• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _ASM_IA64_PROCESSOR_H
2 #define _ASM_IA64_PROCESSOR_H
3 
4 /*
5  * Copyright (C) 1998-2004 Hewlett-Packard Co
6  *	David Mosberger-Tang <davidm@hpl.hp.com>
7  *	Stephane Eranian <eranian@hpl.hp.com>
8  * Copyright (C) 1999 Asit Mallick <asit.k.mallick@intel.com>
9  * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
10  *
11  * 11/24/98	S.Eranian	added ia64_set_iva()
12  * 12/03/99	D. Mosberger	implement thread_saved_pc() via kernel unwind API
13  * 06/16/00	A. Mallick	added csd/ssd/tssd for ia32 support
14  */
15 
16 
17 #include <asm/intrinsics.h>
18 #include <asm/kregs.h>
19 #include <asm/ptrace.h>
20 #include <asm/ustack.h>
21 
22 #define __ARCH_WANT_UNLOCKED_CTXSW
23 #define ARCH_HAS_PREFETCH_SWITCH_STACK
24 
25 #define IA64_NUM_PHYS_STACK_REG	96
26 #define IA64_NUM_DBG_REGS	8
27 
28 #define DEFAULT_MAP_BASE	__IA64_UL_CONST(0x2000000000000000)
29 #define DEFAULT_TASK_SIZE	__IA64_UL_CONST(0xa000000000000000)
30 
31 /*
32  * TASK_SIZE really is a mis-named.  It really is the maximum user
33  * space address (plus one).  On IA-64, there are five regions of 2TB
34  * each (assuming 8KB page size), for a total of 8TB of user virtual
35  * address space.
36  */
37 #define TASK_SIZE       	DEFAULT_TASK_SIZE
38 
39 /*
40  * This decides where the kernel will search for a free chunk of vm
41  * space during mmap's.
42  */
43 #define TASK_UNMAPPED_BASE	(current->thread.map_base)
44 
45 #define IA64_THREAD_FPH_VALID	(__IA64_UL(1) << 0)	/* floating-point high state valid? */
46 #define IA64_THREAD_DBG_VALID	(__IA64_UL(1) << 1)	/* debug registers valid? */
47 #define IA64_THREAD_PM_VALID	(__IA64_UL(1) << 2)	/* performance registers valid? */
48 #define IA64_THREAD_UAC_NOPRINT	(__IA64_UL(1) << 3)	/* don't log unaligned accesses */
49 #define IA64_THREAD_UAC_SIGBUS	(__IA64_UL(1) << 4)	/* generate SIGBUS on unaligned acc. */
50 #define IA64_THREAD_MIGRATION	(__IA64_UL(1) << 5)	/* require migration
51 							   sync at ctx sw */
52 #define IA64_THREAD_FPEMU_NOPRINT (__IA64_UL(1) << 6)	/* don't log any fpswa faults */
53 #define IA64_THREAD_FPEMU_SIGFPE  (__IA64_UL(1) << 7)	/* send a SIGFPE for fpswa faults */
54 
55 #define IA64_THREAD_UAC_SHIFT	3
56 #define IA64_THREAD_UAC_MASK	(IA64_THREAD_UAC_NOPRINT | IA64_THREAD_UAC_SIGBUS)
57 #define IA64_THREAD_FPEMU_SHIFT	6
58 #define IA64_THREAD_FPEMU_MASK	(IA64_THREAD_FPEMU_NOPRINT | IA64_THREAD_FPEMU_SIGFPE)
59 
60 
61 /*
62  * This shift should be large enough to be able to represent 1000000000/itc_freq with good
63  * accuracy while being small enough to fit 10*1000000000<<IA64_NSEC_PER_CYC_SHIFT in 64 bits
64  * (this will give enough slack to represent 10 seconds worth of time as a scaled number).
65  */
66 #define IA64_NSEC_PER_CYC_SHIFT	30
67 
68 #ifndef __ASSEMBLY__
69 
70 #include <linux/cache.h>
71 #include <linux/compiler.h>
72 #include <linux/threads.h>
73 #include <linux/types.h>
74 
75 #include <asm/fpu.h>
76 #include <asm/page.h>
77 #include <asm/percpu.h>
78 #include <asm/rse.h>
79 #include <asm/unwind.h>
80 #include <linux/atomic.h>
81 #ifdef CONFIG_NUMA
82 #include <asm/nodedata.h>
83 #endif
84 
85 /* like above but expressed as bitfields for more efficient access: */
86 struct ia64_psr {
87 	__u64 reserved0 : 1;
88 	__u64 be : 1;
89 	__u64 up : 1;
90 	__u64 ac : 1;
91 	__u64 mfl : 1;
92 	__u64 mfh : 1;
93 	__u64 reserved1 : 7;
94 	__u64 ic : 1;
95 	__u64 i : 1;
96 	__u64 pk : 1;
97 	__u64 reserved2 : 1;
98 	__u64 dt : 1;
99 	__u64 dfl : 1;
100 	__u64 dfh : 1;
101 	__u64 sp : 1;
102 	__u64 pp : 1;
103 	__u64 di : 1;
104 	__u64 si : 1;
105 	__u64 db : 1;
106 	__u64 lp : 1;
107 	__u64 tb : 1;
108 	__u64 rt : 1;
109 	__u64 reserved3 : 4;
110 	__u64 cpl : 2;
111 	__u64 is : 1;
112 	__u64 mc : 1;
113 	__u64 it : 1;
114 	__u64 id : 1;
115 	__u64 da : 1;
116 	__u64 dd : 1;
117 	__u64 ss : 1;
118 	__u64 ri : 2;
119 	__u64 ed : 1;
120 	__u64 bn : 1;
121 	__u64 reserved4 : 19;
122 };
123 
124 union ia64_isr {
125 	__u64  val;
126 	struct {
127 		__u64 code : 16;
128 		__u64 vector : 8;
129 		__u64 reserved1 : 8;
130 		__u64 x : 1;
131 		__u64 w : 1;
132 		__u64 r : 1;
133 		__u64 na : 1;
134 		__u64 sp : 1;
135 		__u64 rs : 1;
136 		__u64 ir : 1;
137 		__u64 ni : 1;
138 		__u64 so : 1;
139 		__u64 ei : 2;
140 		__u64 ed : 1;
141 		__u64 reserved2 : 20;
142 	};
143 };
144 
145 union ia64_lid {
146 	__u64 val;
147 	struct {
148 		__u64  rv  : 16;
149 		__u64  eid : 8;
150 		__u64  id  : 8;
151 		__u64  ig  : 32;
152 	};
153 };
154 
155 union ia64_tpr {
156 	__u64 val;
157 	struct {
158 		__u64 ig0 : 4;
159 		__u64 mic : 4;
160 		__u64 rsv : 8;
161 		__u64 mmi : 1;
162 		__u64 ig1 : 47;
163 	};
164 };
165 
166 union ia64_itir {
167 	__u64 val;
168 	struct {
169 		__u64 rv3  :  2; /* 0-1 */
170 		__u64 ps   :  6; /* 2-7 */
171 		__u64 key  : 24; /* 8-31 */
172 		__u64 rv4  : 32; /* 32-63 */
173 	};
174 };
175 
176 union  ia64_rr {
177 	__u64 val;
178 	struct {
179 		__u64  ve	:  1;  /* enable hw walker */
180 		__u64  reserved0:  1;  /* reserved */
181 		__u64  ps	:  6;  /* log page size */
182 		__u64  rid	: 24;  /* region id */
183 		__u64  reserved1: 32;  /* reserved */
184 	};
185 };
186 
187 /*
188  * CPU type, hardware bug flags, and per-CPU state.  Frequently used
189  * state comes earlier:
190  */
191 struct cpuinfo_ia64 {
192 	unsigned int softirq_pending;
193 	unsigned long itm_delta;	/* # of clock cycles between clock ticks */
194 	unsigned long itm_next;		/* interval timer mask value to use for next clock tick */
195 	unsigned long nsec_per_cyc;	/* (1000000000<<IA64_NSEC_PER_CYC_SHIFT)/itc_freq */
196 	unsigned long unimpl_va_mask;	/* mask of unimplemented virtual address bits (from PAL) */
197 	unsigned long unimpl_pa_mask;	/* mask of unimplemented physical address bits (from PAL) */
198 	unsigned long itc_freq;		/* frequency of ITC counter */
199 	unsigned long proc_freq;	/* frequency of processor */
200 	unsigned long cyc_per_usec;	/* itc_freq/1000000 */
201 	unsigned long ptce_base;
202 	unsigned int ptce_count[2];
203 	unsigned int ptce_stride[2];
204 	struct task_struct *ksoftirqd;	/* kernel softirq daemon for this CPU */
205 
206 #ifdef CONFIG_SMP
207 	unsigned long loops_per_jiffy;
208 	int cpu;
209 	unsigned int socket_id;	/* physical processor socket id */
210 	unsigned short core_id;	/* core id */
211 	unsigned short thread_id; /* thread id */
212 	unsigned short num_log;	/* Total number of logical processors on
213 				 * this socket that were successfully booted */
214 	unsigned char cores_per_socket;	/* Cores per processor socket */
215 	unsigned char threads_per_core;	/* Threads per core */
216 #endif
217 
218 	/* CPUID-derived information: */
219 	unsigned long ppn;
220 	unsigned long features;
221 	unsigned char number;
222 	unsigned char revision;
223 	unsigned char model;
224 	unsigned char family;
225 	unsigned char archrev;
226 	char vendor[16];
227 	char *model_name;
228 
229 #ifdef CONFIG_NUMA
230 	struct ia64_node_data *node_data;
231 #endif
232 };
233 
234 DECLARE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
235 
236 /*
237  * The "local" data variable.  It refers to the per-CPU data of the currently executing
238  * CPU, much like "current" points to the per-task data of the currently executing task.
239  * Do not use the address of local_cpu_data, since it will be different from
240  * cpu_data(smp_processor_id())!
241  */
242 #define local_cpu_data		(&__ia64_per_cpu_var(ia64_cpu_info))
243 #define cpu_data(cpu)		(&per_cpu(ia64_cpu_info, cpu))
244 
245 extern void print_cpu_info (struct cpuinfo_ia64 *);
246 
247 typedef struct {
248 	unsigned long seg;
249 } mm_segment_t;
250 
251 #define SET_UNALIGN_CTL(task,value)								\
252 ({												\
253 	(task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_UAC_MASK)			\
254 				| (((value) << IA64_THREAD_UAC_SHIFT) & IA64_THREAD_UAC_MASK));	\
255 	0;											\
256 })
257 #define GET_UNALIGN_CTL(task,addr)								\
258 ({												\
259 	put_user(((task)->thread.flags & IA64_THREAD_UAC_MASK) >> IA64_THREAD_UAC_SHIFT,	\
260 		 (int __user *) (addr));							\
261 })
262 
263 #define SET_FPEMU_CTL(task,value)								\
264 ({												\
265 	(task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_FPEMU_MASK)		\
266 			  | (((value) << IA64_THREAD_FPEMU_SHIFT) & IA64_THREAD_FPEMU_MASK));	\
267 	0;											\
268 })
269 #define GET_FPEMU_CTL(task,addr)								\
270 ({												\
271 	put_user(((task)->thread.flags & IA64_THREAD_FPEMU_MASK) >> IA64_THREAD_FPEMU_SHIFT,	\
272 		 (int __user *) (addr));							\
273 })
274 
275 struct thread_struct {
276 	__u32 flags;			/* various thread flags (see IA64_THREAD_*) */
277 	/* writing on_ustack is performance-critical, so it's worth spending 8 bits on it... */
278 	__u8 on_ustack;			/* executing on user-stacks? */
279 	__u8 pad[3];
280 	__u64 ksp;			/* kernel stack pointer */
281 	__u64 map_base;			/* base address for get_unmapped_area() */
282 	__u64 rbs_bot;			/* the base address for the RBS */
283 	int last_fph_cpu;		/* CPU that may hold the contents of f32-f127 */
284 
285 #ifdef CONFIG_PERFMON
286 	void *pfm_context;		     /* pointer to detailed PMU context */
287 	unsigned long pfm_needs_checking;    /* when >0, pending perfmon work on kernel exit */
288 # define INIT_THREAD_PM		.pfm_context =		NULL,     \
289 				.pfm_needs_checking =	0UL,
290 #else
291 # define INIT_THREAD_PM
292 #endif
293 	unsigned long dbr[IA64_NUM_DBG_REGS];
294 	unsigned long ibr[IA64_NUM_DBG_REGS];
295 	struct ia64_fpreg fph[96];	/* saved/loaded on demand */
296 };
297 
298 #define INIT_THREAD {						\
299 	.flags =	0,					\
300 	.on_ustack =	0,					\
301 	.ksp =		0,					\
302 	.map_base =	DEFAULT_MAP_BASE,			\
303 	.rbs_bot =	STACK_TOP - DEFAULT_USER_STACK_SIZE,	\
304 	.last_fph_cpu =  -1,					\
305 	INIT_THREAD_PM						\
306 	.dbr =		{0, },					\
307 	.ibr =		{0, },					\
308 	.fph =		{{{{0}}}, }				\
309 }
310 
311 #define start_thread(regs,new_ip,new_sp) do {							\
312 	regs->cr_ipsr = ((regs->cr_ipsr | (IA64_PSR_BITS_TO_SET | IA64_PSR_CPL))		\
313 			 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_RI | IA64_PSR_IS));		\
314 	regs->cr_iip = new_ip;									\
315 	regs->ar_rsc = 0xf;		/* eager mode, privilege level 3 */			\
316 	regs->ar_rnat = 0;									\
317 	regs->ar_bspstore = current->thread.rbs_bot;						\
318 	regs->ar_fpsr = FPSR_DEFAULT;								\
319 	regs->loadrs = 0;									\
320 	regs->r8 = get_dumpable(current->mm);	/* set "don't zap registers" flag */		\
321 	regs->r12 = new_sp - 16;	/* allocate 16 byte scratch area */			\
322 	if (unlikely(!get_dumpable(current->mm))) {							\
323 		/*										\
324 		 * Zap scratch regs to avoid leaking bits between processes with different	\
325 		 * uid/privileges.								\
326 		 */										\
327 		regs->ar_pfs = 0; regs->b0 = 0; regs->pr = 0;					\
328 		regs->r1 = 0; regs->r9  = 0; regs->r11 = 0; regs->r13 = 0; regs->r15 = 0;	\
329 	}											\
330 } while (0)
331 
332 /* Forward declarations, a strange C thing... */
333 struct mm_struct;
334 struct task_struct;
335 
336 /*
337  * Free all resources held by a thread. This is called after the
338  * parent of DEAD_TASK has collected the exit status of the task via
339  * wait().
340  */
341 #define release_thread(dead_task)
342 
343 /* Get wait channel for task P.  */
344 extern unsigned long get_wchan (struct task_struct *p);
345 
346 /* Return instruction pointer of blocked task TSK.  */
347 #define KSTK_EIP(tsk)					\
348   ({							\
349 	struct pt_regs *_regs = task_pt_regs(tsk);	\
350 	_regs->cr_iip + ia64_psr(_regs)->ri;		\
351   })
352 
353 /* Return stack pointer of blocked task TSK.  */
354 #define KSTK_ESP(tsk)  ((tsk)->thread.ksp)
355 
356 extern void ia64_getreg_unknown_kr (void);
357 extern void ia64_setreg_unknown_kr (void);
358 
359 #define ia64_get_kr(regnum)					\
360 ({								\
361 	unsigned long r = 0;					\
362 								\
363 	switch (regnum) {					\
364 	    case 0: r = ia64_getreg(_IA64_REG_AR_KR0); break;	\
365 	    case 1: r = ia64_getreg(_IA64_REG_AR_KR1); break;	\
366 	    case 2: r = ia64_getreg(_IA64_REG_AR_KR2); break;	\
367 	    case 3: r = ia64_getreg(_IA64_REG_AR_KR3); break;	\
368 	    case 4: r = ia64_getreg(_IA64_REG_AR_KR4); break;	\
369 	    case 5: r = ia64_getreg(_IA64_REG_AR_KR5); break;	\
370 	    case 6: r = ia64_getreg(_IA64_REG_AR_KR6); break;	\
371 	    case 7: r = ia64_getreg(_IA64_REG_AR_KR7); break;	\
372 	    default: ia64_getreg_unknown_kr(); break;		\
373 	}							\
374 	r;							\
375 })
376 
377 #define ia64_set_kr(regnum, r) 					\
378 ({								\
379 	switch (regnum) {					\
380 	    case 0: ia64_setreg(_IA64_REG_AR_KR0, r); break;	\
381 	    case 1: ia64_setreg(_IA64_REG_AR_KR1, r); break;	\
382 	    case 2: ia64_setreg(_IA64_REG_AR_KR2, r); break;	\
383 	    case 3: ia64_setreg(_IA64_REG_AR_KR3, r); break;	\
384 	    case 4: ia64_setreg(_IA64_REG_AR_KR4, r); break;	\
385 	    case 5: ia64_setreg(_IA64_REG_AR_KR5, r); break;	\
386 	    case 6: ia64_setreg(_IA64_REG_AR_KR6, r); break;	\
387 	    case 7: ia64_setreg(_IA64_REG_AR_KR7, r); break;	\
388 	    default: ia64_setreg_unknown_kr(); break;		\
389 	}							\
390 })
391 
392 /*
393  * The following three macros can't be inline functions because we don't have struct
394  * task_struct at this point.
395  */
396 
397 /*
398  * Return TRUE if task T owns the fph partition of the CPU we're running on.
399  * Must be called from code that has preemption disabled.
400  */
401 #define ia64_is_local_fpu_owner(t)								\
402 ({												\
403 	struct task_struct *__ia64_islfo_task = (t);						\
404 	(__ia64_islfo_task->thread.last_fph_cpu == smp_processor_id()				\
405 	 && __ia64_islfo_task == (struct task_struct *) ia64_get_kr(IA64_KR_FPU_OWNER));	\
406 })
407 
408 /*
409  * Mark task T as owning the fph partition of the CPU we're running on.
410  * Must be called from code that has preemption disabled.
411  */
412 #define ia64_set_local_fpu_owner(t) do {						\
413 	struct task_struct *__ia64_slfo_task = (t);					\
414 	__ia64_slfo_task->thread.last_fph_cpu = smp_processor_id();			\
415 	ia64_set_kr(IA64_KR_FPU_OWNER, (unsigned long) __ia64_slfo_task);		\
416 } while (0)
417 
418 /* Mark the fph partition of task T as being invalid on all CPUs.  */
419 #define ia64_drop_fpu(t)	((t)->thread.last_fph_cpu = -1)
420 
421 extern void __ia64_init_fpu (void);
422 extern void __ia64_save_fpu (struct ia64_fpreg *fph);
423 extern void __ia64_load_fpu (struct ia64_fpreg *fph);
424 extern void ia64_save_debug_regs (unsigned long *save_area);
425 extern void ia64_load_debug_regs (unsigned long *save_area);
426 
427 #define ia64_fph_enable()	do { ia64_rsm(IA64_PSR_DFH); ia64_srlz_d(); } while (0)
428 #define ia64_fph_disable()	do { ia64_ssm(IA64_PSR_DFH); ia64_srlz_d(); } while (0)
429 
430 /* load fp 0.0 into fph */
431 static inline void
ia64_init_fpu(void)432 ia64_init_fpu (void) {
433 	ia64_fph_enable();
434 	__ia64_init_fpu();
435 	ia64_fph_disable();
436 }
437 
438 /* save f32-f127 at FPH */
439 static inline void
ia64_save_fpu(struct ia64_fpreg * fph)440 ia64_save_fpu (struct ia64_fpreg *fph) {
441 	ia64_fph_enable();
442 	__ia64_save_fpu(fph);
443 	ia64_fph_disable();
444 }
445 
446 /* load f32-f127 from FPH */
447 static inline void
ia64_load_fpu(struct ia64_fpreg * fph)448 ia64_load_fpu (struct ia64_fpreg *fph) {
449 	ia64_fph_enable();
450 	__ia64_load_fpu(fph);
451 	ia64_fph_disable();
452 }
453 
454 static inline __u64
ia64_clear_ic(void)455 ia64_clear_ic (void)
456 {
457 	__u64 psr;
458 	psr = ia64_getreg(_IA64_REG_PSR);
459 	ia64_stop();
460 	ia64_rsm(IA64_PSR_I | IA64_PSR_IC);
461 	ia64_srlz_i();
462 	return psr;
463 }
464 
465 /*
466  * Restore the psr.
467  */
468 static inline void
ia64_set_psr(__u64 psr)469 ia64_set_psr (__u64 psr)
470 {
471 	ia64_stop();
472 	ia64_setreg(_IA64_REG_PSR_L, psr);
473 	ia64_srlz_i();
474 }
475 
476 /*
477  * Insert a translation into an instruction and/or data translation
478  * register.
479  */
480 static inline void
ia64_itr(__u64 target_mask,__u64 tr_num,__u64 vmaddr,__u64 pte,__u64 log_page_size)481 ia64_itr (__u64 target_mask, __u64 tr_num,
482 	  __u64 vmaddr, __u64 pte,
483 	  __u64 log_page_size)
484 {
485 	ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2));
486 	ia64_setreg(_IA64_REG_CR_IFA, vmaddr);
487 	ia64_stop();
488 	if (target_mask & 0x1)
489 		ia64_itri(tr_num, pte);
490 	if (target_mask & 0x2)
491 		ia64_itrd(tr_num, pte);
492 }
493 
494 /*
495  * Insert a translation into the instruction and/or data translation
496  * cache.
497  */
498 static inline void
ia64_itc(__u64 target_mask,__u64 vmaddr,__u64 pte,__u64 log_page_size)499 ia64_itc (__u64 target_mask, __u64 vmaddr, __u64 pte,
500 	  __u64 log_page_size)
501 {
502 	ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2));
503 	ia64_setreg(_IA64_REG_CR_IFA, vmaddr);
504 	ia64_stop();
505 	/* as per EAS2.6, itc must be the last instruction in an instruction group */
506 	if (target_mask & 0x1)
507 		ia64_itci(pte);
508 	if (target_mask & 0x2)
509 		ia64_itcd(pte);
510 }
511 
512 /*
513  * Purge a range of addresses from instruction and/or data translation
514  * register(s).
515  */
516 static inline void
ia64_ptr(__u64 target_mask,__u64 vmaddr,__u64 log_size)517 ia64_ptr (__u64 target_mask, __u64 vmaddr, __u64 log_size)
518 {
519 	if (target_mask & 0x1)
520 		ia64_ptri(vmaddr, (log_size << 2));
521 	if (target_mask & 0x2)
522 		ia64_ptrd(vmaddr, (log_size << 2));
523 }
524 
525 /* Set the interrupt vector address.  The address must be suitably aligned (32KB).  */
526 static inline void
ia64_set_iva(void * ivt_addr)527 ia64_set_iva (void *ivt_addr)
528 {
529 	ia64_setreg(_IA64_REG_CR_IVA, (__u64) ivt_addr);
530 	ia64_srlz_i();
531 }
532 
533 /* Set the page table address and control bits.  */
534 static inline void
ia64_set_pta(__u64 pta)535 ia64_set_pta (__u64 pta)
536 {
537 	/* Note: srlz.i implies srlz.d */
538 	ia64_setreg(_IA64_REG_CR_PTA, pta);
539 	ia64_srlz_i();
540 }
541 
542 static inline void
ia64_eoi(void)543 ia64_eoi (void)
544 {
545 	ia64_setreg(_IA64_REG_CR_EOI, 0);
546 	ia64_srlz_d();
547 }
548 
549 #define cpu_relax()	ia64_hint(ia64_hint_pause)
550 
551 static inline int
ia64_get_irr(unsigned int vector)552 ia64_get_irr(unsigned int vector)
553 {
554 	unsigned int reg = vector / 64;
555 	unsigned int bit = vector % 64;
556 	u64 irr;
557 
558 	switch (reg) {
559 	case 0: irr = ia64_getreg(_IA64_REG_CR_IRR0); break;
560 	case 1: irr = ia64_getreg(_IA64_REG_CR_IRR1); break;
561 	case 2: irr = ia64_getreg(_IA64_REG_CR_IRR2); break;
562 	case 3: irr = ia64_getreg(_IA64_REG_CR_IRR3); break;
563 	}
564 
565 	return test_bit(bit, &irr);
566 }
567 
568 static inline void
ia64_set_lrr0(unsigned long val)569 ia64_set_lrr0 (unsigned long val)
570 {
571 	ia64_setreg(_IA64_REG_CR_LRR0, val);
572 	ia64_srlz_d();
573 }
574 
575 static inline void
ia64_set_lrr1(unsigned long val)576 ia64_set_lrr1 (unsigned long val)
577 {
578 	ia64_setreg(_IA64_REG_CR_LRR1, val);
579 	ia64_srlz_d();
580 }
581 
582 
583 /*
584  * Given the address to which a spill occurred, return the unat bit
585  * number that corresponds to this address.
586  */
587 static inline __u64
ia64_unat_pos(void * spill_addr)588 ia64_unat_pos (void *spill_addr)
589 {
590 	return ((__u64) spill_addr >> 3) & 0x3f;
591 }
592 
593 /*
594  * Set the NaT bit of an integer register which was spilled at address
595  * SPILL_ADDR.  UNAT is the mask to be updated.
596  */
597 static inline void
ia64_set_unat(__u64 * unat,void * spill_addr,unsigned long nat)598 ia64_set_unat (__u64 *unat, void *spill_addr, unsigned long nat)
599 {
600 	__u64 bit = ia64_unat_pos(spill_addr);
601 	__u64 mask = 1UL << bit;
602 
603 	*unat = (*unat & ~mask) | (nat << bit);
604 }
605 
606 /*
607  * Return saved PC of a blocked thread.
608  * Note that the only way T can block is through a call to schedule() -> switch_to().
609  */
610 static inline unsigned long
thread_saved_pc(struct task_struct * t)611 thread_saved_pc (struct task_struct *t)
612 {
613 	struct unw_frame_info info;
614 	unsigned long ip;
615 
616 	unw_init_from_blocked_task(&info, t);
617 	if (unw_unwind(&info) < 0)
618 		return 0;
619 	unw_get_ip(&info, &ip);
620 	return ip;
621 }
622 
623 /*
624  * Get the current instruction/program counter value.
625  */
626 #define current_text_addr() \
627 	({ void *_pc; _pc = (void *)ia64_getreg(_IA64_REG_IP); _pc; })
628 
629 static inline __u64
ia64_get_ivr(void)630 ia64_get_ivr (void)
631 {
632 	__u64 r;
633 	ia64_srlz_d();
634 	r = ia64_getreg(_IA64_REG_CR_IVR);
635 	ia64_srlz_d();
636 	return r;
637 }
638 
639 static inline void
ia64_set_dbr(__u64 regnum,__u64 value)640 ia64_set_dbr (__u64 regnum, __u64 value)
641 {
642 	__ia64_set_dbr(regnum, value);
643 #ifdef CONFIG_ITANIUM
644 	ia64_srlz_d();
645 #endif
646 }
647 
648 static inline __u64
ia64_get_dbr(__u64 regnum)649 ia64_get_dbr (__u64 regnum)
650 {
651 	__u64 retval;
652 
653 	retval = __ia64_get_dbr(regnum);
654 #ifdef CONFIG_ITANIUM
655 	ia64_srlz_d();
656 #endif
657 	return retval;
658 }
659 
660 static inline __u64
ia64_rotr(__u64 w,__u64 n)661 ia64_rotr (__u64 w, __u64 n)
662 {
663 	return (w >> n) | (w << (64 - n));
664 }
665 
666 #define ia64_rotl(w,n)	ia64_rotr((w), (64) - (n))
667 
668 /*
669  * Take a mapped kernel address and return the equivalent address
670  * in the region 7 identity mapped virtual area.
671  */
672 static inline void *
ia64_imva(void * addr)673 ia64_imva (void *addr)
674 {
675 	void *result;
676 	result = (void *) ia64_tpa(addr);
677 	return __va(result);
678 }
679 
680 #define ARCH_HAS_PREFETCH
681 #define ARCH_HAS_PREFETCHW
682 #define ARCH_HAS_SPINLOCK_PREFETCH
683 #define PREFETCH_STRIDE			L1_CACHE_BYTES
684 
685 static inline void
prefetch(const void * x)686 prefetch (const void *x)
687 {
688 	 ia64_lfetch(ia64_lfhint_none, x);
689 }
690 
691 static inline void
prefetchw(const void * x)692 prefetchw (const void *x)
693 {
694 	ia64_lfetch_excl(ia64_lfhint_none, x);
695 }
696 
697 #define spin_lock_prefetch(x)	prefetchw(x)
698 
699 extern unsigned long boot_option_idle_override;
700 
701 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_FORCE_MWAIT,
702 			 IDLE_NOMWAIT, IDLE_POLL};
703 
704 void default_idle(void);
705 
706 #define ia64_platform_is(x) (strcmp(x, ia64_platform_name) == 0)
707 
708 #endif /* !__ASSEMBLY__ */
709 
710 #endif /* _ASM_IA64_PROCESSOR_H */
711