• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * linux/fs/jbd/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24 
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/ratelimit.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/jbd.h>
43 
44 #include <asm/uaccess.h>
45 #include <asm/page.h>
46 
47 EXPORT_SYMBOL(journal_start);
48 EXPORT_SYMBOL(journal_restart);
49 EXPORT_SYMBOL(journal_extend);
50 EXPORT_SYMBOL(journal_stop);
51 EXPORT_SYMBOL(journal_lock_updates);
52 EXPORT_SYMBOL(journal_unlock_updates);
53 EXPORT_SYMBOL(journal_get_write_access);
54 EXPORT_SYMBOL(journal_get_create_access);
55 EXPORT_SYMBOL(journal_get_undo_access);
56 EXPORT_SYMBOL(journal_dirty_data);
57 EXPORT_SYMBOL(journal_dirty_metadata);
58 EXPORT_SYMBOL(journal_release_buffer);
59 EXPORT_SYMBOL(journal_forget);
60 #if 0
61 EXPORT_SYMBOL(journal_sync_buffer);
62 #endif
63 EXPORT_SYMBOL(journal_flush);
64 EXPORT_SYMBOL(journal_revoke);
65 
66 EXPORT_SYMBOL(journal_init_dev);
67 EXPORT_SYMBOL(journal_init_inode);
68 EXPORT_SYMBOL(journal_update_format);
69 EXPORT_SYMBOL(journal_check_used_features);
70 EXPORT_SYMBOL(journal_check_available_features);
71 EXPORT_SYMBOL(journal_set_features);
72 EXPORT_SYMBOL(journal_create);
73 EXPORT_SYMBOL(journal_load);
74 EXPORT_SYMBOL(journal_destroy);
75 EXPORT_SYMBOL(journal_abort);
76 EXPORT_SYMBOL(journal_errno);
77 EXPORT_SYMBOL(journal_ack_err);
78 EXPORT_SYMBOL(journal_clear_err);
79 EXPORT_SYMBOL(log_wait_commit);
80 EXPORT_SYMBOL(log_start_commit);
81 EXPORT_SYMBOL(journal_start_commit);
82 EXPORT_SYMBOL(journal_force_commit_nested);
83 EXPORT_SYMBOL(journal_wipe);
84 EXPORT_SYMBOL(journal_blocks_per_page);
85 EXPORT_SYMBOL(journal_invalidatepage);
86 EXPORT_SYMBOL(journal_try_to_free_buffers);
87 EXPORT_SYMBOL(journal_force_commit);
88 
89 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
90 static void __journal_abort_soft (journal_t *journal, int errno);
91 static const char *journal_dev_name(journal_t *journal, char *buffer);
92 
93 /*
94  * Helper function used to manage commit timeouts
95  */
96 
commit_timeout(unsigned long __data)97 static void commit_timeout(unsigned long __data)
98 {
99 	struct task_struct * p = (struct task_struct *) __data;
100 
101 	wake_up_process(p);
102 }
103 
104 /*
105  * kjournald: The main thread function used to manage a logging device
106  * journal.
107  *
108  * This kernel thread is responsible for two things:
109  *
110  * 1) COMMIT:  Every so often we need to commit the current state of the
111  *    filesystem to disk.  The journal thread is responsible for writing
112  *    all of the metadata buffers to disk.
113  *
114  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
115  *    of the data in that part of the log has been rewritten elsewhere on
116  *    the disk.  Flushing these old buffers to reclaim space in the log is
117  *    known as checkpointing, and this thread is responsible for that job.
118  */
119 
kjournald(void * arg)120 static int kjournald(void *arg)
121 {
122 	journal_t *journal = arg;
123 	transaction_t *transaction;
124 
125 	/*
126 	 * Set up an interval timer which can be used to trigger a commit wakeup
127 	 * after the commit interval expires
128 	 */
129 	setup_timer(&journal->j_commit_timer, commit_timeout,
130 			(unsigned long)current);
131 
132 	set_freezable();
133 
134 	/* Record that the journal thread is running */
135 	journal->j_task = current;
136 	wake_up(&journal->j_wait_done_commit);
137 
138 	printk(KERN_INFO "kjournald starting.  Commit interval %ld seconds\n",
139 			journal->j_commit_interval / HZ);
140 
141 	/*
142 	 * And now, wait forever for commit wakeup events.
143 	 */
144 	spin_lock(&journal->j_state_lock);
145 
146 loop:
147 	if (journal->j_flags & JFS_UNMOUNT)
148 		goto end_loop;
149 
150 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
151 		journal->j_commit_sequence, journal->j_commit_request);
152 
153 	if (journal->j_commit_sequence != journal->j_commit_request) {
154 		jbd_debug(1, "OK, requests differ\n");
155 		spin_unlock(&journal->j_state_lock);
156 		del_timer_sync(&journal->j_commit_timer);
157 		journal_commit_transaction(journal);
158 		spin_lock(&journal->j_state_lock);
159 		goto loop;
160 	}
161 
162 	wake_up(&journal->j_wait_done_commit);
163 	if (freezing(current)) {
164 		/*
165 		 * The simpler the better. Flushing journal isn't a
166 		 * good idea, because that depends on threads that may
167 		 * be already stopped.
168 		 */
169 		jbd_debug(1, "Now suspending kjournald\n");
170 		spin_unlock(&journal->j_state_lock);
171 		try_to_freeze();
172 		spin_lock(&journal->j_state_lock);
173 	} else {
174 		/*
175 		 * We assume on resume that commits are already there,
176 		 * so we don't sleep
177 		 */
178 		DEFINE_WAIT(wait);
179 		int should_sleep = 1;
180 
181 		prepare_to_wait(&journal->j_wait_commit, &wait,
182 				TASK_INTERRUPTIBLE);
183 		if (journal->j_commit_sequence != journal->j_commit_request)
184 			should_sleep = 0;
185 		transaction = journal->j_running_transaction;
186 		if (transaction && time_after_eq(jiffies,
187 						transaction->t_expires))
188 			should_sleep = 0;
189 		if (journal->j_flags & JFS_UNMOUNT)
190 			should_sleep = 0;
191 		if (should_sleep) {
192 			spin_unlock(&journal->j_state_lock);
193 			schedule();
194 			spin_lock(&journal->j_state_lock);
195 		}
196 		finish_wait(&journal->j_wait_commit, &wait);
197 	}
198 
199 	jbd_debug(1, "kjournald wakes\n");
200 
201 	/*
202 	 * Were we woken up by a commit wakeup event?
203 	 */
204 	transaction = journal->j_running_transaction;
205 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
206 		journal->j_commit_request = transaction->t_tid;
207 		jbd_debug(1, "woke because of timeout\n");
208 	}
209 	goto loop;
210 
211 end_loop:
212 	spin_unlock(&journal->j_state_lock);
213 	del_timer_sync(&journal->j_commit_timer);
214 	journal->j_task = NULL;
215 	wake_up(&journal->j_wait_done_commit);
216 	jbd_debug(1, "Journal thread exiting.\n");
217 	return 0;
218 }
219 
journal_start_thread(journal_t * journal)220 static int journal_start_thread(journal_t *journal)
221 {
222 	struct task_struct *t;
223 
224 	t = kthread_run(kjournald, journal, "kjournald");
225 	if (IS_ERR(t))
226 		return PTR_ERR(t);
227 
228 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
229 	return 0;
230 }
231 
journal_kill_thread(journal_t * journal)232 static void journal_kill_thread(journal_t *journal)
233 {
234 	spin_lock(&journal->j_state_lock);
235 	journal->j_flags |= JFS_UNMOUNT;
236 
237 	while (journal->j_task) {
238 		wake_up(&journal->j_wait_commit);
239 		spin_unlock(&journal->j_state_lock);
240 		wait_event(journal->j_wait_done_commit,
241 				journal->j_task == NULL);
242 		spin_lock(&journal->j_state_lock);
243 	}
244 	spin_unlock(&journal->j_state_lock);
245 }
246 
247 /*
248  * journal_write_metadata_buffer: write a metadata buffer to the journal.
249  *
250  * Writes a metadata buffer to a given disk block.  The actual IO is not
251  * performed but a new buffer_head is constructed which labels the data
252  * to be written with the correct destination disk block.
253  *
254  * Any magic-number escaping which needs to be done will cause a
255  * copy-out here.  If the buffer happens to start with the
256  * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
257  * magic number is only written to the log for descripter blocks.  In
258  * this case, we copy the data and replace the first word with 0, and we
259  * return a result code which indicates that this buffer needs to be
260  * marked as an escaped buffer in the corresponding log descriptor
261  * block.  The missing word can then be restored when the block is read
262  * during recovery.
263  *
264  * If the source buffer has already been modified by a new transaction
265  * since we took the last commit snapshot, we use the frozen copy of
266  * that data for IO.  If we end up using the existing buffer_head's data
267  * for the write, then we *have* to lock the buffer to prevent anyone
268  * else from using and possibly modifying it while the IO is in
269  * progress.
270  *
271  * The function returns a pointer to the buffer_heads to be used for IO.
272  *
273  * We assume that the journal has already been locked in this function.
274  *
275  * Return value:
276  *  <0: Error
277  * >=0: Finished OK
278  *
279  * On success:
280  * Bit 0 set == escape performed on the data
281  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
282  */
283 
journal_write_metadata_buffer(transaction_t * transaction,struct journal_head * jh_in,struct journal_head ** jh_out,unsigned int blocknr)284 int journal_write_metadata_buffer(transaction_t *transaction,
285 				  struct journal_head  *jh_in,
286 				  struct journal_head **jh_out,
287 				  unsigned int blocknr)
288 {
289 	int need_copy_out = 0;
290 	int done_copy_out = 0;
291 	int do_escape = 0;
292 	char *mapped_data;
293 	struct buffer_head *new_bh;
294 	struct journal_head *new_jh;
295 	struct page *new_page;
296 	unsigned int new_offset;
297 	struct buffer_head *bh_in = jh2bh(jh_in);
298 	journal_t *journal = transaction->t_journal;
299 
300 	/*
301 	 * The buffer really shouldn't be locked: only the current committing
302 	 * transaction is allowed to write it, so nobody else is allowed
303 	 * to do any IO.
304 	 *
305 	 * akpm: except if we're journalling data, and write() output is
306 	 * also part of a shared mapping, and another thread has
307 	 * decided to launch a writepage() against this buffer.
308 	 */
309 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
310 
311 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
312 	/* keep subsequent assertions sane */
313 	atomic_set(&new_bh->b_count, 1);
314 	new_jh = journal_add_journal_head(new_bh);	/* This sleeps */
315 
316 	/*
317 	 * If a new transaction has already done a buffer copy-out, then
318 	 * we use that version of the data for the commit.
319 	 */
320 	jbd_lock_bh_state(bh_in);
321 repeat:
322 	if (jh_in->b_frozen_data) {
323 		done_copy_out = 1;
324 		new_page = virt_to_page(jh_in->b_frozen_data);
325 		new_offset = offset_in_page(jh_in->b_frozen_data);
326 	} else {
327 		new_page = jh2bh(jh_in)->b_page;
328 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
329 	}
330 
331 	mapped_data = kmap_atomic(new_page);
332 	/*
333 	 * Check for escaping
334 	 */
335 	if (*((__be32 *)(mapped_data + new_offset)) ==
336 				cpu_to_be32(JFS_MAGIC_NUMBER)) {
337 		need_copy_out = 1;
338 		do_escape = 1;
339 	}
340 	kunmap_atomic(mapped_data);
341 
342 	/*
343 	 * Do we need to do a data copy?
344 	 */
345 	if (need_copy_out && !done_copy_out) {
346 		char *tmp;
347 
348 		jbd_unlock_bh_state(bh_in);
349 		tmp = jbd_alloc(bh_in->b_size, GFP_NOFS);
350 		jbd_lock_bh_state(bh_in);
351 		if (jh_in->b_frozen_data) {
352 			jbd_free(tmp, bh_in->b_size);
353 			goto repeat;
354 		}
355 
356 		jh_in->b_frozen_data = tmp;
357 		mapped_data = kmap_atomic(new_page);
358 		memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
359 		kunmap_atomic(mapped_data);
360 
361 		new_page = virt_to_page(tmp);
362 		new_offset = offset_in_page(tmp);
363 		done_copy_out = 1;
364 	}
365 
366 	/*
367 	 * Did we need to do an escaping?  Now we've done all the
368 	 * copying, we can finally do so.
369 	 */
370 	if (do_escape) {
371 		mapped_data = kmap_atomic(new_page);
372 		*((unsigned int *)(mapped_data + new_offset)) = 0;
373 		kunmap_atomic(mapped_data);
374 	}
375 
376 	set_bh_page(new_bh, new_page, new_offset);
377 	new_jh->b_transaction = NULL;
378 	new_bh->b_size = jh2bh(jh_in)->b_size;
379 	new_bh->b_bdev = transaction->t_journal->j_dev;
380 	new_bh->b_blocknr = blocknr;
381 	set_buffer_mapped(new_bh);
382 	set_buffer_dirty(new_bh);
383 
384 	*jh_out = new_jh;
385 
386 	/*
387 	 * The to-be-written buffer needs to get moved to the io queue,
388 	 * and the original buffer whose contents we are shadowing or
389 	 * copying is moved to the transaction's shadow queue.
390 	 */
391 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
392 	spin_lock(&journal->j_list_lock);
393 	__journal_file_buffer(jh_in, transaction, BJ_Shadow);
394 	spin_unlock(&journal->j_list_lock);
395 	jbd_unlock_bh_state(bh_in);
396 
397 	JBUFFER_TRACE(new_jh, "file as BJ_IO");
398 	journal_file_buffer(new_jh, transaction, BJ_IO);
399 
400 	return do_escape | (done_copy_out << 1);
401 }
402 
403 /*
404  * Allocation code for the journal file.  Manage the space left in the
405  * journal, so that we can begin checkpointing when appropriate.
406  */
407 
408 /*
409  * __log_space_left: Return the number of free blocks left in the journal.
410  *
411  * Called with the journal already locked.
412  *
413  * Called under j_state_lock
414  */
415 
__log_space_left(journal_t * journal)416 int __log_space_left(journal_t *journal)
417 {
418 	int left = journal->j_free;
419 
420 	assert_spin_locked(&journal->j_state_lock);
421 
422 	/*
423 	 * Be pessimistic here about the number of those free blocks which
424 	 * might be required for log descriptor control blocks.
425 	 */
426 
427 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
428 
429 	left -= MIN_LOG_RESERVED_BLOCKS;
430 
431 	if (left <= 0)
432 		return 0;
433 	left -= (left >> 3);
434 	return left;
435 }
436 
437 /*
438  * Called under j_state_lock.  Returns true if a transaction commit was started.
439  */
__log_start_commit(journal_t * journal,tid_t target)440 int __log_start_commit(journal_t *journal, tid_t target)
441 {
442 	/*
443 	 * The only transaction we can possibly wait upon is the
444 	 * currently running transaction (if it exists).  Otherwise,
445 	 * the target tid must be an old one.
446 	 */
447 	if (journal->j_commit_request != target &&
448 	    journal->j_running_transaction &&
449 	    journal->j_running_transaction->t_tid == target) {
450 		/*
451 		 * We want a new commit: OK, mark the request and wakeup the
452 		 * commit thread.  We do _not_ do the commit ourselves.
453 		 */
454 
455 		journal->j_commit_request = target;
456 		jbd_debug(1, "JBD: requesting commit %d/%d\n",
457 			  journal->j_commit_request,
458 			  journal->j_commit_sequence);
459 		wake_up(&journal->j_wait_commit);
460 		return 1;
461 	} else if (!tid_geq(journal->j_commit_request, target))
462 		/* This should never happen, but if it does, preserve
463 		   the evidence before kjournald goes into a loop and
464 		   increments j_commit_sequence beyond all recognition. */
465 		WARN_ONCE(1, "jbd: bad log_start_commit: %u %u %u %u\n",
466 		    journal->j_commit_request, journal->j_commit_sequence,
467 		    target, journal->j_running_transaction ?
468 		    journal->j_running_transaction->t_tid : 0);
469 	return 0;
470 }
471 
log_start_commit(journal_t * journal,tid_t tid)472 int log_start_commit(journal_t *journal, tid_t tid)
473 {
474 	int ret;
475 
476 	spin_lock(&journal->j_state_lock);
477 	ret = __log_start_commit(journal, tid);
478 	spin_unlock(&journal->j_state_lock);
479 	return ret;
480 }
481 
482 /*
483  * Force and wait upon a commit if the calling process is not within
484  * transaction.  This is used for forcing out undo-protected data which contains
485  * bitmaps, when the fs is running out of space.
486  *
487  * We can only force the running transaction if we don't have an active handle;
488  * otherwise, we will deadlock.
489  *
490  * Returns true if a transaction was started.
491  */
journal_force_commit_nested(journal_t * journal)492 int journal_force_commit_nested(journal_t *journal)
493 {
494 	transaction_t *transaction = NULL;
495 	tid_t tid;
496 
497 	spin_lock(&journal->j_state_lock);
498 	if (journal->j_running_transaction && !current->journal_info) {
499 		transaction = journal->j_running_transaction;
500 		__log_start_commit(journal, transaction->t_tid);
501 	} else if (journal->j_committing_transaction)
502 		transaction = journal->j_committing_transaction;
503 
504 	if (!transaction) {
505 		spin_unlock(&journal->j_state_lock);
506 		return 0;	/* Nothing to retry */
507 	}
508 
509 	tid = transaction->t_tid;
510 	spin_unlock(&journal->j_state_lock);
511 	log_wait_commit(journal, tid);
512 	return 1;
513 }
514 
515 /*
516  * Start a commit of the current running transaction (if any).  Returns true
517  * if a transaction is going to be committed (or is currently already
518  * committing), and fills its tid in at *ptid
519  */
journal_start_commit(journal_t * journal,tid_t * ptid)520 int journal_start_commit(journal_t *journal, tid_t *ptid)
521 {
522 	int ret = 0;
523 
524 	spin_lock(&journal->j_state_lock);
525 	if (journal->j_running_transaction) {
526 		tid_t tid = journal->j_running_transaction->t_tid;
527 
528 		__log_start_commit(journal, tid);
529 		/* There's a running transaction and we've just made sure
530 		 * it's commit has been scheduled. */
531 		if (ptid)
532 			*ptid = tid;
533 		ret = 1;
534 	} else if (journal->j_committing_transaction) {
535 		/*
536 		 * If commit has been started, then we have to wait for
537 		 * completion of that transaction.
538 		 */
539 		if (ptid)
540 			*ptid = journal->j_committing_transaction->t_tid;
541 		ret = 1;
542 	}
543 	spin_unlock(&journal->j_state_lock);
544 	return ret;
545 }
546 
547 /*
548  * Wait for a specified commit to complete.
549  * The caller may not hold the journal lock.
550  */
log_wait_commit(journal_t * journal,tid_t tid)551 int log_wait_commit(journal_t *journal, tid_t tid)
552 {
553 	int err = 0;
554 
555 #ifdef CONFIG_JBD_DEBUG
556 	spin_lock(&journal->j_state_lock);
557 	if (!tid_geq(journal->j_commit_request, tid)) {
558 		printk(KERN_EMERG
559 		       "%s: error: j_commit_request=%d, tid=%d\n",
560 		       __func__, journal->j_commit_request, tid);
561 	}
562 	spin_unlock(&journal->j_state_lock);
563 #endif
564 	spin_lock(&journal->j_state_lock);
565 	/*
566 	 * Not running or committing trans? Must be already committed. This
567 	 * saves us from waiting for a *long* time when tid overflows.
568 	 */
569 	if (!((journal->j_running_transaction &&
570 	       journal->j_running_transaction->t_tid == tid) ||
571 	      (journal->j_committing_transaction &&
572 	       journal->j_committing_transaction->t_tid == tid)))
573 		goto out_unlock;
574 
575 	if (!tid_geq(journal->j_commit_waited, tid))
576 		journal->j_commit_waited = tid;
577 	while (tid_gt(tid, journal->j_commit_sequence)) {
578 		jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
579 				  tid, journal->j_commit_sequence);
580 		wake_up(&journal->j_wait_commit);
581 		spin_unlock(&journal->j_state_lock);
582 		wait_event(journal->j_wait_done_commit,
583 				!tid_gt(tid, journal->j_commit_sequence));
584 		spin_lock(&journal->j_state_lock);
585 	}
586 out_unlock:
587 	spin_unlock(&journal->j_state_lock);
588 
589 	if (unlikely(is_journal_aborted(journal))) {
590 		printk(KERN_EMERG "journal commit I/O error\n");
591 		err = -EIO;
592 	}
593 	return err;
594 }
595 
596 /*
597  * Return 1 if a given transaction has not yet sent barrier request
598  * connected with a transaction commit. If 0 is returned, transaction
599  * may or may not have sent the barrier. Used to avoid sending barrier
600  * twice in common cases.
601  */
journal_trans_will_send_data_barrier(journal_t * journal,tid_t tid)602 int journal_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
603 {
604 	int ret = 0;
605 	transaction_t *commit_trans;
606 
607 	if (!(journal->j_flags & JFS_BARRIER))
608 		return 0;
609 	spin_lock(&journal->j_state_lock);
610 	/* Transaction already committed? */
611 	if (tid_geq(journal->j_commit_sequence, tid))
612 		goto out;
613 	/*
614 	 * Transaction is being committed and we already proceeded to
615 	 * writing commit record?
616 	 */
617 	commit_trans = journal->j_committing_transaction;
618 	if (commit_trans && commit_trans->t_tid == tid &&
619 	    commit_trans->t_state >= T_COMMIT_RECORD)
620 		goto out;
621 	ret = 1;
622 out:
623 	spin_unlock(&journal->j_state_lock);
624 	return ret;
625 }
626 EXPORT_SYMBOL(journal_trans_will_send_data_barrier);
627 
628 /*
629  * Log buffer allocation routines:
630  */
631 
journal_next_log_block(journal_t * journal,unsigned int * retp)632 int journal_next_log_block(journal_t *journal, unsigned int *retp)
633 {
634 	unsigned int blocknr;
635 
636 	spin_lock(&journal->j_state_lock);
637 	J_ASSERT(journal->j_free > 1);
638 
639 	blocknr = journal->j_head;
640 	journal->j_head++;
641 	journal->j_free--;
642 	if (journal->j_head == journal->j_last)
643 		journal->j_head = journal->j_first;
644 	spin_unlock(&journal->j_state_lock);
645 	return journal_bmap(journal, blocknr, retp);
646 }
647 
648 /*
649  * Conversion of logical to physical block numbers for the journal
650  *
651  * On external journals the journal blocks are identity-mapped, so
652  * this is a no-op.  If needed, we can use j_blk_offset - everything is
653  * ready.
654  */
journal_bmap(journal_t * journal,unsigned int blocknr,unsigned int * retp)655 int journal_bmap(journal_t *journal, unsigned int blocknr,
656 		 unsigned int *retp)
657 {
658 	int err = 0;
659 	unsigned int ret;
660 
661 	if (journal->j_inode) {
662 		ret = bmap(journal->j_inode, blocknr);
663 		if (ret)
664 			*retp = ret;
665 		else {
666 			char b[BDEVNAME_SIZE];
667 
668 			printk(KERN_ALERT "%s: journal block not found "
669 					"at offset %u on %s\n",
670 				__func__,
671 				blocknr,
672 				bdevname(journal->j_dev, b));
673 			err = -EIO;
674 			__journal_abort_soft(journal, err);
675 		}
676 	} else {
677 		*retp = blocknr; /* +journal->j_blk_offset */
678 	}
679 	return err;
680 }
681 
682 /*
683  * We play buffer_head aliasing tricks to write data/metadata blocks to
684  * the journal without copying their contents, but for journal
685  * descriptor blocks we do need to generate bona fide buffers.
686  *
687  * After the caller of journal_get_descriptor_buffer() has finished modifying
688  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
689  * But we don't bother doing that, so there will be coherency problems with
690  * mmaps of blockdevs which hold live JBD-controlled filesystems.
691  */
journal_get_descriptor_buffer(journal_t * journal)692 struct journal_head *journal_get_descriptor_buffer(journal_t *journal)
693 {
694 	struct buffer_head *bh;
695 	unsigned int blocknr;
696 	int err;
697 
698 	err = journal_next_log_block(journal, &blocknr);
699 
700 	if (err)
701 		return NULL;
702 
703 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
704 	if (!bh)
705 		return NULL;
706 	lock_buffer(bh);
707 	memset(bh->b_data, 0, journal->j_blocksize);
708 	set_buffer_uptodate(bh);
709 	unlock_buffer(bh);
710 	BUFFER_TRACE(bh, "return this buffer");
711 	return journal_add_journal_head(bh);
712 }
713 
714 /*
715  * Management for journal control blocks: functions to create and
716  * destroy journal_t structures, and to initialise and read existing
717  * journal blocks from disk.  */
718 
719 /* First: create and setup a journal_t object in memory.  We initialise
720  * very few fields yet: that has to wait until we have created the
721  * journal structures from from scratch, or loaded them from disk. */
722 
journal_init_common(void)723 static journal_t * journal_init_common (void)
724 {
725 	journal_t *journal;
726 	int err;
727 
728 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
729 	if (!journal)
730 		goto fail;
731 
732 	init_waitqueue_head(&journal->j_wait_transaction_locked);
733 	init_waitqueue_head(&journal->j_wait_logspace);
734 	init_waitqueue_head(&journal->j_wait_done_commit);
735 	init_waitqueue_head(&journal->j_wait_checkpoint);
736 	init_waitqueue_head(&journal->j_wait_commit);
737 	init_waitqueue_head(&journal->j_wait_updates);
738 	mutex_init(&journal->j_checkpoint_mutex);
739 	spin_lock_init(&journal->j_revoke_lock);
740 	spin_lock_init(&journal->j_list_lock);
741 	spin_lock_init(&journal->j_state_lock);
742 
743 	journal->j_commit_interval = (HZ * JBD_DEFAULT_MAX_COMMIT_AGE);
744 
745 	/* The journal is marked for error until we succeed with recovery! */
746 	journal->j_flags = JFS_ABORT;
747 
748 	/* Set up a default-sized revoke table for the new mount. */
749 	err = journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
750 	if (err) {
751 		kfree(journal);
752 		goto fail;
753 	}
754 	return journal;
755 fail:
756 	return NULL;
757 }
758 
759 /* journal_init_dev and journal_init_inode:
760  *
761  * Create a journal structure assigned some fixed set of disk blocks to
762  * the journal.  We don't actually touch those disk blocks yet, but we
763  * need to set up all of the mapping information to tell the journaling
764  * system where the journal blocks are.
765  *
766  */
767 
768 /**
769  *  journal_t * journal_init_dev() - creates and initialises a journal structure
770  *  @bdev: Block device on which to create the journal
771  *  @fs_dev: Device which hold journalled filesystem for this journal.
772  *  @start: Block nr Start of journal.
773  *  @len:  Length of the journal in blocks.
774  *  @blocksize: blocksize of journalling device
775  *
776  *  Returns: a newly created journal_t *
777  *
778  *  journal_init_dev creates a journal which maps a fixed contiguous
779  *  range of blocks on an arbitrary block device.
780  *
781  */
journal_init_dev(struct block_device * bdev,struct block_device * fs_dev,int start,int len,int blocksize)782 journal_t * journal_init_dev(struct block_device *bdev,
783 			struct block_device *fs_dev,
784 			int start, int len, int blocksize)
785 {
786 	journal_t *journal = journal_init_common();
787 	struct buffer_head *bh;
788 	int n;
789 
790 	if (!journal)
791 		return NULL;
792 
793 	/* journal descriptor can store up to n blocks -bzzz */
794 	journal->j_blocksize = blocksize;
795 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
796 	journal->j_wbufsize = n;
797 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
798 	if (!journal->j_wbuf) {
799 		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
800 			__func__);
801 		goto out_err;
802 	}
803 	journal->j_dev = bdev;
804 	journal->j_fs_dev = fs_dev;
805 	journal->j_blk_offset = start;
806 	journal->j_maxlen = len;
807 
808 	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
809 	if (!bh) {
810 		printk(KERN_ERR
811 		       "%s: Cannot get buffer for journal superblock\n",
812 		       __func__);
813 		goto out_err;
814 	}
815 	journal->j_sb_buffer = bh;
816 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
817 
818 	return journal;
819 out_err:
820 	kfree(journal->j_wbuf);
821 	kfree(journal);
822 	return NULL;
823 }
824 
825 /**
826  *  journal_t * journal_init_inode () - creates a journal which maps to a inode.
827  *  @inode: An inode to create the journal in
828  *
829  * journal_init_inode creates a journal which maps an on-disk inode as
830  * the journal.  The inode must exist already, must support bmap() and
831  * must have all data blocks preallocated.
832  */
journal_init_inode(struct inode * inode)833 journal_t * journal_init_inode (struct inode *inode)
834 {
835 	struct buffer_head *bh;
836 	journal_t *journal = journal_init_common();
837 	int err;
838 	int n;
839 	unsigned int blocknr;
840 
841 	if (!journal)
842 		return NULL;
843 
844 	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
845 	journal->j_inode = inode;
846 	jbd_debug(1,
847 		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
848 		  journal, inode->i_sb->s_id, inode->i_ino,
849 		  (long long) inode->i_size,
850 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
851 
852 	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
853 	journal->j_blocksize = inode->i_sb->s_blocksize;
854 
855 	/* journal descriptor can store up to n blocks -bzzz */
856 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
857 	journal->j_wbufsize = n;
858 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
859 	if (!journal->j_wbuf) {
860 		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
861 			__func__);
862 		goto out_err;
863 	}
864 
865 	err = journal_bmap(journal, 0, &blocknr);
866 	/* If that failed, give up */
867 	if (err) {
868 		printk(KERN_ERR "%s: Cannot locate journal superblock\n",
869 		       __func__);
870 		goto out_err;
871 	}
872 
873 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
874 	if (!bh) {
875 		printk(KERN_ERR
876 		       "%s: Cannot get buffer for journal superblock\n",
877 		       __func__);
878 		goto out_err;
879 	}
880 	journal->j_sb_buffer = bh;
881 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
882 
883 	return journal;
884 out_err:
885 	kfree(journal->j_wbuf);
886 	kfree(journal);
887 	return NULL;
888 }
889 
890 /*
891  * If the journal init or create aborts, we need to mark the journal
892  * superblock as being NULL to prevent the journal destroy from writing
893  * back a bogus superblock.
894  */
journal_fail_superblock(journal_t * journal)895 static void journal_fail_superblock (journal_t *journal)
896 {
897 	struct buffer_head *bh = journal->j_sb_buffer;
898 	brelse(bh);
899 	journal->j_sb_buffer = NULL;
900 }
901 
902 /*
903  * Given a journal_t structure, initialise the various fields for
904  * startup of a new journaling session.  We use this both when creating
905  * a journal, and after recovering an old journal to reset it for
906  * subsequent use.
907  */
908 
journal_reset(journal_t * journal)909 static int journal_reset(journal_t *journal)
910 {
911 	journal_superblock_t *sb = journal->j_superblock;
912 	unsigned int first, last;
913 
914 	first = be32_to_cpu(sb->s_first);
915 	last = be32_to_cpu(sb->s_maxlen);
916 	if (first + JFS_MIN_JOURNAL_BLOCKS > last + 1) {
917 		printk(KERN_ERR "JBD: Journal too short (blocks %u-%u).\n",
918 		       first, last);
919 		journal_fail_superblock(journal);
920 		return -EINVAL;
921 	}
922 
923 	journal->j_first = first;
924 	journal->j_last = last;
925 
926 	journal->j_head = first;
927 	journal->j_tail = first;
928 	journal->j_free = last - first;
929 
930 	journal->j_tail_sequence = journal->j_transaction_sequence;
931 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
932 	journal->j_commit_request = journal->j_commit_sequence;
933 
934 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
935 
936 	/*
937 	 * As a special case, if the on-disk copy is already marked as needing
938 	 * no recovery (s_start == 0), then we can safely defer the superblock
939 	 * update until the next commit by setting JFS_FLUSHED.  This avoids
940 	 * attempting a write to a potential-readonly device.
941 	 */
942 	if (sb->s_start == 0) {
943 		jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
944 			"(start %u, seq %d, errno %d)\n",
945 			journal->j_tail, journal->j_tail_sequence,
946 			journal->j_errno);
947 		journal->j_flags |= JFS_FLUSHED;
948 	} else {
949 		/* Lock here to make assertions happy... */
950 		mutex_lock(&journal->j_checkpoint_mutex);
951 		/*
952 		 * Update log tail information. We use WRITE_FUA since new
953 		 * transaction will start reusing journal space and so we
954 		 * must make sure information about current log tail is on
955 		 * disk before that.
956 		 */
957 		journal_update_sb_log_tail(journal,
958 					   journal->j_tail_sequence,
959 					   journal->j_tail,
960 					   WRITE_FUA);
961 		mutex_unlock(&journal->j_checkpoint_mutex);
962 	}
963 	return journal_start_thread(journal);
964 }
965 
966 /**
967  * int journal_create() - Initialise the new journal file
968  * @journal: Journal to create. This structure must have been initialised
969  *
970  * Given a journal_t structure which tells us which disk blocks we can
971  * use, create a new journal superblock and initialise all of the
972  * journal fields from scratch.
973  **/
journal_create(journal_t * journal)974 int journal_create(journal_t *journal)
975 {
976 	unsigned int blocknr;
977 	struct buffer_head *bh;
978 	journal_superblock_t *sb;
979 	int i, err;
980 
981 	if (journal->j_maxlen < JFS_MIN_JOURNAL_BLOCKS) {
982 		printk (KERN_ERR "Journal length (%d blocks) too short.\n",
983 			journal->j_maxlen);
984 		journal_fail_superblock(journal);
985 		return -EINVAL;
986 	}
987 
988 	if (journal->j_inode == NULL) {
989 		/*
990 		 * We don't know what block to start at!
991 		 */
992 		printk(KERN_EMERG
993 		       "%s: creation of journal on external device!\n",
994 		       __func__);
995 		BUG();
996 	}
997 
998 	/* Zero out the entire journal on disk.  We cannot afford to
999 	   have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
1000 	jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
1001 	for (i = 0; i < journal->j_maxlen; i++) {
1002 		err = journal_bmap(journal, i, &blocknr);
1003 		if (err)
1004 			return err;
1005 		bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1006 		if (unlikely(!bh))
1007 			return -ENOMEM;
1008 		lock_buffer(bh);
1009 		memset (bh->b_data, 0, journal->j_blocksize);
1010 		BUFFER_TRACE(bh, "marking dirty");
1011 		mark_buffer_dirty(bh);
1012 		BUFFER_TRACE(bh, "marking uptodate");
1013 		set_buffer_uptodate(bh);
1014 		unlock_buffer(bh);
1015 		__brelse(bh);
1016 	}
1017 
1018 	sync_blockdev(journal->j_dev);
1019 	jbd_debug(1, "JBD: journal cleared.\n");
1020 
1021 	/* OK, fill in the initial static fields in the new superblock */
1022 	sb = journal->j_superblock;
1023 
1024 	sb->s_header.h_magic	 = cpu_to_be32(JFS_MAGIC_NUMBER);
1025 	sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1026 
1027 	sb->s_blocksize	= cpu_to_be32(journal->j_blocksize);
1028 	sb->s_maxlen	= cpu_to_be32(journal->j_maxlen);
1029 	sb->s_first	= cpu_to_be32(1);
1030 
1031 	journal->j_transaction_sequence = 1;
1032 
1033 	journal->j_flags &= ~JFS_ABORT;
1034 	journal->j_format_version = 2;
1035 
1036 	return journal_reset(journal);
1037 }
1038 
journal_write_superblock(journal_t * journal,int write_op)1039 static void journal_write_superblock(journal_t *journal, int write_op)
1040 {
1041 	struct buffer_head *bh = journal->j_sb_buffer;
1042 	int ret;
1043 
1044 	trace_journal_write_superblock(journal, write_op);
1045 	if (!(journal->j_flags & JFS_BARRIER))
1046 		write_op &= ~(REQ_FUA | REQ_FLUSH);
1047 	lock_buffer(bh);
1048 	if (buffer_write_io_error(bh)) {
1049 		char b[BDEVNAME_SIZE];
1050 		/*
1051 		 * Oh, dear.  A previous attempt to write the journal
1052 		 * superblock failed.  This could happen because the
1053 		 * USB device was yanked out.  Or it could happen to
1054 		 * be a transient write error and maybe the block will
1055 		 * be remapped.  Nothing we can do but to retry the
1056 		 * write and hope for the best.
1057 		 */
1058 		printk(KERN_ERR "JBD: previous I/O error detected "
1059 		       "for journal superblock update for %s.\n",
1060 		       journal_dev_name(journal, b));
1061 		clear_buffer_write_io_error(bh);
1062 		set_buffer_uptodate(bh);
1063 	}
1064 
1065 	get_bh(bh);
1066 	bh->b_end_io = end_buffer_write_sync;
1067 	ret = submit_bh(write_op, bh);
1068 	wait_on_buffer(bh);
1069 	if (buffer_write_io_error(bh)) {
1070 		clear_buffer_write_io_error(bh);
1071 		set_buffer_uptodate(bh);
1072 		ret = -EIO;
1073 	}
1074 	if (ret) {
1075 		char b[BDEVNAME_SIZE];
1076 		printk(KERN_ERR "JBD: Error %d detected "
1077 		       "when updating journal superblock for %s.\n",
1078 		       ret, journal_dev_name(journal, b));
1079 	}
1080 }
1081 
1082 /**
1083  * journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1084  * @journal: The journal to update.
1085  * @tail_tid: TID of the new transaction at the tail of the log
1086  * @tail_block: The first block of the transaction at the tail of the log
1087  * @write_op: With which operation should we write the journal sb
1088  *
1089  * Update a journal's superblock information about log tail and write it to
1090  * disk, waiting for the IO to complete.
1091  */
journal_update_sb_log_tail(journal_t * journal,tid_t tail_tid,unsigned int tail_block,int write_op)1092 void journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1093 				unsigned int tail_block, int write_op)
1094 {
1095 	journal_superblock_t *sb = journal->j_superblock;
1096 
1097 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1098 	jbd_debug(1,"JBD: updating superblock (start %u, seq %u)\n",
1099 		  tail_block, tail_tid);
1100 
1101 	sb->s_sequence = cpu_to_be32(tail_tid);
1102 	sb->s_start    = cpu_to_be32(tail_block);
1103 
1104 	journal_write_superblock(journal, write_op);
1105 
1106 	/* Log is no longer empty */
1107 	spin_lock(&journal->j_state_lock);
1108 	WARN_ON(!sb->s_sequence);
1109 	journal->j_flags &= ~JFS_FLUSHED;
1110 	spin_unlock(&journal->j_state_lock);
1111 }
1112 
1113 /**
1114  * mark_journal_empty() - Mark on disk journal as empty.
1115  * @journal: The journal to update.
1116  *
1117  * Update a journal's dynamic superblock fields to show that journal is empty.
1118  * Write updated superblock to disk waiting for IO to complete.
1119  */
mark_journal_empty(journal_t * journal)1120 static void mark_journal_empty(journal_t *journal)
1121 {
1122 	journal_superblock_t *sb = journal->j_superblock;
1123 
1124 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1125 	spin_lock(&journal->j_state_lock);
1126 	/* Is it already empty? */
1127 	if (sb->s_start == 0) {
1128 		spin_unlock(&journal->j_state_lock);
1129 		return;
1130 	}
1131 	jbd_debug(1, "JBD: Marking journal as empty (seq %d)\n",
1132         	  journal->j_tail_sequence);
1133 
1134 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1135 	sb->s_start    = cpu_to_be32(0);
1136 	spin_unlock(&journal->j_state_lock);
1137 
1138 	journal_write_superblock(journal, WRITE_FUA);
1139 
1140 	spin_lock(&journal->j_state_lock);
1141 	/* Log is empty */
1142 	journal->j_flags |= JFS_FLUSHED;
1143 	spin_unlock(&journal->j_state_lock);
1144 }
1145 
1146 /**
1147  * journal_update_sb_errno() - Update error in the journal.
1148  * @journal: The journal to update.
1149  *
1150  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1151  * to complete.
1152  */
journal_update_sb_errno(journal_t * journal)1153 static void journal_update_sb_errno(journal_t *journal)
1154 {
1155 	journal_superblock_t *sb = journal->j_superblock;
1156 
1157 	spin_lock(&journal->j_state_lock);
1158 	jbd_debug(1, "JBD: updating superblock error (errno %d)\n",
1159         	  journal->j_errno);
1160 	sb->s_errno = cpu_to_be32(journal->j_errno);
1161 	spin_unlock(&journal->j_state_lock);
1162 
1163 	journal_write_superblock(journal, WRITE_SYNC);
1164 }
1165 
1166 /*
1167  * Read the superblock for a given journal, performing initial
1168  * validation of the format.
1169  */
1170 
journal_get_superblock(journal_t * journal)1171 static int journal_get_superblock(journal_t *journal)
1172 {
1173 	struct buffer_head *bh;
1174 	journal_superblock_t *sb;
1175 	int err = -EIO;
1176 
1177 	bh = journal->j_sb_buffer;
1178 
1179 	J_ASSERT(bh != NULL);
1180 	if (!buffer_uptodate(bh)) {
1181 		ll_rw_block(READ, 1, &bh);
1182 		wait_on_buffer(bh);
1183 		if (!buffer_uptodate(bh)) {
1184 			printk (KERN_ERR
1185 				"JBD: IO error reading journal superblock\n");
1186 			goto out;
1187 		}
1188 	}
1189 
1190 	sb = journal->j_superblock;
1191 
1192 	err = -EINVAL;
1193 
1194 	if (sb->s_header.h_magic != cpu_to_be32(JFS_MAGIC_NUMBER) ||
1195 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1196 		printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1197 		goto out;
1198 	}
1199 
1200 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1201 	case JFS_SUPERBLOCK_V1:
1202 		journal->j_format_version = 1;
1203 		break;
1204 	case JFS_SUPERBLOCK_V2:
1205 		journal->j_format_version = 2;
1206 		break;
1207 	default:
1208 		printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1209 		goto out;
1210 	}
1211 
1212 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1213 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1214 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1215 		printk (KERN_WARNING "JBD: journal file too short\n");
1216 		goto out;
1217 	}
1218 
1219 	if (be32_to_cpu(sb->s_first) == 0 ||
1220 	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1221 		printk(KERN_WARNING
1222 			"JBD: Invalid start block of journal: %u\n",
1223 			be32_to_cpu(sb->s_first));
1224 		goto out;
1225 	}
1226 
1227 	return 0;
1228 
1229 out:
1230 	journal_fail_superblock(journal);
1231 	return err;
1232 }
1233 
1234 /*
1235  * Load the on-disk journal superblock and read the key fields into the
1236  * journal_t.
1237  */
1238 
load_superblock(journal_t * journal)1239 static int load_superblock(journal_t *journal)
1240 {
1241 	int err;
1242 	journal_superblock_t *sb;
1243 
1244 	err = journal_get_superblock(journal);
1245 	if (err)
1246 		return err;
1247 
1248 	sb = journal->j_superblock;
1249 
1250 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1251 	journal->j_tail = be32_to_cpu(sb->s_start);
1252 	journal->j_first = be32_to_cpu(sb->s_first);
1253 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1254 	journal->j_errno = be32_to_cpu(sb->s_errno);
1255 
1256 	return 0;
1257 }
1258 
1259 
1260 /**
1261  * int journal_load() - Read journal from disk.
1262  * @journal: Journal to act on.
1263  *
1264  * Given a journal_t structure which tells us which disk blocks contain
1265  * a journal, read the journal from disk to initialise the in-memory
1266  * structures.
1267  */
journal_load(journal_t * journal)1268 int journal_load(journal_t *journal)
1269 {
1270 	int err;
1271 	journal_superblock_t *sb;
1272 
1273 	err = load_superblock(journal);
1274 	if (err)
1275 		return err;
1276 
1277 	sb = journal->j_superblock;
1278 	/* If this is a V2 superblock, then we have to check the
1279 	 * features flags on it. */
1280 
1281 	if (journal->j_format_version >= 2) {
1282 		if ((sb->s_feature_ro_compat &
1283 		     ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES)) ||
1284 		    (sb->s_feature_incompat &
1285 		     ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES))) {
1286 			printk (KERN_WARNING
1287 				"JBD: Unrecognised features on journal\n");
1288 			return -EINVAL;
1289 		}
1290 	}
1291 
1292 	/* Let the recovery code check whether it needs to recover any
1293 	 * data from the journal. */
1294 	if (journal_recover(journal))
1295 		goto recovery_error;
1296 
1297 	/* OK, we've finished with the dynamic journal bits:
1298 	 * reinitialise the dynamic contents of the superblock in memory
1299 	 * and reset them on disk. */
1300 	if (journal_reset(journal))
1301 		goto recovery_error;
1302 
1303 	journal->j_flags &= ~JFS_ABORT;
1304 	journal->j_flags |= JFS_LOADED;
1305 	return 0;
1306 
1307 recovery_error:
1308 	printk (KERN_WARNING "JBD: recovery failed\n");
1309 	return -EIO;
1310 }
1311 
1312 /**
1313  * void journal_destroy() - Release a journal_t structure.
1314  * @journal: Journal to act on.
1315  *
1316  * Release a journal_t structure once it is no longer in use by the
1317  * journaled object.
1318  * Return <0 if we couldn't clean up the journal.
1319  */
journal_destroy(journal_t * journal)1320 int journal_destroy(journal_t *journal)
1321 {
1322 	int err = 0;
1323 
1324 
1325 	/* Wait for the commit thread to wake up and die. */
1326 	journal_kill_thread(journal);
1327 
1328 	/* Force a final log commit */
1329 	if (journal->j_running_transaction)
1330 		journal_commit_transaction(journal);
1331 
1332 	/* Force any old transactions to disk */
1333 
1334 	/* We cannot race with anybody but must keep assertions happy */
1335 	mutex_lock(&journal->j_checkpoint_mutex);
1336 	/* Totally anal locking here... */
1337 	spin_lock(&journal->j_list_lock);
1338 	while (journal->j_checkpoint_transactions != NULL) {
1339 		spin_unlock(&journal->j_list_lock);
1340 		log_do_checkpoint(journal);
1341 		spin_lock(&journal->j_list_lock);
1342 	}
1343 
1344 	J_ASSERT(journal->j_running_transaction == NULL);
1345 	J_ASSERT(journal->j_committing_transaction == NULL);
1346 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1347 	spin_unlock(&journal->j_list_lock);
1348 
1349 	if (journal->j_sb_buffer) {
1350 		if (!is_journal_aborted(journal)) {
1351 			journal->j_tail_sequence =
1352 				++journal->j_transaction_sequence;
1353 			mark_journal_empty(journal);
1354 		} else
1355 			err = -EIO;
1356 		brelse(journal->j_sb_buffer);
1357 	}
1358 	mutex_unlock(&journal->j_checkpoint_mutex);
1359 
1360 	if (journal->j_inode)
1361 		iput(journal->j_inode);
1362 	if (journal->j_revoke)
1363 		journal_destroy_revoke(journal);
1364 	kfree(journal->j_wbuf);
1365 	kfree(journal);
1366 
1367 	return err;
1368 }
1369 
1370 
1371 /**
1372  *int journal_check_used_features () - Check if features specified are used.
1373  * @journal: Journal to check.
1374  * @compat: bitmask of compatible features
1375  * @ro: bitmask of features that force read-only mount
1376  * @incompat: bitmask of incompatible features
1377  *
1378  * Check whether the journal uses all of a given set of
1379  * features.  Return true (non-zero) if it does.
1380  **/
1381 
journal_check_used_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1382 int journal_check_used_features (journal_t *journal, unsigned long compat,
1383 				 unsigned long ro, unsigned long incompat)
1384 {
1385 	journal_superblock_t *sb;
1386 
1387 	if (!compat && !ro && !incompat)
1388 		return 1;
1389 	if (journal->j_format_version == 1)
1390 		return 0;
1391 
1392 	sb = journal->j_superblock;
1393 
1394 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1395 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1396 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1397 		return 1;
1398 
1399 	return 0;
1400 }
1401 
1402 /**
1403  * int journal_check_available_features() - Check feature set in journalling layer
1404  * @journal: Journal to check.
1405  * @compat: bitmask of compatible features
1406  * @ro: bitmask of features that force read-only mount
1407  * @incompat: bitmask of incompatible features
1408  *
1409  * Check whether the journaling code supports the use of
1410  * all of a given set of features on this journal.  Return true
1411  * (non-zero) if it can. */
1412 
journal_check_available_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1413 int journal_check_available_features (journal_t *journal, unsigned long compat,
1414 				      unsigned long ro, unsigned long incompat)
1415 {
1416 	if (!compat && !ro && !incompat)
1417 		return 1;
1418 
1419 	/* We can support any known requested features iff the
1420 	 * superblock is in version 2.  Otherwise we fail to support any
1421 	 * extended sb features. */
1422 
1423 	if (journal->j_format_version != 2)
1424 		return 0;
1425 
1426 	if ((compat   & JFS_KNOWN_COMPAT_FEATURES) == compat &&
1427 	    (ro       & JFS_KNOWN_ROCOMPAT_FEATURES) == ro &&
1428 	    (incompat & JFS_KNOWN_INCOMPAT_FEATURES) == incompat)
1429 		return 1;
1430 
1431 	return 0;
1432 }
1433 
1434 /**
1435  * int journal_set_features () - Mark a given journal feature in the superblock
1436  * @journal: Journal to act on.
1437  * @compat: bitmask of compatible features
1438  * @ro: bitmask of features that force read-only mount
1439  * @incompat: bitmask of incompatible features
1440  *
1441  * Mark a given journal feature as present on the
1442  * superblock.  Returns true if the requested features could be set.
1443  *
1444  */
1445 
journal_set_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1446 int journal_set_features (journal_t *journal, unsigned long compat,
1447 			  unsigned long ro, unsigned long incompat)
1448 {
1449 	journal_superblock_t *sb;
1450 
1451 	if (journal_check_used_features(journal, compat, ro, incompat))
1452 		return 1;
1453 
1454 	if (!journal_check_available_features(journal, compat, ro, incompat))
1455 		return 0;
1456 
1457 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1458 		  compat, ro, incompat);
1459 
1460 	sb = journal->j_superblock;
1461 
1462 	sb->s_feature_compat    |= cpu_to_be32(compat);
1463 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1464 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1465 
1466 	return 1;
1467 }
1468 
1469 
1470 /**
1471  * int journal_update_format () - Update on-disk journal structure.
1472  * @journal: Journal to act on.
1473  *
1474  * Given an initialised but unloaded journal struct, poke about in the
1475  * on-disk structure to update it to the most recent supported version.
1476  */
journal_update_format(journal_t * journal)1477 int journal_update_format (journal_t *journal)
1478 {
1479 	journal_superblock_t *sb;
1480 	int err;
1481 
1482 	err = journal_get_superblock(journal);
1483 	if (err)
1484 		return err;
1485 
1486 	sb = journal->j_superblock;
1487 
1488 	switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1489 	case JFS_SUPERBLOCK_V2:
1490 		return 0;
1491 	case JFS_SUPERBLOCK_V1:
1492 		return journal_convert_superblock_v1(journal, sb);
1493 	default:
1494 		break;
1495 	}
1496 	return -EINVAL;
1497 }
1498 
journal_convert_superblock_v1(journal_t * journal,journal_superblock_t * sb)1499 static int journal_convert_superblock_v1(journal_t *journal,
1500 					 journal_superblock_t *sb)
1501 {
1502 	int offset, blocksize;
1503 	struct buffer_head *bh;
1504 
1505 	printk(KERN_WARNING
1506 		"JBD: Converting superblock from version 1 to 2.\n");
1507 
1508 	/* Pre-initialise new fields to zero */
1509 	offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1510 	blocksize = be32_to_cpu(sb->s_blocksize);
1511 	memset(&sb->s_feature_compat, 0, blocksize-offset);
1512 
1513 	sb->s_nr_users = cpu_to_be32(1);
1514 	sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1515 	journal->j_format_version = 2;
1516 
1517 	bh = journal->j_sb_buffer;
1518 	BUFFER_TRACE(bh, "marking dirty");
1519 	mark_buffer_dirty(bh);
1520 	sync_dirty_buffer(bh);
1521 	return 0;
1522 }
1523 
1524 
1525 /**
1526  * int journal_flush () - Flush journal
1527  * @journal: Journal to act on.
1528  *
1529  * Flush all data for a given journal to disk and empty the journal.
1530  * Filesystems can use this when remounting readonly to ensure that
1531  * recovery does not need to happen on remount.
1532  */
1533 
journal_flush(journal_t * journal)1534 int journal_flush(journal_t *journal)
1535 {
1536 	int err = 0;
1537 	transaction_t *transaction = NULL;
1538 
1539 	spin_lock(&journal->j_state_lock);
1540 
1541 	/* Force everything buffered to the log... */
1542 	if (journal->j_running_transaction) {
1543 		transaction = journal->j_running_transaction;
1544 		__log_start_commit(journal, transaction->t_tid);
1545 	} else if (journal->j_committing_transaction)
1546 		transaction = journal->j_committing_transaction;
1547 
1548 	/* Wait for the log commit to complete... */
1549 	if (transaction) {
1550 		tid_t tid = transaction->t_tid;
1551 
1552 		spin_unlock(&journal->j_state_lock);
1553 		log_wait_commit(journal, tid);
1554 	} else {
1555 		spin_unlock(&journal->j_state_lock);
1556 	}
1557 
1558 	/* ...and flush everything in the log out to disk. */
1559 	spin_lock(&journal->j_list_lock);
1560 	while (!err && journal->j_checkpoint_transactions != NULL) {
1561 		spin_unlock(&journal->j_list_lock);
1562 		mutex_lock(&journal->j_checkpoint_mutex);
1563 		err = log_do_checkpoint(journal);
1564 		mutex_unlock(&journal->j_checkpoint_mutex);
1565 		spin_lock(&journal->j_list_lock);
1566 	}
1567 	spin_unlock(&journal->j_list_lock);
1568 
1569 	if (is_journal_aborted(journal))
1570 		return -EIO;
1571 
1572 	mutex_lock(&journal->j_checkpoint_mutex);
1573 	cleanup_journal_tail(journal);
1574 
1575 	/* Finally, mark the journal as really needing no recovery.
1576 	 * This sets s_start==0 in the underlying superblock, which is
1577 	 * the magic code for a fully-recovered superblock.  Any future
1578 	 * commits of data to the journal will restore the current
1579 	 * s_start value. */
1580 	mark_journal_empty(journal);
1581 	mutex_unlock(&journal->j_checkpoint_mutex);
1582 	spin_lock(&journal->j_state_lock);
1583 	J_ASSERT(!journal->j_running_transaction);
1584 	J_ASSERT(!journal->j_committing_transaction);
1585 	J_ASSERT(!journal->j_checkpoint_transactions);
1586 	J_ASSERT(journal->j_head == journal->j_tail);
1587 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1588 	spin_unlock(&journal->j_state_lock);
1589 	return 0;
1590 }
1591 
1592 /**
1593  * int journal_wipe() - Wipe journal contents
1594  * @journal: Journal to act on.
1595  * @write: flag (see below)
1596  *
1597  * Wipe out all of the contents of a journal, safely.  This will produce
1598  * a warning if the journal contains any valid recovery information.
1599  * Must be called between journal_init_*() and journal_load().
1600  *
1601  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1602  * we merely suppress recovery.
1603  */
1604 
journal_wipe(journal_t * journal,int write)1605 int journal_wipe(journal_t *journal, int write)
1606 {
1607 	int err = 0;
1608 
1609 	J_ASSERT (!(journal->j_flags & JFS_LOADED));
1610 
1611 	err = load_superblock(journal);
1612 	if (err)
1613 		return err;
1614 
1615 	if (!journal->j_tail)
1616 		goto no_recovery;
1617 
1618 	printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1619 		write ? "Clearing" : "Ignoring");
1620 
1621 	err = journal_skip_recovery(journal);
1622 	if (write) {
1623 		/* Lock to make assertions happy... */
1624 		mutex_lock(&journal->j_checkpoint_mutex);
1625 		mark_journal_empty(journal);
1626 		mutex_unlock(&journal->j_checkpoint_mutex);
1627 	}
1628 
1629  no_recovery:
1630 	return err;
1631 }
1632 
1633 /*
1634  * journal_dev_name: format a character string to describe on what
1635  * device this journal is present.
1636  */
1637 
journal_dev_name(journal_t * journal,char * buffer)1638 static const char *journal_dev_name(journal_t *journal, char *buffer)
1639 {
1640 	struct block_device *bdev;
1641 
1642 	if (journal->j_inode)
1643 		bdev = journal->j_inode->i_sb->s_bdev;
1644 	else
1645 		bdev = journal->j_dev;
1646 
1647 	return bdevname(bdev, buffer);
1648 }
1649 
1650 /*
1651  * Journal abort has very specific semantics, which we describe
1652  * for journal abort.
1653  *
1654  * Two internal function, which provide abort to te jbd layer
1655  * itself are here.
1656  */
1657 
1658 /*
1659  * Quick version for internal journal use (doesn't lock the journal).
1660  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1661  * and don't attempt to make any other journal updates.
1662  */
__journal_abort_hard(journal_t * journal)1663 static void __journal_abort_hard(journal_t *journal)
1664 {
1665 	transaction_t *transaction;
1666 	char b[BDEVNAME_SIZE];
1667 
1668 	if (journal->j_flags & JFS_ABORT)
1669 		return;
1670 
1671 	printk(KERN_ERR "Aborting journal on device %s.\n",
1672 		journal_dev_name(journal, b));
1673 
1674 	spin_lock(&journal->j_state_lock);
1675 	journal->j_flags |= JFS_ABORT;
1676 	transaction = journal->j_running_transaction;
1677 	if (transaction)
1678 		__log_start_commit(journal, transaction->t_tid);
1679 	spin_unlock(&journal->j_state_lock);
1680 }
1681 
1682 /* Soft abort: record the abort error status in the journal superblock,
1683  * but don't do any other IO. */
__journal_abort_soft(journal_t * journal,int errno)1684 static void __journal_abort_soft (journal_t *journal, int errno)
1685 {
1686 	if (journal->j_flags & JFS_ABORT)
1687 		return;
1688 
1689 	if (!journal->j_errno)
1690 		journal->j_errno = errno;
1691 
1692 	__journal_abort_hard(journal);
1693 
1694 	if (errno)
1695 		journal_update_sb_errno(journal);
1696 }
1697 
1698 /**
1699  * void journal_abort () - Shutdown the journal immediately.
1700  * @journal: the journal to shutdown.
1701  * @errno:   an error number to record in the journal indicating
1702  *           the reason for the shutdown.
1703  *
1704  * Perform a complete, immediate shutdown of the ENTIRE
1705  * journal (not of a single transaction).  This operation cannot be
1706  * undone without closing and reopening the journal.
1707  *
1708  * The journal_abort function is intended to support higher level error
1709  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1710  * mode.
1711  *
1712  * Journal abort has very specific semantics.  Any existing dirty,
1713  * unjournaled buffers in the main filesystem will still be written to
1714  * disk by bdflush, but the journaling mechanism will be suspended
1715  * immediately and no further transaction commits will be honoured.
1716  *
1717  * Any dirty, journaled buffers will be written back to disk without
1718  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1719  * filesystem, but we _do_ attempt to leave as much data as possible
1720  * behind for fsck to use for cleanup.
1721  *
1722  * Any attempt to get a new transaction handle on a journal which is in
1723  * ABORT state will just result in an -EROFS error return.  A
1724  * journal_stop on an existing handle will return -EIO if we have
1725  * entered abort state during the update.
1726  *
1727  * Recursive transactions are not disturbed by journal abort until the
1728  * final journal_stop, which will receive the -EIO error.
1729  *
1730  * Finally, the journal_abort call allows the caller to supply an errno
1731  * which will be recorded (if possible) in the journal superblock.  This
1732  * allows a client to record failure conditions in the middle of a
1733  * transaction without having to complete the transaction to record the
1734  * failure to disk.  ext3_error, for example, now uses this
1735  * functionality.
1736  *
1737  * Errors which originate from within the journaling layer will NOT
1738  * supply an errno; a null errno implies that absolutely no further
1739  * writes are done to the journal (unless there are any already in
1740  * progress).
1741  *
1742  */
1743 
journal_abort(journal_t * journal,int errno)1744 void journal_abort(journal_t *journal, int errno)
1745 {
1746 	__journal_abort_soft(journal, errno);
1747 }
1748 
1749 /**
1750  * int journal_errno () - returns the journal's error state.
1751  * @journal: journal to examine.
1752  *
1753  * This is the errno numbet set with journal_abort(), the last
1754  * time the journal was mounted - if the journal was stopped
1755  * without calling abort this will be 0.
1756  *
1757  * If the journal has been aborted on this mount time -EROFS will
1758  * be returned.
1759  */
journal_errno(journal_t * journal)1760 int journal_errno(journal_t *journal)
1761 {
1762 	int err;
1763 
1764 	spin_lock(&journal->j_state_lock);
1765 	if (journal->j_flags & JFS_ABORT)
1766 		err = -EROFS;
1767 	else
1768 		err = journal->j_errno;
1769 	spin_unlock(&journal->j_state_lock);
1770 	return err;
1771 }
1772 
1773 /**
1774  * int journal_clear_err () - clears the journal's error state
1775  * @journal: journal to act on.
1776  *
1777  * An error must be cleared or Acked to take a FS out of readonly
1778  * mode.
1779  */
journal_clear_err(journal_t * journal)1780 int journal_clear_err(journal_t *journal)
1781 {
1782 	int err = 0;
1783 
1784 	spin_lock(&journal->j_state_lock);
1785 	if (journal->j_flags & JFS_ABORT)
1786 		err = -EROFS;
1787 	else
1788 		journal->j_errno = 0;
1789 	spin_unlock(&journal->j_state_lock);
1790 	return err;
1791 }
1792 
1793 /**
1794  * void journal_ack_err() - Ack journal err.
1795  * @journal: journal to act on.
1796  *
1797  * An error must be cleared or Acked to take a FS out of readonly
1798  * mode.
1799  */
journal_ack_err(journal_t * journal)1800 void journal_ack_err(journal_t *journal)
1801 {
1802 	spin_lock(&journal->j_state_lock);
1803 	if (journal->j_errno)
1804 		journal->j_flags |= JFS_ACK_ERR;
1805 	spin_unlock(&journal->j_state_lock);
1806 }
1807 
journal_blocks_per_page(struct inode * inode)1808 int journal_blocks_per_page(struct inode *inode)
1809 {
1810 	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1811 }
1812 
1813 /*
1814  * Journal_head storage management
1815  */
1816 static struct kmem_cache *journal_head_cache;
1817 #ifdef CONFIG_JBD_DEBUG
1818 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1819 #endif
1820 
journal_init_journal_head_cache(void)1821 static int journal_init_journal_head_cache(void)
1822 {
1823 	int retval;
1824 
1825 	J_ASSERT(journal_head_cache == NULL);
1826 	journal_head_cache = kmem_cache_create("journal_head",
1827 				sizeof(struct journal_head),
1828 				0,		/* offset */
1829 				SLAB_TEMPORARY,	/* flags */
1830 				NULL);		/* ctor */
1831 	retval = 0;
1832 	if (!journal_head_cache) {
1833 		retval = -ENOMEM;
1834 		printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1835 	}
1836 	return retval;
1837 }
1838 
journal_destroy_journal_head_cache(void)1839 static void journal_destroy_journal_head_cache(void)
1840 {
1841 	if (journal_head_cache) {
1842 		kmem_cache_destroy(journal_head_cache);
1843 		journal_head_cache = NULL;
1844 	}
1845 }
1846 
1847 /*
1848  * journal_head splicing and dicing
1849  */
journal_alloc_journal_head(void)1850 static struct journal_head *journal_alloc_journal_head(void)
1851 {
1852 	struct journal_head *ret;
1853 
1854 #ifdef CONFIG_JBD_DEBUG
1855 	atomic_inc(&nr_journal_heads);
1856 #endif
1857 	ret = kmem_cache_zalloc(journal_head_cache, GFP_NOFS);
1858 	if (ret == NULL) {
1859 		jbd_debug(1, "out of memory for journal_head\n");
1860 		printk_ratelimited(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1861 				   __func__);
1862 
1863 		while (ret == NULL) {
1864 			yield();
1865 			ret = kmem_cache_zalloc(journal_head_cache, GFP_NOFS);
1866 		}
1867 	}
1868 	return ret;
1869 }
1870 
journal_free_journal_head(struct journal_head * jh)1871 static void journal_free_journal_head(struct journal_head *jh)
1872 {
1873 #ifdef CONFIG_JBD_DEBUG
1874 	atomic_dec(&nr_journal_heads);
1875 	memset(jh, JBD_POISON_FREE, sizeof(*jh));
1876 #endif
1877 	kmem_cache_free(journal_head_cache, jh);
1878 }
1879 
1880 /*
1881  * A journal_head is attached to a buffer_head whenever JBD has an
1882  * interest in the buffer.
1883  *
1884  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1885  * is set.  This bit is tested in core kernel code where we need to take
1886  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
1887  * there.
1888  *
1889  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1890  *
1891  * When a buffer has its BH_JBD bit set it is immune from being released by
1892  * core kernel code, mainly via ->b_count.
1893  *
1894  * A journal_head is detached from its buffer_head when the journal_head's
1895  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
1896  * transaction (b_cp_transaction) hold their references to b_jcount.
1897  *
1898  * Various places in the kernel want to attach a journal_head to a buffer_head
1899  * _before_ attaching the journal_head to a transaction.  To protect the
1900  * journal_head in this situation, journal_add_journal_head elevates the
1901  * journal_head's b_jcount refcount by one.  The caller must call
1902  * journal_put_journal_head() to undo this.
1903  *
1904  * So the typical usage would be:
1905  *
1906  *	(Attach a journal_head if needed.  Increments b_jcount)
1907  *	struct journal_head *jh = journal_add_journal_head(bh);
1908  *	...
1909  *      (Get another reference for transaction)
1910  *      journal_grab_journal_head(bh);
1911  *      jh->b_transaction = xxx;
1912  *      (Put original reference)
1913  *      journal_put_journal_head(jh);
1914  */
1915 
1916 /*
1917  * Give a buffer_head a journal_head.
1918  *
1919  * May sleep.
1920  */
journal_add_journal_head(struct buffer_head * bh)1921 struct journal_head *journal_add_journal_head(struct buffer_head *bh)
1922 {
1923 	struct journal_head *jh;
1924 	struct journal_head *new_jh = NULL;
1925 
1926 repeat:
1927 	if (!buffer_jbd(bh))
1928 		new_jh = journal_alloc_journal_head();
1929 
1930 	jbd_lock_bh_journal_head(bh);
1931 	if (buffer_jbd(bh)) {
1932 		jh = bh2jh(bh);
1933 	} else {
1934 		J_ASSERT_BH(bh,
1935 			(atomic_read(&bh->b_count) > 0) ||
1936 			(bh->b_page && bh->b_page->mapping));
1937 
1938 		if (!new_jh) {
1939 			jbd_unlock_bh_journal_head(bh);
1940 			goto repeat;
1941 		}
1942 
1943 		jh = new_jh;
1944 		new_jh = NULL;		/* We consumed it */
1945 		set_buffer_jbd(bh);
1946 		bh->b_private = jh;
1947 		jh->b_bh = bh;
1948 		get_bh(bh);
1949 		BUFFER_TRACE(bh, "added journal_head");
1950 	}
1951 	jh->b_jcount++;
1952 	jbd_unlock_bh_journal_head(bh);
1953 	if (new_jh)
1954 		journal_free_journal_head(new_jh);
1955 	return bh->b_private;
1956 }
1957 
1958 /*
1959  * Grab a ref against this buffer_head's journal_head.  If it ended up not
1960  * having a journal_head, return NULL
1961  */
journal_grab_journal_head(struct buffer_head * bh)1962 struct journal_head *journal_grab_journal_head(struct buffer_head *bh)
1963 {
1964 	struct journal_head *jh = NULL;
1965 
1966 	jbd_lock_bh_journal_head(bh);
1967 	if (buffer_jbd(bh)) {
1968 		jh = bh2jh(bh);
1969 		jh->b_jcount++;
1970 	}
1971 	jbd_unlock_bh_journal_head(bh);
1972 	return jh;
1973 }
1974 
__journal_remove_journal_head(struct buffer_head * bh)1975 static void __journal_remove_journal_head(struct buffer_head *bh)
1976 {
1977 	struct journal_head *jh = bh2jh(bh);
1978 
1979 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
1980 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
1981 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1982 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
1983 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
1984 	J_ASSERT_BH(bh, buffer_jbd(bh));
1985 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
1986 	BUFFER_TRACE(bh, "remove journal_head");
1987 	if (jh->b_frozen_data) {
1988 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
1989 		jbd_free(jh->b_frozen_data, bh->b_size);
1990 	}
1991 	if (jh->b_committed_data) {
1992 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
1993 		jbd_free(jh->b_committed_data, bh->b_size);
1994 	}
1995 	bh->b_private = NULL;
1996 	jh->b_bh = NULL;	/* debug, really */
1997 	clear_buffer_jbd(bh);
1998 	journal_free_journal_head(jh);
1999 }
2000 
2001 /*
2002  * Drop a reference on the passed journal_head.  If it fell to zero then
2003  * release the journal_head from the buffer_head.
2004  */
journal_put_journal_head(struct journal_head * jh)2005 void journal_put_journal_head(struct journal_head *jh)
2006 {
2007 	struct buffer_head *bh = jh2bh(jh);
2008 
2009 	jbd_lock_bh_journal_head(bh);
2010 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2011 	--jh->b_jcount;
2012 	if (!jh->b_jcount) {
2013 		__journal_remove_journal_head(bh);
2014 		jbd_unlock_bh_journal_head(bh);
2015 		__brelse(bh);
2016 	} else
2017 		jbd_unlock_bh_journal_head(bh);
2018 }
2019 
2020 /*
2021  * debugfs tunables
2022  */
2023 #ifdef CONFIG_JBD_DEBUG
2024 
2025 u8 journal_enable_debug __read_mostly;
2026 EXPORT_SYMBOL(journal_enable_debug);
2027 
2028 static struct dentry *jbd_debugfs_dir;
2029 static struct dentry *jbd_debug;
2030 
jbd_create_debugfs_entry(void)2031 static void __init jbd_create_debugfs_entry(void)
2032 {
2033 	jbd_debugfs_dir = debugfs_create_dir("jbd", NULL);
2034 	if (jbd_debugfs_dir)
2035 		jbd_debug = debugfs_create_u8("jbd-debug", S_IRUGO | S_IWUSR,
2036 					       jbd_debugfs_dir,
2037 					       &journal_enable_debug);
2038 }
2039 
jbd_remove_debugfs_entry(void)2040 static void __exit jbd_remove_debugfs_entry(void)
2041 {
2042 	debugfs_remove(jbd_debug);
2043 	debugfs_remove(jbd_debugfs_dir);
2044 }
2045 
2046 #else
2047 
jbd_create_debugfs_entry(void)2048 static inline void jbd_create_debugfs_entry(void)
2049 {
2050 }
2051 
jbd_remove_debugfs_entry(void)2052 static inline void jbd_remove_debugfs_entry(void)
2053 {
2054 }
2055 
2056 #endif
2057 
2058 struct kmem_cache *jbd_handle_cache;
2059 
journal_init_handle_cache(void)2060 static int __init journal_init_handle_cache(void)
2061 {
2062 	jbd_handle_cache = kmem_cache_create("journal_handle",
2063 				sizeof(handle_t),
2064 				0,		/* offset */
2065 				SLAB_TEMPORARY,	/* flags */
2066 				NULL);		/* ctor */
2067 	if (jbd_handle_cache == NULL) {
2068 		printk(KERN_EMERG "JBD: failed to create handle cache\n");
2069 		return -ENOMEM;
2070 	}
2071 	return 0;
2072 }
2073 
journal_destroy_handle_cache(void)2074 static void journal_destroy_handle_cache(void)
2075 {
2076 	if (jbd_handle_cache)
2077 		kmem_cache_destroy(jbd_handle_cache);
2078 }
2079 
2080 /*
2081  * Module startup and shutdown
2082  */
2083 
journal_init_caches(void)2084 static int __init journal_init_caches(void)
2085 {
2086 	int ret;
2087 
2088 	ret = journal_init_revoke_caches();
2089 	if (ret == 0)
2090 		ret = journal_init_journal_head_cache();
2091 	if (ret == 0)
2092 		ret = journal_init_handle_cache();
2093 	return ret;
2094 }
2095 
journal_destroy_caches(void)2096 static void journal_destroy_caches(void)
2097 {
2098 	journal_destroy_revoke_caches();
2099 	journal_destroy_journal_head_cache();
2100 	journal_destroy_handle_cache();
2101 }
2102 
journal_init(void)2103 static int __init journal_init(void)
2104 {
2105 	int ret;
2106 
2107 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2108 
2109 	ret = journal_init_caches();
2110 	if (ret != 0)
2111 		journal_destroy_caches();
2112 	jbd_create_debugfs_entry();
2113 	return ret;
2114 }
2115 
journal_exit(void)2116 static void __exit journal_exit(void)
2117 {
2118 #ifdef CONFIG_JBD_DEBUG
2119 	int n = atomic_read(&nr_journal_heads);
2120 	if (n)
2121 		printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2122 #endif
2123 	jbd_remove_debugfs_entry();
2124 	journal_destroy_caches();
2125 }
2126 
2127 MODULE_LICENSE("GPL");
2128 module_init(journal_init);
2129 module_exit(journal_exit);
2130 
2131