• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  IBM eServer eHCA Infiniband device driver for Linux on POWER
3  *
4  *  internal queue handling
5  *
6  *  Authors: Waleri Fomin <fomin@de.ibm.com>
7  *           Reinhard Ernst <rernst@de.ibm.com>
8  *           Christoph Raisch <raisch@de.ibm.com>
9  *
10  *  Copyright (c) 2005 IBM Corporation
11  *
12  *  This source code is distributed under a dual license of GPL v2.0 and OpenIB
13  *  BSD.
14  *
15  * OpenIB BSD License
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions are met:
19  *
20  * Redistributions of source code must retain the above copyright notice, this
21  * list of conditions and the following disclaimer.
22  *
23  * Redistributions in binary form must reproduce the above copyright notice,
24  * this list of conditions and the following disclaimer in the documentation
25  * and/or other materials
26  * provided with the distribution.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
29  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
32  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
36  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38  * POSSIBILITY OF SUCH DAMAGE.
39  */
40 
41 #include <linux/slab.h>
42 
43 #include "ehca_tools.h"
44 #include "ipz_pt_fn.h"
45 #include "ehca_classes.h"
46 
47 #define PAGES_PER_KPAGE (PAGE_SIZE >> EHCA_PAGESHIFT)
48 
49 struct kmem_cache *small_qp_cache;
50 
ipz_qpageit_get_inc(struct ipz_queue * queue)51 void *ipz_qpageit_get_inc(struct ipz_queue *queue)
52 {
53 	void *ret = ipz_qeit_get(queue);
54 	queue->current_q_offset += queue->pagesize;
55 	if (queue->current_q_offset > queue->queue_length) {
56 		queue->current_q_offset -= queue->pagesize;
57 		ret = NULL;
58 	}
59 	if (((u64)ret) % queue->pagesize) {
60 		ehca_gen_err("ERROR!! not at PAGE-Boundary");
61 		return NULL;
62 	}
63 	return ret;
64 }
65 
ipz_qeit_eq_get_inc(struct ipz_queue * queue)66 void *ipz_qeit_eq_get_inc(struct ipz_queue *queue)
67 {
68 	void *ret = ipz_qeit_get(queue);
69 	u64 last_entry_in_q = queue->queue_length - queue->qe_size;
70 
71 	queue->current_q_offset += queue->qe_size;
72 	if (queue->current_q_offset > last_entry_in_q) {
73 		queue->current_q_offset = 0;
74 		queue->toggle_state = (~queue->toggle_state) & 1;
75 	}
76 
77 	return ret;
78 }
79 
ipz_queue_abs_to_offset(struct ipz_queue * queue,u64 addr,u64 * q_offset)80 int ipz_queue_abs_to_offset(struct ipz_queue *queue, u64 addr, u64 *q_offset)
81 {
82 	int i;
83 	for (i = 0; i < queue->queue_length / queue->pagesize; i++) {
84 		u64 page = __pa(queue->queue_pages[i]);
85 		if (addr >= page && addr < page + queue->pagesize) {
86 			*q_offset = addr - page + i * queue->pagesize;
87 			return 0;
88 		}
89 	}
90 	return -EINVAL;
91 }
92 
93 #if PAGE_SHIFT < EHCA_PAGESHIFT
94 #error Kernel pages must be at least as large than eHCA pages (4K) !
95 #endif
96 
97 /*
98  * allocate pages for queue:
99  * outer loop allocates whole kernel pages (page aligned) and
100  * inner loop divides a kernel page into smaller hca queue pages
101  */
alloc_queue_pages(struct ipz_queue * queue,const u32 nr_of_pages)102 static int alloc_queue_pages(struct ipz_queue *queue, const u32 nr_of_pages)
103 {
104 	int k, f = 0;
105 	u8 *kpage;
106 
107 	while (f < nr_of_pages) {
108 		kpage = (u8 *)get_zeroed_page(GFP_KERNEL);
109 		if (!kpage)
110 			goto out;
111 
112 		for (k = 0; k < PAGES_PER_KPAGE && f < nr_of_pages; k++) {
113 			queue->queue_pages[f] = (struct ipz_page *)kpage;
114 			kpage += EHCA_PAGESIZE;
115 			f++;
116 		}
117 	}
118 	return 1;
119 
120 out:
121 	for (f = 0; f < nr_of_pages && queue->queue_pages[f];
122 	     f += PAGES_PER_KPAGE)
123 		free_page((unsigned long)(queue->queue_pages)[f]);
124 	return 0;
125 }
126 
alloc_small_queue_page(struct ipz_queue * queue,struct ehca_pd * pd)127 static int alloc_small_queue_page(struct ipz_queue *queue, struct ehca_pd *pd)
128 {
129 	int order = ilog2(queue->pagesize) - 9;
130 	struct ipz_small_queue_page *page;
131 	unsigned long bit;
132 
133 	mutex_lock(&pd->lock);
134 
135 	if (!list_empty(&pd->free[order]))
136 		page = list_entry(pd->free[order].next,
137 				  struct ipz_small_queue_page, list);
138 	else {
139 		page = kmem_cache_zalloc(small_qp_cache, GFP_KERNEL);
140 		if (!page)
141 			goto out;
142 
143 		page->page = get_zeroed_page(GFP_KERNEL);
144 		if (!page->page) {
145 			kmem_cache_free(small_qp_cache, page);
146 			goto out;
147 		}
148 
149 		list_add(&page->list, &pd->free[order]);
150 	}
151 
152 	bit = find_first_zero_bit(page->bitmap, IPZ_SPAGE_PER_KPAGE >> order);
153 	__set_bit(bit, page->bitmap);
154 	page->fill++;
155 
156 	if (page->fill == IPZ_SPAGE_PER_KPAGE >> order)
157 		list_move(&page->list, &pd->full[order]);
158 
159 	mutex_unlock(&pd->lock);
160 
161 	queue->queue_pages[0] = (void *)(page->page | (bit << (order + 9)));
162 	queue->small_page = page;
163 	queue->offset = bit << (order + 9);
164 	return 1;
165 
166 out:
167 	ehca_err(pd->ib_pd.device, "failed to allocate small queue page");
168 	mutex_unlock(&pd->lock);
169 	return 0;
170 }
171 
free_small_queue_page(struct ipz_queue * queue,struct ehca_pd * pd)172 static void free_small_queue_page(struct ipz_queue *queue, struct ehca_pd *pd)
173 {
174 	int order = ilog2(queue->pagesize) - 9;
175 	struct ipz_small_queue_page *page = queue->small_page;
176 	unsigned long bit;
177 	int free_page = 0;
178 
179 	bit = ((unsigned long)queue->queue_pages[0] & ~PAGE_MASK)
180 		>> (order + 9);
181 
182 	mutex_lock(&pd->lock);
183 
184 	__clear_bit(bit, page->bitmap);
185 	page->fill--;
186 
187 	if (page->fill == 0) {
188 		list_del(&page->list);
189 		free_page = 1;
190 	}
191 
192 	if (page->fill == (IPZ_SPAGE_PER_KPAGE >> order) - 1)
193 		/* the page was full until we freed the chunk */
194 		list_move_tail(&page->list, &pd->free[order]);
195 
196 	mutex_unlock(&pd->lock);
197 
198 	if (free_page) {
199 		free_page(page->page);
200 		kmem_cache_free(small_qp_cache, page);
201 	}
202 }
203 
ipz_queue_ctor(struct ehca_pd * pd,struct ipz_queue * queue,const u32 nr_of_pages,const u32 pagesize,const u32 qe_size,const u32 nr_of_sg,int is_small)204 int ipz_queue_ctor(struct ehca_pd *pd, struct ipz_queue *queue,
205 		   const u32 nr_of_pages, const u32 pagesize,
206 		   const u32 qe_size, const u32 nr_of_sg,
207 		   int is_small)
208 {
209 	if (pagesize > PAGE_SIZE) {
210 		ehca_gen_err("FATAL ERROR: pagesize=%x "
211 			     "is greater than kernel page size", pagesize);
212 		return 0;
213 	}
214 
215 	/* init queue fields */
216 	queue->queue_length = nr_of_pages * pagesize;
217 	queue->pagesize = pagesize;
218 	queue->qe_size = qe_size;
219 	queue->act_nr_of_sg = nr_of_sg;
220 	queue->current_q_offset = 0;
221 	queue->toggle_state = 1;
222 	queue->small_page = NULL;
223 
224 	/* allocate queue page pointers */
225 	queue->queue_pages = kzalloc(nr_of_pages * sizeof(void *), GFP_KERNEL);
226 	if (!queue->queue_pages) {
227 		queue->queue_pages = vzalloc(nr_of_pages * sizeof(void *));
228 		if (!queue->queue_pages) {
229 			ehca_gen_err("Couldn't allocate queue page list");
230 			return 0;
231 		}
232 	}
233 
234 	/* allocate actual queue pages */
235 	if (is_small) {
236 		if (!alloc_small_queue_page(queue, pd))
237 			goto ipz_queue_ctor_exit0;
238 	} else
239 		if (!alloc_queue_pages(queue, nr_of_pages))
240 			goto ipz_queue_ctor_exit0;
241 
242 	return 1;
243 
244 ipz_queue_ctor_exit0:
245 	ehca_gen_err("Couldn't alloc pages queue=%p "
246 		 "nr_of_pages=%x",  queue, nr_of_pages);
247 	if (is_vmalloc_addr(queue->queue_pages))
248 		vfree(queue->queue_pages);
249 	else
250 		kfree(queue->queue_pages);
251 
252 	return 0;
253 }
254 
ipz_queue_dtor(struct ehca_pd * pd,struct ipz_queue * queue)255 int ipz_queue_dtor(struct ehca_pd *pd, struct ipz_queue *queue)
256 {
257 	int i, nr_pages;
258 
259 	if (!queue || !queue->queue_pages) {
260 		ehca_gen_dbg("queue or queue_pages is NULL");
261 		return 0;
262 	}
263 
264 	if (queue->small_page)
265 		free_small_queue_page(queue, pd);
266 	else {
267 		nr_pages = queue->queue_length / queue->pagesize;
268 		for (i = 0; i < nr_pages; i += PAGES_PER_KPAGE)
269 			free_page((unsigned long)queue->queue_pages[i]);
270 	}
271 
272 	if (is_vmalloc_addr(queue->queue_pages))
273 		vfree(queue->queue_pages);
274 	else
275 		kfree(queue->queue_pages);
276 
277 	return 1;
278 }
279 
ehca_init_small_qp_cache(void)280 int ehca_init_small_qp_cache(void)
281 {
282 	small_qp_cache = kmem_cache_create("ehca_cache_small_qp",
283 					   sizeof(struct ipz_small_queue_page),
284 					   0, SLAB_HWCACHE_ALIGN, NULL);
285 	if (!small_qp_cache)
286 		return -ENOMEM;
287 
288 	return 0;
289 }
290 
ehca_cleanup_small_qp_cache(void)291 void ehca_cleanup_small_qp_cache(void)
292 {
293 	kmem_cache_destroy(small_qp_cache);
294 }
295