1 /*
2 * Driver for Digigram pcxhr compatible soundcards
3 *
4 * mixer interface for stereo cards
5 *
6 * Copyright (c) 2004 by Digigram <alsa@digigram.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 */
22
23 #include <linux/delay.h>
24 #include <linux/io.h>
25 #include <sound/core.h>
26 #include <sound/control.h>
27 #include <sound/tlv.h>
28 #include <sound/asoundef.h>
29 #include "pcxhr.h"
30 #include "pcxhr_core.h"
31 #include "pcxhr_mix22.h"
32
33
34 /* registers used on the DSP and Xilinx (port 2) : HR stereo cards only */
35 #define PCXHR_DSP_RESET 0x20
36 #define PCXHR_XLX_CFG 0x24
37 #define PCXHR_XLX_RUER 0x28
38 #define PCXHR_XLX_DATA 0x2C
39 #define PCXHR_XLX_STATUS 0x30
40 #define PCXHR_XLX_LOFREQ 0x34
41 #define PCXHR_XLX_HIFREQ 0x38
42 #define PCXHR_XLX_CSUER 0x3C
43 #define PCXHR_XLX_SELMIC 0x40
44
45 #define PCXHR_DSP 2
46
47 /* byte access only ! */
48 #define PCXHR_INPB(mgr, x) inb((mgr)->port[PCXHR_DSP] + (x))
49 #define PCXHR_OUTPB(mgr, x, data) outb((data), (mgr)->port[PCXHR_DSP] + (x))
50
51
52 /* values for PCHR_DSP_RESET register */
53 #define PCXHR_DSP_RESET_DSP 0x01
54 #define PCXHR_DSP_RESET_MUTE 0x02
55 #define PCXHR_DSP_RESET_CODEC 0x08
56 #define PCXHR_DSP_RESET_SMPTE 0x10
57 #define PCXHR_DSP_RESET_GPO_OFFSET 5
58 #define PCXHR_DSP_RESET_GPO_MASK 0x60
59
60 /* values for PCHR_XLX_CFG register */
61 #define PCXHR_CFG_SYNCDSP_MASK 0x80
62 #define PCXHR_CFG_DEPENDENCY_MASK 0x60
63 #define PCXHR_CFG_INDEPENDANT_SEL 0x00
64 #define PCXHR_CFG_MASTER_SEL 0x40
65 #define PCXHR_CFG_SLAVE_SEL 0x20
66 #define PCXHR_CFG_DATA_UER1_SEL_MASK 0x10 /* 0 (UER0), 1(UER1) */
67 #define PCXHR_CFG_DATAIN_SEL_MASK 0x08 /* 0 (ana), 1 (UER) */
68 #define PCXHR_CFG_SRC_MASK 0x04 /* 0 (Bypass), 1 (SRC Actif) */
69 #define PCXHR_CFG_CLOCK_UER1_SEL_MASK 0x02 /* 0 (UER0), 1(UER1) */
70 #define PCXHR_CFG_CLOCKIN_SEL_MASK 0x01 /* 0 (internal), 1 (AES/EBU) */
71
72 /* values for PCHR_XLX_DATA register */
73 #define PCXHR_DATA_CODEC 0x80
74 #define AKM_POWER_CONTROL_CMD 0xA007
75 #define AKM_RESET_ON_CMD 0xA100
76 #define AKM_RESET_OFF_CMD 0xA103
77 #define AKM_CLOCK_INF_55K_CMD 0xA240
78 #define AKM_CLOCK_SUP_55K_CMD 0xA24D
79 #define AKM_MUTE_CMD 0xA38D
80 #define AKM_UNMUTE_CMD 0xA30D
81 #define AKM_LEFT_LEVEL_CMD 0xA600
82 #define AKM_RIGHT_LEVEL_CMD 0xA700
83
84 /* values for PCHR_XLX_STATUS register - READ */
85 #define PCXHR_STAT_SRC_LOCK 0x01
86 #define PCXHR_STAT_LEVEL_IN 0x02
87 #define PCXHR_STAT_GPI_OFFSET 2
88 #define PCXHR_STAT_GPI_MASK 0x0C
89 #define PCXHR_STAT_MIC_CAPS 0x10
90 /* values for PCHR_XLX_STATUS register - WRITE */
91 #define PCXHR_STAT_FREQ_SYNC_MASK 0x01
92 #define PCXHR_STAT_FREQ_UER1_MASK 0x02
93 #define PCXHR_STAT_FREQ_SAVE_MASK 0x80
94
95 /* values for PCHR_XLX_CSUER register */
96 #define PCXHR_SUER1_BIT_U_READ_MASK 0x80
97 #define PCXHR_SUER1_BIT_C_READ_MASK 0x40
98 #define PCXHR_SUER1_DATA_PRESENT_MASK 0x20
99 #define PCXHR_SUER1_CLOCK_PRESENT_MASK 0x10
100 #define PCXHR_SUER_BIT_U_READ_MASK 0x08
101 #define PCXHR_SUER_BIT_C_READ_MASK 0x04
102 #define PCXHR_SUER_DATA_PRESENT_MASK 0x02
103 #define PCXHR_SUER_CLOCK_PRESENT_MASK 0x01
104
105 #define PCXHR_SUER_BIT_U_WRITE_MASK 0x02
106 #define PCXHR_SUER_BIT_C_WRITE_MASK 0x01
107
108 /* values for PCXHR_XLX_SELMIC register - WRITE */
109 #define PCXHR_SELMIC_PREAMPLI_OFFSET 2
110 #define PCXHR_SELMIC_PREAMPLI_MASK 0x0C
111 #define PCXHR_SELMIC_PHANTOM_ALIM 0x80
112
113
114 static const unsigned char g_hr222_p_level[] = {
115 0x00, /* [000] -49.5 dB: AKM[000] = -1.#INF dB (mute) */
116 0x01, /* [001] -49.0 dB: AKM[001] = -48.131 dB (diff=0.86920 dB) */
117 0x01, /* [002] -48.5 dB: AKM[001] = -48.131 dB (diff=0.36920 dB) */
118 0x01, /* [003] -48.0 dB: AKM[001] = -48.131 dB (diff=0.13080 dB) */
119 0x01, /* [004] -47.5 dB: AKM[001] = -48.131 dB (diff=0.63080 dB) */
120 0x01, /* [005] -46.5 dB: AKM[001] = -48.131 dB (diff=1.63080 dB) */
121 0x01, /* [006] -47.0 dB: AKM[001] = -48.131 dB (diff=1.13080 dB) */
122 0x01, /* [007] -46.0 dB: AKM[001] = -48.131 dB (diff=2.13080 dB) */
123 0x01, /* [008] -45.5 dB: AKM[001] = -48.131 dB (diff=2.63080 dB) */
124 0x02, /* [009] -45.0 dB: AKM[002] = -42.110 dB (diff=2.88980 dB) */
125 0x02, /* [010] -44.5 dB: AKM[002] = -42.110 dB (diff=2.38980 dB) */
126 0x02, /* [011] -44.0 dB: AKM[002] = -42.110 dB (diff=1.88980 dB) */
127 0x02, /* [012] -43.5 dB: AKM[002] = -42.110 dB (diff=1.38980 dB) */
128 0x02, /* [013] -43.0 dB: AKM[002] = -42.110 dB (diff=0.88980 dB) */
129 0x02, /* [014] -42.5 dB: AKM[002] = -42.110 dB (diff=0.38980 dB) */
130 0x02, /* [015] -42.0 dB: AKM[002] = -42.110 dB (diff=0.11020 dB) */
131 0x02, /* [016] -41.5 dB: AKM[002] = -42.110 dB (diff=0.61020 dB) */
132 0x02, /* [017] -41.0 dB: AKM[002] = -42.110 dB (diff=1.11020 dB) */
133 0x02, /* [018] -40.5 dB: AKM[002] = -42.110 dB (diff=1.61020 dB) */
134 0x03, /* [019] -40.0 dB: AKM[003] = -38.588 dB (diff=1.41162 dB) */
135 0x03, /* [020] -39.5 dB: AKM[003] = -38.588 dB (diff=0.91162 dB) */
136 0x03, /* [021] -39.0 dB: AKM[003] = -38.588 dB (diff=0.41162 dB) */
137 0x03, /* [022] -38.5 dB: AKM[003] = -38.588 dB (diff=0.08838 dB) */
138 0x03, /* [023] -38.0 dB: AKM[003] = -38.588 dB (diff=0.58838 dB) */
139 0x03, /* [024] -37.5 dB: AKM[003] = -38.588 dB (diff=1.08838 dB) */
140 0x04, /* [025] -37.0 dB: AKM[004] = -36.090 dB (diff=0.91040 dB) */
141 0x04, /* [026] -36.5 dB: AKM[004] = -36.090 dB (diff=0.41040 dB) */
142 0x04, /* [027] -36.0 dB: AKM[004] = -36.090 dB (diff=0.08960 dB) */
143 0x04, /* [028] -35.5 dB: AKM[004] = -36.090 dB (diff=0.58960 dB) */
144 0x05, /* [029] -35.0 dB: AKM[005] = -34.151 dB (diff=0.84860 dB) */
145 0x05, /* [030] -34.5 dB: AKM[005] = -34.151 dB (diff=0.34860 dB) */
146 0x05, /* [031] -34.0 dB: AKM[005] = -34.151 dB (diff=0.15140 dB) */
147 0x05, /* [032] -33.5 dB: AKM[005] = -34.151 dB (diff=0.65140 dB) */
148 0x06, /* [033] -33.0 dB: AKM[006] = -32.568 dB (diff=0.43222 dB) */
149 0x06, /* [034] -32.5 dB: AKM[006] = -32.568 dB (diff=0.06778 dB) */
150 0x06, /* [035] -32.0 dB: AKM[006] = -32.568 dB (diff=0.56778 dB) */
151 0x07, /* [036] -31.5 dB: AKM[007] = -31.229 dB (diff=0.27116 dB) */
152 0x07, /* [037] -31.0 dB: AKM[007] = -31.229 dB (diff=0.22884 dB) */
153 0x08, /* [038] -30.5 dB: AKM[008] = -30.069 dB (diff=0.43100 dB) */
154 0x08, /* [039] -30.0 dB: AKM[008] = -30.069 dB (diff=0.06900 dB) */
155 0x09, /* [040] -29.5 dB: AKM[009] = -29.046 dB (diff=0.45405 dB) */
156 0x09, /* [041] -29.0 dB: AKM[009] = -29.046 dB (diff=0.04595 dB) */
157 0x0a, /* [042] -28.5 dB: AKM[010] = -28.131 dB (diff=0.36920 dB) */
158 0x0a, /* [043] -28.0 dB: AKM[010] = -28.131 dB (diff=0.13080 dB) */
159 0x0b, /* [044] -27.5 dB: AKM[011] = -27.303 dB (diff=0.19705 dB) */
160 0x0b, /* [045] -27.0 dB: AKM[011] = -27.303 dB (diff=0.30295 dB) */
161 0x0c, /* [046] -26.5 dB: AKM[012] = -26.547 dB (diff=0.04718 dB) */
162 0x0d, /* [047] -26.0 dB: AKM[013] = -25.852 dB (diff=0.14806 dB) */
163 0x0e, /* [048] -25.5 dB: AKM[014] = -25.208 dB (diff=0.29176 dB) */
164 0x0e, /* [049] -25.0 dB: AKM[014] = -25.208 dB (diff=0.20824 dB) */
165 0x0f, /* [050] -24.5 dB: AKM[015] = -24.609 dB (diff=0.10898 dB) */
166 0x10, /* [051] -24.0 dB: AKM[016] = -24.048 dB (diff=0.04840 dB) */
167 0x11, /* [052] -23.5 dB: AKM[017] = -23.522 dB (diff=0.02183 dB) */
168 0x12, /* [053] -23.0 dB: AKM[018] = -23.025 dB (diff=0.02535 dB) */
169 0x13, /* [054] -22.5 dB: AKM[019] = -22.556 dB (diff=0.05573 dB) */
170 0x14, /* [055] -22.0 dB: AKM[020] = -22.110 dB (diff=0.11020 dB) */
171 0x15, /* [056] -21.5 dB: AKM[021] = -21.686 dB (diff=0.18642 dB) */
172 0x17, /* [057] -21.0 dB: AKM[023] = -20.896 dB (diff=0.10375 dB) */
173 0x18, /* [058] -20.5 dB: AKM[024] = -20.527 dB (diff=0.02658 dB) */
174 0x1a, /* [059] -20.0 dB: AKM[026] = -19.831 dB (diff=0.16866 dB) */
175 0x1b, /* [060] -19.5 dB: AKM[027] = -19.504 dB (diff=0.00353 dB) */
176 0x1d, /* [061] -19.0 dB: AKM[029] = -18.883 dB (diff=0.11716 dB) */
177 0x1e, /* [062] -18.5 dB: AKM[030] = -18.588 dB (diff=0.08838 dB) */
178 0x20, /* [063] -18.0 dB: AKM[032] = -18.028 dB (diff=0.02780 dB) */
179 0x22, /* [064] -17.5 dB: AKM[034] = -17.501 dB (diff=0.00123 dB) */
180 0x24, /* [065] -17.0 dB: AKM[036] = -17.005 dB (diff=0.00475 dB) */
181 0x26, /* [066] -16.5 dB: AKM[038] = -16.535 dB (diff=0.03513 dB) */
182 0x28, /* [067] -16.0 dB: AKM[040] = -16.090 dB (diff=0.08960 dB) */
183 0x2b, /* [068] -15.5 dB: AKM[043] = -15.461 dB (diff=0.03857 dB) */
184 0x2d, /* [069] -15.0 dB: AKM[045] = -15.067 dB (diff=0.06655 dB) */
185 0x30, /* [070] -14.5 dB: AKM[048] = -14.506 dB (diff=0.00598 dB) */
186 0x33, /* [071] -14.0 dB: AKM[051] = -13.979 dB (diff=0.02060 dB) */
187 0x36, /* [072] -13.5 dB: AKM[054] = -13.483 dB (diff=0.01707 dB) */
188 0x39, /* [073] -13.0 dB: AKM[057] = -13.013 dB (diff=0.01331 dB) */
189 0x3c, /* [074] -12.5 dB: AKM[060] = -12.568 dB (diff=0.06778 dB) */
190 0x40, /* [075] -12.0 dB: AKM[064] = -12.007 dB (diff=0.00720 dB) */
191 0x44, /* [076] -11.5 dB: AKM[068] = -11.481 dB (diff=0.01937 dB) */
192 0x48, /* [077] -11.0 dB: AKM[072] = -10.984 dB (diff=0.01585 dB) */
193 0x4c, /* [078] -10.5 dB: AKM[076] = -10.515 dB (diff=0.01453 dB) */
194 0x51, /* [079] -10.0 dB: AKM[081] = -9.961 dB (diff=0.03890 dB) */
195 0x55, /* [080] -9.5 dB: AKM[085] = -9.542 dB (diff=0.04243 dB) */
196 0x5a, /* [081] -9.0 dB: AKM[090] = -9.046 dB (diff=0.04595 dB) */
197 0x60, /* [082] -8.5 dB: AKM[096] = -8.485 dB (diff=0.01462 dB) */
198 0x66, /* [083] -8.0 dB: AKM[102] = -7.959 dB (diff=0.04120 dB) */
199 0x6c, /* [084] -7.5 dB: AKM[108] = -7.462 dB (diff=0.03767 dB) */
200 0x72, /* [085] -7.0 dB: AKM[114] = -6.993 dB (diff=0.00729 dB) */
201 0x79, /* [086] -6.5 dB: AKM[121] = -6.475 dB (diff=0.02490 dB) */
202 0x80, /* [087] -6.0 dB: AKM[128] = -5.987 dB (diff=0.01340 dB) */
203 0x87, /* [088] -5.5 dB: AKM[135] = -5.524 dB (diff=0.02413 dB) */
204 0x8f, /* [089] -5.0 dB: AKM[143] = -5.024 dB (diff=0.02408 dB) */
205 0x98, /* [090] -4.5 dB: AKM[152] = -4.494 dB (diff=0.00607 dB) */
206 0xa1, /* [091] -4.0 dB: AKM[161] = -3.994 dB (diff=0.00571 dB) */
207 0xaa, /* [092] -3.5 dB: AKM[170] = -3.522 dB (diff=0.02183 dB) */
208 0xb5, /* [093] -3.0 dB: AKM[181] = -2.977 dB (diff=0.02277 dB) */
209 0xbf, /* [094] -2.5 dB: AKM[191] = -2.510 dB (diff=0.01014 dB) */
210 0xcb, /* [095] -2.0 dB: AKM[203] = -1.981 dB (diff=0.01912 dB) */
211 0xd7, /* [096] -1.5 dB: AKM[215] = -1.482 dB (diff=0.01797 dB) */
212 0xe3, /* [097] -1.0 dB: AKM[227] = -1.010 dB (diff=0.01029 dB) */
213 0xf1, /* [098] -0.5 dB: AKM[241] = -0.490 dB (diff=0.00954 dB) */
214 0xff, /* [099] +0.0 dB: AKM[255] = +0.000 dB (diff=0.00000 dB) */
215 };
216
217
hr222_config_akm(struct pcxhr_mgr * mgr,unsigned short data)218 static void hr222_config_akm(struct pcxhr_mgr *mgr, unsigned short data)
219 {
220 unsigned short mask = 0x8000;
221 /* activate access to codec registers */
222 PCXHR_INPB(mgr, PCXHR_XLX_HIFREQ);
223
224 while (mask) {
225 PCXHR_OUTPB(mgr, PCXHR_XLX_DATA,
226 data & mask ? PCXHR_DATA_CODEC : 0);
227 mask >>= 1;
228 }
229 /* termiate access to codec registers */
230 PCXHR_INPB(mgr, PCXHR_XLX_RUER);
231 }
232
233
hr222_set_hw_playback_level(struct pcxhr_mgr * mgr,int idx,int level)234 static int hr222_set_hw_playback_level(struct pcxhr_mgr *mgr,
235 int idx, int level)
236 {
237 unsigned short cmd;
238 if (idx > 1 ||
239 level < 0 ||
240 level >= ARRAY_SIZE(g_hr222_p_level))
241 return -EINVAL;
242
243 if (idx == 0)
244 cmd = AKM_LEFT_LEVEL_CMD;
245 else
246 cmd = AKM_RIGHT_LEVEL_CMD;
247
248 /* conversion from PmBoardCodedLevel to AKM nonlinear programming */
249 cmd += g_hr222_p_level[level];
250
251 hr222_config_akm(mgr, cmd);
252 return 0;
253 }
254
255
hr222_set_hw_capture_level(struct pcxhr_mgr * mgr,int level_l,int level_r,int level_mic)256 static int hr222_set_hw_capture_level(struct pcxhr_mgr *mgr,
257 int level_l, int level_r, int level_mic)
258 {
259 /* program all input levels at the same time */
260 unsigned int data;
261 int i;
262
263 if (!mgr->capture_chips)
264 return -EINVAL; /* no PCX22 */
265
266 data = ((level_mic & 0xff) << 24); /* micro is mono, but apply */
267 data |= ((level_mic & 0xff) << 16); /* level on both channels */
268 data |= ((level_r & 0xff) << 8); /* line input right channel */
269 data |= (level_l & 0xff); /* line input left channel */
270
271 PCXHR_INPB(mgr, PCXHR_XLX_DATA); /* activate input codec */
272 /* send 32 bits (4 x 8 bits) */
273 for (i = 0; i < 32; i++, data <<= 1) {
274 PCXHR_OUTPB(mgr, PCXHR_XLX_DATA,
275 (data & 0x80000000) ? PCXHR_DATA_CODEC : 0);
276 }
277 PCXHR_INPB(mgr, PCXHR_XLX_RUER); /* close input level codec */
278 return 0;
279 }
280
281 static void hr222_micro_boost(struct pcxhr_mgr *mgr, int level);
282
hr222_sub_init(struct pcxhr_mgr * mgr)283 int hr222_sub_init(struct pcxhr_mgr *mgr)
284 {
285 unsigned char reg;
286
287 mgr->board_has_analog = 1; /* analog always available */
288 mgr->xlx_cfg = PCXHR_CFG_SYNCDSP_MASK;
289
290 reg = PCXHR_INPB(mgr, PCXHR_XLX_STATUS);
291 if (reg & PCXHR_STAT_MIC_CAPS)
292 mgr->board_has_mic = 1; /* microphone available */
293 snd_printdd("MIC input available = %d\n", mgr->board_has_mic);
294
295 /* reset codec */
296 PCXHR_OUTPB(mgr, PCXHR_DSP_RESET,
297 PCXHR_DSP_RESET_DSP);
298 msleep(5);
299 mgr->dsp_reset = PCXHR_DSP_RESET_DSP |
300 PCXHR_DSP_RESET_MUTE |
301 PCXHR_DSP_RESET_CODEC;
302 PCXHR_OUTPB(mgr, PCXHR_DSP_RESET, mgr->dsp_reset);
303 /* hr222_write_gpo(mgr, 0); does the same */
304 msleep(5);
305
306 /* config AKM */
307 hr222_config_akm(mgr, AKM_POWER_CONTROL_CMD);
308 hr222_config_akm(mgr, AKM_CLOCK_INF_55K_CMD);
309 hr222_config_akm(mgr, AKM_UNMUTE_CMD);
310 hr222_config_akm(mgr, AKM_RESET_OFF_CMD);
311
312 /* init micro boost */
313 hr222_micro_boost(mgr, 0);
314
315 return 0;
316 }
317
318
319 /* calc PLL register */
320 /* TODO : there is a very similar fct in pcxhr.c */
hr222_pll_freq_register(unsigned int freq,unsigned int * pllreg,unsigned int * realfreq)321 static int hr222_pll_freq_register(unsigned int freq,
322 unsigned int *pllreg,
323 unsigned int *realfreq)
324 {
325 unsigned int reg;
326
327 if (freq < 6900 || freq > 219000)
328 return -EINVAL;
329 reg = (28224000 * 2) / freq;
330 reg = (reg - 1) / 2;
331 if (reg < 0x100)
332 *pllreg = reg + 0xC00;
333 else if (reg < 0x200)
334 *pllreg = reg + 0x800;
335 else if (reg < 0x400)
336 *pllreg = reg & 0x1ff;
337 else if (reg < 0x800) {
338 *pllreg = ((reg >> 1) & 0x1ff) + 0x200;
339 reg &= ~1;
340 } else {
341 *pllreg = ((reg >> 2) & 0x1ff) + 0x400;
342 reg &= ~3;
343 }
344 if (realfreq)
345 *realfreq = (28224000 / (reg + 1));
346 return 0;
347 }
348
hr222_sub_set_clock(struct pcxhr_mgr * mgr,unsigned int rate,int * changed)349 int hr222_sub_set_clock(struct pcxhr_mgr *mgr,
350 unsigned int rate,
351 int *changed)
352 {
353 unsigned int speed, pllreg = 0;
354 int err;
355 unsigned realfreq = rate;
356
357 switch (mgr->use_clock_type) {
358 case HR22_CLOCK_TYPE_INTERNAL:
359 err = hr222_pll_freq_register(rate, &pllreg, &realfreq);
360 if (err)
361 return err;
362
363 mgr->xlx_cfg &= ~(PCXHR_CFG_CLOCKIN_SEL_MASK |
364 PCXHR_CFG_CLOCK_UER1_SEL_MASK);
365 break;
366 case HR22_CLOCK_TYPE_AES_SYNC:
367 mgr->xlx_cfg |= PCXHR_CFG_CLOCKIN_SEL_MASK;
368 mgr->xlx_cfg &= ~PCXHR_CFG_CLOCK_UER1_SEL_MASK;
369 break;
370 case HR22_CLOCK_TYPE_AES_1:
371 if (!mgr->board_has_aes1)
372 return -EINVAL;
373
374 mgr->xlx_cfg |= (PCXHR_CFG_CLOCKIN_SEL_MASK |
375 PCXHR_CFG_CLOCK_UER1_SEL_MASK);
376 break;
377 default:
378 return -EINVAL;
379 }
380 hr222_config_akm(mgr, AKM_MUTE_CMD);
381
382 if (mgr->use_clock_type == HR22_CLOCK_TYPE_INTERNAL) {
383 PCXHR_OUTPB(mgr, PCXHR_XLX_HIFREQ, pllreg >> 8);
384 PCXHR_OUTPB(mgr, PCXHR_XLX_LOFREQ, pllreg & 0xff);
385 }
386
387 /* set clock source */
388 PCXHR_OUTPB(mgr, PCXHR_XLX_CFG, mgr->xlx_cfg);
389
390 /* codec speed modes */
391 speed = rate < 55000 ? 0 : 1;
392 if (mgr->codec_speed != speed) {
393 mgr->codec_speed = speed;
394 if (speed == 0)
395 hr222_config_akm(mgr, AKM_CLOCK_INF_55K_CMD);
396 else
397 hr222_config_akm(mgr, AKM_CLOCK_SUP_55K_CMD);
398 }
399
400 mgr->sample_rate_real = realfreq;
401 mgr->cur_clock_type = mgr->use_clock_type;
402
403 if (changed)
404 *changed = 1;
405
406 hr222_config_akm(mgr, AKM_UNMUTE_CMD);
407
408 snd_printdd("set_clock to %dHz (realfreq=%d pllreg=%x)\n",
409 rate, realfreq, pllreg);
410 return 0;
411 }
412
hr222_get_external_clock(struct pcxhr_mgr * mgr,enum pcxhr_clock_type clock_type,int * sample_rate)413 int hr222_get_external_clock(struct pcxhr_mgr *mgr,
414 enum pcxhr_clock_type clock_type,
415 int *sample_rate)
416 {
417 int rate, calc_rate = 0;
418 unsigned int ticks;
419 unsigned char mask, reg;
420
421 if (clock_type == HR22_CLOCK_TYPE_AES_SYNC) {
422
423 mask = (PCXHR_SUER_CLOCK_PRESENT_MASK |
424 PCXHR_SUER_DATA_PRESENT_MASK);
425 reg = PCXHR_STAT_FREQ_SYNC_MASK;
426
427 } else if (clock_type == HR22_CLOCK_TYPE_AES_1 && mgr->board_has_aes1) {
428
429 mask = (PCXHR_SUER1_CLOCK_PRESENT_MASK |
430 PCXHR_SUER1_DATA_PRESENT_MASK);
431 reg = PCXHR_STAT_FREQ_UER1_MASK;
432
433 } else {
434 snd_printdd("get_external_clock : type %d not supported\n",
435 clock_type);
436 return -EINVAL; /* other clocks not supported */
437 }
438
439 if ((PCXHR_INPB(mgr, PCXHR_XLX_CSUER) & mask) != mask) {
440 snd_printdd("get_external_clock(%d) = 0 Hz\n", clock_type);
441 *sample_rate = 0;
442 return 0; /* no external clock locked */
443 }
444
445 PCXHR_OUTPB(mgr, PCXHR_XLX_STATUS, reg); /* calculate freq */
446
447 /* save the measured clock frequency */
448 reg |= PCXHR_STAT_FREQ_SAVE_MASK;
449
450 if (mgr->last_reg_stat != reg) {
451 udelay(500); /* wait min 2 cycles of lowest freq (8000) */
452 mgr->last_reg_stat = reg;
453 }
454
455 PCXHR_OUTPB(mgr, PCXHR_XLX_STATUS, reg); /* save */
456
457 /* get the frequency */
458 ticks = (unsigned int)PCXHR_INPB(mgr, PCXHR_XLX_CFG);
459 ticks = (ticks & 0x03) << 8;
460 ticks |= (unsigned int)PCXHR_INPB(mgr, PCXHR_DSP_RESET);
461
462 if (ticks != 0)
463 calc_rate = 28224000 / ticks;
464 /* rounding */
465 if (calc_rate > 184200)
466 rate = 192000;
467 else if (calc_rate > 152200)
468 rate = 176400;
469 else if (calc_rate > 112000)
470 rate = 128000;
471 else if (calc_rate > 92100)
472 rate = 96000;
473 else if (calc_rate > 76100)
474 rate = 88200;
475 else if (calc_rate > 56000)
476 rate = 64000;
477 else if (calc_rate > 46050)
478 rate = 48000;
479 else if (calc_rate > 38050)
480 rate = 44100;
481 else if (calc_rate > 28000)
482 rate = 32000;
483 else if (calc_rate > 23025)
484 rate = 24000;
485 else if (calc_rate > 19025)
486 rate = 22050;
487 else if (calc_rate > 14000)
488 rate = 16000;
489 else if (calc_rate > 11512)
490 rate = 12000;
491 else if (calc_rate > 9512)
492 rate = 11025;
493 else if (calc_rate > 7000)
494 rate = 8000;
495 else
496 rate = 0;
497
498 snd_printdd("External clock is at %d Hz (measured %d Hz)\n",
499 rate, calc_rate);
500 *sample_rate = rate;
501 return 0;
502 }
503
504
hr222_read_gpio(struct pcxhr_mgr * mgr,int is_gpi,int * value)505 int hr222_read_gpio(struct pcxhr_mgr *mgr, int is_gpi, int *value)
506 {
507 if (is_gpi) {
508 unsigned char reg = PCXHR_INPB(mgr, PCXHR_XLX_STATUS);
509 *value = (int)(reg & PCXHR_STAT_GPI_MASK) >>
510 PCXHR_STAT_GPI_OFFSET;
511 } else {
512 *value = (int)(mgr->dsp_reset & PCXHR_DSP_RESET_GPO_MASK) >>
513 PCXHR_DSP_RESET_GPO_OFFSET;
514 }
515 return 0;
516 }
517
518
hr222_write_gpo(struct pcxhr_mgr * mgr,int value)519 int hr222_write_gpo(struct pcxhr_mgr *mgr, int value)
520 {
521 unsigned char reg = mgr->dsp_reset & ~PCXHR_DSP_RESET_GPO_MASK;
522
523 reg |= (unsigned char)(value << PCXHR_DSP_RESET_GPO_OFFSET) &
524 PCXHR_DSP_RESET_GPO_MASK;
525
526 PCXHR_OUTPB(mgr, PCXHR_DSP_RESET, reg);
527 mgr->dsp_reset = reg;
528 return 0;
529 }
530
hr222_manage_timecode(struct pcxhr_mgr * mgr,int enable)531 int hr222_manage_timecode(struct pcxhr_mgr *mgr, int enable)
532 {
533 if (enable)
534 mgr->dsp_reset |= PCXHR_DSP_RESET_SMPTE;
535 else
536 mgr->dsp_reset &= ~PCXHR_DSP_RESET_SMPTE;
537
538 PCXHR_OUTPB(mgr, PCXHR_DSP_RESET, mgr->dsp_reset);
539 return 0;
540 }
541
hr222_update_analog_audio_level(struct snd_pcxhr * chip,int is_capture,int channel)542 int hr222_update_analog_audio_level(struct snd_pcxhr *chip,
543 int is_capture, int channel)
544 {
545 snd_printdd("hr222_update_analog_audio_level(%s chan=%d)\n",
546 is_capture ? "capture" : "playback", channel);
547 if (is_capture) {
548 int level_l, level_r, level_mic;
549 /* we have to update all levels */
550 if (chip->analog_capture_active) {
551 level_l = chip->analog_capture_volume[0];
552 level_r = chip->analog_capture_volume[1];
553 } else {
554 level_l = HR222_LINE_CAPTURE_LEVEL_MIN;
555 level_r = HR222_LINE_CAPTURE_LEVEL_MIN;
556 }
557 if (chip->mic_active)
558 level_mic = chip->mic_volume;
559 else
560 level_mic = HR222_MICRO_CAPTURE_LEVEL_MIN;
561 return hr222_set_hw_capture_level(chip->mgr,
562 level_l, level_r, level_mic);
563 } else {
564 int vol;
565 if (chip->analog_playback_active[channel])
566 vol = chip->analog_playback_volume[channel];
567 else
568 vol = HR222_LINE_PLAYBACK_LEVEL_MIN;
569 return hr222_set_hw_playback_level(chip->mgr, channel, vol);
570 }
571 }
572
573
574 /*texts[5] = {"Line", "Digital", "Digi+SRC", "Mic", "Line+Mic"}*/
575 #define SOURCE_LINE 0
576 #define SOURCE_DIGITAL 1
577 #define SOURCE_DIGISRC 2
578 #define SOURCE_MIC 3
579 #define SOURCE_LINEMIC 4
580
hr222_set_audio_source(struct snd_pcxhr * chip)581 int hr222_set_audio_source(struct snd_pcxhr *chip)
582 {
583 int digital = 0;
584 /* default analog source */
585 chip->mgr->xlx_cfg &= ~(PCXHR_CFG_SRC_MASK |
586 PCXHR_CFG_DATAIN_SEL_MASK |
587 PCXHR_CFG_DATA_UER1_SEL_MASK);
588
589 if (chip->audio_capture_source == SOURCE_DIGISRC) {
590 chip->mgr->xlx_cfg |= PCXHR_CFG_SRC_MASK;
591 digital = 1;
592 } else {
593 if (chip->audio_capture_source == SOURCE_DIGITAL)
594 digital = 1;
595 }
596 if (digital) {
597 chip->mgr->xlx_cfg |= PCXHR_CFG_DATAIN_SEL_MASK;
598 if (chip->mgr->board_has_aes1) {
599 /* get data from the AES1 plug */
600 chip->mgr->xlx_cfg |= PCXHR_CFG_DATA_UER1_SEL_MASK;
601 }
602 /* chip->mic_active = 0; */
603 /* chip->analog_capture_active = 0; */
604 } else {
605 int update_lvl = 0;
606 chip->analog_capture_active = 0;
607 chip->mic_active = 0;
608 if (chip->audio_capture_source == SOURCE_LINE ||
609 chip->audio_capture_source == SOURCE_LINEMIC) {
610 if (chip->analog_capture_active == 0)
611 update_lvl = 1;
612 chip->analog_capture_active = 1;
613 }
614 if (chip->audio_capture_source == SOURCE_MIC ||
615 chip->audio_capture_source == SOURCE_LINEMIC) {
616 if (chip->mic_active == 0)
617 update_lvl = 1;
618 chip->mic_active = 1;
619 }
620 if (update_lvl) {
621 /* capture: update all 3 mutes/unmutes with one call */
622 hr222_update_analog_audio_level(chip, 1, 0);
623 }
624 }
625 /* set the source infos (max 3 bits modified) */
626 PCXHR_OUTPB(chip->mgr, PCXHR_XLX_CFG, chip->mgr->xlx_cfg);
627 return 0;
628 }
629
630
hr222_iec958_capture_byte(struct snd_pcxhr * chip,int aes_idx,unsigned char * aes_bits)631 int hr222_iec958_capture_byte(struct snd_pcxhr *chip,
632 int aes_idx, unsigned char *aes_bits)
633 {
634 unsigned char idx = (unsigned char)(aes_idx * 8);
635 unsigned char temp = 0;
636 unsigned char mask = chip->mgr->board_has_aes1 ?
637 PCXHR_SUER1_BIT_C_READ_MASK : PCXHR_SUER_BIT_C_READ_MASK;
638 int i;
639 for (i = 0; i < 8; i++) {
640 PCXHR_OUTPB(chip->mgr, PCXHR_XLX_RUER, idx++); /* idx < 192 */
641 temp <<= 1;
642 if (PCXHR_INPB(chip->mgr, PCXHR_XLX_CSUER) & mask)
643 temp |= 1;
644 }
645 snd_printdd("read iec958 AES %d byte %d = 0x%x\n",
646 chip->chip_idx, aes_idx, temp);
647 *aes_bits = temp;
648 return 0;
649 }
650
651
hr222_iec958_update_byte(struct snd_pcxhr * chip,int aes_idx,unsigned char aes_bits)652 int hr222_iec958_update_byte(struct snd_pcxhr *chip,
653 int aes_idx, unsigned char aes_bits)
654 {
655 int i;
656 unsigned char new_bits = aes_bits;
657 unsigned char old_bits = chip->aes_bits[aes_idx];
658 unsigned char idx = (unsigned char)(aes_idx * 8);
659 for (i = 0; i < 8; i++) {
660 if ((old_bits & 0x01) != (new_bits & 0x01)) {
661 /* idx < 192 */
662 PCXHR_OUTPB(chip->mgr, PCXHR_XLX_RUER, idx);
663 /* write C and U bit */
664 PCXHR_OUTPB(chip->mgr, PCXHR_XLX_CSUER, new_bits&0x01 ?
665 PCXHR_SUER_BIT_C_WRITE_MASK : 0);
666 }
667 idx++;
668 old_bits >>= 1;
669 new_bits >>= 1;
670 }
671 chip->aes_bits[aes_idx] = aes_bits;
672 return 0;
673 }
674
hr222_micro_boost(struct pcxhr_mgr * mgr,int level)675 static void hr222_micro_boost(struct pcxhr_mgr *mgr, int level)
676 {
677 unsigned char boost_mask;
678 boost_mask = (unsigned char) (level << PCXHR_SELMIC_PREAMPLI_OFFSET);
679 if (boost_mask & (~PCXHR_SELMIC_PREAMPLI_MASK))
680 return; /* only values form 0 to 3 accepted */
681
682 mgr->xlx_selmic &= ~PCXHR_SELMIC_PREAMPLI_MASK;
683 mgr->xlx_selmic |= boost_mask;
684
685 PCXHR_OUTPB(mgr, PCXHR_XLX_SELMIC, mgr->xlx_selmic);
686
687 snd_printdd("hr222_micro_boost : set %x\n", boost_mask);
688 }
689
hr222_phantom_power(struct pcxhr_mgr * mgr,int power)690 static void hr222_phantom_power(struct pcxhr_mgr *mgr, int power)
691 {
692 if (power)
693 mgr->xlx_selmic |= PCXHR_SELMIC_PHANTOM_ALIM;
694 else
695 mgr->xlx_selmic &= ~PCXHR_SELMIC_PHANTOM_ALIM;
696
697 PCXHR_OUTPB(mgr, PCXHR_XLX_SELMIC, mgr->xlx_selmic);
698
699 snd_printdd("hr222_phantom_power : set %d\n", power);
700 }
701
702
703 /* mic level */
704 static const DECLARE_TLV_DB_SCALE(db_scale_mic_hr222, -9850, 50, 650);
705
hr222_mic_vol_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)706 static int hr222_mic_vol_info(struct snd_kcontrol *kcontrol,
707 struct snd_ctl_elem_info *uinfo)
708 {
709 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
710 uinfo->count = 1;
711 uinfo->value.integer.min = HR222_MICRO_CAPTURE_LEVEL_MIN; /* -98 dB */
712 /* gains from 9 dB to 31.5 dB not recommended; use micboost instead */
713 uinfo->value.integer.max = HR222_MICRO_CAPTURE_LEVEL_MAX; /* +7 dB */
714 return 0;
715 }
716
hr222_mic_vol_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)717 static int hr222_mic_vol_get(struct snd_kcontrol *kcontrol,
718 struct snd_ctl_elem_value *ucontrol)
719 {
720 struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
721 mutex_lock(&chip->mgr->mixer_mutex);
722 ucontrol->value.integer.value[0] = chip->mic_volume;
723 mutex_unlock(&chip->mgr->mixer_mutex);
724 return 0;
725 }
726
hr222_mic_vol_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)727 static int hr222_mic_vol_put(struct snd_kcontrol *kcontrol,
728 struct snd_ctl_elem_value *ucontrol)
729 {
730 struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
731 int changed = 0;
732 mutex_lock(&chip->mgr->mixer_mutex);
733 if (chip->mic_volume != ucontrol->value.integer.value[0]) {
734 changed = 1;
735 chip->mic_volume = ucontrol->value.integer.value[0];
736 hr222_update_analog_audio_level(chip, 1, 0);
737 }
738 mutex_unlock(&chip->mgr->mixer_mutex);
739 return changed;
740 }
741
742 static struct snd_kcontrol_new hr222_control_mic_level = {
743 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
744 .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
745 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
746 .name = "Mic Capture Volume",
747 .info = hr222_mic_vol_info,
748 .get = hr222_mic_vol_get,
749 .put = hr222_mic_vol_put,
750 .tlv = { .p = db_scale_mic_hr222 },
751 };
752
753
754 /* mic boost level */
755 static const DECLARE_TLV_DB_SCALE(db_scale_micboost_hr222, 0, 1800, 5400);
756
hr222_mic_boost_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)757 static int hr222_mic_boost_info(struct snd_kcontrol *kcontrol,
758 struct snd_ctl_elem_info *uinfo)
759 {
760 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
761 uinfo->count = 1;
762 uinfo->value.integer.min = 0; /* 0 dB */
763 uinfo->value.integer.max = 3; /* 54 dB */
764 return 0;
765 }
766
hr222_mic_boost_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)767 static int hr222_mic_boost_get(struct snd_kcontrol *kcontrol,
768 struct snd_ctl_elem_value *ucontrol)
769 {
770 struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
771 mutex_lock(&chip->mgr->mixer_mutex);
772 ucontrol->value.integer.value[0] = chip->mic_boost;
773 mutex_unlock(&chip->mgr->mixer_mutex);
774 return 0;
775 }
776
hr222_mic_boost_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)777 static int hr222_mic_boost_put(struct snd_kcontrol *kcontrol,
778 struct snd_ctl_elem_value *ucontrol)
779 {
780 struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
781 int changed = 0;
782 mutex_lock(&chip->mgr->mixer_mutex);
783 if (chip->mic_boost != ucontrol->value.integer.value[0]) {
784 changed = 1;
785 chip->mic_boost = ucontrol->value.integer.value[0];
786 hr222_micro_boost(chip->mgr, chip->mic_boost);
787 }
788 mutex_unlock(&chip->mgr->mixer_mutex);
789 return changed;
790 }
791
792 static struct snd_kcontrol_new hr222_control_mic_boost = {
793 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
794 .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
795 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
796 .name = "MicBoost Capture Volume",
797 .info = hr222_mic_boost_info,
798 .get = hr222_mic_boost_get,
799 .put = hr222_mic_boost_put,
800 .tlv = { .p = db_scale_micboost_hr222 },
801 };
802
803
804 /******************* Phantom power switch *******************/
805 #define hr222_phantom_power_info snd_ctl_boolean_mono_info
806
hr222_phantom_power_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)807 static int hr222_phantom_power_get(struct snd_kcontrol *kcontrol,
808 struct snd_ctl_elem_value *ucontrol)
809 {
810 struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
811 mutex_lock(&chip->mgr->mixer_mutex);
812 ucontrol->value.integer.value[0] = chip->phantom_power;
813 mutex_unlock(&chip->mgr->mixer_mutex);
814 return 0;
815 }
816
hr222_phantom_power_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)817 static int hr222_phantom_power_put(struct snd_kcontrol *kcontrol,
818 struct snd_ctl_elem_value *ucontrol)
819 {
820 struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
821 int power, changed = 0;
822
823 mutex_lock(&chip->mgr->mixer_mutex);
824 power = !!ucontrol->value.integer.value[0];
825 if (chip->phantom_power != power) {
826 hr222_phantom_power(chip->mgr, power);
827 chip->phantom_power = power;
828 changed = 1;
829 }
830 mutex_unlock(&chip->mgr->mixer_mutex);
831 return changed;
832 }
833
834 static struct snd_kcontrol_new hr222_phantom_power_switch = {
835 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
836 .name = "Phantom Power Switch",
837 .info = hr222_phantom_power_info,
838 .get = hr222_phantom_power_get,
839 .put = hr222_phantom_power_put,
840 };
841
842
hr222_add_mic_controls(struct snd_pcxhr * chip)843 int hr222_add_mic_controls(struct snd_pcxhr *chip)
844 {
845 int err;
846 if (!chip->mgr->board_has_mic)
847 return 0;
848
849 /* controls */
850 err = snd_ctl_add(chip->card, snd_ctl_new1(&hr222_control_mic_level,
851 chip));
852 if (err < 0)
853 return err;
854
855 err = snd_ctl_add(chip->card, snd_ctl_new1(&hr222_control_mic_boost,
856 chip));
857 if (err < 0)
858 return err;
859
860 err = snd_ctl_add(chip->card, snd_ctl_new1(&hr222_phantom_power_switch,
861 chip));
862 return err;
863 }
864