• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) output module.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Donald Becker, <becker@super.org>
11  *		Alan Cox, <Alan.Cox@linux.org>
12  *		Richard Underwood
13  *		Stefan Becker, <stefanb@yello.ping.de>
14  *		Jorge Cwik, <jorge@laser.satlink.net>
15  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16  *		Hirokazu Takahashi, <taka@valinux.co.jp>
17  *
18  *	See ip_input.c for original log
19  *
20  *	Fixes:
21  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
22  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
23  *		Bradford Johnson:	Fix faulty handling of some frames when
24  *					no route is found.
25  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
26  *					(in case if packet not accepted by
27  *					output firewall rules)
28  *		Mike McLagan	:	Routing by source
29  *		Alexey Kuznetsov:	use new route cache
30  *		Andi Kleen:		Fix broken PMTU recovery and remove
31  *					some redundant tests.
32  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
33  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
34  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
35  *					for decreased register pressure on x86
36  *					and more readibility.
37  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
38  *					silently drop skb instead of failing with -EPERM.
39  *		Detlev Wengorz	:	Copy protocol for fragments.
40  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
41  *					datagrams.
42  *		Hirokazu Takahashi:	sendfile() on UDP works now.
43  */
44 
45 #include <asm/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
49 #include <linux/mm.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
54 
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
64 
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <linux/igmp.h>
77 #include <linux/netfilter_ipv4.h>
78 #include <linux/netfilter_bridge.h>
79 #include <linux/mroute.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
82 
83 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
84 EXPORT_SYMBOL(sysctl_ip_default_ttl);
85 
86 /* Generate a checksum for an outgoing IP datagram. */
ip_send_check(struct iphdr * iph)87 void ip_send_check(struct iphdr *iph)
88 {
89 	iph->check = 0;
90 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
91 }
92 EXPORT_SYMBOL(ip_send_check);
93 
__ip_local_out(struct sk_buff * skb)94 int __ip_local_out(struct sk_buff *skb)
95 {
96 	struct iphdr *iph = ip_hdr(skb);
97 
98 	iph->tot_len = htons(skb->len);
99 	ip_send_check(iph);
100 	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, skb, NULL,
101 		       skb_dst(skb)->dev, dst_output);
102 }
103 
ip_local_out(struct sk_buff * skb)104 int ip_local_out(struct sk_buff *skb)
105 {
106 	int err;
107 
108 	err = __ip_local_out(skb);
109 	if (likely(err == 1))
110 		err = dst_output(skb);
111 
112 	return err;
113 }
114 EXPORT_SYMBOL_GPL(ip_local_out);
115 
ip_select_ttl(struct inet_sock * inet,struct dst_entry * dst)116 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
117 {
118 	int ttl = inet->uc_ttl;
119 
120 	if (ttl < 0)
121 		ttl = ip4_dst_hoplimit(dst);
122 	return ttl;
123 }
124 
125 /*
126  *		Add an ip header to a skbuff and send it out.
127  *
128  */
ip_build_and_send_pkt(struct sk_buff * skb,struct sock * sk,__be32 saddr,__be32 daddr,struct ip_options_rcu * opt)129 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
130 			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
131 {
132 	struct inet_sock *inet = inet_sk(sk);
133 	struct rtable *rt = skb_rtable(skb);
134 	struct iphdr *iph;
135 
136 	/* Build the IP header. */
137 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
138 	skb_reset_network_header(skb);
139 	iph = ip_hdr(skb);
140 	iph->version  = 4;
141 	iph->ihl      = 5;
142 	iph->tos      = inet->tos;
143 	if (ip_dont_fragment(sk, &rt->dst))
144 		iph->frag_off = htons(IP_DF);
145 	else
146 		iph->frag_off = 0;
147 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
148 	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
149 	iph->saddr    = saddr;
150 	iph->protocol = sk->sk_protocol;
151 	ip_select_ident(iph, &rt->dst, sk);
152 
153 	if (opt && opt->opt.optlen) {
154 		iph->ihl += opt->opt.optlen>>2;
155 		ip_options_build(skb, &opt->opt, daddr, rt, 0);
156 	}
157 
158 	skb->priority = sk->sk_priority;
159 	skb->mark = sk->sk_mark;
160 
161 	/* Send it out. */
162 	return ip_local_out(skb);
163 }
164 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
165 
ip_finish_output2(struct sk_buff * skb)166 static inline int ip_finish_output2(struct sk_buff *skb)
167 {
168 	struct dst_entry *dst = skb_dst(skb);
169 	struct rtable *rt = (struct rtable *)dst;
170 	struct net_device *dev = dst->dev;
171 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
172 	struct neighbour *neigh;
173 	u32 nexthop;
174 
175 	if (rt->rt_type == RTN_MULTICAST) {
176 		IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
177 	} else if (rt->rt_type == RTN_BROADCAST)
178 		IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
179 
180 	/* Be paranoid, rather than too clever. */
181 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
182 		struct sk_buff *skb2;
183 
184 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
185 		if (skb2 == NULL) {
186 			kfree_skb(skb);
187 			return -ENOMEM;
188 		}
189 		if (skb->sk)
190 			skb_set_owner_w(skb2, skb->sk);
191 		consume_skb(skb);
192 		skb = skb2;
193 	}
194 
195 	rcu_read_lock_bh();
196 	nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
197 	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
198 	if (unlikely(!neigh))
199 		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
200 	if (!IS_ERR(neigh)) {
201 		int res = dst_neigh_output(dst, neigh, skb);
202 
203 		rcu_read_unlock_bh();
204 		return res;
205 	}
206 	rcu_read_unlock_bh();
207 
208 	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
209 			    __func__);
210 	kfree_skb(skb);
211 	return -EINVAL;
212 }
213 
ip_skb_dst_mtu(struct sk_buff * skb)214 static inline int ip_skb_dst_mtu(struct sk_buff *skb)
215 {
216 	struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
217 
218 	return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
219 	       skb_dst(skb)->dev->mtu : dst_mtu(skb_dst(skb));
220 }
221 
ip_finish_output(struct sk_buff * skb)222 static int ip_finish_output(struct sk_buff *skb)
223 {
224 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
225 	/* Policy lookup after SNAT yielded a new policy */
226 	if (skb_dst(skb)->xfrm != NULL) {
227 		IPCB(skb)->flags |= IPSKB_REROUTED;
228 		return dst_output(skb);
229 	}
230 #endif
231 	if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
232 		return ip_fragment(skb, ip_finish_output2);
233 	else
234 		return ip_finish_output2(skb);
235 }
236 
ip_mc_output(struct sk_buff * skb)237 int ip_mc_output(struct sk_buff *skb)
238 {
239 	struct sock *sk = skb->sk;
240 	struct rtable *rt = skb_rtable(skb);
241 	struct net_device *dev = rt->dst.dev;
242 
243 	/*
244 	 *	If the indicated interface is up and running, send the packet.
245 	 */
246 	IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
247 
248 	skb->dev = dev;
249 	skb->protocol = htons(ETH_P_IP);
250 
251 	/*
252 	 *	Multicasts are looped back for other local users
253 	 */
254 
255 	if (rt->rt_flags&RTCF_MULTICAST) {
256 		if (sk_mc_loop(sk)
257 #ifdef CONFIG_IP_MROUTE
258 		/* Small optimization: do not loopback not local frames,
259 		   which returned after forwarding; they will be  dropped
260 		   by ip_mr_input in any case.
261 		   Note, that local frames are looped back to be delivered
262 		   to local recipients.
263 
264 		   This check is duplicated in ip_mr_input at the moment.
265 		 */
266 		    &&
267 		    ((rt->rt_flags & RTCF_LOCAL) ||
268 		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
269 #endif
270 		   ) {
271 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
272 			if (newskb)
273 				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
274 					newskb, NULL, newskb->dev,
275 					dev_loopback_xmit);
276 		}
277 
278 		/* Multicasts with ttl 0 must not go beyond the host */
279 
280 		if (ip_hdr(skb)->ttl == 0) {
281 			kfree_skb(skb);
282 			return 0;
283 		}
284 	}
285 
286 	if (rt->rt_flags&RTCF_BROADCAST) {
287 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
288 		if (newskb)
289 			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, newskb,
290 				NULL, newskb->dev, dev_loopback_xmit);
291 	}
292 
293 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL,
294 			    skb->dev, ip_finish_output,
295 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
296 }
297 
ip_output(struct sk_buff * skb)298 int ip_output(struct sk_buff *skb)
299 {
300 	struct net_device *dev = skb_dst(skb)->dev;
301 
302 	IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
303 
304 	skb->dev = dev;
305 	skb->protocol = htons(ETH_P_IP);
306 
307 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL, dev,
308 			    ip_finish_output,
309 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
310 }
311 
312 /*
313  * copy saddr and daddr, possibly using 64bit load/stores
314  * Equivalent to :
315  *   iph->saddr = fl4->saddr;
316  *   iph->daddr = fl4->daddr;
317  */
ip_copy_addrs(struct iphdr * iph,const struct flowi4 * fl4)318 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
319 {
320 	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
321 		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
322 	memcpy(&iph->saddr, &fl4->saddr,
323 	       sizeof(fl4->saddr) + sizeof(fl4->daddr));
324 }
325 
ip_queue_xmit(struct sk_buff * skb,struct flowi * fl)326 int ip_queue_xmit(struct sk_buff *skb, struct flowi *fl)
327 {
328 	struct sock *sk = skb->sk;
329 	struct inet_sock *inet = inet_sk(sk);
330 	struct ip_options_rcu *inet_opt;
331 	struct flowi4 *fl4;
332 	struct rtable *rt;
333 	struct iphdr *iph;
334 	int res;
335 
336 	/* Skip all of this if the packet is already routed,
337 	 * f.e. by something like SCTP.
338 	 */
339 	rcu_read_lock();
340 	inet_opt = rcu_dereference(inet->inet_opt);
341 	fl4 = &fl->u.ip4;
342 	rt = skb_rtable(skb);
343 	if (rt != NULL)
344 		goto packet_routed;
345 
346 	/* Make sure we can route this packet. */
347 	rt = (struct rtable *)__sk_dst_check(sk, 0);
348 	if (rt == NULL) {
349 		__be32 daddr;
350 
351 		/* Use correct destination address if we have options. */
352 		daddr = inet->inet_daddr;
353 		if (inet_opt && inet_opt->opt.srr)
354 			daddr = inet_opt->opt.faddr;
355 
356 		/* If this fails, retransmit mechanism of transport layer will
357 		 * keep trying until route appears or the connection times
358 		 * itself out.
359 		 */
360 		rt = ip_route_output_ports(sock_net(sk), fl4, sk,
361 					   daddr, inet->inet_saddr,
362 					   inet->inet_dport,
363 					   inet->inet_sport,
364 					   sk->sk_protocol,
365 					   RT_CONN_FLAGS(sk),
366 					   sk->sk_bound_dev_if);
367 		if (IS_ERR(rt))
368 			goto no_route;
369 		sk_setup_caps(sk, &rt->dst);
370 	}
371 	skb_dst_set_noref(skb, &rt->dst);
372 
373 packet_routed:
374 	if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
375 		goto no_route;
376 
377 	/* OK, we know where to send it, allocate and build IP header. */
378 	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
379 	skb_reset_network_header(skb);
380 	iph = ip_hdr(skb);
381 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
382 	if (ip_dont_fragment(sk, &rt->dst) && !skb->local_df)
383 		iph->frag_off = htons(IP_DF);
384 	else
385 		iph->frag_off = 0;
386 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
387 	iph->protocol = sk->sk_protocol;
388 	ip_copy_addrs(iph, fl4);
389 
390 	/* Transport layer set skb->h.foo itself. */
391 
392 	if (inet_opt && inet_opt->opt.optlen) {
393 		iph->ihl += inet_opt->opt.optlen >> 2;
394 		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
395 	}
396 
397 	ip_select_ident_more(iph, &rt->dst, sk,
398 			     (skb_shinfo(skb)->gso_segs ?: 1) - 1);
399 
400 	skb->priority = sk->sk_priority;
401 	skb->mark = sk->sk_mark;
402 
403 	res = ip_local_out(skb);
404 	rcu_read_unlock();
405 	return res;
406 
407 no_route:
408 	rcu_read_unlock();
409 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
410 	kfree_skb(skb);
411 	return -EHOSTUNREACH;
412 }
413 EXPORT_SYMBOL(ip_queue_xmit);
414 
415 
ip_copy_metadata(struct sk_buff * to,struct sk_buff * from)416 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
417 {
418 	to->pkt_type = from->pkt_type;
419 	to->priority = from->priority;
420 	to->protocol = from->protocol;
421 	skb_dst_drop(to);
422 	skb_dst_copy(to, from);
423 	to->dev = from->dev;
424 	to->mark = from->mark;
425 
426 	/* Copy the flags to each fragment. */
427 	IPCB(to)->flags = IPCB(from)->flags;
428 
429 #ifdef CONFIG_NET_SCHED
430 	to->tc_index = from->tc_index;
431 #endif
432 	nf_copy(to, from);
433 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
434 	to->nf_trace = from->nf_trace;
435 #endif
436 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
437 	to->ipvs_property = from->ipvs_property;
438 #endif
439 	skb_copy_secmark(to, from);
440 }
441 
442 /*
443  *	This IP datagram is too large to be sent in one piece.  Break it up into
444  *	smaller pieces (each of size equal to IP header plus
445  *	a block of the data of the original IP data part) that will yet fit in a
446  *	single device frame, and queue such a frame for sending.
447  */
448 
ip_fragment(struct sk_buff * skb,int (* output)(struct sk_buff *))449 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
450 {
451 	struct iphdr *iph;
452 	int ptr;
453 	struct net_device *dev;
454 	struct sk_buff *skb2;
455 	unsigned int mtu, hlen, left, len, ll_rs;
456 	int offset;
457 	__be16 not_last_frag;
458 	struct rtable *rt = skb_rtable(skb);
459 	int err = 0;
460 
461 	dev = rt->dst.dev;
462 
463 	/*
464 	 *	Point into the IP datagram header.
465 	 */
466 
467 	iph = ip_hdr(skb);
468 
469 	if (unlikely(((iph->frag_off & htons(IP_DF)) && !skb->local_df) ||
470 		     (IPCB(skb)->frag_max_size &&
471 		      IPCB(skb)->frag_max_size > dst_mtu(&rt->dst)))) {
472 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
473 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
474 			  htonl(ip_skb_dst_mtu(skb)));
475 		kfree_skb(skb);
476 		return -EMSGSIZE;
477 	}
478 
479 	/*
480 	 *	Setup starting values.
481 	 */
482 
483 	hlen = iph->ihl * 4;
484 	mtu = dst_mtu(&rt->dst) - hlen;	/* Size of data space */
485 #ifdef CONFIG_BRIDGE_NETFILTER
486 	if (skb->nf_bridge)
487 		mtu -= nf_bridge_mtu_reduction(skb);
488 #endif
489 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
490 
491 	/* When frag_list is given, use it. First, check its validity:
492 	 * some transformers could create wrong frag_list or break existing
493 	 * one, it is not prohibited. In this case fall back to copying.
494 	 *
495 	 * LATER: this step can be merged to real generation of fragments,
496 	 * we can switch to copy when see the first bad fragment.
497 	 */
498 	if (skb_has_frag_list(skb)) {
499 		struct sk_buff *frag, *frag2;
500 		int first_len = skb_pagelen(skb);
501 
502 		if (first_len - hlen > mtu ||
503 		    ((first_len - hlen) & 7) ||
504 		    ip_is_fragment(iph) ||
505 		    skb_cloned(skb))
506 			goto slow_path;
507 
508 		skb_walk_frags(skb, frag) {
509 			/* Correct geometry. */
510 			if (frag->len > mtu ||
511 			    ((frag->len & 7) && frag->next) ||
512 			    skb_headroom(frag) < hlen)
513 				goto slow_path_clean;
514 
515 			/* Partially cloned skb? */
516 			if (skb_shared(frag))
517 				goto slow_path_clean;
518 
519 			BUG_ON(frag->sk);
520 			if (skb->sk) {
521 				frag->sk = skb->sk;
522 				frag->destructor = sock_wfree;
523 			}
524 			skb->truesize -= frag->truesize;
525 		}
526 
527 		/* Everything is OK. Generate! */
528 
529 		err = 0;
530 		offset = 0;
531 		frag = skb_shinfo(skb)->frag_list;
532 		skb_frag_list_init(skb);
533 		skb->data_len = first_len - skb_headlen(skb);
534 		skb->len = first_len;
535 		iph->tot_len = htons(first_len);
536 		iph->frag_off = htons(IP_MF);
537 		ip_send_check(iph);
538 
539 		for (;;) {
540 			/* Prepare header of the next frame,
541 			 * before previous one went down. */
542 			if (frag) {
543 				frag->ip_summed = CHECKSUM_NONE;
544 				skb_reset_transport_header(frag);
545 				__skb_push(frag, hlen);
546 				skb_reset_network_header(frag);
547 				memcpy(skb_network_header(frag), iph, hlen);
548 				iph = ip_hdr(frag);
549 				iph->tot_len = htons(frag->len);
550 				ip_copy_metadata(frag, skb);
551 				if (offset == 0)
552 					ip_options_fragment(frag);
553 				offset += skb->len - hlen;
554 				iph->frag_off = htons(offset>>3);
555 				if (frag->next != NULL)
556 					iph->frag_off |= htons(IP_MF);
557 				/* Ready, complete checksum */
558 				ip_send_check(iph);
559 			}
560 
561 			err = output(skb);
562 
563 			if (!err)
564 				IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
565 			if (err || !frag)
566 				break;
567 
568 			skb = frag;
569 			frag = skb->next;
570 			skb->next = NULL;
571 		}
572 
573 		if (err == 0) {
574 			IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
575 			return 0;
576 		}
577 
578 		while (frag) {
579 			skb = frag->next;
580 			kfree_skb(frag);
581 			frag = skb;
582 		}
583 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
584 		return err;
585 
586 slow_path_clean:
587 		skb_walk_frags(skb, frag2) {
588 			if (frag2 == frag)
589 				break;
590 			frag2->sk = NULL;
591 			frag2->destructor = NULL;
592 			skb->truesize += frag2->truesize;
593 		}
594 	}
595 
596 slow_path:
597 	/* for offloaded checksums cleanup checksum before fragmentation */
598 	if ((skb->ip_summed == CHECKSUM_PARTIAL) && skb_checksum_help(skb))
599 		goto fail;
600 	iph = ip_hdr(skb);
601 
602 	left = skb->len - hlen;		/* Space per frame */
603 	ptr = hlen;		/* Where to start from */
604 
605 	/* for bridged IP traffic encapsulated inside f.e. a vlan header,
606 	 * we need to make room for the encapsulating header
607 	 */
608 	ll_rs = LL_RESERVED_SPACE_EXTRA(rt->dst.dev, nf_bridge_pad(skb));
609 
610 	/*
611 	 *	Fragment the datagram.
612 	 */
613 
614 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
615 	not_last_frag = iph->frag_off & htons(IP_MF);
616 
617 	/*
618 	 *	Keep copying data until we run out.
619 	 */
620 
621 	while (left > 0) {
622 		len = left;
623 		/* IF: it doesn't fit, use 'mtu' - the data space left */
624 		if (len > mtu)
625 			len = mtu;
626 		/* IF: we are not sending up to and including the packet end
627 		   then align the next start on an eight byte boundary */
628 		if (len < left)	{
629 			len &= ~7;
630 		}
631 		/*
632 		 *	Allocate buffer.
633 		 */
634 
635 		if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
636 			NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
637 			err = -ENOMEM;
638 			goto fail;
639 		}
640 
641 		/*
642 		 *	Set up data on packet
643 		 */
644 
645 		ip_copy_metadata(skb2, skb);
646 		skb_reserve(skb2, ll_rs);
647 		skb_put(skb2, len + hlen);
648 		skb_reset_network_header(skb2);
649 		skb2->transport_header = skb2->network_header + hlen;
650 
651 		/*
652 		 *	Charge the memory for the fragment to any owner
653 		 *	it might possess
654 		 */
655 
656 		if (skb->sk)
657 			skb_set_owner_w(skb2, skb->sk);
658 
659 		/*
660 		 *	Copy the packet header into the new buffer.
661 		 */
662 
663 		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
664 
665 		/*
666 		 *	Copy a block of the IP datagram.
667 		 */
668 		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
669 			BUG();
670 		left -= len;
671 
672 		/*
673 		 *	Fill in the new header fields.
674 		 */
675 		iph = ip_hdr(skb2);
676 		iph->frag_off = htons((offset >> 3));
677 
678 		/* ANK: dirty, but effective trick. Upgrade options only if
679 		 * the segment to be fragmented was THE FIRST (otherwise,
680 		 * options are already fixed) and make it ONCE
681 		 * on the initial skb, so that all the following fragments
682 		 * will inherit fixed options.
683 		 */
684 		if (offset == 0)
685 			ip_options_fragment(skb);
686 
687 		/*
688 		 *	Added AC : If we are fragmenting a fragment that's not the
689 		 *		   last fragment then keep MF on each bit
690 		 */
691 		if (left > 0 || not_last_frag)
692 			iph->frag_off |= htons(IP_MF);
693 		ptr += len;
694 		offset += len;
695 
696 		/*
697 		 *	Put this fragment into the sending queue.
698 		 */
699 		iph->tot_len = htons(len + hlen);
700 
701 		ip_send_check(iph);
702 
703 		err = output(skb2);
704 		if (err)
705 			goto fail;
706 
707 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
708 	}
709 	consume_skb(skb);
710 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
711 	return err;
712 
713 fail:
714 	kfree_skb(skb);
715 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
716 	return err;
717 }
718 EXPORT_SYMBOL(ip_fragment);
719 
720 int
ip_generic_getfrag(void * from,char * to,int offset,int len,int odd,struct sk_buff * skb)721 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
722 {
723 	struct iovec *iov = from;
724 
725 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
726 		if (memcpy_fromiovecend(to, iov, offset, len) < 0)
727 			return -EFAULT;
728 	} else {
729 		__wsum csum = 0;
730 		if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
731 			return -EFAULT;
732 		skb->csum = csum_block_add(skb->csum, csum, odd);
733 	}
734 	return 0;
735 }
736 EXPORT_SYMBOL(ip_generic_getfrag);
737 
738 static inline __wsum
csum_page(struct page * page,int offset,int copy)739 csum_page(struct page *page, int offset, int copy)
740 {
741 	char *kaddr;
742 	__wsum csum;
743 	kaddr = kmap(page);
744 	csum = csum_partial(kaddr + offset, copy, 0);
745 	kunmap(page);
746 	return csum;
747 }
748 
ip_ufo_append_data(struct sock * sk,struct sk_buff_head * queue,int getfrag (void * from,char * to,int offset,int len,int odd,struct sk_buff * skb),void * from,int length,int hh_len,int fragheaderlen,int transhdrlen,int maxfraglen,unsigned int flags)749 static inline int ip_ufo_append_data(struct sock *sk,
750 			struct sk_buff_head *queue,
751 			int getfrag(void *from, char *to, int offset, int len,
752 			       int odd, struct sk_buff *skb),
753 			void *from, int length, int hh_len, int fragheaderlen,
754 			int transhdrlen, int maxfraglen, unsigned int flags)
755 {
756 	struct sk_buff *skb;
757 	int err;
758 
759 	/* There is support for UDP fragmentation offload by network
760 	 * device, so create one single skb packet containing complete
761 	 * udp datagram
762 	 */
763 	if ((skb = skb_peek_tail(queue)) == NULL) {
764 		skb = sock_alloc_send_skb(sk,
765 			hh_len + fragheaderlen + transhdrlen + 20,
766 			(flags & MSG_DONTWAIT), &err);
767 
768 		if (skb == NULL)
769 			return err;
770 
771 		/* reserve space for Hardware header */
772 		skb_reserve(skb, hh_len);
773 
774 		/* create space for UDP/IP header */
775 		skb_put(skb, fragheaderlen + transhdrlen);
776 
777 		/* initialize network header pointer */
778 		skb_reset_network_header(skb);
779 
780 		/* initialize protocol header pointer */
781 		skb->transport_header = skb->network_header + fragheaderlen;
782 
783 		skb->ip_summed = CHECKSUM_PARTIAL;
784 		skb->csum = 0;
785 
786 		/* specify the length of each IP datagram fragment */
787 		skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
788 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
789 		__skb_queue_tail(queue, skb);
790 	}
791 
792 	return skb_append_datato_frags(sk, skb, getfrag, from,
793 				       (length - transhdrlen));
794 }
795 
__ip_append_data(struct sock * sk,struct flowi4 * fl4,struct sk_buff_head * queue,struct inet_cork * cork,struct page_frag * pfrag,int getfrag (void * from,char * to,int offset,int len,int odd,struct sk_buff * skb),void * from,int length,int transhdrlen,unsigned int flags)796 static int __ip_append_data(struct sock *sk,
797 			    struct flowi4 *fl4,
798 			    struct sk_buff_head *queue,
799 			    struct inet_cork *cork,
800 			    struct page_frag *pfrag,
801 			    int getfrag(void *from, char *to, int offset,
802 					int len, int odd, struct sk_buff *skb),
803 			    void *from, int length, int transhdrlen,
804 			    unsigned int flags)
805 {
806 	struct inet_sock *inet = inet_sk(sk);
807 	struct sk_buff *skb;
808 
809 	struct ip_options *opt = cork->opt;
810 	int hh_len;
811 	int exthdrlen;
812 	int mtu;
813 	int copy;
814 	int err;
815 	int offset = 0;
816 	unsigned int maxfraglen, fragheaderlen;
817 	int csummode = CHECKSUM_NONE;
818 	struct rtable *rt = (struct rtable *)cork->dst;
819 
820 	skb = skb_peek_tail(queue);
821 
822 	exthdrlen = !skb ? rt->dst.header_len : 0;
823 	mtu = cork->fragsize;
824 
825 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
826 
827 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
828 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
829 
830 	if (cork->length + length > 0xFFFF - fragheaderlen) {
831 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
832 			       mtu-exthdrlen);
833 		return -EMSGSIZE;
834 	}
835 
836 	/*
837 	 * transhdrlen > 0 means that this is the first fragment and we wish
838 	 * it won't be fragmented in the future.
839 	 */
840 	if (transhdrlen &&
841 	    length + fragheaderlen <= mtu &&
842 	    rt->dst.dev->features & NETIF_F_V4_CSUM &&
843 	    !exthdrlen)
844 		csummode = CHECKSUM_PARTIAL;
845 
846 	cork->length += length;
847 	if (((length > mtu) || (skb && skb_is_gso(skb))) &&
848 	    (sk->sk_protocol == IPPROTO_UDP) &&
849 	    (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len) {
850 		err = ip_ufo_append_data(sk, queue, getfrag, from, length,
851 					 hh_len, fragheaderlen, transhdrlen,
852 					 maxfraglen, flags);
853 		if (err)
854 			goto error;
855 		return 0;
856 	}
857 
858 	/* So, what's going on in the loop below?
859 	 *
860 	 * We use calculated fragment length to generate chained skb,
861 	 * each of segments is IP fragment ready for sending to network after
862 	 * adding appropriate IP header.
863 	 */
864 
865 	if (!skb)
866 		goto alloc_new_skb;
867 
868 	while (length > 0) {
869 		/* Check if the remaining data fits into current packet. */
870 		copy = mtu - skb->len;
871 		if (copy < length)
872 			copy = maxfraglen - skb->len;
873 		if (copy <= 0) {
874 			char *data;
875 			unsigned int datalen;
876 			unsigned int fraglen;
877 			unsigned int fraggap;
878 			unsigned int alloclen;
879 			struct sk_buff *skb_prev;
880 alloc_new_skb:
881 			skb_prev = skb;
882 			if (skb_prev)
883 				fraggap = skb_prev->len - maxfraglen;
884 			else
885 				fraggap = 0;
886 
887 			/*
888 			 * If remaining data exceeds the mtu,
889 			 * we know we need more fragment(s).
890 			 */
891 			datalen = length + fraggap;
892 			if (datalen > mtu - fragheaderlen)
893 				datalen = maxfraglen - fragheaderlen;
894 			fraglen = datalen + fragheaderlen;
895 
896 			if ((flags & MSG_MORE) &&
897 			    !(rt->dst.dev->features&NETIF_F_SG))
898 				alloclen = mtu;
899 			else
900 				alloclen = fraglen;
901 
902 			alloclen += exthdrlen;
903 
904 			/* The last fragment gets additional space at tail.
905 			 * Note, with MSG_MORE we overallocate on fragments,
906 			 * because we have no idea what fragment will be
907 			 * the last.
908 			 */
909 			if (datalen == length + fraggap)
910 				alloclen += rt->dst.trailer_len;
911 
912 			if (transhdrlen) {
913 				skb = sock_alloc_send_skb(sk,
914 						alloclen + hh_len + 15,
915 						(flags & MSG_DONTWAIT), &err);
916 			} else {
917 				skb = NULL;
918 				if (atomic_read(&sk->sk_wmem_alloc) <=
919 				    2 * sk->sk_sndbuf)
920 					skb = sock_wmalloc(sk,
921 							   alloclen + hh_len + 15, 1,
922 							   sk->sk_allocation);
923 				if (unlikely(skb == NULL))
924 					err = -ENOBUFS;
925 				else
926 					/* only the initial fragment is
927 					   time stamped */
928 					cork->tx_flags = 0;
929 			}
930 			if (skb == NULL)
931 				goto error;
932 
933 			/*
934 			 *	Fill in the control structures
935 			 */
936 			skb->ip_summed = csummode;
937 			skb->csum = 0;
938 			skb_reserve(skb, hh_len);
939 			skb_shinfo(skb)->tx_flags = cork->tx_flags;
940 
941 			/*
942 			 *	Find where to start putting bytes.
943 			 */
944 			data = skb_put(skb, fraglen + exthdrlen);
945 			skb_set_network_header(skb, exthdrlen);
946 			skb->transport_header = (skb->network_header +
947 						 fragheaderlen);
948 			data += fragheaderlen + exthdrlen;
949 
950 			if (fraggap) {
951 				skb->csum = skb_copy_and_csum_bits(
952 					skb_prev, maxfraglen,
953 					data + transhdrlen, fraggap, 0);
954 				skb_prev->csum = csum_sub(skb_prev->csum,
955 							  skb->csum);
956 				data += fraggap;
957 				pskb_trim_unique(skb_prev, maxfraglen);
958 			}
959 
960 			copy = datalen - transhdrlen - fraggap;
961 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
962 				err = -EFAULT;
963 				kfree_skb(skb);
964 				goto error;
965 			}
966 
967 			offset += copy;
968 			length -= datalen - fraggap;
969 			transhdrlen = 0;
970 			exthdrlen = 0;
971 			csummode = CHECKSUM_NONE;
972 
973 			/*
974 			 * Put the packet on the pending queue.
975 			 */
976 			__skb_queue_tail(queue, skb);
977 			continue;
978 		}
979 
980 		if (copy > length)
981 			copy = length;
982 
983 		if (!(rt->dst.dev->features&NETIF_F_SG)) {
984 			unsigned int off;
985 
986 			off = skb->len;
987 			if (getfrag(from, skb_put(skb, copy),
988 					offset, copy, off, skb) < 0) {
989 				__skb_trim(skb, off);
990 				err = -EFAULT;
991 				goto error;
992 			}
993 		} else {
994 			int i = skb_shinfo(skb)->nr_frags;
995 
996 			err = -ENOMEM;
997 			if (!sk_page_frag_refill(sk, pfrag))
998 				goto error;
999 
1000 			if (!skb_can_coalesce(skb, i, pfrag->page,
1001 					      pfrag->offset)) {
1002 				err = -EMSGSIZE;
1003 				if (i == MAX_SKB_FRAGS)
1004 					goto error;
1005 
1006 				__skb_fill_page_desc(skb, i, pfrag->page,
1007 						     pfrag->offset, 0);
1008 				skb_shinfo(skb)->nr_frags = ++i;
1009 				get_page(pfrag->page);
1010 			}
1011 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1012 			if (getfrag(from,
1013 				    page_address(pfrag->page) + pfrag->offset,
1014 				    offset, copy, skb->len, skb) < 0)
1015 				goto error_efault;
1016 
1017 			pfrag->offset += copy;
1018 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1019 			skb->len += copy;
1020 			skb->data_len += copy;
1021 			skb->truesize += copy;
1022 			atomic_add(copy, &sk->sk_wmem_alloc);
1023 		}
1024 		offset += copy;
1025 		length -= copy;
1026 	}
1027 
1028 	return 0;
1029 
1030 error_efault:
1031 	err = -EFAULT;
1032 error:
1033 	cork->length -= length;
1034 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1035 	return err;
1036 }
1037 
ip_setup_cork(struct sock * sk,struct inet_cork * cork,struct ipcm_cookie * ipc,struct rtable ** rtp)1038 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1039 			 struct ipcm_cookie *ipc, struct rtable **rtp)
1040 {
1041 	struct inet_sock *inet = inet_sk(sk);
1042 	struct ip_options_rcu *opt;
1043 	struct rtable *rt;
1044 
1045 	/*
1046 	 * setup for corking.
1047 	 */
1048 	opt = ipc->opt;
1049 	if (opt) {
1050 		if (cork->opt == NULL) {
1051 			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1052 					    sk->sk_allocation);
1053 			if (unlikely(cork->opt == NULL))
1054 				return -ENOBUFS;
1055 		}
1056 		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1057 		cork->flags |= IPCORK_OPT;
1058 		cork->addr = ipc->addr;
1059 	}
1060 	rt = *rtp;
1061 	if (unlikely(!rt))
1062 		return -EFAULT;
1063 	/*
1064 	 * We steal reference to this route, caller should not release it
1065 	 */
1066 	*rtp = NULL;
1067 	cork->fragsize = inet->pmtudisc == IP_PMTUDISC_PROBE ?
1068 			 rt->dst.dev->mtu : dst_mtu(&rt->dst);
1069 	cork->dst = &rt->dst;
1070 	cork->length = 0;
1071 	cork->tx_flags = ipc->tx_flags;
1072 
1073 	return 0;
1074 }
1075 
1076 /*
1077  *	ip_append_data() and ip_append_page() can make one large IP datagram
1078  *	from many pieces of data. Each pieces will be holded on the socket
1079  *	until ip_push_pending_frames() is called. Each piece can be a page
1080  *	or non-page data.
1081  *
1082  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1083  *	this interface potentially.
1084  *
1085  *	LATER: length must be adjusted by pad at tail, when it is required.
1086  */
ip_append_data(struct sock * sk,struct flowi4 * fl4,int getfrag (void * from,char * to,int offset,int len,int odd,struct sk_buff * skb),void * from,int length,int transhdrlen,struct ipcm_cookie * ipc,struct rtable ** rtp,unsigned int flags)1087 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1088 		   int getfrag(void *from, char *to, int offset, int len,
1089 			       int odd, struct sk_buff *skb),
1090 		   void *from, int length, int transhdrlen,
1091 		   struct ipcm_cookie *ipc, struct rtable **rtp,
1092 		   unsigned int flags)
1093 {
1094 	struct inet_sock *inet = inet_sk(sk);
1095 	int err;
1096 
1097 	if (flags&MSG_PROBE)
1098 		return 0;
1099 
1100 	if (skb_queue_empty(&sk->sk_write_queue)) {
1101 		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1102 		if (err)
1103 			return err;
1104 	} else {
1105 		transhdrlen = 0;
1106 	}
1107 
1108 	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1109 				sk_page_frag(sk), getfrag,
1110 				from, length, transhdrlen, flags);
1111 }
1112 
ip_append_page(struct sock * sk,struct flowi4 * fl4,struct page * page,int offset,size_t size,int flags)1113 ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1114 		       int offset, size_t size, int flags)
1115 {
1116 	struct inet_sock *inet = inet_sk(sk);
1117 	struct sk_buff *skb;
1118 	struct rtable *rt;
1119 	struct ip_options *opt = NULL;
1120 	struct inet_cork *cork;
1121 	int hh_len;
1122 	int mtu;
1123 	int len;
1124 	int err;
1125 	unsigned int maxfraglen, fragheaderlen, fraggap;
1126 
1127 	if (inet->hdrincl)
1128 		return -EPERM;
1129 
1130 	if (flags&MSG_PROBE)
1131 		return 0;
1132 
1133 	if (skb_queue_empty(&sk->sk_write_queue))
1134 		return -EINVAL;
1135 
1136 	cork = &inet->cork.base;
1137 	rt = (struct rtable *)cork->dst;
1138 	if (cork->flags & IPCORK_OPT)
1139 		opt = cork->opt;
1140 
1141 	if (!(rt->dst.dev->features&NETIF_F_SG))
1142 		return -EOPNOTSUPP;
1143 
1144 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1145 	mtu = cork->fragsize;
1146 
1147 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1148 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1149 
1150 	if (cork->length + size > 0xFFFF - fragheaderlen) {
1151 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, mtu);
1152 		return -EMSGSIZE;
1153 	}
1154 
1155 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1156 		return -EINVAL;
1157 
1158 	cork->length += size;
1159 	if ((size + skb->len > mtu) &&
1160 	    (sk->sk_protocol == IPPROTO_UDP) &&
1161 	    (rt->dst.dev->features & NETIF_F_UFO)) {
1162 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1163 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1164 	}
1165 
1166 
1167 	while (size > 0) {
1168 		int i;
1169 
1170 		if (skb_is_gso(skb))
1171 			len = size;
1172 		else {
1173 
1174 			/* Check if the remaining data fits into current packet. */
1175 			len = mtu - skb->len;
1176 			if (len < size)
1177 				len = maxfraglen - skb->len;
1178 		}
1179 		if (len <= 0) {
1180 			struct sk_buff *skb_prev;
1181 			int alloclen;
1182 
1183 			skb_prev = skb;
1184 			fraggap = skb_prev->len - maxfraglen;
1185 
1186 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1187 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1188 			if (unlikely(!skb)) {
1189 				err = -ENOBUFS;
1190 				goto error;
1191 			}
1192 
1193 			/*
1194 			 *	Fill in the control structures
1195 			 */
1196 			skb->ip_summed = CHECKSUM_NONE;
1197 			skb->csum = 0;
1198 			skb_reserve(skb, hh_len);
1199 
1200 			/*
1201 			 *	Find where to start putting bytes.
1202 			 */
1203 			skb_put(skb, fragheaderlen + fraggap);
1204 			skb_reset_network_header(skb);
1205 			skb->transport_header = (skb->network_header +
1206 						 fragheaderlen);
1207 			if (fraggap) {
1208 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1209 								   maxfraglen,
1210 						    skb_transport_header(skb),
1211 								   fraggap, 0);
1212 				skb_prev->csum = csum_sub(skb_prev->csum,
1213 							  skb->csum);
1214 				pskb_trim_unique(skb_prev, maxfraglen);
1215 			}
1216 
1217 			/*
1218 			 * Put the packet on the pending queue.
1219 			 */
1220 			__skb_queue_tail(&sk->sk_write_queue, skb);
1221 			continue;
1222 		}
1223 
1224 		i = skb_shinfo(skb)->nr_frags;
1225 		if (len > size)
1226 			len = size;
1227 		if (skb_can_coalesce(skb, i, page, offset)) {
1228 			skb_frag_size_add(&skb_shinfo(skb)->frags[i-1], len);
1229 		} else if (i < MAX_SKB_FRAGS) {
1230 			get_page(page);
1231 			skb_fill_page_desc(skb, i, page, offset, len);
1232 		} else {
1233 			err = -EMSGSIZE;
1234 			goto error;
1235 		}
1236 
1237 		if (skb->ip_summed == CHECKSUM_NONE) {
1238 			__wsum csum;
1239 			csum = csum_page(page, offset, len);
1240 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1241 		}
1242 
1243 		skb->len += len;
1244 		skb->data_len += len;
1245 		skb->truesize += len;
1246 		atomic_add(len, &sk->sk_wmem_alloc);
1247 		offset += len;
1248 		size -= len;
1249 	}
1250 	return 0;
1251 
1252 error:
1253 	cork->length -= size;
1254 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1255 	return err;
1256 }
1257 
ip_cork_release(struct inet_cork * cork)1258 static void ip_cork_release(struct inet_cork *cork)
1259 {
1260 	cork->flags &= ~IPCORK_OPT;
1261 	kfree(cork->opt);
1262 	cork->opt = NULL;
1263 	dst_release(cork->dst);
1264 	cork->dst = NULL;
1265 }
1266 
1267 /*
1268  *	Combined all pending IP fragments on the socket as one IP datagram
1269  *	and push them out.
1270  */
__ip_make_skb(struct sock * sk,struct flowi4 * fl4,struct sk_buff_head * queue,struct inet_cork * cork)1271 struct sk_buff *__ip_make_skb(struct sock *sk,
1272 			      struct flowi4 *fl4,
1273 			      struct sk_buff_head *queue,
1274 			      struct inet_cork *cork)
1275 {
1276 	struct sk_buff *skb, *tmp_skb;
1277 	struct sk_buff **tail_skb;
1278 	struct inet_sock *inet = inet_sk(sk);
1279 	struct net *net = sock_net(sk);
1280 	struct ip_options *opt = NULL;
1281 	struct rtable *rt = (struct rtable *)cork->dst;
1282 	struct iphdr *iph;
1283 	__be16 df = 0;
1284 	__u8 ttl;
1285 
1286 	if ((skb = __skb_dequeue(queue)) == NULL)
1287 		goto out;
1288 	tail_skb = &(skb_shinfo(skb)->frag_list);
1289 
1290 	/* move skb->data to ip header from ext header */
1291 	if (skb->data < skb_network_header(skb))
1292 		__skb_pull(skb, skb_network_offset(skb));
1293 	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1294 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1295 		*tail_skb = tmp_skb;
1296 		tail_skb = &(tmp_skb->next);
1297 		skb->len += tmp_skb->len;
1298 		skb->data_len += tmp_skb->len;
1299 		skb->truesize += tmp_skb->truesize;
1300 		tmp_skb->destructor = NULL;
1301 		tmp_skb->sk = NULL;
1302 	}
1303 
1304 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1305 	 * to fragment the frame generated here. No matter, what transforms
1306 	 * how transforms change size of the packet, it will come out.
1307 	 */
1308 	if (inet->pmtudisc < IP_PMTUDISC_DO)
1309 		skb->local_df = 1;
1310 
1311 	/* DF bit is set when we want to see DF on outgoing frames.
1312 	 * If local_df is set too, we still allow to fragment this frame
1313 	 * locally. */
1314 	if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1315 	    (skb->len <= dst_mtu(&rt->dst) &&
1316 	     ip_dont_fragment(sk, &rt->dst)))
1317 		df = htons(IP_DF);
1318 
1319 	if (cork->flags & IPCORK_OPT)
1320 		opt = cork->opt;
1321 
1322 	if (rt->rt_type == RTN_MULTICAST)
1323 		ttl = inet->mc_ttl;
1324 	else
1325 		ttl = ip_select_ttl(inet, &rt->dst);
1326 
1327 	iph = (struct iphdr *)skb->data;
1328 	iph->version = 4;
1329 	iph->ihl = 5;
1330 	iph->tos = inet->tos;
1331 	iph->frag_off = df;
1332 	iph->ttl = ttl;
1333 	iph->protocol = sk->sk_protocol;
1334 	ip_copy_addrs(iph, fl4);
1335 	ip_select_ident(iph, &rt->dst, sk);
1336 
1337 	if (opt) {
1338 		iph->ihl += opt->optlen>>2;
1339 		ip_options_build(skb, opt, cork->addr, rt, 0);
1340 	}
1341 
1342 	skb->priority = sk->sk_priority;
1343 	skb->mark = sk->sk_mark;
1344 	/*
1345 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1346 	 * on dst refcount
1347 	 */
1348 	cork->dst = NULL;
1349 	skb_dst_set(skb, &rt->dst);
1350 
1351 	if (iph->protocol == IPPROTO_ICMP)
1352 		icmp_out_count(net, ((struct icmphdr *)
1353 			skb_transport_header(skb))->type);
1354 
1355 	ip_cork_release(cork);
1356 out:
1357 	return skb;
1358 }
1359 
ip_send_skb(struct net * net,struct sk_buff * skb)1360 int ip_send_skb(struct net *net, struct sk_buff *skb)
1361 {
1362 	int err;
1363 
1364 	err = ip_local_out(skb);
1365 	if (err) {
1366 		if (err > 0)
1367 			err = net_xmit_errno(err);
1368 		if (err)
1369 			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1370 	}
1371 
1372 	return err;
1373 }
1374 
ip_push_pending_frames(struct sock * sk,struct flowi4 * fl4)1375 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1376 {
1377 	struct sk_buff *skb;
1378 
1379 	skb = ip_finish_skb(sk, fl4);
1380 	if (!skb)
1381 		return 0;
1382 
1383 	/* Netfilter gets whole the not fragmented skb. */
1384 	return ip_send_skb(sock_net(sk), skb);
1385 }
1386 
1387 /*
1388  *	Throw away all pending data on the socket.
1389  */
__ip_flush_pending_frames(struct sock * sk,struct sk_buff_head * queue,struct inet_cork * cork)1390 static void __ip_flush_pending_frames(struct sock *sk,
1391 				      struct sk_buff_head *queue,
1392 				      struct inet_cork *cork)
1393 {
1394 	struct sk_buff *skb;
1395 
1396 	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1397 		kfree_skb(skb);
1398 
1399 	ip_cork_release(cork);
1400 }
1401 
ip_flush_pending_frames(struct sock * sk)1402 void ip_flush_pending_frames(struct sock *sk)
1403 {
1404 	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1405 }
1406 
ip_make_skb(struct sock * sk,struct flowi4 * fl4,int getfrag (void * from,char * to,int offset,int len,int odd,struct sk_buff * skb),void * from,int length,int transhdrlen,struct ipcm_cookie * ipc,struct rtable ** rtp,unsigned int flags)1407 struct sk_buff *ip_make_skb(struct sock *sk,
1408 			    struct flowi4 *fl4,
1409 			    int getfrag(void *from, char *to, int offset,
1410 					int len, int odd, struct sk_buff *skb),
1411 			    void *from, int length, int transhdrlen,
1412 			    struct ipcm_cookie *ipc, struct rtable **rtp,
1413 			    unsigned int flags)
1414 {
1415 	struct inet_cork cork;
1416 	struct sk_buff_head queue;
1417 	int err;
1418 
1419 	if (flags & MSG_PROBE)
1420 		return NULL;
1421 
1422 	__skb_queue_head_init(&queue);
1423 
1424 	cork.flags = 0;
1425 	cork.addr = 0;
1426 	cork.opt = NULL;
1427 	err = ip_setup_cork(sk, &cork, ipc, rtp);
1428 	if (err)
1429 		return ERR_PTR(err);
1430 
1431 	err = __ip_append_data(sk, fl4, &queue, &cork,
1432 			       &current->task_frag, getfrag,
1433 			       from, length, transhdrlen, flags);
1434 	if (err) {
1435 		__ip_flush_pending_frames(sk, &queue, &cork);
1436 		return ERR_PTR(err);
1437 	}
1438 
1439 	return __ip_make_skb(sk, fl4, &queue, &cork);
1440 }
1441 
1442 /*
1443  *	Fetch data from kernel space and fill in checksum if needed.
1444  */
ip_reply_glue_bits(void * dptr,char * to,int offset,int len,int odd,struct sk_buff * skb)1445 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1446 			      int len, int odd, struct sk_buff *skb)
1447 {
1448 	__wsum csum;
1449 
1450 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1451 	skb->csum = csum_block_add(skb->csum, csum, odd);
1452 	return 0;
1453 }
1454 
1455 /*
1456  *	Generic function to send a packet as reply to another packet.
1457  *	Used to send some TCP resets/acks so far.
1458  */
ip_send_unicast_reply(struct sock * sk,struct sk_buff * skb,__be32 daddr,__be32 saddr,const struct ip_reply_arg * arg,unsigned int len)1459 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb, __be32 daddr,
1460 			   __be32 saddr, const struct ip_reply_arg *arg,
1461 			   unsigned int len)
1462 {
1463 	struct ip_options_data replyopts;
1464 	struct ipcm_cookie ipc;
1465 	struct flowi4 fl4;
1466 	struct rtable *rt = skb_rtable(skb);
1467 	struct net *net = sock_net(sk);
1468 	struct sk_buff *nskb;
1469 	int err;
1470 
1471 	if (ip_options_echo(&replyopts.opt.opt, skb))
1472 		return;
1473 
1474 	ipc.addr = daddr;
1475 	ipc.opt = NULL;
1476 	ipc.tx_flags = 0;
1477 
1478 	if (replyopts.opt.opt.optlen) {
1479 		ipc.opt = &replyopts.opt;
1480 
1481 		if (replyopts.opt.opt.srr)
1482 			daddr = replyopts.opt.opt.faddr;
1483 	}
1484 
1485 	flowi4_init_output(&fl4, arg->bound_dev_if,
1486 			   IP4_REPLY_MARK(net, skb->mark),
1487 			   RT_TOS(arg->tos),
1488 			   RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1489 			   ip_reply_arg_flowi_flags(arg),
1490 			   daddr, saddr,
1491 			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1492 			   arg->uid);
1493 	security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1494 	rt = ip_route_output_key(net, &fl4);
1495 	if (IS_ERR(rt))
1496 		return;
1497 
1498 	inet_sk(sk)->tos = arg->tos;
1499 
1500 	sk->sk_priority = skb->priority;
1501 	sk->sk_protocol = ip_hdr(skb)->protocol;
1502 	sk->sk_bound_dev_if = arg->bound_dev_if;
1503 	sk->sk_sndbuf = sysctl_wmem_default;
1504 	err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1505 			     len, 0, &ipc, &rt, MSG_DONTWAIT);
1506 	if (unlikely(err)) {
1507 		ip_flush_pending_frames(sk);
1508 		goto out;
1509 	}
1510 
1511 	nskb = skb_peek(&sk->sk_write_queue);
1512 	if (nskb) {
1513 		if (arg->csumoffset >= 0)
1514 			*((__sum16 *)skb_transport_header(nskb) +
1515 			  arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1516 								arg->csum));
1517 		nskb->ip_summed = CHECKSUM_NONE;
1518 		skb_set_queue_mapping(nskb, skb_get_queue_mapping(skb));
1519 		ip_push_pending_frames(sk, &fl4);
1520 	}
1521 out:
1522 	ip_rt_put(rt);
1523 }
1524 
ip_init(void)1525 void __init ip_init(void)
1526 {
1527 	ip_rt_init();
1528 	inet_initpeers();
1529 
1530 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1531 	igmp_mc_proc_init();
1532 #endif
1533 }
1534