• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*********************************************************************
2  *
3  * Filename:      irttp.c
4  * Version:       1.2
5  * Description:   Tiny Transport Protocol (TTP) implementation
6  * Status:        Stable
7  * Author:        Dag Brattli <dagb@cs.uit.no>
8  * Created at:    Sun Aug 31 20:14:31 1997
9  * Modified at:   Wed Jan  5 11:31:27 2000
10  * Modified by:   Dag Brattli <dagb@cs.uit.no>
11  *
12  *     Copyright (c) 1998-2000 Dag Brattli <dagb@cs.uit.no>,
13  *     All Rights Reserved.
14  *     Copyright (c) 2000-2003 Jean Tourrilhes <jt@hpl.hp.com>
15  *
16  *     This program is free software; you can redistribute it and/or
17  *     modify it under the terms of the GNU General Public License as
18  *     published by the Free Software Foundation; either version 2 of
19  *     the License, or (at your option) any later version.
20  *
21  *     Neither Dag Brattli nor University of Tromsø admit liability nor
22  *     provide warranty for any of this software. This material is
23  *     provided "AS-IS" and at no charge.
24  *
25  ********************************************************************/
26 
27 #include <linux/skbuff.h>
28 #include <linux/init.h>
29 #include <linux/fs.h>
30 #include <linux/seq_file.h>
31 #include <linux/slab.h>
32 #include <linux/export.h>
33 
34 #include <asm/byteorder.h>
35 #include <asm/unaligned.h>
36 
37 #include <net/irda/irda.h>
38 #include <net/irda/irlap.h>
39 #include <net/irda/irlmp.h>
40 #include <net/irda/parameters.h>
41 #include <net/irda/irttp.h>
42 
43 static struct irttp_cb *irttp;
44 
45 static void __irttp_close_tsap(struct tsap_cb *self);
46 
47 static int irttp_data_indication(void *instance, void *sap,
48 				 struct sk_buff *skb);
49 static int irttp_udata_indication(void *instance, void *sap,
50 				  struct sk_buff *skb);
51 static void irttp_disconnect_indication(void *instance, void *sap,
52 					LM_REASON reason, struct sk_buff *);
53 static void irttp_connect_indication(void *instance, void *sap,
54 				     struct qos_info *qos, __u32 max_sdu_size,
55 				     __u8 header_size, struct sk_buff *skb);
56 static void irttp_connect_confirm(void *instance, void *sap,
57 				  struct qos_info *qos, __u32 max_sdu_size,
58 				  __u8 header_size, struct sk_buff *skb);
59 static void irttp_run_tx_queue(struct tsap_cb *self);
60 static void irttp_run_rx_queue(struct tsap_cb *self);
61 
62 static void irttp_flush_queues(struct tsap_cb *self);
63 static void irttp_fragment_skb(struct tsap_cb *self, struct sk_buff *skb);
64 static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self);
65 static void irttp_todo_expired(unsigned long data);
66 static int irttp_param_max_sdu_size(void *instance, irda_param_t *param,
67 				    int get);
68 
69 static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow);
70 static void irttp_status_indication(void *instance,
71 				    LINK_STATUS link, LOCK_STATUS lock);
72 
73 /* Information for parsing parameters in IrTTP */
74 static pi_minor_info_t pi_minor_call_table[] = {
75 	{ NULL, 0 },                                             /* 0x00 */
76 	{ irttp_param_max_sdu_size, PV_INTEGER | PV_BIG_ENDIAN } /* 0x01 */
77 };
78 static pi_major_info_t pi_major_call_table[] = {{ pi_minor_call_table, 2 }};
79 static pi_param_info_t param_info = { pi_major_call_table, 1, 0x0f, 4 };
80 
81 /************************ GLOBAL PROCEDURES ************************/
82 
83 /*
84  * Function irttp_init (void)
85  *
86  *    Initialize the IrTTP layer. Called by module initialization code
87  *
88  */
irttp_init(void)89 int __init irttp_init(void)
90 {
91 	irttp = kzalloc(sizeof(struct irttp_cb), GFP_KERNEL);
92 	if (irttp == NULL)
93 		return -ENOMEM;
94 
95 	irttp->magic = TTP_MAGIC;
96 
97 	irttp->tsaps = hashbin_new(HB_LOCK);
98 	if (!irttp->tsaps) {
99 		IRDA_ERROR("%s: can't allocate IrTTP hashbin!\n",
100 			   __func__);
101 		kfree(irttp);
102 		return -ENOMEM;
103 	}
104 
105 	return 0;
106 }
107 
108 /*
109  * Function irttp_cleanup (void)
110  *
111  *    Called by module destruction/cleanup code
112  *
113  */
irttp_cleanup(void)114 void irttp_cleanup(void)
115 {
116 	/* Check for main structure */
117 	IRDA_ASSERT(irttp->magic == TTP_MAGIC, return;);
118 
119 	/*
120 	 *  Delete hashbin and close all TSAP instances in it
121 	 */
122 	hashbin_delete(irttp->tsaps, (FREE_FUNC) __irttp_close_tsap);
123 
124 	irttp->magic = 0;
125 
126 	/* De-allocate main structure */
127 	kfree(irttp);
128 
129 	irttp = NULL;
130 }
131 
132 /*************************** SUBROUTINES ***************************/
133 
134 /*
135  * Function irttp_start_todo_timer (self, timeout)
136  *
137  *    Start todo timer.
138  *
139  * Made it more effient and unsensitive to race conditions - Jean II
140  */
irttp_start_todo_timer(struct tsap_cb * self,int timeout)141 static inline void irttp_start_todo_timer(struct tsap_cb *self, int timeout)
142 {
143 	/* Set new value for timer */
144 	mod_timer(&self->todo_timer, jiffies + timeout);
145 }
146 
147 /*
148  * Function irttp_todo_expired (data)
149  *
150  *    Todo timer has expired!
151  *
152  * One of the restriction of the timer is that it is run only on the timer
153  * interrupt which run every 10ms. This mean that even if you set the timer
154  * with a delay of 0, it may take up to 10ms before it's run.
155  * So, to minimise latency and keep cache fresh, we try to avoid using
156  * it as much as possible.
157  * Note : we can't use tasklets, because they can't be asynchronously
158  * killed (need user context), and we can't guarantee that here...
159  * Jean II
160  */
irttp_todo_expired(unsigned long data)161 static void irttp_todo_expired(unsigned long data)
162 {
163 	struct tsap_cb *self = (struct tsap_cb *) data;
164 
165 	/* Check that we still exist */
166 	if (!self || self->magic != TTP_TSAP_MAGIC)
167 		return;
168 
169 	IRDA_DEBUG(4, "%s(instance=%p)\n", __func__, self);
170 
171 	/* Try to make some progress, especially on Tx side - Jean II */
172 	irttp_run_rx_queue(self);
173 	irttp_run_tx_queue(self);
174 
175 	/* Check if time for disconnect */
176 	if (test_bit(0, &self->disconnect_pend)) {
177 		/* Check if it's possible to disconnect yet */
178 		if (skb_queue_empty(&self->tx_queue)) {
179 			/* Make sure disconnect is not pending anymore */
180 			clear_bit(0, &self->disconnect_pend);	/* FALSE */
181 
182 			/* Note : self->disconnect_skb may be NULL */
183 			irttp_disconnect_request(self, self->disconnect_skb,
184 						 P_NORMAL);
185 			self->disconnect_skb = NULL;
186 		} else {
187 			/* Try again later */
188 			irttp_start_todo_timer(self, HZ/10);
189 
190 			/* No reason to try and close now */
191 			return;
192 		}
193 	}
194 
195 	/* Check if it's closing time */
196 	if (self->close_pend)
197 		/* Finish cleanup */
198 		irttp_close_tsap(self);
199 }
200 
201 /*
202  * Function irttp_flush_queues (self)
203  *
204  *     Flushes (removes all frames) in transitt-buffer (tx_list)
205  */
irttp_flush_queues(struct tsap_cb * self)206 static void irttp_flush_queues(struct tsap_cb *self)
207 {
208 	struct sk_buff* skb;
209 
210 	IRDA_DEBUG(4, "%s()\n", __func__);
211 
212 	IRDA_ASSERT(self != NULL, return;);
213 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
214 
215 	/* Deallocate frames waiting to be sent */
216 	while ((skb = skb_dequeue(&self->tx_queue)) != NULL)
217 		dev_kfree_skb(skb);
218 
219 	/* Deallocate received frames */
220 	while ((skb = skb_dequeue(&self->rx_queue)) != NULL)
221 		dev_kfree_skb(skb);
222 
223 	/* Deallocate received fragments */
224 	while ((skb = skb_dequeue(&self->rx_fragments)) != NULL)
225 		dev_kfree_skb(skb);
226 }
227 
228 /*
229  * Function irttp_reassemble (self)
230  *
231  *    Makes a new (continuous) skb of all the fragments in the fragment
232  *    queue
233  *
234  */
irttp_reassemble_skb(struct tsap_cb * self)235 static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self)
236 {
237 	struct sk_buff *skb, *frag;
238 	int n = 0;  /* Fragment index */
239 
240 	IRDA_ASSERT(self != NULL, return NULL;);
241 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return NULL;);
242 
243 	IRDA_DEBUG(2, "%s(), self->rx_sdu_size=%d\n", __func__,
244 		   self->rx_sdu_size);
245 
246 	skb = dev_alloc_skb(TTP_HEADER + self->rx_sdu_size);
247 	if (!skb)
248 		return NULL;
249 
250 	/*
251 	 * Need to reserve space for TTP header in case this skb needs to
252 	 * be requeued in case delivery failes
253 	 */
254 	skb_reserve(skb, TTP_HEADER);
255 	skb_put(skb, self->rx_sdu_size);
256 
257 	/*
258 	 *  Copy all fragments to a new buffer
259 	 */
260 	while ((frag = skb_dequeue(&self->rx_fragments)) != NULL) {
261 		skb_copy_to_linear_data_offset(skb, n, frag->data, frag->len);
262 		n += frag->len;
263 
264 		dev_kfree_skb(frag);
265 	}
266 
267 	IRDA_DEBUG(2,
268 		   "%s(), frame len=%d, rx_sdu_size=%d, rx_max_sdu_size=%d\n",
269 		   __func__, n, self->rx_sdu_size, self->rx_max_sdu_size);
270 	/* Note : irttp_run_rx_queue() calculate self->rx_sdu_size
271 	 * by summing the size of all fragments, so we should always
272 	 * have n == self->rx_sdu_size, except in cases where we
273 	 * droped the last fragment (when self->rx_sdu_size exceed
274 	 * self->rx_max_sdu_size), where n < self->rx_sdu_size.
275 	 * Jean II */
276 	IRDA_ASSERT(n <= self->rx_sdu_size, n = self->rx_sdu_size;);
277 
278 	/* Set the new length */
279 	skb_trim(skb, n);
280 
281 	self->rx_sdu_size = 0;
282 
283 	return skb;
284 }
285 
286 /*
287  * Function irttp_fragment_skb (skb)
288  *
289  *    Fragments a frame and queues all the fragments for transmission
290  *
291  */
irttp_fragment_skb(struct tsap_cb * self,struct sk_buff * skb)292 static inline void irttp_fragment_skb(struct tsap_cb *self,
293 				      struct sk_buff *skb)
294 {
295 	struct sk_buff *frag;
296 	__u8 *frame;
297 
298 	IRDA_DEBUG(2, "%s()\n", __func__);
299 
300 	IRDA_ASSERT(self != NULL, return;);
301 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
302 	IRDA_ASSERT(skb != NULL, return;);
303 
304 	/*
305 	 *  Split frame into a number of segments
306 	 */
307 	while (skb->len > self->max_seg_size) {
308 		IRDA_DEBUG(2, "%s(), fragmenting ...\n", __func__);
309 
310 		/* Make new segment */
311 		frag = alloc_skb(self->max_seg_size+self->max_header_size,
312 				 GFP_ATOMIC);
313 		if (!frag)
314 			return;
315 
316 		skb_reserve(frag, self->max_header_size);
317 
318 		/* Copy data from the original skb into this fragment. */
319 		skb_copy_from_linear_data(skb, skb_put(frag, self->max_seg_size),
320 			      self->max_seg_size);
321 
322 		/* Insert TTP header, with the more bit set */
323 		frame = skb_push(frag, TTP_HEADER);
324 		frame[0] = TTP_MORE;
325 
326 		/* Hide the copied data from the original skb */
327 		skb_pull(skb, self->max_seg_size);
328 
329 		/* Queue fragment */
330 		skb_queue_tail(&self->tx_queue, frag);
331 	}
332 	/* Queue what is left of the original skb */
333 	IRDA_DEBUG(2, "%s(), queuing last segment\n", __func__);
334 
335 	frame = skb_push(skb, TTP_HEADER);
336 	frame[0] = 0x00; /* Clear more bit */
337 
338 	/* Queue fragment */
339 	skb_queue_tail(&self->tx_queue, skb);
340 }
341 
342 /*
343  * Function irttp_param_max_sdu_size (self, param)
344  *
345  *    Handle the MaxSduSize parameter in the connect frames, this function
346  *    will be called both when this parameter needs to be inserted into, and
347  *    extracted from the connect frames
348  */
irttp_param_max_sdu_size(void * instance,irda_param_t * param,int get)349 static int irttp_param_max_sdu_size(void *instance, irda_param_t *param,
350 				    int get)
351 {
352 	struct tsap_cb *self;
353 
354 	self = instance;
355 
356 	IRDA_ASSERT(self != NULL, return -1;);
357 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
358 
359 	if (get)
360 		param->pv.i = self->tx_max_sdu_size;
361 	else
362 		self->tx_max_sdu_size = param->pv.i;
363 
364 	IRDA_DEBUG(1, "%s(), MaxSduSize=%d\n", __func__, param->pv.i);
365 
366 	return 0;
367 }
368 
369 /*************************** CLIENT CALLS ***************************/
370 /************************** LMP CALLBACKS **************************/
371 /* Everything is happily mixed up. Waiting for next clean up - Jean II */
372 
373 /*
374  * Initialization, that has to be done on new tsap
375  * instance allocation and on duplication
376  */
irttp_init_tsap(struct tsap_cb * tsap)377 static void irttp_init_tsap(struct tsap_cb *tsap)
378 {
379 	spin_lock_init(&tsap->lock);
380 	init_timer(&tsap->todo_timer);
381 
382 	skb_queue_head_init(&tsap->rx_queue);
383 	skb_queue_head_init(&tsap->tx_queue);
384 	skb_queue_head_init(&tsap->rx_fragments);
385 }
386 
387 /*
388  * Function irttp_open_tsap (stsap, notify)
389  *
390  *    Create TSAP connection endpoint,
391  */
irttp_open_tsap(__u8 stsap_sel,int credit,notify_t * notify)392 struct tsap_cb *irttp_open_tsap(__u8 stsap_sel, int credit, notify_t *notify)
393 {
394 	struct tsap_cb *self;
395 	struct lsap_cb *lsap;
396 	notify_t ttp_notify;
397 
398 	IRDA_ASSERT(irttp->magic == TTP_MAGIC, return NULL;);
399 
400 	/* The IrLMP spec (IrLMP 1.1 p10) says that we have the right to
401 	 * use only 0x01-0x6F. Of course, we can use LSAP_ANY as well.
402 	 * JeanII */
403 	if((stsap_sel != LSAP_ANY) &&
404 	   ((stsap_sel < 0x01) || (stsap_sel >= 0x70))) {
405 		IRDA_DEBUG(0, "%s(), invalid tsap!\n", __func__);
406 		return NULL;
407 	}
408 
409 	self = kzalloc(sizeof(struct tsap_cb), GFP_ATOMIC);
410 	if (self == NULL) {
411 		IRDA_DEBUG(0, "%s(), unable to kmalloc!\n", __func__);
412 		return NULL;
413 	}
414 
415 	/* Initialize internal objects */
416 	irttp_init_tsap(self);
417 
418 	/* Initialise todo timer */
419 	self->todo_timer.data     = (unsigned long) self;
420 	self->todo_timer.function = &irttp_todo_expired;
421 
422 	/* Initialize callbacks for IrLMP to use */
423 	irda_notify_init(&ttp_notify);
424 	ttp_notify.connect_confirm = irttp_connect_confirm;
425 	ttp_notify.connect_indication = irttp_connect_indication;
426 	ttp_notify.disconnect_indication = irttp_disconnect_indication;
427 	ttp_notify.data_indication = irttp_data_indication;
428 	ttp_notify.udata_indication = irttp_udata_indication;
429 	ttp_notify.flow_indication = irttp_flow_indication;
430 	if(notify->status_indication != NULL)
431 		ttp_notify.status_indication = irttp_status_indication;
432 	ttp_notify.instance = self;
433 	strncpy(ttp_notify.name, notify->name, NOTIFY_MAX_NAME);
434 
435 	self->magic = TTP_TSAP_MAGIC;
436 	self->connected = FALSE;
437 
438 	/*
439 	 *  Create LSAP at IrLMP layer
440 	 */
441 	lsap = irlmp_open_lsap(stsap_sel, &ttp_notify, 0);
442 	if (lsap == NULL) {
443 		IRDA_DEBUG(0, "%s: unable to allocate LSAP!!\n", __func__);
444 		__irttp_close_tsap(self);
445 		return NULL;
446 	}
447 
448 	/*
449 	 *  If user specified LSAP_ANY as source TSAP selector, then IrLMP
450 	 *  will replace it with whatever source selector which is free, so
451 	 *  the stsap_sel we have might not be valid anymore
452 	 */
453 	self->stsap_sel = lsap->slsap_sel;
454 	IRDA_DEBUG(4, "%s(), stsap_sel=%02x\n", __func__, self->stsap_sel);
455 
456 	self->notify = *notify;
457 	self->lsap = lsap;
458 
459 	hashbin_insert(irttp->tsaps, (irda_queue_t *) self, (long) self, NULL);
460 
461 	if (credit > TTP_RX_MAX_CREDIT)
462 		self->initial_credit = TTP_RX_MAX_CREDIT;
463 	else
464 		self->initial_credit = credit;
465 
466 	return self;
467 }
468 EXPORT_SYMBOL(irttp_open_tsap);
469 
470 /*
471  * Function irttp_close (handle)
472  *
473  *    Remove an instance of a TSAP. This function should only deal with the
474  *    deallocation of the TSAP, and resetting of the TSAPs values;
475  *
476  */
__irttp_close_tsap(struct tsap_cb * self)477 static void __irttp_close_tsap(struct tsap_cb *self)
478 {
479 	/* First make sure we're connected. */
480 	IRDA_ASSERT(self != NULL, return;);
481 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
482 
483 	irttp_flush_queues(self);
484 
485 	del_timer(&self->todo_timer);
486 
487 	/* This one won't be cleaned up if we are disconnect_pend + close_pend
488 	 * and we receive a disconnect_indication */
489 	if (self->disconnect_skb)
490 		dev_kfree_skb(self->disconnect_skb);
491 
492 	self->connected = FALSE;
493 	self->magic = ~TTP_TSAP_MAGIC;
494 
495 	kfree(self);
496 }
497 
498 /*
499  * Function irttp_close (self)
500  *
501  *    Remove TSAP from list of all TSAPs and then deallocate all resources
502  *    associated with this TSAP
503  *
504  * Note : because we *free* the tsap structure, it is the responsibility
505  * of the caller to make sure we are called only once and to deal with
506  * possible race conditions. - Jean II
507  */
irttp_close_tsap(struct tsap_cb * self)508 int irttp_close_tsap(struct tsap_cb *self)
509 {
510 	struct tsap_cb *tsap;
511 
512 	IRDA_DEBUG(4, "%s()\n", __func__);
513 
514 	IRDA_ASSERT(self != NULL, return -1;);
515 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
516 
517 	/* Make sure tsap has been disconnected */
518 	if (self->connected) {
519 		/* Check if disconnect is not pending */
520 		if (!test_bit(0, &self->disconnect_pend)) {
521 			IRDA_WARNING("%s: TSAP still connected!\n",
522 				     __func__);
523 			irttp_disconnect_request(self, NULL, P_NORMAL);
524 		}
525 		self->close_pend = TRUE;
526 		irttp_start_todo_timer(self, HZ/10);
527 
528 		return 0; /* Will be back! */
529 	}
530 
531 	tsap = hashbin_remove(irttp->tsaps, (long) self, NULL);
532 
533 	IRDA_ASSERT(tsap == self, return -1;);
534 
535 	/* Close corresponding LSAP */
536 	if (self->lsap) {
537 		irlmp_close_lsap(self->lsap);
538 		self->lsap = NULL;
539 	}
540 
541 	__irttp_close_tsap(self);
542 
543 	return 0;
544 }
545 EXPORT_SYMBOL(irttp_close_tsap);
546 
547 /*
548  * Function irttp_udata_request (self, skb)
549  *
550  *    Send unreliable data on this TSAP
551  *
552  */
irttp_udata_request(struct tsap_cb * self,struct sk_buff * skb)553 int irttp_udata_request(struct tsap_cb *self, struct sk_buff *skb)
554 {
555 	int ret;
556 
557 	IRDA_ASSERT(self != NULL, return -1;);
558 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
559 	IRDA_ASSERT(skb != NULL, return -1;);
560 
561 	IRDA_DEBUG(4, "%s()\n", __func__);
562 
563 	/* Take shortcut on zero byte packets */
564 	if (skb->len == 0) {
565 		ret = 0;
566 		goto err;
567 	}
568 
569 	/* Check that nothing bad happens */
570 	if (!self->connected) {
571 		IRDA_WARNING("%s(), Not connected\n", __func__);
572 		ret = -ENOTCONN;
573 		goto err;
574 	}
575 
576 	if (skb->len > self->max_seg_size) {
577 		IRDA_ERROR("%s(), UData is too large for IrLAP!\n", __func__);
578 		ret = -EMSGSIZE;
579 		goto err;
580 	}
581 
582 	irlmp_udata_request(self->lsap, skb);
583 	self->stats.tx_packets++;
584 
585 	return 0;
586 
587 err:
588 	dev_kfree_skb(skb);
589 	return ret;
590 }
591 EXPORT_SYMBOL(irttp_udata_request);
592 
593 
594 /*
595  * Function irttp_data_request (handle, skb)
596  *
597  *    Queue frame for transmission. If SAR is enabled, fragement the frame
598  *    and queue the fragments for transmission
599  */
irttp_data_request(struct tsap_cb * self,struct sk_buff * skb)600 int irttp_data_request(struct tsap_cb *self, struct sk_buff *skb)
601 {
602 	__u8 *frame;
603 	int ret;
604 
605 	IRDA_ASSERT(self != NULL, return -1;);
606 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
607 	IRDA_ASSERT(skb != NULL, return -1;);
608 
609 	IRDA_DEBUG(2, "%s() : queue len = %d\n", __func__,
610 		   skb_queue_len(&self->tx_queue));
611 
612 	/* Take shortcut on zero byte packets */
613 	if (skb->len == 0) {
614 		ret = 0;
615 		goto err;
616 	}
617 
618 	/* Check that nothing bad happens */
619 	if (!self->connected) {
620 		IRDA_WARNING("%s: Not connected\n", __func__);
621 		ret = -ENOTCONN;
622 		goto err;
623 	}
624 
625 	/*
626 	 *  Check if SAR is disabled, and the frame is larger than what fits
627 	 *  inside an IrLAP frame
628 	 */
629 	if ((self->tx_max_sdu_size == 0) && (skb->len > self->max_seg_size)) {
630 		IRDA_ERROR("%s: SAR disabled, and data is too large for IrLAP!\n",
631 			   __func__);
632 		ret = -EMSGSIZE;
633 		goto err;
634 	}
635 
636 	/*
637 	 *  Check if SAR is enabled, and the frame is larger than the
638 	 *  TxMaxSduSize
639 	 */
640 	if ((self->tx_max_sdu_size != 0) &&
641 	    (self->tx_max_sdu_size != TTP_SAR_UNBOUND) &&
642 	    (skb->len > self->tx_max_sdu_size))
643 	{
644 		IRDA_ERROR("%s: SAR enabled, but data is larger than TxMaxSduSize!\n",
645 			   __func__);
646 		ret = -EMSGSIZE;
647 		goto err;
648 	}
649 	/*
650 	 *  Check if transmit queue is full
651 	 */
652 	if (skb_queue_len(&self->tx_queue) >= TTP_TX_MAX_QUEUE) {
653 		/*
654 		 *  Give it a chance to empty itself
655 		 */
656 		irttp_run_tx_queue(self);
657 
658 		/* Drop packet. This error code should trigger the caller
659 		 * to resend the data in the client code - Jean II */
660 		ret = -ENOBUFS;
661 		goto err;
662 	}
663 
664 	/* Queue frame, or queue frame segments */
665 	if ((self->tx_max_sdu_size == 0) || (skb->len < self->max_seg_size)) {
666 		/* Queue frame */
667 		IRDA_ASSERT(skb_headroom(skb) >= TTP_HEADER, return -1;);
668 		frame = skb_push(skb, TTP_HEADER);
669 		frame[0] = 0x00; /* Clear more bit */
670 
671 		skb_queue_tail(&self->tx_queue, skb);
672 	} else {
673 		/*
674 		 *  Fragment the frame, this function will also queue the
675 		 *  fragments, we don't care about the fact the transmit
676 		 *  queue may be overfilled by all the segments for a little
677 		 *  while
678 		 */
679 		irttp_fragment_skb(self, skb);
680 	}
681 
682 	/* Check if we can accept more data from client */
683 	if ((!self->tx_sdu_busy) &&
684 	    (skb_queue_len(&self->tx_queue) > TTP_TX_HIGH_THRESHOLD)) {
685 		/* Tx queue filling up, so stop client. */
686 		if (self->notify.flow_indication) {
687 			self->notify.flow_indication(self->notify.instance,
688 						     self, FLOW_STOP);
689 		}
690 		/* self->tx_sdu_busy is the state of the client.
691 		 * Update state after notifying client to avoid
692 		 * race condition with irttp_flow_indication().
693 		 * If the queue empty itself after our test but before
694 		 * we set the flag, we will fix ourselves below in
695 		 * irttp_run_tx_queue().
696 		 * Jean II */
697 		self->tx_sdu_busy = TRUE;
698 	}
699 
700 	/* Try to make some progress */
701 	irttp_run_tx_queue(self);
702 
703 	return 0;
704 
705 err:
706 	dev_kfree_skb(skb);
707 	return ret;
708 }
709 EXPORT_SYMBOL(irttp_data_request);
710 
711 /*
712  * Function irttp_run_tx_queue (self)
713  *
714  *    Transmit packets queued for transmission (if possible)
715  *
716  */
irttp_run_tx_queue(struct tsap_cb * self)717 static void irttp_run_tx_queue(struct tsap_cb *self)
718 {
719 	struct sk_buff *skb;
720 	unsigned long flags;
721 	int n;
722 
723 	IRDA_DEBUG(2, "%s() : send_credit = %d, queue_len = %d\n",
724 		   __func__,
725 		   self->send_credit, skb_queue_len(&self->tx_queue));
726 
727 	/* Get exclusive access to the tx queue, otherwise don't touch it */
728 	if (irda_lock(&self->tx_queue_lock) == FALSE)
729 		return;
730 
731 	/* Try to send out frames as long as we have credits
732 	 * and as long as LAP is not full. If LAP is full, it will
733 	 * poll us through irttp_flow_indication() - Jean II */
734 	while ((self->send_credit > 0) &&
735 	       (!irlmp_lap_tx_queue_full(self->lsap)) &&
736 	       (skb = skb_dequeue(&self->tx_queue)))
737 	{
738 		/*
739 		 *  Since we can transmit and receive frames concurrently,
740 		 *  the code below is a critical region and we must assure that
741 		 *  nobody messes with the credits while we update them.
742 		 */
743 		spin_lock_irqsave(&self->lock, flags);
744 
745 		n = self->avail_credit;
746 		self->avail_credit = 0;
747 
748 		/* Only room for 127 credits in frame */
749 		if (n > 127) {
750 			self->avail_credit = n-127;
751 			n = 127;
752 		}
753 		self->remote_credit += n;
754 		self->send_credit--;
755 
756 		spin_unlock_irqrestore(&self->lock, flags);
757 
758 		/*
759 		 *  More bit must be set by the data_request() or fragment()
760 		 *  functions
761 		 */
762 		skb->data[0] |= (n & 0x7f);
763 
764 		/* Detach from socket.
765 		 * The current skb has a reference to the socket that sent
766 		 * it (skb->sk). When we pass it to IrLMP, the skb will be
767 		 * stored in in IrLAP (self->wx_list). When we are within
768 		 * IrLAP, we lose the notion of socket, so we should not
769 		 * have a reference to a socket. So, we drop it here.
770 		 *
771 		 * Why does it matter ?
772 		 * When the skb is freed (kfree_skb), if it is associated
773 		 * with a socket, it release buffer space on the socket
774 		 * (through sock_wfree() and sock_def_write_space()).
775 		 * If the socket no longer exist, we may crash. Hard.
776 		 * When we close a socket, we make sure that associated packets
777 		 * in IrTTP are freed. However, we have no way to cancel
778 		 * the packet that we have passed to IrLAP. So, if a packet
779 		 * remains in IrLAP (retry on the link or else) after we
780 		 * close the socket, we are dead !
781 		 * Jean II */
782 		if (skb->sk != NULL) {
783 			/* IrSOCK application, IrOBEX, ... */
784 			skb_orphan(skb);
785 		}
786 			/* IrCOMM over IrTTP, IrLAN, ... */
787 
788 		/* Pass the skb to IrLMP - done */
789 		irlmp_data_request(self->lsap, skb);
790 		self->stats.tx_packets++;
791 	}
792 
793 	/* Check if we can accept more frames from client.
794 	 * We don't want to wait until the todo timer to do that, and we
795 	 * can't use tasklets (grr...), so we are obliged to give control
796 	 * to client. That's ok, this test will be true not too often
797 	 * (max once per LAP window) and we are called from places
798 	 * where we can spend a bit of time doing stuff. - Jean II */
799 	if ((self->tx_sdu_busy) &&
800 	    (skb_queue_len(&self->tx_queue) < TTP_TX_LOW_THRESHOLD) &&
801 	    (!self->close_pend))
802 	{
803 		if (self->notify.flow_indication)
804 			self->notify.flow_indication(self->notify.instance,
805 						     self, FLOW_START);
806 
807 		/* self->tx_sdu_busy is the state of the client.
808 		 * We don't really have a race here, but it's always safer
809 		 * to update our state after the client - Jean II */
810 		self->tx_sdu_busy = FALSE;
811 	}
812 
813 	/* Reset lock */
814 	self->tx_queue_lock = 0;
815 }
816 
817 /*
818  * Function irttp_give_credit (self)
819  *
820  *    Send a dataless flowdata TTP-PDU and give available credit to peer
821  *    TSAP
822  */
irttp_give_credit(struct tsap_cb * self)823 static inline void irttp_give_credit(struct tsap_cb *self)
824 {
825 	struct sk_buff *tx_skb = NULL;
826 	unsigned long flags;
827 	int n;
828 
829 	IRDA_ASSERT(self != NULL, return;);
830 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
831 
832 	IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n",
833 		   __func__,
834 		   self->send_credit, self->avail_credit, self->remote_credit);
835 
836 	/* Give credit to peer */
837 	tx_skb = alloc_skb(TTP_MAX_HEADER, GFP_ATOMIC);
838 	if (!tx_skb)
839 		return;
840 
841 	/* Reserve space for LMP, and LAP header */
842 	skb_reserve(tx_skb, LMP_MAX_HEADER);
843 
844 	/*
845 	 *  Since we can transmit and receive frames concurrently,
846 	 *  the code below is a critical region and we must assure that
847 	 *  nobody messes with the credits while we update them.
848 	 */
849 	spin_lock_irqsave(&self->lock, flags);
850 
851 	n = self->avail_credit;
852 	self->avail_credit = 0;
853 
854 	/* Only space for 127 credits in frame */
855 	if (n > 127) {
856 		self->avail_credit = n - 127;
857 		n = 127;
858 	}
859 	self->remote_credit += n;
860 
861 	spin_unlock_irqrestore(&self->lock, flags);
862 
863 	skb_put(tx_skb, 1);
864 	tx_skb->data[0] = (__u8) (n & 0x7f);
865 
866 	irlmp_data_request(self->lsap, tx_skb);
867 	self->stats.tx_packets++;
868 }
869 
870 /*
871  * Function irttp_udata_indication (instance, sap, skb)
872  *
873  *    Received some unit-data (unreliable)
874  *
875  */
irttp_udata_indication(void * instance,void * sap,struct sk_buff * skb)876 static int irttp_udata_indication(void *instance, void *sap,
877 				  struct sk_buff *skb)
878 {
879 	struct tsap_cb *self;
880 	int err;
881 
882 	IRDA_DEBUG(4, "%s()\n", __func__);
883 
884 	self = instance;
885 
886 	IRDA_ASSERT(self != NULL, return -1;);
887 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
888 	IRDA_ASSERT(skb != NULL, return -1;);
889 
890 	self->stats.rx_packets++;
891 
892 	/* Just pass data to layer above */
893 	if (self->notify.udata_indication) {
894 		err = self->notify.udata_indication(self->notify.instance,
895 						    self,skb);
896 		/* Same comment as in irttp_do_data_indication() */
897 		if (!err)
898 			return 0;
899 	}
900 	/* Either no handler, or handler returns an error */
901 	dev_kfree_skb(skb);
902 
903 	return 0;
904 }
905 
906 /*
907  * Function irttp_data_indication (instance, sap, skb)
908  *
909  *    Receive segment from IrLMP.
910  *
911  */
irttp_data_indication(void * instance,void * sap,struct sk_buff * skb)912 static int irttp_data_indication(void *instance, void *sap,
913 				 struct sk_buff *skb)
914 {
915 	struct tsap_cb *self;
916 	unsigned long flags;
917 	int n;
918 
919 	self = instance;
920 
921 	n = skb->data[0] & 0x7f;     /* Extract the credits */
922 
923 	self->stats.rx_packets++;
924 
925 	/*  Deal with inbound credit
926 	 *  Since we can transmit and receive frames concurrently,
927 	 *  the code below is a critical region and we must assure that
928 	 *  nobody messes with the credits while we update them.
929 	 */
930 	spin_lock_irqsave(&self->lock, flags);
931 	self->send_credit += n;
932 	if (skb->len > 1)
933 		self->remote_credit--;
934 	spin_unlock_irqrestore(&self->lock, flags);
935 
936 	/*
937 	 *  Data or dataless packet? Dataless frames contains only the
938 	 *  TTP_HEADER.
939 	 */
940 	if (skb->len > 1) {
941 		/*
942 		 *  We don't remove the TTP header, since we must preserve the
943 		 *  more bit, so the defragment routing knows what to do
944 		 */
945 		skb_queue_tail(&self->rx_queue, skb);
946 	} else {
947 		/* Dataless flowdata TTP-PDU */
948 		dev_kfree_skb(skb);
949 	}
950 
951 
952 	/* Push data to the higher layer.
953 	 * We do it synchronously because running the todo timer for each
954 	 * receive packet would be too much overhead and latency.
955 	 * By passing control to the higher layer, we run the risk that
956 	 * it may take time or grab a lock. Most often, the higher layer
957 	 * will only put packet in a queue.
958 	 * Anyway, packets are only dripping through the IrDA, so we can
959 	 * have time before the next packet.
960 	 * Further, we are run from NET_BH, so the worse that can happen is
961 	 * us missing the optimal time to send back the PF bit in LAP.
962 	 * Jean II */
963 	irttp_run_rx_queue(self);
964 
965 	/* We now give credits to peer in irttp_run_rx_queue().
966 	 * We need to send credit *NOW*, otherwise we are going
967 	 * to miss the next Tx window. The todo timer may take
968 	 * a while before it's run... - Jean II */
969 
970 	/*
971 	 * If the peer device has given us some credits and we didn't have
972 	 * anyone from before, then we need to shedule the tx queue.
973 	 * We need to do that because our Tx have stopped (so we may not
974 	 * get any LAP flow indication) and the user may be stopped as
975 	 * well. - Jean II
976 	 */
977 	if (self->send_credit == n) {
978 		/* Restart pushing stuff to LAP */
979 		irttp_run_tx_queue(self);
980 		/* Note : we don't want to schedule the todo timer
981 		 * because it has horrible latency. No tasklets
982 		 * because the tasklet API is broken. - Jean II */
983 	}
984 
985 	return 0;
986 }
987 
988 /*
989  * Function irttp_status_indication (self, reason)
990  *
991  *    Status_indication, just pass to the higher layer...
992  *
993  */
irttp_status_indication(void * instance,LINK_STATUS link,LOCK_STATUS lock)994 static void irttp_status_indication(void *instance,
995 				    LINK_STATUS link, LOCK_STATUS lock)
996 {
997 	struct tsap_cb *self;
998 
999 	IRDA_DEBUG(4, "%s()\n", __func__);
1000 
1001 	self = instance;
1002 
1003 	IRDA_ASSERT(self != NULL, return;);
1004 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1005 
1006 	/* Check if client has already closed the TSAP and gone away */
1007 	if (self->close_pend)
1008 		return;
1009 
1010 	/*
1011 	 *  Inform service user if he has requested it
1012 	 */
1013 	if (self->notify.status_indication != NULL)
1014 		self->notify.status_indication(self->notify.instance,
1015 					       link, lock);
1016 	else
1017 		IRDA_DEBUG(2, "%s(), no handler\n", __func__);
1018 }
1019 
1020 /*
1021  * Function irttp_flow_indication (self, reason)
1022  *
1023  *    Flow_indication : IrLAP tells us to send more data.
1024  *
1025  */
irttp_flow_indication(void * instance,void * sap,LOCAL_FLOW flow)1026 static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow)
1027 {
1028 	struct tsap_cb *self;
1029 
1030 	self = instance;
1031 
1032 	IRDA_ASSERT(self != NULL, return;);
1033 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1034 
1035 	IRDA_DEBUG(4, "%s(instance=%p)\n", __func__, self);
1036 
1037 	/* We are "polled" directly from LAP, and the LAP want to fill
1038 	 * its Tx window. We want to do our best to send it data, so that
1039 	 * we maximise the window. On the other hand, we want to limit the
1040 	 * amount of work here so that LAP doesn't hang forever waiting
1041 	 * for packets. - Jean II */
1042 
1043 	/* Try to send some packets. Currently, LAP calls us every time
1044 	 * there is one free slot, so we will send only one packet.
1045 	 * This allow the scheduler to do its round robin - Jean II */
1046 	irttp_run_tx_queue(self);
1047 
1048 	/* Note regarding the interraction with higher layer.
1049 	 * irttp_run_tx_queue() may call the client when its queue
1050 	 * start to empty, via notify.flow_indication(). Initially.
1051 	 * I wanted this to happen in a tasklet, to avoid client
1052 	 * grabbing the CPU, but we can't use tasklets safely. And timer
1053 	 * is definitely too slow.
1054 	 * This will happen only once per LAP window, and usually at
1055 	 * the third packet (unless window is smaller). LAP is still
1056 	 * doing mtt and sending first packet so it's sort of OK
1057 	 * to do that. Jean II */
1058 
1059 	/* If we need to send disconnect. try to do it now */
1060 	if(self->disconnect_pend)
1061 		irttp_start_todo_timer(self, 0);
1062 }
1063 
1064 /*
1065  * Function irttp_flow_request (self, command)
1066  *
1067  *    This function could be used by the upper layers to tell IrTTP to stop
1068  *    delivering frames if the receive queues are starting to get full, or
1069  *    to tell IrTTP to start delivering frames again.
1070  */
irttp_flow_request(struct tsap_cb * self,LOCAL_FLOW flow)1071 void irttp_flow_request(struct tsap_cb *self, LOCAL_FLOW flow)
1072 {
1073 	IRDA_DEBUG(1, "%s()\n", __func__);
1074 
1075 	IRDA_ASSERT(self != NULL, return;);
1076 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1077 
1078 	switch (flow) {
1079 	case FLOW_STOP:
1080 		IRDA_DEBUG(1, "%s(), flow stop\n", __func__);
1081 		self->rx_sdu_busy = TRUE;
1082 		break;
1083 	case FLOW_START:
1084 		IRDA_DEBUG(1, "%s(), flow start\n", __func__);
1085 		self->rx_sdu_busy = FALSE;
1086 
1087 		/* Client say he can accept more data, try to free our
1088 		 * queues ASAP - Jean II */
1089 		irttp_run_rx_queue(self);
1090 
1091 		break;
1092 	default:
1093 		IRDA_DEBUG(1, "%s(), Unknown flow command!\n", __func__);
1094 	}
1095 }
1096 EXPORT_SYMBOL(irttp_flow_request);
1097 
1098 /*
1099  * Function irttp_connect_request (self, dtsap_sel, daddr, qos)
1100  *
1101  *    Try to connect to remote destination TSAP selector
1102  *
1103  */
irttp_connect_request(struct tsap_cb * self,__u8 dtsap_sel,__u32 saddr,__u32 daddr,struct qos_info * qos,__u32 max_sdu_size,struct sk_buff * userdata)1104 int irttp_connect_request(struct tsap_cb *self, __u8 dtsap_sel,
1105 			  __u32 saddr, __u32 daddr,
1106 			  struct qos_info *qos, __u32 max_sdu_size,
1107 			  struct sk_buff *userdata)
1108 {
1109 	struct sk_buff *tx_skb;
1110 	__u8 *frame;
1111 	__u8 n;
1112 
1113 	IRDA_DEBUG(4, "%s(), max_sdu_size=%d\n", __func__, max_sdu_size);
1114 
1115 	IRDA_ASSERT(self != NULL, return -EBADR;);
1116 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -EBADR;);
1117 
1118 	if (self->connected) {
1119 		if(userdata)
1120 			dev_kfree_skb(userdata);
1121 		return -EISCONN;
1122 	}
1123 
1124 	/* Any userdata supplied? */
1125 	if (userdata == NULL) {
1126 		tx_skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER,
1127 				   GFP_ATOMIC);
1128 		if (!tx_skb)
1129 			return -ENOMEM;
1130 
1131 		/* Reserve space for MUX_CONTROL and LAP header */
1132 		skb_reserve(tx_skb, TTP_MAX_HEADER + TTP_SAR_HEADER);
1133 	} else {
1134 		tx_skb = userdata;
1135 		/*
1136 		 *  Check that the client has reserved enough space for
1137 		 *  headers
1138 		 */
1139 		IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER,
1140 			{ dev_kfree_skb(userdata); return -1; } );
1141 	}
1142 
1143 	/* Initialize connection parameters */
1144 	self->connected = FALSE;
1145 	self->avail_credit = 0;
1146 	self->rx_max_sdu_size = max_sdu_size;
1147 	self->rx_sdu_size = 0;
1148 	self->rx_sdu_busy = FALSE;
1149 	self->dtsap_sel = dtsap_sel;
1150 
1151 	n = self->initial_credit;
1152 
1153 	self->remote_credit = 0;
1154 	self->send_credit = 0;
1155 
1156 	/*
1157 	 *  Give away max 127 credits for now
1158 	 */
1159 	if (n > 127) {
1160 		self->avail_credit=n-127;
1161 		n = 127;
1162 	}
1163 
1164 	self->remote_credit = n;
1165 
1166 	/* SAR enabled? */
1167 	if (max_sdu_size > 0) {
1168 		IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER),
1169 			{ dev_kfree_skb(tx_skb); return -1; } );
1170 
1171 		/* Insert SAR parameters */
1172 		frame = skb_push(tx_skb, TTP_HEADER+TTP_SAR_HEADER);
1173 
1174 		frame[0] = TTP_PARAMETERS | n;
1175 		frame[1] = 0x04; /* Length */
1176 		frame[2] = 0x01; /* MaxSduSize */
1177 		frame[3] = 0x02; /* Value length */
1178 
1179 		put_unaligned(cpu_to_be16((__u16) max_sdu_size),
1180 			      (__be16 *)(frame+4));
1181 	} else {
1182 		/* Insert plain TTP header */
1183 		frame = skb_push(tx_skb, TTP_HEADER);
1184 
1185 		/* Insert initial credit in frame */
1186 		frame[0] = n & 0x7f;
1187 	}
1188 
1189 	/* Connect with IrLMP. No QoS parameters for now */
1190 	return irlmp_connect_request(self->lsap, dtsap_sel, saddr, daddr, qos,
1191 				     tx_skb);
1192 }
1193 EXPORT_SYMBOL(irttp_connect_request);
1194 
1195 /*
1196  * Function irttp_connect_confirm (handle, qos, skb)
1197  *
1198  *    Service user confirms TSAP connection with peer.
1199  *
1200  */
irttp_connect_confirm(void * instance,void * sap,struct qos_info * qos,__u32 max_seg_size,__u8 max_header_size,struct sk_buff * skb)1201 static void irttp_connect_confirm(void *instance, void *sap,
1202 				  struct qos_info *qos, __u32 max_seg_size,
1203 				  __u8 max_header_size, struct sk_buff *skb)
1204 {
1205 	struct tsap_cb *self;
1206 	int parameters;
1207 	int ret;
1208 	__u8 plen;
1209 	__u8 n;
1210 
1211 	IRDA_DEBUG(4, "%s()\n", __func__);
1212 
1213 	self = instance;
1214 
1215 	IRDA_ASSERT(self != NULL, return;);
1216 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1217 	IRDA_ASSERT(skb != NULL, return;);
1218 
1219 	self->max_seg_size = max_seg_size - TTP_HEADER;
1220 	self->max_header_size = max_header_size + TTP_HEADER;
1221 
1222 	/*
1223 	 *  Check if we have got some QoS parameters back! This should be the
1224 	 *  negotiated QoS for the link.
1225 	 */
1226 	if (qos) {
1227 		IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %02x\n",
1228 		       qos->baud_rate.bits);
1229 		IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %d bps.\n",
1230 		       qos->baud_rate.value);
1231 	}
1232 
1233 	n = skb->data[0] & 0x7f;
1234 
1235 	IRDA_DEBUG(4, "%s(), Initial send_credit=%d\n", __func__, n);
1236 
1237 	self->send_credit = n;
1238 	self->tx_max_sdu_size = 0;
1239 	self->connected = TRUE;
1240 
1241 	parameters = skb->data[0] & 0x80;
1242 
1243 	IRDA_ASSERT(skb->len >= TTP_HEADER, return;);
1244 	skb_pull(skb, TTP_HEADER);
1245 
1246 	if (parameters) {
1247 		plen = skb->data[0];
1248 
1249 		ret = irda_param_extract_all(self, skb->data+1,
1250 					     IRDA_MIN(skb->len-1, plen),
1251 					     &param_info);
1252 
1253 		/* Any errors in the parameter list? */
1254 		if (ret < 0) {
1255 			IRDA_WARNING("%s: error extracting parameters\n",
1256 				     __func__);
1257 			dev_kfree_skb(skb);
1258 
1259 			/* Do not accept this connection attempt */
1260 			return;
1261 		}
1262 		/* Remove parameters */
1263 		skb_pull(skb, IRDA_MIN(skb->len, plen+1));
1264 	}
1265 
1266 	IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n", __func__,
1267 	      self->send_credit, self->avail_credit, self->remote_credit);
1268 
1269 	IRDA_DEBUG(2, "%s(), MaxSduSize=%d\n", __func__,
1270 		   self->tx_max_sdu_size);
1271 
1272 	if (self->notify.connect_confirm) {
1273 		self->notify.connect_confirm(self->notify.instance, self, qos,
1274 					     self->tx_max_sdu_size,
1275 					     self->max_header_size, skb);
1276 	} else
1277 		dev_kfree_skb(skb);
1278 }
1279 
1280 /*
1281  * Function irttp_connect_indication (handle, skb)
1282  *
1283  *    Some other device is connecting to this TSAP
1284  *
1285  */
irttp_connect_indication(void * instance,void * sap,struct qos_info * qos,__u32 max_seg_size,__u8 max_header_size,struct sk_buff * skb)1286 static void irttp_connect_indication(void *instance, void *sap,
1287 		struct qos_info *qos, __u32 max_seg_size, __u8 max_header_size,
1288 		struct sk_buff *skb)
1289 {
1290 	struct tsap_cb *self;
1291 	struct lsap_cb *lsap;
1292 	int parameters;
1293 	int ret;
1294 	__u8 plen;
1295 	__u8 n;
1296 
1297 	self = instance;
1298 
1299 	IRDA_ASSERT(self != NULL, return;);
1300 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1301 	IRDA_ASSERT(skb != NULL, return;);
1302 
1303 	lsap = sap;
1304 
1305 	self->max_seg_size = max_seg_size - TTP_HEADER;
1306 	self->max_header_size = max_header_size+TTP_HEADER;
1307 
1308 	IRDA_DEBUG(4, "%s(), TSAP sel=%02x\n", __func__, self->stsap_sel);
1309 
1310 	/* Need to update dtsap_sel if its equal to LSAP_ANY */
1311 	self->dtsap_sel = lsap->dlsap_sel;
1312 
1313 	n = skb->data[0] & 0x7f;
1314 
1315 	self->send_credit = n;
1316 	self->tx_max_sdu_size = 0;
1317 
1318 	parameters = skb->data[0] & 0x80;
1319 
1320 	IRDA_ASSERT(skb->len >= TTP_HEADER, return;);
1321 	skb_pull(skb, TTP_HEADER);
1322 
1323 	if (parameters) {
1324 		plen = skb->data[0];
1325 
1326 		ret = irda_param_extract_all(self, skb->data+1,
1327 					     IRDA_MIN(skb->len-1, plen),
1328 					     &param_info);
1329 
1330 		/* Any errors in the parameter list? */
1331 		if (ret < 0) {
1332 			IRDA_WARNING("%s: error extracting parameters\n",
1333 				     __func__);
1334 			dev_kfree_skb(skb);
1335 
1336 			/* Do not accept this connection attempt */
1337 			return;
1338 		}
1339 
1340 		/* Remove parameters */
1341 		skb_pull(skb, IRDA_MIN(skb->len, plen+1));
1342 	}
1343 
1344 	if (self->notify.connect_indication) {
1345 		self->notify.connect_indication(self->notify.instance, self,
1346 						qos, self->tx_max_sdu_size,
1347 						self->max_header_size, skb);
1348 	} else
1349 		dev_kfree_skb(skb);
1350 }
1351 
1352 /*
1353  * Function irttp_connect_response (handle, userdata)
1354  *
1355  *    Service user is accepting the connection, just pass it down to
1356  *    IrLMP!
1357  *
1358  */
irttp_connect_response(struct tsap_cb * self,__u32 max_sdu_size,struct sk_buff * userdata)1359 int irttp_connect_response(struct tsap_cb *self, __u32 max_sdu_size,
1360 			   struct sk_buff *userdata)
1361 {
1362 	struct sk_buff *tx_skb;
1363 	__u8 *frame;
1364 	int ret;
1365 	__u8 n;
1366 
1367 	IRDA_ASSERT(self != NULL, return -1;);
1368 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
1369 
1370 	IRDA_DEBUG(4, "%s(), Source TSAP selector=%02x\n", __func__,
1371 		   self->stsap_sel);
1372 
1373 	/* Any userdata supplied? */
1374 	if (userdata == NULL) {
1375 		tx_skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER,
1376 				   GFP_ATOMIC);
1377 		if (!tx_skb)
1378 			return -ENOMEM;
1379 
1380 		/* Reserve space for MUX_CONTROL and LAP header */
1381 		skb_reserve(tx_skb, TTP_MAX_HEADER + TTP_SAR_HEADER);
1382 	} else {
1383 		tx_skb = userdata;
1384 		/*
1385 		 *  Check that the client has reserved enough space for
1386 		 *  headers
1387 		 */
1388 		IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER,
1389 			{ dev_kfree_skb(userdata); return -1; } );
1390 	}
1391 
1392 	self->avail_credit = 0;
1393 	self->remote_credit = 0;
1394 	self->rx_max_sdu_size = max_sdu_size;
1395 	self->rx_sdu_size = 0;
1396 	self->rx_sdu_busy = FALSE;
1397 
1398 	n = self->initial_credit;
1399 
1400 	/* Frame has only space for max 127 credits (7 bits) */
1401 	if (n > 127) {
1402 		self->avail_credit = n - 127;
1403 		n = 127;
1404 	}
1405 
1406 	self->remote_credit = n;
1407 	self->connected = TRUE;
1408 
1409 	/* SAR enabled? */
1410 	if (max_sdu_size > 0) {
1411 		IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER),
1412 			{ dev_kfree_skb(tx_skb); return -1; } );
1413 
1414 		/* Insert TTP header with SAR parameters */
1415 		frame = skb_push(tx_skb, TTP_HEADER+TTP_SAR_HEADER);
1416 
1417 		frame[0] = TTP_PARAMETERS | n;
1418 		frame[1] = 0x04; /* Length */
1419 
1420 		/* irda_param_insert(self, IRTTP_MAX_SDU_SIZE, frame+1,  */
1421 /*				  TTP_SAR_HEADER, &param_info) */
1422 
1423 		frame[2] = 0x01; /* MaxSduSize */
1424 		frame[3] = 0x02; /* Value length */
1425 
1426 		put_unaligned(cpu_to_be16((__u16) max_sdu_size),
1427 			      (__be16 *)(frame+4));
1428 	} else {
1429 		/* Insert TTP header */
1430 		frame = skb_push(tx_skb, TTP_HEADER);
1431 
1432 		frame[0] = n & 0x7f;
1433 	}
1434 
1435 	ret = irlmp_connect_response(self->lsap, tx_skb);
1436 
1437 	return ret;
1438 }
1439 EXPORT_SYMBOL(irttp_connect_response);
1440 
1441 /*
1442  * Function irttp_dup (self, instance)
1443  *
1444  *    Duplicate TSAP, can be used by servers to confirm a connection on a
1445  *    new TSAP so it can keep listening on the old one.
1446  */
irttp_dup(struct tsap_cb * orig,void * instance)1447 struct tsap_cb *irttp_dup(struct tsap_cb *orig, void *instance)
1448 {
1449 	struct tsap_cb *new;
1450 	unsigned long flags;
1451 
1452 	IRDA_DEBUG(1, "%s()\n", __func__);
1453 
1454 	/* Protect our access to the old tsap instance */
1455 	spin_lock_irqsave(&irttp->tsaps->hb_spinlock, flags);
1456 
1457 	/* Find the old instance */
1458 	if (!hashbin_find(irttp->tsaps, (long) orig, NULL)) {
1459 		IRDA_DEBUG(0, "%s(), unable to find TSAP\n", __func__);
1460 		spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
1461 		return NULL;
1462 	}
1463 
1464 	/* Allocate a new instance */
1465 	new = kmemdup(orig, sizeof(struct tsap_cb), GFP_ATOMIC);
1466 	if (!new) {
1467 		IRDA_DEBUG(0, "%s(), unable to kmalloc\n", __func__);
1468 		spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
1469 		return NULL;
1470 	}
1471 	spin_lock_init(&new->lock);
1472 
1473 	/* We don't need the old instance any more */
1474 	spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
1475 
1476 	/* Try to dup the LSAP (may fail if we were too slow) */
1477 	new->lsap = irlmp_dup(orig->lsap, new);
1478 	if (!new->lsap) {
1479 		IRDA_DEBUG(0, "%s(), dup failed!\n", __func__);
1480 		kfree(new);
1481 		return NULL;
1482 	}
1483 
1484 	/* Not everything should be copied */
1485 	new->notify.instance = instance;
1486 
1487 	/* Initialize internal objects */
1488 	irttp_init_tsap(new);
1489 
1490 	/* This is locked */
1491 	hashbin_insert(irttp->tsaps, (irda_queue_t *) new, (long) new, NULL);
1492 
1493 	return new;
1494 }
1495 EXPORT_SYMBOL(irttp_dup);
1496 
1497 /*
1498  * Function irttp_disconnect_request (self)
1499  *
1500  *    Close this connection please! If priority is high, the queued data
1501  *    segments, if any, will be deallocated first
1502  *
1503  */
irttp_disconnect_request(struct tsap_cb * self,struct sk_buff * userdata,int priority)1504 int irttp_disconnect_request(struct tsap_cb *self, struct sk_buff *userdata,
1505 			     int priority)
1506 {
1507 	int ret;
1508 
1509 	IRDA_ASSERT(self != NULL, return -1;);
1510 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
1511 
1512 	/* Already disconnected? */
1513 	if (!self->connected) {
1514 		IRDA_DEBUG(4, "%s(), already disconnected!\n", __func__);
1515 		if (userdata)
1516 			dev_kfree_skb(userdata);
1517 		return -1;
1518 	}
1519 
1520 	/* Disconnect already pending ?
1521 	 * We need to use an atomic operation to prevent reentry. This
1522 	 * function may be called from various context, like user, timer
1523 	 * for following a disconnect_indication() (i.e. net_bh).
1524 	 * Jean II */
1525 	if(test_and_set_bit(0, &self->disconnect_pend)) {
1526 		IRDA_DEBUG(0, "%s(), disconnect already pending\n",
1527 			   __func__);
1528 		if (userdata)
1529 			dev_kfree_skb(userdata);
1530 
1531 		/* Try to make some progress */
1532 		irttp_run_tx_queue(self);
1533 		return -1;
1534 	}
1535 
1536 	/*
1537 	 *  Check if there is still data segments in the transmit queue
1538 	 */
1539 	if (!skb_queue_empty(&self->tx_queue)) {
1540 		if (priority == P_HIGH) {
1541 			/*
1542 			 *  No need to send the queued data, if we are
1543 			 *  disconnecting right now since the data will
1544 			 *  not have any usable connection to be sent on
1545 			 */
1546 			IRDA_DEBUG(1, "%s(): High priority!!()\n", __func__);
1547 			irttp_flush_queues(self);
1548 		} else if (priority == P_NORMAL) {
1549 			/*
1550 			 *  Must delay disconnect until after all data segments
1551 			 *  have been sent and the tx_queue is empty
1552 			 */
1553 			/* We'll reuse this one later for the disconnect */
1554 			self->disconnect_skb = userdata;  /* May be NULL */
1555 
1556 			irttp_run_tx_queue(self);
1557 
1558 			irttp_start_todo_timer(self, HZ/10);
1559 			return -1;
1560 		}
1561 	}
1562 	/* Note : we don't need to check if self->rx_queue is full and the
1563 	 * state of self->rx_sdu_busy because the disconnect response will
1564 	 * be sent at the LMP level (so even if the peer has its Tx queue
1565 	 * full of data). - Jean II */
1566 
1567 	IRDA_DEBUG(1, "%s(), Disconnecting ...\n", __func__);
1568 	self->connected = FALSE;
1569 
1570 	if (!userdata) {
1571 		struct sk_buff *tx_skb;
1572 		tx_skb = alloc_skb(LMP_MAX_HEADER, GFP_ATOMIC);
1573 		if (!tx_skb)
1574 			return -ENOMEM;
1575 
1576 		/*
1577 		 *  Reserve space for MUX and LAP header
1578 		 */
1579 		skb_reserve(tx_skb, LMP_MAX_HEADER);
1580 
1581 		userdata = tx_skb;
1582 	}
1583 	ret = irlmp_disconnect_request(self->lsap, userdata);
1584 
1585 	/* The disconnect is no longer pending */
1586 	clear_bit(0, &self->disconnect_pend);	/* FALSE */
1587 
1588 	return ret;
1589 }
1590 EXPORT_SYMBOL(irttp_disconnect_request);
1591 
1592 /*
1593  * Function irttp_disconnect_indication (self, reason)
1594  *
1595  *    Disconnect indication, TSAP disconnected by peer?
1596  *
1597  */
irttp_disconnect_indication(void * instance,void * sap,LM_REASON reason,struct sk_buff * skb)1598 static void irttp_disconnect_indication(void *instance, void *sap,
1599 		LM_REASON reason, struct sk_buff *skb)
1600 {
1601 	struct tsap_cb *self;
1602 
1603 	IRDA_DEBUG(4, "%s()\n", __func__);
1604 
1605 	self = instance;
1606 
1607 	IRDA_ASSERT(self != NULL, return;);
1608 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1609 
1610 	/* Prevent higher layer to send more data */
1611 	self->connected = FALSE;
1612 
1613 	/* Check if client has already tried to close the TSAP */
1614 	if (self->close_pend) {
1615 		/* In this case, the higher layer is probably gone. Don't
1616 		 * bother it and clean up the remains - Jean II */
1617 		if (skb)
1618 			dev_kfree_skb(skb);
1619 		irttp_close_tsap(self);
1620 		return;
1621 	}
1622 
1623 	/* If we are here, we assume that is the higher layer is still
1624 	 * waiting for the disconnect notification and able to process it,
1625 	 * even if he tried to disconnect. Otherwise, it would have already
1626 	 * attempted to close the tsap and self->close_pend would be TRUE.
1627 	 * Jean II */
1628 
1629 	/* No need to notify the client if has already tried to disconnect */
1630 	if(self->notify.disconnect_indication)
1631 		self->notify.disconnect_indication(self->notify.instance, self,
1632 						   reason, skb);
1633 	else
1634 		if (skb)
1635 			dev_kfree_skb(skb);
1636 }
1637 
1638 /*
1639  * Function irttp_do_data_indication (self, skb)
1640  *
1641  *    Try to deliver reassembled skb to layer above, and requeue it if that
1642  *    for some reason should fail. We mark rx sdu as busy to apply back
1643  *    pressure is necessary.
1644  */
irttp_do_data_indication(struct tsap_cb * self,struct sk_buff * skb)1645 static void irttp_do_data_indication(struct tsap_cb *self, struct sk_buff *skb)
1646 {
1647 	int err;
1648 
1649 	/* Check if client has already closed the TSAP and gone away */
1650 	if (self->close_pend) {
1651 		dev_kfree_skb(skb);
1652 		return;
1653 	}
1654 
1655 	err = self->notify.data_indication(self->notify.instance, self, skb);
1656 
1657 	/* Usually the layer above will notify that it's input queue is
1658 	 * starting to get filled by using the flow request, but this may
1659 	 * be difficult, so it can instead just refuse to eat it and just
1660 	 * give an error back
1661 	 */
1662 	if (err) {
1663 		IRDA_DEBUG(0, "%s() requeueing skb!\n", __func__);
1664 
1665 		/* Make sure we take a break */
1666 		self->rx_sdu_busy = TRUE;
1667 
1668 		/* Need to push the header in again */
1669 		skb_push(skb, TTP_HEADER);
1670 		skb->data[0] = 0x00; /* Make sure MORE bit is cleared */
1671 
1672 		/* Put skb back on queue */
1673 		skb_queue_head(&self->rx_queue, skb);
1674 	}
1675 }
1676 
1677 /*
1678  * Function irttp_run_rx_queue (self)
1679  *
1680  *     Check if we have any frames to be transmitted, or if we have any
1681  *     available credit to give away.
1682  */
irttp_run_rx_queue(struct tsap_cb * self)1683 static void irttp_run_rx_queue(struct tsap_cb *self)
1684 {
1685 	struct sk_buff *skb;
1686 	int more = 0;
1687 
1688 	IRDA_DEBUG(2, "%s() send=%d,avail=%d,remote=%d\n", __func__,
1689 		   self->send_credit, self->avail_credit, self->remote_credit);
1690 
1691 	/* Get exclusive access to the rx queue, otherwise don't touch it */
1692 	if (irda_lock(&self->rx_queue_lock) == FALSE)
1693 		return;
1694 
1695 	/*
1696 	 *  Reassemble all frames in receive queue and deliver them
1697 	 */
1698 	while (!self->rx_sdu_busy && (skb = skb_dequeue(&self->rx_queue))) {
1699 		/* This bit will tell us if it's the last fragment or not */
1700 		more = skb->data[0] & 0x80;
1701 
1702 		/* Remove TTP header */
1703 		skb_pull(skb, TTP_HEADER);
1704 
1705 		/* Add the length of the remaining data */
1706 		self->rx_sdu_size += skb->len;
1707 
1708 		/*
1709 		 * If SAR is disabled, or user has requested no reassembly
1710 		 * of received fragments then we just deliver them
1711 		 * immediately. This can be requested by clients that
1712 		 * implements byte streams without any message boundaries
1713 		 */
1714 		if (self->rx_max_sdu_size == TTP_SAR_DISABLE) {
1715 			irttp_do_data_indication(self, skb);
1716 			self->rx_sdu_size = 0;
1717 
1718 			continue;
1719 		}
1720 
1721 		/* Check if this is a fragment, and not the last fragment */
1722 		if (more) {
1723 			/*
1724 			 *  Queue the fragment if we still are within the
1725 			 *  limits of the maximum size of the rx_sdu
1726 			 */
1727 			if (self->rx_sdu_size <= self->rx_max_sdu_size) {
1728 				IRDA_DEBUG(4, "%s(), queueing frag\n",
1729 					   __func__);
1730 				skb_queue_tail(&self->rx_fragments, skb);
1731 			} else {
1732 				/* Free the part of the SDU that is too big */
1733 				dev_kfree_skb(skb);
1734 			}
1735 			continue;
1736 		}
1737 		/*
1738 		 *  This is the last fragment, so time to reassemble!
1739 		 */
1740 		if ((self->rx_sdu_size <= self->rx_max_sdu_size) ||
1741 		    (self->rx_max_sdu_size == TTP_SAR_UNBOUND))
1742 		{
1743 			/*
1744 			 * A little optimizing. Only queue the fragment if
1745 			 * there are other fragments. Since if this is the
1746 			 * last and only fragment, there is no need to
1747 			 * reassemble :-)
1748 			 */
1749 			if (!skb_queue_empty(&self->rx_fragments)) {
1750 				skb_queue_tail(&self->rx_fragments,
1751 					       skb);
1752 
1753 				skb = irttp_reassemble_skb(self);
1754 			}
1755 
1756 			/* Now we can deliver the reassembled skb */
1757 			irttp_do_data_indication(self, skb);
1758 		} else {
1759 			IRDA_DEBUG(1, "%s(), Truncated frame\n", __func__);
1760 
1761 			/* Free the part of the SDU that is too big */
1762 			dev_kfree_skb(skb);
1763 
1764 			/* Deliver only the valid but truncated part of SDU */
1765 			skb = irttp_reassemble_skb(self);
1766 
1767 			irttp_do_data_indication(self, skb);
1768 		}
1769 		self->rx_sdu_size = 0;
1770 	}
1771 
1772 	/*
1773 	 * It's not trivial to keep track of how many credits are available
1774 	 * by incrementing at each packet, because delivery may fail
1775 	 * (irttp_do_data_indication() may requeue the frame) and because
1776 	 * we need to take care of fragmentation.
1777 	 * We want the other side to send up to initial_credit packets.
1778 	 * We have some frames in our queues, and we have already allowed it
1779 	 * to send remote_credit.
1780 	 * No need to spinlock, write is atomic and self correcting...
1781 	 * Jean II
1782 	 */
1783 	self->avail_credit = (self->initial_credit -
1784 			      (self->remote_credit +
1785 			       skb_queue_len(&self->rx_queue) +
1786 			       skb_queue_len(&self->rx_fragments)));
1787 
1788 	/* Do we have too much credits to send to peer ? */
1789 	if ((self->remote_credit <= TTP_RX_MIN_CREDIT) &&
1790 	    (self->avail_credit > 0)) {
1791 		/* Send explicit credit frame */
1792 		irttp_give_credit(self);
1793 		/* Note : do *NOT* check if tx_queue is non-empty, that
1794 		 * will produce deadlocks. I repeat : send a credit frame
1795 		 * even if we have something to send in our Tx queue.
1796 		 * If we have credits, it means that our Tx queue is blocked.
1797 		 *
1798 		 * Let's suppose the peer can't keep up with our Tx. He will
1799 		 * flow control us by not sending us any credits, and we
1800 		 * will stop Tx and start accumulating credits here.
1801 		 * Up to the point where the peer will stop its Tx queue,
1802 		 * for lack of credits.
1803 		 * Let's assume the peer application is single threaded.
1804 		 * It will block on Tx and never consume any Rx buffer.
1805 		 * Deadlock. Guaranteed. - Jean II
1806 		 */
1807 	}
1808 
1809 	/* Reset lock */
1810 	self->rx_queue_lock = 0;
1811 }
1812 
1813 #ifdef CONFIG_PROC_FS
1814 struct irttp_iter_state {
1815 	int id;
1816 };
1817 
irttp_seq_start(struct seq_file * seq,loff_t * pos)1818 static void *irttp_seq_start(struct seq_file *seq, loff_t *pos)
1819 {
1820 	struct irttp_iter_state *iter = seq->private;
1821 	struct tsap_cb *self;
1822 
1823 	/* Protect our access to the tsap list */
1824 	spin_lock_irq(&irttp->tsaps->hb_spinlock);
1825 	iter->id = 0;
1826 
1827 	for (self = (struct tsap_cb *) hashbin_get_first(irttp->tsaps);
1828 	     self != NULL;
1829 	     self = (struct tsap_cb *) hashbin_get_next(irttp->tsaps)) {
1830 		if (iter->id == *pos)
1831 			break;
1832 		++iter->id;
1833 	}
1834 
1835 	return self;
1836 }
1837 
irttp_seq_next(struct seq_file * seq,void * v,loff_t * pos)1838 static void *irttp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1839 {
1840 	struct irttp_iter_state *iter = seq->private;
1841 
1842 	++*pos;
1843 	++iter->id;
1844 	return (void *) hashbin_get_next(irttp->tsaps);
1845 }
1846 
irttp_seq_stop(struct seq_file * seq,void * v)1847 static void irttp_seq_stop(struct seq_file *seq, void *v)
1848 {
1849 	spin_unlock_irq(&irttp->tsaps->hb_spinlock);
1850 }
1851 
irttp_seq_show(struct seq_file * seq,void * v)1852 static int irttp_seq_show(struct seq_file *seq, void *v)
1853 {
1854 	const struct irttp_iter_state *iter = seq->private;
1855 	const struct tsap_cb *self = v;
1856 
1857 	seq_printf(seq, "TSAP %d, ", iter->id);
1858 	seq_printf(seq, "stsap_sel: %02x, ",
1859 		   self->stsap_sel);
1860 	seq_printf(seq, "dtsap_sel: %02x\n",
1861 		   self->dtsap_sel);
1862 	seq_printf(seq, "  connected: %s, ",
1863 		   self->connected? "TRUE":"FALSE");
1864 	seq_printf(seq, "avail credit: %d, ",
1865 		   self->avail_credit);
1866 	seq_printf(seq, "remote credit: %d, ",
1867 		   self->remote_credit);
1868 	seq_printf(seq, "send credit: %d\n",
1869 		   self->send_credit);
1870 	seq_printf(seq, "  tx packets: %lu, ",
1871 		   self->stats.tx_packets);
1872 	seq_printf(seq, "rx packets: %lu, ",
1873 		   self->stats.rx_packets);
1874 	seq_printf(seq, "tx_queue len: %u ",
1875 		   skb_queue_len(&self->tx_queue));
1876 	seq_printf(seq, "rx_queue len: %u\n",
1877 		   skb_queue_len(&self->rx_queue));
1878 	seq_printf(seq, "  tx_sdu_busy: %s, ",
1879 		   self->tx_sdu_busy? "TRUE":"FALSE");
1880 	seq_printf(seq, "rx_sdu_busy: %s\n",
1881 		   self->rx_sdu_busy? "TRUE":"FALSE");
1882 	seq_printf(seq, "  max_seg_size: %u, ",
1883 		   self->max_seg_size);
1884 	seq_printf(seq, "tx_max_sdu_size: %u, ",
1885 		   self->tx_max_sdu_size);
1886 	seq_printf(seq, "rx_max_sdu_size: %u\n",
1887 		   self->rx_max_sdu_size);
1888 
1889 	seq_printf(seq, "  Used by (%s)\n\n",
1890 		   self->notify.name);
1891 	return 0;
1892 }
1893 
1894 static const struct seq_operations irttp_seq_ops = {
1895 	.start  = irttp_seq_start,
1896 	.next   = irttp_seq_next,
1897 	.stop   = irttp_seq_stop,
1898 	.show   = irttp_seq_show,
1899 };
1900 
irttp_seq_open(struct inode * inode,struct file * file)1901 static int irttp_seq_open(struct inode *inode, struct file *file)
1902 {
1903 	return seq_open_private(file, &irttp_seq_ops,
1904 			sizeof(struct irttp_iter_state));
1905 }
1906 
1907 const struct file_operations irttp_seq_fops = {
1908 	.owner		= THIS_MODULE,
1909 	.open           = irttp_seq_open,
1910 	.read           = seq_read,
1911 	.llseek         = seq_lseek,
1912 	.release	= seq_release_private,
1913 };
1914 
1915 #endif /* PROC_FS */
1916