (ret) {
1949 mlog_errno(ret);
1950 goto out_fail;
1951 }
1952
1953 brelse(di_bh);
1954
1955 return 0;
1956
1957 out_fail:
1958 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1959
1960 brelse(di_bh);
1961 ocfs2_inode_unlock(inode, 1);
1962
1963 return ret;
1964 }
1965
ocfs2_write_end_inline(struct inode * inode,loff_t pos,unsigned len,unsigned * copied,struct ocfs2_dinode * di,struct ocfs2_write_ctxt * wc)1966 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1967 unsigned len, unsigned *copied,
1968 struct ocfs2_dinode *di,
1969 struct ocfs2_write_ctxt *wc)
1970 {
1971 void *kaddr;
1972
1973 if (unlikely(*copied < len)) {
1974 if (!PageUptodate(wc->w_target_page)) {
1975 *copied = 0;
1976 return;
1977 }
1978 }
1979
1980 kaddr = kmap_atomic(wc->w_target_page);
1981 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1982 kunmap_atomic(kaddr);
1983
1984 trace_ocfs2_write_end_inline(
1985 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1986 (unsigned long long)pos, *copied,
1987 le16_to_cpu(di->id2.i_data.id_count),
1988 le16_to_cpu(di->i_dyn_features));
1989 }
1990
ocfs2_write_end_nolock(struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1991 int ocfs2_write_end_nolock(struct address_space *mapping,
1992 loff_t pos, unsigned len, unsigned copied,
1993 struct page *page, void *fsdata)
1994 {
1995 int i;
1996 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1997 struct inode *inode = mapping->host;
1998 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1999 struct ocfs2_write_ctxt *wc = fsdata;
2000 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2001 handle_t *handle = wc->w_handle;
2002 struct page *tmppage;
2003
2004 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2005 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2006 goto out_write_size;
2007 }
2008
2009 if (unlikely(copied < len)) {
2010 if (!PageUptodate(wc->w_target_page))
2011 copied = 0;
2012
2013 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2014 start+len);
2015 }
2016 flush_dcache_page(wc->w_target_page);
2017
2018 for(i = 0; i < wc->w_num_pages; i++) {
2019 tmppage = wc->w_pages[i];
2020
2021 if (tmppage == wc->w_target_page) {
2022 from = wc->w_target_from;
2023 to = wc->w_target_to;
2024
2025 BUG_ON(from > PAGE_CACHE_SIZE ||
2026 to > PAGE_CACHE_SIZE ||
2027 to < from);
2028 } else {
2029 /*
2030 * Pages adjacent to the target (if any) imply
2031 * a hole-filling write in which case we want
2032 * to flush their entire range.
2033 */
2034 from = 0;
2035 to = PAGE_CACHE_SIZE;
2036 }
2037
2038 if (page_has_buffers(tmppage)) {
2039 if (ocfs2_should_order_data(inode))
2040 ocfs2_jbd2_file_inode(wc->w_handle, inode);
2041 block_commit_write(tmppage, from, to);
2042 }
2043 }
2044
2045 out_write_size:
2046 pos += copied;
2047 if (pos > inode->i_size) {
2048 i_size_write(inode, pos);
2049 mark_inode_dirty(inode);
2050 }
2051 inode->i_blocks = ocfs2_inode_sector_count(inode);
2052 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2053 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2054 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2055 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2056 ocfs2_journal_dirty(handle, wc->w_di_bh);
2057
2058 ocfs2_commit_trans(osb, handle);
2059
2060 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2061
2062 ocfs2_free_write_ctxt(wc);
2063
2064 return copied;
2065 }
2066
ocfs2_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2067 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2068 loff_t pos, unsigned len, unsigned copied,
2069 struct page *page, void *fsdata)
2070 {
2071 int ret;
2072 struct inode *inode = mapping->host;
2073
2074 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2075
2076 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2077 ocfs2_inode_unlock(inode, 1);
2078
2079 return ret;
2080 }
2081
2082 const struct address_space_operations ocfs2_aops = {
2083 .readpage = ocfs2_readpage,
2084 .readpages = ocfs2_readpages,
2085 .writepage = ocfs2_writepage,
2086 .write_begin = ocfs2_write_begin,
2087 .write_end = ocfs2_write_end,
2088 .bmap = ocfs2_bmap,
2089 .direct_IO = ocfs2_direct_IO,
2090 .invalidatepage = ocfs2_invalidatepage,
2091 .releasepage = ocfs2_releasepage,
2092 .migratepage = buffer_migrate_page,
2093 .is_partially_uptodate = block_is_partially_uptodate,
2094 .error_remove_page = generic_error_remove_page,
2095 };
2096