1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2013 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 ******************************************************************************/
27
28 /* e1000_i210
29 * e1000_i211
30 */
31
32 #include <linux/types.h>
33 #include <linux/if_ether.h>
34
35 #include "e1000_hw.h"
36 #include "e1000_i210.h"
37
38 /**
39 * igb_get_hw_semaphore_i210 - Acquire hardware semaphore
40 * @hw: pointer to the HW structure
41 *
42 * Acquire the HW semaphore to access the PHY or NVM
43 */
igb_get_hw_semaphore_i210(struct e1000_hw * hw)44 static s32 igb_get_hw_semaphore_i210(struct e1000_hw *hw)
45 {
46 u32 swsm;
47 s32 timeout = hw->nvm.word_size + 1;
48 s32 i = 0;
49
50 /* Get the SW semaphore */
51 while (i < timeout) {
52 swsm = rd32(E1000_SWSM);
53 if (!(swsm & E1000_SWSM_SMBI))
54 break;
55
56 udelay(50);
57 i++;
58 }
59
60 if (i == timeout) {
61 /* In rare circumstances, the SW semaphore may already be held
62 * unintentionally. Clear the semaphore once before giving up.
63 */
64 if (hw->dev_spec._82575.clear_semaphore_once) {
65 hw->dev_spec._82575.clear_semaphore_once = false;
66 igb_put_hw_semaphore(hw);
67 for (i = 0; i < timeout; i++) {
68 swsm = rd32(E1000_SWSM);
69 if (!(swsm & E1000_SWSM_SMBI))
70 break;
71
72 udelay(50);
73 }
74 }
75
76 /* If we do not have the semaphore here, we have to give up. */
77 if (i == timeout) {
78 hw_dbg("Driver can't access device - SMBI bit is set.\n");
79 return -E1000_ERR_NVM;
80 }
81 }
82
83 /* Get the FW semaphore. */
84 for (i = 0; i < timeout; i++) {
85 swsm = rd32(E1000_SWSM);
86 wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
87
88 /* Semaphore acquired if bit latched */
89 if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
90 break;
91
92 udelay(50);
93 }
94
95 if (i == timeout) {
96 /* Release semaphores */
97 igb_put_hw_semaphore(hw);
98 hw_dbg("Driver can't access the NVM\n");
99 return -E1000_ERR_NVM;
100 }
101
102 return E1000_SUCCESS;
103 }
104
105 /**
106 * igb_acquire_nvm_i210 - Request for access to EEPROM
107 * @hw: pointer to the HW structure
108 *
109 * Acquire the necessary semaphores for exclusive access to the EEPROM.
110 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
111 * Return successful if access grant bit set, else clear the request for
112 * EEPROM access and return -E1000_ERR_NVM (-1).
113 **/
igb_acquire_nvm_i210(struct e1000_hw * hw)114 s32 igb_acquire_nvm_i210(struct e1000_hw *hw)
115 {
116 return igb_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
117 }
118
119 /**
120 * igb_release_nvm_i210 - Release exclusive access to EEPROM
121 * @hw: pointer to the HW structure
122 *
123 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
124 * then release the semaphores acquired.
125 **/
igb_release_nvm_i210(struct e1000_hw * hw)126 void igb_release_nvm_i210(struct e1000_hw *hw)
127 {
128 igb_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
129 }
130
131 /**
132 * igb_acquire_swfw_sync_i210 - Acquire SW/FW semaphore
133 * @hw: pointer to the HW structure
134 * @mask: specifies which semaphore to acquire
135 *
136 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
137 * will also specify which port we're acquiring the lock for.
138 **/
igb_acquire_swfw_sync_i210(struct e1000_hw * hw,u16 mask)139 s32 igb_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
140 {
141 u32 swfw_sync;
142 u32 swmask = mask;
143 u32 fwmask = mask << 16;
144 s32 ret_val = E1000_SUCCESS;
145 s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
146
147 while (i < timeout) {
148 if (igb_get_hw_semaphore_i210(hw)) {
149 ret_val = -E1000_ERR_SWFW_SYNC;
150 goto out;
151 }
152
153 swfw_sync = rd32(E1000_SW_FW_SYNC);
154 if (!(swfw_sync & (fwmask | swmask)))
155 break;
156
157 /* Firmware currently using resource (fwmask) */
158 igb_put_hw_semaphore(hw);
159 mdelay(5);
160 i++;
161 }
162
163 if (i == timeout) {
164 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
165 ret_val = -E1000_ERR_SWFW_SYNC;
166 goto out;
167 }
168
169 swfw_sync |= swmask;
170 wr32(E1000_SW_FW_SYNC, swfw_sync);
171
172 igb_put_hw_semaphore(hw);
173 out:
174 return ret_val;
175 }
176
177 /**
178 * igb_release_swfw_sync_i210 - Release SW/FW semaphore
179 * @hw: pointer to the HW structure
180 * @mask: specifies which semaphore to acquire
181 *
182 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
183 * will also specify which port we're releasing the lock for.
184 **/
igb_release_swfw_sync_i210(struct e1000_hw * hw,u16 mask)185 void igb_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
186 {
187 u32 swfw_sync;
188
189 while (igb_get_hw_semaphore_i210(hw) != E1000_SUCCESS)
190 ; /* Empty */
191
192 swfw_sync = rd32(E1000_SW_FW_SYNC);
193 swfw_sync &= ~mask;
194 wr32(E1000_SW_FW_SYNC, swfw_sync);
195
196 igb_put_hw_semaphore(hw);
197 }
198
199 /**
200 * igb_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register
201 * @hw: pointer to the HW structure
202 * @offset: offset of word in the Shadow Ram to read
203 * @words: number of words to read
204 * @data: word read from the Shadow Ram
205 *
206 * Reads a 16 bit word from the Shadow Ram using the EERD register.
207 * Uses necessary synchronization semaphores.
208 **/
igb_read_nvm_srrd_i210(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)209 s32 igb_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
210 u16 *data)
211 {
212 s32 status = E1000_SUCCESS;
213 u16 i, count;
214
215 /* We cannot hold synchronization semaphores for too long,
216 * because of forceful takeover procedure. However it is more efficient
217 * to read in bursts than synchronizing access for each word.
218 */
219 for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
220 count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
221 E1000_EERD_EEWR_MAX_COUNT : (words - i);
222 if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
223 status = igb_read_nvm_eerd(hw, offset, count,
224 data + i);
225 hw->nvm.ops.release(hw);
226 } else {
227 status = E1000_ERR_SWFW_SYNC;
228 }
229
230 if (status != E1000_SUCCESS)
231 break;
232 }
233
234 return status;
235 }
236
237 /**
238 * igb_write_nvm_srwr - Write to Shadow Ram using EEWR
239 * @hw: pointer to the HW structure
240 * @offset: offset within the Shadow Ram to be written to
241 * @words: number of words to write
242 * @data: 16 bit word(s) to be written to the Shadow Ram
243 *
244 * Writes data to Shadow Ram at offset using EEWR register.
245 *
246 * If igb_update_nvm_checksum is not called after this function , the
247 * Shadow Ram will most likely contain an invalid checksum.
248 **/
igb_write_nvm_srwr(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)249 static s32 igb_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
250 u16 *data)
251 {
252 struct e1000_nvm_info *nvm = &hw->nvm;
253 u32 i, k, eewr = 0;
254 u32 attempts = 100000;
255 s32 ret_val = E1000_SUCCESS;
256
257 /* A check for invalid values: offset too large, too many words,
258 * too many words for the offset, and not enough words.
259 */
260 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
261 (words == 0)) {
262 hw_dbg("nvm parameter(s) out of bounds\n");
263 ret_val = -E1000_ERR_NVM;
264 goto out;
265 }
266
267 for (i = 0; i < words; i++) {
268 eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
269 (data[i] << E1000_NVM_RW_REG_DATA) |
270 E1000_NVM_RW_REG_START;
271
272 wr32(E1000_SRWR, eewr);
273
274 for (k = 0; k < attempts; k++) {
275 if (E1000_NVM_RW_REG_DONE &
276 rd32(E1000_SRWR)) {
277 ret_val = E1000_SUCCESS;
278 break;
279 }
280 udelay(5);
281 }
282
283 if (ret_val != E1000_SUCCESS) {
284 hw_dbg("Shadow RAM write EEWR timed out\n");
285 break;
286 }
287 }
288
289 out:
290 return ret_val;
291 }
292
293 /**
294 * igb_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR
295 * @hw: pointer to the HW structure
296 * @offset: offset within the Shadow RAM to be written to
297 * @words: number of words to write
298 * @data: 16 bit word(s) to be written to the Shadow RAM
299 *
300 * Writes data to Shadow RAM at offset using EEWR register.
301 *
302 * If e1000_update_nvm_checksum is not called after this function , the
303 * data will not be committed to FLASH and also Shadow RAM will most likely
304 * contain an invalid checksum.
305 *
306 * If error code is returned, data and Shadow RAM may be inconsistent - buffer
307 * partially written.
308 **/
igb_write_nvm_srwr_i210(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)309 s32 igb_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
310 u16 *data)
311 {
312 s32 status = E1000_SUCCESS;
313 u16 i, count;
314
315 /* We cannot hold synchronization semaphores for too long,
316 * because of forceful takeover procedure. However it is more efficient
317 * to write in bursts than synchronizing access for each word.
318 */
319 for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
320 count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
321 E1000_EERD_EEWR_MAX_COUNT : (words - i);
322 if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
323 status = igb_write_nvm_srwr(hw, offset, count,
324 data + i);
325 hw->nvm.ops.release(hw);
326 } else {
327 status = E1000_ERR_SWFW_SYNC;
328 }
329
330 if (status != E1000_SUCCESS)
331 break;
332 }
333
334 return status;
335 }
336
337 /**
338 * igb_read_nvm_i211 - Read NVM wrapper function for I211
339 * @hw: pointer to the HW structure
340 * @words: number of words to read
341 * @data: pointer to the data read
342 *
343 * Wrapper function to return data formerly found in the NVM.
344 **/
igb_read_nvm_i211(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)345 s32 igb_read_nvm_i211(struct e1000_hw *hw, u16 offset, u16 words,
346 u16 *data)
347 {
348 s32 ret_val = E1000_SUCCESS;
349
350 /* Only the MAC addr is required to be present in the iNVM */
351 switch (offset) {
352 case NVM_MAC_ADDR:
353 ret_val = igb_read_invm_i211(hw, offset, &data[0]);
354 ret_val |= igb_read_invm_i211(hw, offset+1, &data[1]);
355 ret_val |= igb_read_invm_i211(hw, offset+2, &data[2]);
356 if (ret_val != E1000_SUCCESS)
357 hw_dbg("MAC Addr not found in iNVM\n");
358 break;
359 case NVM_INIT_CTRL_2:
360 ret_val = igb_read_invm_i211(hw, (u8)offset, data);
361 if (ret_val != E1000_SUCCESS) {
362 *data = NVM_INIT_CTRL_2_DEFAULT_I211;
363 ret_val = E1000_SUCCESS;
364 }
365 break;
366 case NVM_INIT_CTRL_4:
367 ret_val = igb_read_invm_i211(hw, (u8)offset, data);
368 if (ret_val != E1000_SUCCESS) {
369 *data = NVM_INIT_CTRL_4_DEFAULT_I211;
370 ret_val = E1000_SUCCESS;
371 }
372 break;
373 case NVM_LED_1_CFG:
374 ret_val = igb_read_invm_i211(hw, (u8)offset, data);
375 if (ret_val != E1000_SUCCESS) {
376 *data = NVM_LED_1_CFG_DEFAULT_I211;
377 ret_val = E1000_SUCCESS;
378 }
379 break;
380 case NVM_LED_0_2_CFG:
381 igb_read_invm_i211(hw, offset, data);
382 if (ret_val != E1000_SUCCESS) {
383 *data = NVM_LED_0_2_CFG_DEFAULT_I211;
384 ret_val = E1000_SUCCESS;
385 }
386 break;
387 case NVM_ID_LED_SETTINGS:
388 ret_val = igb_read_invm_i211(hw, (u8)offset, data);
389 if (ret_val != E1000_SUCCESS) {
390 *data = ID_LED_RESERVED_FFFF;
391 ret_val = E1000_SUCCESS;
392 }
393 case NVM_SUB_DEV_ID:
394 *data = hw->subsystem_device_id;
395 break;
396 case NVM_SUB_VEN_ID:
397 *data = hw->subsystem_vendor_id;
398 break;
399 case NVM_DEV_ID:
400 *data = hw->device_id;
401 break;
402 case NVM_VEN_ID:
403 *data = hw->vendor_id;
404 break;
405 default:
406 hw_dbg("NVM word 0x%02x is not mapped.\n", offset);
407 *data = NVM_RESERVED_WORD;
408 break;
409 }
410 return ret_val;
411 }
412
413 /**
414 * igb_read_invm_i211 - Reads OTP
415 * @hw: pointer to the HW structure
416 * @address: the word address (aka eeprom offset) to read
417 * @data: pointer to the data read
418 *
419 * Reads 16-bit words from the OTP. Return error when the word is not
420 * stored in OTP.
421 **/
igb_read_invm_i211(struct e1000_hw * hw,u16 address,u16 * data)422 s32 igb_read_invm_i211(struct e1000_hw *hw, u16 address, u16 *data)
423 {
424 s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
425 u32 invm_dword;
426 u16 i;
427 u8 record_type, word_address;
428
429 for (i = 0; i < E1000_INVM_SIZE; i++) {
430 invm_dword = rd32(E1000_INVM_DATA_REG(i));
431 /* Get record type */
432 record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
433 if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE)
434 break;
435 if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE)
436 i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
437 if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE)
438 i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
439 if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) {
440 word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
441 if (word_address == (u8)address) {
442 *data = INVM_DWORD_TO_WORD_DATA(invm_dword);
443 hw_dbg("Read INVM Word 0x%02x = %x",
444 address, *data);
445 status = E1000_SUCCESS;
446 break;
447 }
448 }
449 }
450 if (status != E1000_SUCCESS)
451 hw_dbg("Requested word 0x%02x not found in OTP\n", address);
452 return status;
453 }
454
455 /**
456 * igb_read_invm_version - Reads iNVM version and image type
457 * @hw: pointer to the HW structure
458 * @invm_ver: version structure for the version read
459 *
460 * Reads iNVM version and image type.
461 **/
igb_read_invm_version(struct e1000_hw * hw,struct e1000_fw_version * invm_ver)462 s32 igb_read_invm_version(struct e1000_hw *hw,
463 struct e1000_fw_version *invm_ver) {
464 u32 *record = NULL;
465 u32 *next_record = NULL;
466 u32 i = 0;
467 u32 invm_dword = 0;
468 u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE /
469 E1000_INVM_RECORD_SIZE_IN_BYTES);
470 u32 buffer[E1000_INVM_SIZE];
471 s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
472 u16 version = 0;
473
474 /* Read iNVM memory */
475 for (i = 0; i < E1000_INVM_SIZE; i++) {
476 invm_dword = rd32(E1000_INVM_DATA_REG(i));
477 buffer[i] = invm_dword;
478 }
479
480 /* Read version number */
481 for (i = 1; i < invm_blocks; i++) {
482 record = &buffer[invm_blocks - i];
483 next_record = &buffer[invm_blocks - i + 1];
484
485 /* Check if we have first version location used */
486 if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) {
487 version = 0;
488 status = E1000_SUCCESS;
489 break;
490 }
491 /* Check if we have second version location used */
492 else if ((i == 1) &&
493 ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) {
494 version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
495 status = E1000_SUCCESS;
496 break;
497 }
498 /* Check if we have odd version location
499 * used and it is the last one used
500 */
501 else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) &&
502 ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) &&
503 (i != 1))) {
504 version = (*next_record & E1000_INVM_VER_FIELD_TWO)
505 >> 13;
506 status = E1000_SUCCESS;
507 break;
508 }
509 /* Check if we have even version location
510 * used and it is the last one used
511 */
512 else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) &&
513 ((*record & 0x3) == 0)) {
514 version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
515 status = E1000_SUCCESS;
516 break;
517 }
518 }
519
520 if (status == E1000_SUCCESS) {
521 invm_ver->invm_major = (version & E1000_INVM_MAJOR_MASK)
522 >> E1000_INVM_MAJOR_SHIFT;
523 invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK;
524 }
525 /* Read Image Type */
526 for (i = 1; i < invm_blocks; i++) {
527 record = &buffer[invm_blocks - i];
528 next_record = &buffer[invm_blocks - i + 1];
529
530 /* Check if we have image type in first location used */
531 if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) {
532 invm_ver->invm_img_type = 0;
533 status = E1000_SUCCESS;
534 break;
535 }
536 /* Check if we have image type in first location used */
537 else if ((((*record & 0x3) == 0) &&
538 ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) ||
539 ((((*record & 0x3) != 0) && (i != 1)))) {
540 invm_ver->invm_img_type =
541 (*next_record & E1000_INVM_IMGTYPE_FIELD) >> 23;
542 status = E1000_SUCCESS;
543 break;
544 }
545 }
546 return status;
547 }
548
549 /**
550 * igb_validate_nvm_checksum_i210 - Validate EEPROM checksum
551 * @hw: pointer to the HW structure
552 *
553 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
554 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
555 **/
igb_validate_nvm_checksum_i210(struct e1000_hw * hw)556 s32 igb_validate_nvm_checksum_i210(struct e1000_hw *hw)
557 {
558 s32 status = E1000_SUCCESS;
559 s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *);
560
561 if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
562
563 /* Replace the read function with semaphore grabbing with
564 * the one that skips this for a while.
565 * We have semaphore taken already here.
566 */
567 read_op_ptr = hw->nvm.ops.read;
568 hw->nvm.ops.read = igb_read_nvm_eerd;
569
570 status = igb_validate_nvm_checksum(hw);
571
572 /* Revert original read operation. */
573 hw->nvm.ops.read = read_op_ptr;
574
575 hw->nvm.ops.release(hw);
576 } else {
577 status = E1000_ERR_SWFW_SYNC;
578 }
579
580 return status;
581 }
582
583 /**
584 * igb_update_nvm_checksum_i210 - Update EEPROM checksum
585 * @hw: pointer to the HW structure
586 *
587 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
588 * up to the checksum. Then calculates the EEPROM checksum and writes the
589 * value to the EEPROM. Next commit EEPROM data onto the Flash.
590 **/
igb_update_nvm_checksum_i210(struct e1000_hw * hw)591 s32 igb_update_nvm_checksum_i210(struct e1000_hw *hw)
592 {
593 s32 ret_val = E1000_SUCCESS;
594 u16 checksum = 0;
595 u16 i, nvm_data;
596
597 /* Read the first word from the EEPROM. If this times out or fails, do
598 * not continue or we could be in for a very long wait while every
599 * EEPROM read fails
600 */
601 ret_val = igb_read_nvm_eerd(hw, 0, 1, &nvm_data);
602 if (ret_val != E1000_SUCCESS) {
603 hw_dbg("EEPROM read failed\n");
604 goto out;
605 }
606
607 if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
608 /* Do not use hw->nvm.ops.write, hw->nvm.ops.read
609 * because we do not want to take the synchronization
610 * semaphores twice here.
611 */
612
613 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
614 ret_val = igb_read_nvm_eerd(hw, i, 1, &nvm_data);
615 if (ret_val) {
616 hw->nvm.ops.release(hw);
617 hw_dbg("NVM Read Error while updating checksum.\n");
618 goto out;
619 }
620 checksum += nvm_data;
621 }
622 checksum = (u16) NVM_SUM - checksum;
623 ret_val = igb_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
624 &checksum);
625 if (ret_val != E1000_SUCCESS) {
626 hw->nvm.ops.release(hw);
627 hw_dbg("NVM Write Error while updating checksum.\n");
628 goto out;
629 }
630
631 hw->nvm.ops.release(hw);
632
633 ret_val = igb_update_flash_i210(hw);
634 } else {
635 ret_val = -E1000_ERR_SWFW_SYNC;
636 }
637 out:
638 return ret_val;
639 }
640
641 /**
642 * igb_pool_flash_update_done_i210 - Pool FLUDONE status.
643 * @hw: pointer to the HW structure
644 *
645 **/
igb_pool_flash_update_done_i210(struct e1000_hw * hw)646 static s32 igb_pool_flash_update_done_i210(struct e1000_hw *hw)
647 {
648 s32 ret_val = -E1000_ERR_NVM;
649 u32 i, reg;
650
651 for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
652 reg = rd32(E1000_EECD);
653 if (reg & E1000_EECD_FLUDONE_I210) {
654 ret_val = E1000_SUCCESS;
655 break;
656 }
657 udelay(5);
658 }
659
660 return ret_val;
661 }
662
663 /**
664 * igb_update_flash_i210 - Commit EEPROM to the flash
665 * @hw: pointer to the HW structure
666 *
667 **/
igb_update_flash_i210(struct e1000_hw * hw)668 s32 igb_update_flash_i210(struct e1000_hw *hw)
669 {
670 s32 ret_val = E1000_SUCCESS;
671 u32 flup;
672
673 ret_val = igb_pool_flash_update_done_i210(hw);
674 if (ret_val == -E1000_ERR_NVM) {
675 hw_dbg("Flash update time out\n");
676 goto out;
677 }
678
679 flup = rd32(E1000_EECD) | E1000_EECD_FLUPD_I210;
680 wr32(E1000_EECD, flup);
681
682 ret_val = igb_pool_flash_update_done_i210(hw);
683 if (ret_val == E1000_SUCCESS)
684 hw_dbg("Flash update complete\n");
685 else
686 hw_dbg("Flash update time out\n");
687
688 out:
689 return ret_val;
690 }
691
692 /**
693 * igb_valid_led_default_i210 - Verify a valid default LED config
694 * @hw: pointer to the HW structure
695 * @data: pointer to the NVM (EEPROM)
696 *
697 * Read the EEPROM for the current default LED configuration. If the
698 * LED configuration is not valid, set to a valid LED configuration.
699 **/
igb_valid_led_default_i210(struct e1000_hw * hw,u16 * data)700 s32 igb_valid_led_default_i210(struct e1000_hw *hw, u16 *data)
701 {
702 s32 ret_val;
703
704 ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
705 if (ret_val) {
706 hw_dbg("NVM Read Error\n");
707 goto out;
708 }
709
710 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
711 switch (hw->phy.media_type) {
712 case e1000_media_type_internal_serdes:
713 *data = ID_LED_DEFAULT_I210_SERDES;
714 break;
715 case e1000_media_type_copper:
716 default:
717 *data = ID_LED_DEFAULT_I210;
718 break;
719 }
720 }
721 out:
722 return ret_val;
723 }
724
725 /**
726 * __igb_access_xmdio_reg - Read/write XMDIO register
727 * @hw: pointer to the HW structure
728 * @address: XMDIO address to program
729 * @dev_addr: device address to program
730 * @data: pointer to value to read/write from/to the XMDIO address
731 * @read: boolean flag to indicate read or write
732 **/
__igb_access_xmdio_reg(struct e1000_hw * hw,u16 address,u8 dev_addr,u16 * data,bool read)733 static s32 __igb_access_xmdio_reg(struct e1000_hw *hw, u16 address,
734 u8 dev_addr, u16 *data, bool read)
735 {
736 s32 ret_val = E1000_SUCCESS;
737
738 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr);
739 if (ret_val)
740 return ret_val;
741
742 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address);
743 if (ret_val)
744 return ret_val;
745
746 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA |
747 dev_addr);
748 if (ret_val)
749 return ret_val;
750
751 if (read)
752 ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data);
753 else
754 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data);
755 if (ret_val)
756 return ret_val;
757
758 /* Recalibrate the device back to 0 */
759 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0);
760 if (ret_val)
761 return ret_val;
762
763 return ret_val;
764 }
765
766 /**
767 * igb_read_xmdio_reg - Read XMDIO register
768 * @hw: pointer to the HW structure
769 * @addr: XMDIO address to program
770 * @dev_addr: device address to program
771 * @data: value to be read from the EMI address
772 **/
igb_read_xmdio_reg(struct e1000_hw * hw,u16 addr,u8 dev_addr,u16 * data)773 s32 igb_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data)
774 {
775 return __igb_access_xmdio_reg(hw, addr, dev_addr, data, true);
776 }
777
778 /**
779 * igb_write_xmdio_reg - Write XMDIO register
780 * @hw: pointer to the HW structure
781 * @addr: XMDIO address to program
782 * @dev_addr: device address to program
783 * @data: value to be written to the XMDIO address
784 **/
igb_write_xmdio_reg(struct e1000_hw * hw,u16 addr,u8 dev_addr,u16 data)785 s32 igb_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data)
786 {
787 return __igb_access_xmdio_reg(hw, addr, dev_addr, &data, false);
788 }
789