• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include "internal.h"
38 
39 
40 LIST_HEAD(super_blocks);
41 DEFINE_SPINLOCK(sb_lock);
42 
43 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
44 	"sb_writers",
45 	"sb_pagefaults",
46 	"sb_internal",
47 };
48 
49 /*
50  * One thing we have to be careful of with a per-sb shrinker is that we don't
51  * drop the last active reference to the superblock from within the shrinker.
52  * If that happens we could trigger unregistering the shrinker from within the
53  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
54  * take a passive reference to the superblock to avoid this from occurring.
55  */
prune_super(struct shrinker * shrink,struct shrink_control * sc)56 static int prune_super(struct shrinker *shrink, struct shrink_control *sc)
57 {
58 	struct super_block *sb;
59 	int	fs_objects = 0;
60 	int	total_objects;
61 
62 	sb = container_of(shrink, struct super_block, s_shrink);
63 
64 	/*
65 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
66 	 * to recurse into the FS that called us in clear_inode() and friends..
67 	 */
68 	if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS))
69 		return -1;
70 
71 	if (!grab_super_passive(sb))
72 		return -1;
73 
74 	if (sb->s_op && sb->s_op->nr_cached_objects)
75 		fs_objects = sb->s_op->nr_cached_objects(sb);
76 
77 	total_objects = sb->s_nr_dentry_unused +
78 			sb->s_nr_inodes_unused + fs_objects + 1;
79 
80 	if (sc->nr_to_scan) {
81 		int	dentries;
82 		int	inodes;
83 
84 		/* proportion the scan between the caches */
85 		dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) /
86 							total_objects;
87 		inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) /
88 							total_objects;
89 		if (fs_objects)
90 			fs_objects = (sc->nr_to_scan * fs_objects) /
91 							total_objects;
92 		/*
93 		 * prune the dcache first as the icache is pinned by it, then
94 		 * prune the icache, followed by the filesystem specific caches
95 		 */
96 		prune_dcache_sb(sb, dentries);
97 		prune_icache_sb(sb, inodes);
98 
99 		if (fs_objects && sb->s_op->free_cached_objects) {
100 			sb->s_op->free_cached_objects(sb, fs_objects);
101 			fs_objects = sb->s_op->nr_cached_objects(sb);
102 		}
103 		total_objects = sb->s_nr_dentry_unused +
104 				sb->s_nr_inodes_unused + fs_objects;
105 	}
106 
107 	total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure;
108 	drop_super(sb);
109 	return total_objects;
110 }
111 
init_sb_writers(struct super_block * s,struct file_system_type * type)112 static int init_sb_writers(struct super_block *s, struct file_system_type *type)
113 {
114 	int err;
115 	int i;
116 
117 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
118 		err = percpu_counter_init(&s->s_writers.counter[i], 0);
119 		if (err < 0)
120 			goto err_out;
121 		lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i],
122 				 &type->s_writers_key[i], 0);
123 	}
124 	init_waitqueue_head(&s->s_writers.wait);
125 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
126 	return 0;
127 err_out:
128 	while (--i >= 0)
129 		percpu_counter_destroy(&s->s_writers.counter[i]);
130 	return err;
131 }
132 
destroy_sb_writers(struct super_block * s)133 static void destroy_sb_writers(struct super_block *s)
134 {
135 	int i;
136 
137 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
138 		percpu_counter_destroy(&s->s_writers.counter[i]);
139 }
140 
141 /**
142  *	alloc_super	-	create new superblock
143  *	@type:	filesystem type superblock should belong to
144  *	@flags: the mount flags
145  *
146  *	Allocates and initializes a new &struct super_block.  alloc_super()
147  *	returns a pointer new superblock or %NULL if allocation had failed.
148  */
alloc_super(struct file_system_type * type,int flags)149 static struct super_block *alloc_super(struct file_system_type *type, int flags)
150 {
151 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
152 	static const struct super_operations default_op;
153 
154 	if (s) {
155 		if (security_sb_alloc(s))
156 			goto out_free_sb;
157 
158 #ifdef CONFIG_SMP
159 		s->s_files = alloc_percpu(struct list_head);
160 		if (!s->s_files)
161 			goto err_out;
162 		else {
163 			int i;
164 
165 			for_each_possible_cpu(i)
166 				INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
167 		}
168 #else
169 		INIT_LIST_HEAD(&s->s_files);
170 #endif
171 		if (init_sb_writers(s, type))
172 			goto err_out;
173 		s->s_flags = flags;
174 		s->s_bdi = &default_backing_dev_info;
175 		INIT_HLIST_NODE(&s->s_instances);
176 		INIT_HLIST_BL_HEAD(&s->s_anon);
177 		INIT_LIST_HEAD(&s->s_inodes);
178 		INIT_LIST_HEAD(&s->s_dentry_lru);
179 		INIT_LIST_HEAD(&s->s_inode_lru);
180 		spin_lock_init(&s->s_inode_lru_lock);
181 		INIT_LIST_HEAD(&s->s_mounts);
182 		init_rwsem(&s->s_umount);
183 		lockdep_set_class(&s->s_umount, &type->s_umount_key);
184 		/*
185 		 * sget() can have s_umount recursion.
186 		 *
187 		 * When it cannot find a suitable sb, it allocates a new
188 		 * one (this one), and tries again to find a suitable old
189 		 * one.
190 		 *
191 		 * In case that succeeds, it will acquire the s_umount
192 		 * lock of the old one. Since these are clearly distrinct
193 		 * locks, and this object isn't exposed yet, there's no
194 		 * risk of deadlocks.
195 		 *
196 		 * Annotate this by putting this lock in a different
197 		 * subclass.
198 		 */
199 		down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
200 		s->s_count = 1;
201 		atomic_set(&s->s_active, 1);
202 		mutex_init(&s->s_vfs_rename_mutex);
203 		lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
204 		mutex_init(&s->s_dquot.dqio_mutex);
205 		mutex_init(&s->s_dquot.dqonoff_mutex);
206 		init_rwsem(&s->s_dquot.dqptr_sem);
207 		s->s_maxbytes = MAX_NON_LFS;
208 		s->s_op = &default_op;
209 		s->s_time_gran = 1000000000;
210 		s->cleancache_poolid = -1;
211 
212 		s->s_shrink.seeks = DEFAULT_SEEKS;
213 		s->s_shrink.shrink = prune_super;
214 		s->s_shrink.batch = 1024;
215 	}
216 out:
217 	return s;
218 err_out:
219 	security_sb_free(s);
220 #ifdef CONFIG_SMP
221 	if (s->s_files)
222 		free_percpu(s->s_files);
223 #endif
224 	destroy_sb_writers(s);
225 out_free_sb:
226 	kfree(s);
227 	s = NULL;
228 	goto out;
229 }
230 
231 /**
232  *	destroy_super	-	frees a superblock
233  *	@s: superblock to free
234  *
235  *	Frees a superblock.
236  */
destroy_super(struct super_block * s)237 static inline void destroy_super(struct super_block *s)
238 {
239 #ifdef CONFIG_SMP
240 	free_percpu(s->s_files);
241 #endif
242 	destroy_sb_writers(s);
243 	security_sb_free(s);
244 	WARN_ON(!list_empty(&s->s_mounts));
245 	kfree(s->s_subtype);
246 	kfree(s->s_options);
247 	kfree(s);
248 }
249 
250 /* Superblock refcounting  */
251 
252 /*
253  * Drop a superblock's refcount.  The caller must hold sb_lock.
254  */
__put_super(struct super_block * sb)255 static void __put_super(struct super_block *sb)
256 {
257 	if (!--sb->s_count) {
258 		list_del_init(&sb->s_list);
259 		destroy_super(sb);
260 	}
261 }
262 
263 /**
264  *	put_super	-	drop a temporary reference to superblock
265  *	@sb: superblock in question
266  *
267  *	Drops a temporary reference, frees superblock if there's no
268  *	references left.
269  */
put_super(struct super_block * sb)270 static void put_super(struct super_block *sb)
271 {
272 	spin_lock(&sb_lock);
273 	__put_super(sb);
274 	spin_unlock(&sb_lock);
275 }
276 
277 
278 /**
279  *	deactivate_locked_super	-	drop an active reference to superblock
280  *	@s: superblock to deactivate
281  *
282  *	Drops an active reference to superblock, converting it into a temprory
283  *	one if there is no other active references left.  In that case we
284  *	tell fs driver to shut it down and drop the temporary reference we
285  *	had just acquired.
286  *
287  *	Caller holds exclusive lock on superblock; that lock is released.
288  */
deactivate_locked_super(struct super_block * s)289 void deactivate_locked_super(struct super_block *s)
290 {
291 	struct file_system_type *fs = s->s_type;
292 	if (atomic_dec_and_test(&s->s_active)) {
293 		cleancache_invalidate_fs(s);
294 		fs->kill_sb(s);
295 
296 		/* caches are now gone, we can safely kill the shrinker now */
297 		unregister_shrinker(&s->s_shrink);
298 		put_filesystem(fs);
299 		put_super(s);
300 	} else {
301 		up_write(&s->s_umount);
302 	}
303 }
304 
305 EXPORT_SYMBOL(deactivate_locked_super);
306 
307 /**
308  *	deactivate_super	-	drop an active reference to superblock
309  *	@s: superblock to deactivate
310  *
311  *	Variant of deactivate_locked_super(), except that superblock is *not*
312  *	locked by caller.  If we are going to drop the final active reference,
313  *	lock will be acquired prior to that.
314  */
deactivate_super(struct super_block * s)315 void deactivate_super(struct super_block *s)
316 {
317         if (!atomic_add_unless(&s->s_active, -1, 1)) {
318 		down_write(&s->s_umount);
319 		deactivate_locked_super(s);
320 	}
321 }
322 
323 EXPORT_SYMBOL(deactivate_super);
324 
325 /**
326  *	grab_super - acquire an active reference
327  *	@s: reference we are trying to make active
328  *
329  *	Tries to acquire an active reference.  grab_super() is used when we
330  * 	had just found a superblock in super_blocks or fs_type->fs_supers
331  *	and want to turn it into a full-blown active reference.  grab_super()
332  *	is called with sb_lock held and drops it.  Returns 1 in case of
333  *	success, 0 if we had failed (superblock contents was already dead or
334  *	dying when grab_super() had been called).
335  */
grab_super(struct super_block * s)336 static int grab_super(struct super_block *s) __releases(sb_lock)
337 {
338 	if (atomic_inc_not_zero(&s->s_active)) {
339 		spin_unlock(&sb_lock);
340 		return 1;
341 	}
342 	/* it's going away */
343 	s->s_count++;
344 	spin_unlock(&sb_lock);
345 	/* wait for it to die */
346 	down_write(&s->s_umount);
347 	up_write(&s->s_umount);
348 	put_super(s);
349 	return 0;
350 }
351 
352 /*
353  *	grab_super_passive - acquire a passive reference
354  *	@sb: reference we are trying to grab
355  *
356  *	Tries to acquire a passive reference. This is used in places where we
357  *	cannot take an active reference but we need to ensure that the
358  *	superblock does not go away while we are working on it. It returns
359  *	false if a reference was not gained, and returns true with the s_umount
360  *	lock held in read mode if a reference is gained. On successful return,
361  *	the caller must drop the s_umount lock and the passive reference when
362  *	done.
363  */
grab_super_passive(struct super_block * sb)364 bool grab_super_passive(struct super_block *sb)
365 {
366 	spin_lock(&sb_lock);
367 	if (hlist_unhashed(&sb->s_instances)) {
368 		spin_unlock(&sb_lock);
369 		return false;
370 	}
371 
372 	sb->s_count++;
373 	spin_unlock(&sb_lock);
374 
375 	if (down_read_trylock(&sb->s_umount)) {
376 		if (sb->s_root && (sb->s_flags & MS_BORN))
377 			return true;
378 		up_read(&sb->s_umount);
379 	}
380 
381 	put_super(sb);
382 	return false;
383 }
384 
385 /**
386  *	generic_shutdown_super	-	common helper for ->kill_sb()
387  *	@sb: superblock to kill
388  *
389  *	generic_shutdown_super() does all fs-independent work on superblock
390  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
391  *	that need destruction out of superblock, call generic_shutdown_super()
392  *	and release aforementioned objects.  Note: dentries and inodes _are_
393  *	taken care of and do not need specific handling.
394  *
395  *	Upon calling this function, the filesystem may no longer alter or
396  *	rearrange the set of dentries belonging to this super_block, nor may it
397  *	change the attachments of dentries to inodes.
398  */
generic_shutdown_super(struct super_block * sb)399 void generic_shutdown_super(struct super_block *sb)
400 {
401 	const struct super_operations *sop = sb->s_op;
402 
403 	if (sb->s_root) {
404 		shrink_dcache_for_umount(sb);
405 		sync_filesystem(sb);
406 		sb->s_flags &= ~MS_ACTIVE;
407 
408 		fsnotify_unmount_inodes(&sb->s_inodes);
409 
410 		evict_inodes(sb);
411 
412 		if (sb->s_dio_done_wq) {
413 			destroy_workqueue(sb->s_dio_done_wq);
414 			sb->s_dio_done_wq = NULL;
415 		}
416 
417 		if (sop->put_super)
418 			sop->put_super(sb);
419 
420 		if (!list_empty(&sb->s_inodes)) {
421 			printk("VFS: Busy inodes after unmount of %s. "
422 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
423 			   sb->s_id);
424 		}
425 	}
426 	spin_lock(&sb_lock);
427 	/* should be initialized for __put_super_and_need_restart() */
428 	hlist_del_init(&sb->s_instances);
429 	spin_unlock(&sb_lock);
430 	up_write(&sb->s_umount);
431 }
432 
433 EXPORT_SYMBOL(generic_shutdown_super);
434 
435 /**
436  *	sget	-	find or create a superblock
437  *	@type:	filesystem type superblock should belong to
438  *	@test:	comparison callback
439  *	@set:	setup callback
440  *	@flags:	mount flags
441  *	@data:	argument to each of them
442  */
sget(struct file_system_type * type,int (* test)(struct super_block *,void *),int (* set)(struct super_block *,void *),int flags,void * data)443 struct super_block *sget(struct file_system_type *type,
444 			int (*test)(struct super_block *,void *),
445 			int (*set)(struct super_block *,void *),
446 			int flags,
447 			void *data)
448 {
449 	struct super_block *s = NULL;
450 	struct super_block *old;
451 	int err;
452 
453 retry:
454 	spin_lock(&sb_lock);
455 	if (test) {
456 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
457 			if (!test(old, data))
458 				continue;
459 			if (!grab_super(old))
460 				goto retry;
461 			if (s) {
462 				up_write(&s->s_umount);
463 				destroy_super(s);
464 				s = NULL;
465 			}
466 			down_write(&old->s_umount);
467 			if (unlikely(!(old->s_flags & MS_BORN))) {
468 				deactivate_locked_super(old);
469 				goto retry;
470 			}
471 			return old;
472 		}
473 	}
474 	if (!s) {
475 		spin_unlock(&sb_lock);
476 		s = alloc_super(type, flags);
477 		if (!s)
478 			return ERR_PTR(-ENOMEM);
479 		goto retry;
480 	}
481 
482 	err = set(s, data);
483 	if (err) {
484 		spin_unlock(&sb_lock);
485 		up_write(&s->s_umount);
486 		destroy_super(s);
487 		return ERR_PTR(err);
488 	}
489 	s->s_type = type;
490 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
491 	list_add_tail(&s->s_list, &super_blocks);
492 	hlist_add_head(&s->s_instances, &type->fs_supers);
493 	spin_unlock(&sb_lock);
494 	get_filesystem(type);
495 	register_shrinker(&s->s_shrink);
496 	return s;
497 }
498 
499 EXPORT_SYMBOL(sget);
500 
drop_super(struct super_block * sb)501 void drop_super(struct super_block *sb)
502 {
503 	up_read(&sb->s_umount);
504 	put_super(sb);
505 }
506 
507 EXPORT_SYMBOL(drop_super);
508 
509 /**
510  *	iterate_supers - call function for all active superblocks
511  *	@f: function to call
512  *	@arg: argument to pass to it
513  *
514  *	Scans the superblock list and calls given function, passing it
515  *	locked superblock and given argument.
516  */
iterate_supers(void (* f)(struct super_block *,void *),void * arg)517 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
518 {
519 	struct super_block *sb, *p = NULL;
520 
521 	spin_lock(&sb_lock);
522 	list_for_each_entry(sb, &super_blocks, s_list) {
523 		if (hlist_unhashed(&sb->s_instances))
524 			continue;
525 		sb->s_count++;
526 		spin_unlock(&sb_lock);
527 
528 		down_read(&sb->s_umount);
529 		if (sb->s_root && (sb->s_flags & MS_BORN))
530 			f(sb, arg);
531 		up_read(&sb->s_umount);
532 
533 		spin_lock(&sb_lock);
534 		if (p)
535 			__put_super(p);
536 		p = sb;
537 	}
538 	if (p)
539 		__put_super(p);
540 	spin_unlock(&sb_lock);
541 }
542 
543 /**
544  *	iterate_supers_type - call function for superblocks of given type
545  *	@type: fs type
546  *	@f: function to call
547  *	@arg: argument to pass to it
548  *
549  *	Scans the superblock list and calls given function, passing it
550  *	locked superblock and given argument.
551  */
iterate_supers_type(struct file_system_type * type,void (* f)(struct super_block *,void *),void * arg)552 void iterate_supers_type(struct file_system_type *type,
553 	void (*f)(struct super_block *, void *), void *arg)
554 {
555 	struct super_block *sb, *p = NULL;
556 
557 	spin_lock(&sb_lock);
558 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
559 		sb->s_count++;
560 		spin_unlock(&sb_lock);
561 
562 		down_read(&sb->s_umount);
563 		if (sb->s_root && (sb->s_flags & MS_BORN))
564 			f(sb, arg);
565 		up_read(&sb->s_umount);
566 
567 		spin_lock(&sb_lock);
568 		if (p)
569 			__put_super(p);
570 		p = sb;
571 	}
572 	if (p)
573 		__put_super(p);
574 	spin_unlock(&sb_lock);
575 }
576 
577 EXPORT_SYMBOL(iterate_supers_type);
578 
579 /**
580  *	get_super - get the superblock of a device
581  *	@bdev: device to get the superblock for
582  *
583  *	Scans the superblock list and finds the superblock of the file system
584  *	mounted on the device given. %NULL is returned if no match is found.
585  */
586 
get_super(struct block_device * bdev)587 struct super_block *get_super(struct block_device *bdev)
588 {
589 	struct super_block *sb;
590 
591 	if (!bdev)
592 		return NULL;
593 
594 	spin_lock(&sb_lock);
595 rescan:
596 	list_for_each_entry(sb, &super_blocks, s_list) {
597 		if (hlist_unhashed(&sb->s_instances))
598 			continue;
599 		if (sb->s_bdev == bdev) {
600 			sb->s_count++;
601 			spin_unlock(&sb_lock);
602 			down_read(&sb->s_umount);
603 			/* still alive? */
604 			if (sb->s_root && (sb->s_flags & MS_BORN))
605 				return sb;
606 			up_read(&sb->s_umount);
607 			/* nope, got unmounted */
608 			spin_lock(&sb_lock);
609 			__put_super(sb);
610 			goto rescan;
611 		}
612 	}
613 	spin_unlock(&sb_lock);
614 	return NULL;
615 }
616 
617 EXPORT_SYMBOL(get_super);
618 
619 /**
620  *	get_super_thawed - get thawed superblock of a device
621  *	@bdev: device to get the superblock for
622  *
623  *	Scans the superblock list and finds the superblock of the file system
624  *	mounted on the device. The superblock is returned once it is thawed
625  *	(or immediately if it was not frozen). %NULL is returned if no match
626  *	is found.
627  */
get_super_thawed(struct block_device * bdev)628 struct super_block *get_super_thawed(struct block_device *bdev)
629 {
630 	while (1) {
631 		struct super_block *s = get_super(bdev);
632 		if (!s || s->s_writers.frozen == SB_UNFROZEN)
633 			return s;
634 		up_read(&s->s_umount);
635 		wait_event(s->s_writers.wait_unfrozen,
636 			   s->s_writers.frozen == SB_UNFROZEN);
637 		put_super(s);
638 	}
639 }
640 EXPORT_SYMBOL(get_super_thawed);
641 
642 /**
643  * get_active_super - get an active reference to the superblock of a device
644  * @bdev: device to get the superblock for
645  *
646  * Scans the superblock list and finds the superblock of the file system
647  * mounted on the device given.  Returns the superblock with an active
648  * reference or %NULL if none was found.
649  */
get_active_super(struct block_device * bdev)650 struct super_block *get_active_super(struct block_device *bdev)
651 {
652 	struct super_block *sb;
653 
654 	if (!bdev)
655 		return NULL;
656 
657 restart:
658 	spin_lock(&sb_lock);
659 	list_for_each_entry(sb, &super_blocks, s_list) {
660 		if (hlist_unhashed(&sb->s_instances))
661 			continue;
662 		if (sb->s_bdev == bdev) {
663 			if (grab_super(sb)) /* drops sb_lock */
664 				return sb;
665 			else
666 				goto restart;
667 		}
668 	}
669 	spin_unlock(&sb_lock);
670 	return NULL;
671 }
672 
user_get_super(dev_t dev)673 struct super_block *user_get_super(dev_t dev)
674 {
675 	struct super_block *sb;
676 
677 	spin_lock(&sb_lock);
678 rescan:
679 	list_for_each_entry(sb, &super_blocks, s_list) {
680 		if (hlist_unhashed(&sb->s_instances))
681 			continue;
682 		if (sb->s_dev ==  dev) {
683 			sb->s_count++;
684 			spin_unlock(&sb_lock);
685 			down_read(&sb->s_umount);
686 			/* still alive? */
687 			if (sb->s_root && (sb->s_flags & MS_BORN))
688 				return sb;
689 			up_read(&sb->s_umount);
690 			/* nope, got unmounted */
691 			spin_lock(&sb_lock);
692 			__put_super(sb);
693 			goto rescan;
694 		}
695 	}
696 	spin_unlock(&sb_lock);
697 	return NULL;
698 }
699 
700 /**
701  *	do_remount_sb2 - asks filesystem to change mount options.
702  *	@mnt:   mount we are looking at
703  *	@sb:	superblock in question
704  *	@flags:	numeric part of options
705  *	@data:	the rest of options
706  *      @force: whether or not to force the change
707  *
708  *	Alters the mount options of a mounted file system.
709  */
do_remount_sb2(struct vfsmount * mnt,struct super_block * sb,int flags,void * data,int force)710 int do_remount_sb2(struct vfsmount *mnt, struct super_block *sb, int flags, void *data, int force)
711 {
712 	int retval;
713 	int remount_ro;
714 
715 	if (sb->s_writers.frozen != SB_UNFROZEN)
716 		return -EBUSY;
717 
718 #ifdef CONFIG_BLOCK
719 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
720 		return -EACCES;
721 #endif
722 
723 	if (flags & MS_RDONLY)
724 		acct_auto_close(sb);
725 	shrink_dcache_sb(sb);
726 	sync_filesystem(sb);
727 
728 	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
729 
730 	/* If we are remounting RDONLY and current sb is read/write,
731 	   make sure there are no rw files opened */
732 	if (remount_ro) {
733 		if (force) {
734 			mark_files_ro(sb);
735 		} else {
736 			retval = sb_prepare_remount_readonly(sb);
737 			if (retval)
738 				return retval;
739 		}
740 	}
741 
742 	if (mnt && sb->s_op->remount_fs2) {
743 		retval = sb->s_op->remount_fs2(mnt, sb, &flags, data);
744 		if (retval) {
745 			if (!force)
746 				goto cancel_readonly;
747 			/* If forced remount, go ahead despite any errors */
748 			WARN(1, "forced remount of a %s fs returned %i\n",
749 			     sb->s_type->name, retval);
750 		}
751 	} else if (sb->s_op->remount_fs) {
752 		retval = sb->s_op->remount_fs(sb, &flags, data);
753 		if (retval) {
754 			if (!force)
755 				goto cancel_readonly;
756 			/* If forced remount, go ahead despite any errors */
757 			WARN(1, "forced remount of a %s fs returned %i\n",
758 			     sb->s_type->name, retval);
759 		}
760 	}
761 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
762 	/* Needs to be ordered wrt mnt_is_readonly() */
763 	smp_wmb();
764 	sb->s_readonly_remount = 0;
765 
766 	/*
767 	 * Some filesystems modify their metadata via some other path than the
768 	 * bdev buffer cache (eg. use a private mapping, or directories in
769 	 * pagecache, etc). Also file data modifications go via their own
770 	 * mappings. So If we try to mount readonly then copy the filesystem
771 	 * from bdev, we could get stale data, so invalidate it to give a best
772 	 * effort at coherency.
773 	 */
774 	if (remount_ro && sb->s_bdev)
775 		invalidate_bdev(sb->s_bdev);
776 	return 0;
777 
778 cancel_readonly:
779 	sb->s_readonly_remount = 0;
780 	return retval;
781 }
782 
do_remount_sb(struct super_block * sb,int flags,void * data,int force)783 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
784 {
785 	return do_remount_sb2(NULL, sb, flags, data, force);
786 }
787 
do_emergency_remount(struct work_struct * work)788 static void do_emergency_remount(struct work_struct *work)
789 {
790 	struct super_block *sb, *p = NULL;
791 
792 	spin_lock(&sb_lock);
793 	list_for_each_entry_reverse(sb, &super_blocks, s_list) {
794 		if (hlist_unhashed(&sb->s_instances))
795 			continue;
796 		sb->s_count++;
797 		spin_unlock(&sb_lock);
798 		down_write(&sb->s_umount);
799 		if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
800 		    !(sb->s_flags & MS_RDONLY)) {
801 			/*
802 			 * What lock protects sb->s_flags??
803 			 */
804 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
805 		}
806 		up_write(&sb->s_umount);
807 		spin_lock(&sb_lock);
808 		if (p)
809 			__put_super(p);
810 		p = sb;
811 	}
812 	if (p)
813 		__put_super(p);
814 	spin_unlock(&sb_lock);
815 	kfree(work);
816 	printk("Emergency Remount complete\n");
817 }
818 
emergency_remount(void)819 void emergency_remount(void)
820 {
821 	struct work_struct *work;
822 
823 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
824 	if (work) {
825 		INIT_WORK(work, do_emergency_remount);
826 		schedule_work(work);
827 	}
828 }
829 
830 /*
831  * Unnamed block devices are dummy devices used by virtual
832  * filesystems which don't use real block-devices.  -- jrs
833  */
834 
835 static DEFINE_IDA(unnamed_dev_ida);
836 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
837 static int unnamed_dev_start = 0; /* don't bother trying below it */
838 
get_anon_bdev(dev_t * p)839 int get_anon_bdev(dev_t *p)
840 {
841 	int dev;
842 	int error;
843 
844  retry:
845 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
846 		return -ENOMEM;
847 	spin_lock(&unnamed_dev_lock);
848 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
849 	if (!error)
850 		unnamed_dev_start = dev + 1;
851 	spin_unlock(&unnamed_dev_lock);
852 	if (error == -EAGAIN)
853 		/* We raced and lost with another CPU. */
854 		goto retry;
855 	else if (error)
856 		return -EAGAIN;
857 
858 	if (dev == (1 << MINORBITS)) {
859 		spin_lock(&unnamed_dev_lock);
860 		ida_remove(&unnamed_dev_ida, dev);
861 		if (unnamed_dev_start > dev)
862 			unnamed_dev_start = dev;
863 		spin_unlock(&unnamed_dev_lock);
864 		return -EMFILE;
865 	}
866 	*p = MKDEV(0, dev & MINORMASK);
867 	return 0;
868 }
869 EXPORT_SYMBOL(get_anon_bdev);
870 
free_anon_bdev(dev_t dev)871 void free_anon_bdev(dev_t dev)
872 {
873 	int slot = MINOR(dev);
874 	spin_lock(&unnamed_dev_lock);
875 	ida_remove(&unnamed_dev_ida, slot);
876 	if (slot < unnamed_dev_start)
877 		unnamed_dev_start = slot;
878 	spin_unlock(&unnamed_dev_lock);
879 }
880 EXPORT_SYMBOL(free_anon_bdev);
881 
set_anon_super(struct super_block * s,void * data)882 int set_anon_super(struct super_block *s, void *data)
883 {
884 	int error = get_anon_bdev(&s->s_dev);
885 	if (!error)
886 		s->s_bdi = &noop_backing_dev_info;
887 	return error;
888 }
889 
890 EXPORT_SYMBOL(set_anon_super);
891 
kill_anon_super(struct super_block * sb)892 void kill_anon_super(struct super_block *sb)
893 {
894 	dev_t dev = sb->s_dev;
895 	generic_shutdown_super(sb);
896 	free_anon_bdev(dev);
897 }
898 
899 EXPORT_SYMBOL(kill_anon_super);
900 
kill_litter_super(struct super_block * sb)901 void kill_litter_super(struct super_block *sb)
902 {
903 	if (sb->s_root)
904 		d_genocide(sb->s_root);
905 	kill_anon_super(sb);
906 }
907 
908 EXPORT_SYMBOL(kill_litter_super);
909 
ns_test_super(struct super_block * sb,void * data)910 static int ns_test_super(struct super_block *sb, void *data)
911 {
912 	return sb->s_fs_info == data;
913 }
914 
ns_set_super(struct super_block * sb,void * data)915 static int ns_set_super(struct super_block *sb, void *data)
916 {
917 	sb->s_fs_info = data;
918 	return set_anon_super(sb, NULL);
919 }
920 
mount_ns(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))921 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
922 	void *data, int (*fill_super)(struct super_block *, void *, int))
923 {
924 	struct super_block *sb;
925 
926 	sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
927 	if (IS_ERR(sb))
928 		return ERR_CAST(sb);
929 
930 	if (!sb->s_root) {
931 		int err;
932 		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
933 		if (err) {
934 			deactivate_locked_super(sb);
935 			return ERR_PTR(err);
936 		}
937 
938 		sb->s_flags |= MS_ACTIVE;
939 	}
940 
941 	return dget(sb->s_root);
942 }
943 
944 EXPORT_SYMBOL(mount_ns);
945 
946 #ifdef CONFIG_BLOCK
set_bdev_super(struct super_block * s,void * data)947 static int set_bdev_super(struct super_block *s, void *data)
948 {
949 	s->s_bdev = data;
950 	s->s_dev = s->s_bdev->bd_dev;
951 
952 	/*
953 	 * We set the bdi here to the queue backing, file systems can
954 	 * overwrite this in ->fill_super()
955 	 */
956 	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
957 	return 0;
958 }
959 
test_bdev_super(struct super_block * s,void * data)960 static int test_bdev_super(struct super_block *s, void *data)
961 {
962 	return (void *)s->s_bdev == data;
963 }
964 
mount_bdev(struct file_system_type * fs_type,int flags,const char * dev_name,void * data,int (* fill_super)(struct super_block *,void *,int))965 struct dentry *mount_bdev(struct file_system_type *fs_type,
966 	int flags, const char *dev_name, void *data,
967 	int (*fill_super)(struct super_block *, void *, int))
968 {
969 	struct block_device *bdev;
970 	struct super_block *s;
971 	fmode_t mode = FMODE_READ | FMODE_EXCL;
972 	int error = 0;
973 
974 	if (!(flags & MS_RDONLY))
975 		mode |= FMODE_WRITE;
976 
977 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
978 	if (IS_ERR(bdev))
979 		return ERR_CAST(bdev);
980 
981 	/*
982 	 * once the super is inserted into the list by sget, s_umount
983 	 * will protect the lockfs code from trying to start a snapshot
984 	 * while we are mounting
985 	 */
986 	mutex_lock(&bdev->bd_fsfreeze_mutex);
987 	if (bdev->bd_fsfreeze_count > 0) {
988 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
989 		error = -EBUSY;
990 		goto error_bdev;
991 	}
992 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
993 		 bdev);
994 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
995 	if (IS_ERR(s))
996 		goto error_s;
997 
998 	if (s->s_root) {
999 		if ((flags ^ s->s_flags) & MS_RDONLY) {
1000 			deactivate_locked_super(s);
1001 			error = -EBUSY;
1002 			goto error_bdev;
1003 		}
1004 
1005 		/*
1006 		 * s_umount nests inside bd_mutex during
1007 		 * __invalidate_device().  blkdev_put() acquires
1008 		 * bd_mutex and can't be called under s_umount.  Drop
1009 		 * s_umount temporarily.  This is safe as we're
1010 		 * holding an active reference.
1011 		 */
1012 		up_write(&s->s_umount);
1013 		blkdev_put(bdev, mode);
1014 		down_write(&s->s_umount);
1015 	} else {
1016 		char b[BDEVNAME_SIZE];
1017 
1018 		s->s_mode = mode;
1019 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1020 		sb_set_blocksize(s, block_size(bdev));
1021 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1022 		if (error) {
1023 			deactivate_locked_super(s);
1024 			goto error;
1025 		}
1026 
1027 		s->s_flags |= MS_ACTIVE;
1028 		bdev->bd_super = s;
1029 	}
1030 
1031 	return dget(s->s_root);
1032 
1033 error_s:
1034 	error = PTR_ERR(s);
1035 error_bdev:
1036 	blkdev_put(bdev, mode);
1037 error:
1038 	return ERR_PTR(error);
1039 }
1040 EXPORT_SYMBOL(mount_bdev);
1041 
kill_block_super(struct super_block * sb)1042 void kill_block_super(struct super_block *sb)
1043 {
1044 	struct block_device *bdev = sb->s_bdev;
1045 	fmode_t mode = sb->s_mode;
1046 
1047 	bdev->bd_super = NULL;
1048 	generic_shutdown_super(sb);
1049 	sync_blockdev(bdev);
1050 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1051 	blkdev_put(bdev, mode | FMODE_EXCL);
1052 }
1053 
1054 EXPORT_SYMBOL(kill_block_super);
1055 #endif
1056 
mount_nodev(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1057 struct dentry *mount_nodev(struct file_system_type *fs_type,
1058 	int flags, void *data,
1059 	int (*fill_super)(struct super_block *, void *, int))
1060 {
1061 	int error;
1062 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1063 
1064 	if (IS_ERR(s))
1065 		return ERR_CAST(s);
1066 
1067 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1068 	if (error) {
1069 		deactivate_locked_super(s);
1070 		return ERR_PTR(error);
1071 	}
1072 	s->s_flags |= MS_ACTIVE;
1073 	return dget(s->s_root);
1074 }
1075 EXPORT_SYMBOL(mount_nodev);
1076 
compare_single(struct super_block * s,void * p)1077 static int compare_single(struct super_block *s, void *p)
1078 {
1079 	return 1;
1080 }
1081 
mount_single(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1082 struct dentry *mount_single(struct file_system_type *fs_type,
1083 	int flags, void *data,
1084 	int (*fill_super)(struct super_block *, void *, int))
1085 {
1086 	struct super_block *s;
1087 	int error;
1088 
1089 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1090 	if (IS_ERR(s))
1091 		return ERR_CAST(s);
1092 	if (!s->s_root) {
1093 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1094 		if (error) {
1095 			deactivate_locked_super(s);
1096 			return ERR_PTR(error);
1097 		}
1098 		s->s_flags |= MS_ACTIVE;
1099 	} else {
1100 		do_remount_sb(s, flags, data, 0);
1101 	}
1102 	return dget(s->s_root);
1103 }
1104 EXPORT_SYMBOL(mount_single);
1105 
1106 struct dentry *
mount_fs(struct file_system_type * type,int flags,const char * name,struct vfsmount * mnt,void * data)1107 mount_fs(struct file_system_type *type, int flags, const char *name, struct vfsmount *mnt, void *data)
1108 {
1109 	struct dentry *root;
1110 	struct super_block *sb;
1111 	char *secdata = NULL;
1112 	int error = -ENOMEM;
1113 
1114 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1115 		secdata = alloc_secdata();
1116 		if (!secdata)
1117 			goto out;
1118 
1119 		error = security_sb_copy_data(data, secdata);
1120 		if (error)
1121 			goto out_free_secdata;
1122 	}
1123 
1124 	if (type->mount2)
1125 		root = type->mount2(mnt, type, flags, name, data);
1126 	else
1127 		root = type->mount(type, flags, name, data);
1128 	if (IS_ERR(root)) {
1129 		error = PTR_ERR(root);
1130 		goto out_free_secdata;
1131 	}
1132 	sb = root->d_sb;
1133 	BUG_ON(!sb);
1134 	WARN_ON(!sb->s_bdi);
1135 	WARN_ON(sb->s_bdi == &default_backing_dev_info);
1136 	sb->s_flags |= MS_BORN;
1137 
1138 	error = security_sb_kern_mount(sb, flags, secdata);
1139 	if (error)
1140 		goto out_sb;
1141 
1142 	/*
1143 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1144 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1145 	 * this warning for a little while to try and catch filesystems that
1146 	 * violate this rule.
1147 	 */
1148 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1149 		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1150 
1151 	up_write(&sb->s_umount);
1152 	free_secdata(secdata);
1153 	return root;
1154 out_sb:
1155 	dput(root);
1156 	deactivate_locked_super(sb);
1157 out_free_secdata:
1158 	free_secdata(secdata);
1159 out:
1160 	return ERR_PTR(error);
1161 }
1162 
1163 /*
1164  * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1165  * instead.
1166  */
__sb_end_write(struct super_block * sb,int level)1167 void __sb_end_write(struct super_block *sb, int level)
1168 {
1169 	percpu_counter_dec(&sb->s_writers.counter[level-1]);
1170 	/*
1171 	 * Make sure s_writers are updated before we wake up waiters in
1172 	 * freeze_super().
1173 	 */
1174 	smp_mb();
1175 	if (waitqueue_active(&sb->s_writers.wait))
1176 		wake_up(&sb->s_writers.wait);
1177 	rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_);
1178 }
1179 EXPORT_SYMBOL(__sb_end_write);
1180 
1181 #ifdef CONFIG_LOCKDEP
1182 /*
1183  * We want lockdep to tell us about possible deadlocks with freezing but
1184  * it's it bit tricky to properly instrument it. Getting a freeze protection
1185  * works as getting a read lock but there are subtle problems. XFS for example
1186  * gets freeze protection on internal level twice in some cases, which is OK
1187  * only because we already hold a freeze protection also on higher level. Due
1188  * to these cases we have to tell lockdep we are doing trylock when we
1189  * already hold a freeze protection for a higher freeze level.
1190  */
acquire_freeze_lock(struct super_block * sb,int level,bool trylock,unsigned long ip)1191 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock,
1192 				unsigned long ip)
1193 {
1194 	int i;
1195 
1196 	if (!trylock) {
1197 		for (i = 0; i < level - 1; i++)
1198 			if (lock_is_held(&sb->s_writers.lock_map[i])) {
1199 				trylock = true;
1200 				break;
1201 			}
1202 	}
1203 	rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip);
1204 }
1205 #endif
1206 
1207 /*
1208  * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1209  * instead.
1210  */
__sb_start_write(struct super_block * sb,int level,bool wait)1211 int __sb_start_write(struct super_block *sb, int level, bool wait)
1212 {
1213 retry:
1214 	if (unlikely(sb->s_writers.frozen >= level)) {
1215 		if (!wait)
1216 			return 0;
1217 		wait_event(sb->s_writers.wait_unfrozen,
1218 			   sb->s_writers.frozen < level);
1219 	}
1220 
1221 #ifdef CONFIG_LOCKDEP
1222 	acquire_freeze_lock(sb, level, !wait, _RET_IP_);
1223 #endif
1224 	percpu_counter_inc(&sb->s_writers.counter[level-1]);
1225 	/*
1226 	 * Make sure counter is updated before we check for frozen.
1227 	 * freeze_super() first sets frozen and then checks the counter.
1228 	 */
1229 	smp_mb();
1230 	if (unlikely(sb->s_writers.frozen >= level)) {
1231 		__sb_end_write(sb, level);
1232 		goto retry;
1233 	}
1234 	return 1;
1235 }
1236 EXPORT_SYMBOL(__sb_start_write);
1237 
1238 /**
1239  * sb_wait_write - wait until all writers to given file system finish
1240  * @sb: the super for which we wait
1241  * @level: type of writers we wait for (normal vs page fault)
1242  *
1243  * This function waits until there are no writers of given type to given file
1244  * system. Caller of this function should make sure there can be no new writers
1245  * of type @level before calling this function. Otherwise this function can
1246  * livelock.
1247  */
sb_wait_write(struct super_block * sb,int level)1248 static void sb_wait_write(struct super_block *sb, int level)
1249 {
1250 	s64 writers;
1251 
1252 	/*
1253 	 * We just cycle-through lockdep here so that it does not complain
1254 	 * about returning with lock to userspace
1255 	 */
1256 	rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_);
1257 	rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_);
1258 
1259 	do {
1260 		DEFINE_WAIT(wait);
1261 
1262 		/*
1263 		 * We use a barrier in prepare_to_wait() to separate setting
1264 		 * of frozen and checking of the counter
1265 		 */
1266 		prepare_to_wait(&sb->s_writers.wait, &wait,
1267 				TASK_UNINTERRUPTIBLE);
1268 
1269 		writers = percpu_counter_sum(&sb->s_writers.counter[level-1]);
1270 		if (writers)
1271 			schedule();
1272 
1273 		finish_wait(&sb->s_writers.wait, &wait);
1274 	} while (writers);
1275 }
1276 
1277 /**
1278  * freeze_super - lock the filesystem and force it into a consistent state
1279  * @sb: the super to lock
1280  *
1281  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1282  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1283  * -EBUSY.
1284  *
1285  * During this function, sb->s_writers.frozen goes through these values:
1286  *
1287  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1288  *
1289  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1290  * writes should be blocked, though page faults are still allowed. We wait for
1291  * all writes to complete and then proceed to the next stage.
1292  *
1293  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1294  * but internal fs threads can still modify the filesystem (although they
1295  * should not dirty new pages or inodes), writeback can run etc. After waiting
1296  * for all running page faults we sync the filesystem which will clean all
1297  * dirty pages and inodes (no new dirty pages or inodes can be created when
1298  * sync is running).
1299  *
1300  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1301  * modification are blocked (e.g. XFS preallocation truncation on inode
1302  * reclaim). This is usually implemented by blocking new transactions for
1303  * filesystems that have them and need this additional guard. After all
1304  * internal writers are finished we call ->freeze_fs() to finish filesystem
1305  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1306  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1307  *
1308  * sb->s_writers.frozen is protected by sb->s_umount.
1309  */
freeze_super(struct super_block * sb)1310 int freeze_super(struct super_block *sb)
1311 {
1312 	int ret;
1313 
1314 	atomic_inc(&sb->s_active);
1315 	down_write(&sb->s_umount);
1316 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1317 		deactivate_locked_super(sb);
1318 		return -EBUSY;
1319 	}
1320 
1321 	if (!(sb->s_flags & MS_BORN)) {
1322 		up_write(&sb->s_umount);
1323 		return 0;	/* sic - it's "nothing to do" */
1324 	}
1325 
1326 	if (sb->s_flags & MS_RDONLY) {
1327 		/* Nothing to do really... */
1328 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1329 		up_write(&sb->s_umount);
1330 		return 0;
1331 	}
1332 
1333 	/* From now on, no new normal writers can start */
1334 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1335 	smp_wmb();
1336 
1337 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1338 	up_write(&sb->s_umount);
1339 
1340 	sb_wait_write(sb, SB_FREEZE_WRITE);
1341 
1342 	/* Now we go and block page faults... */
1343 	down_write(&sb->s_umount);
1344 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1345 	smp_wmb();
1346 
1347 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1348 
1349 	/* All writers are done so after syncing there won't be dirty data */
1350 	sync_filesystem(sb);
1351 
1352 	/* Now wait for internal filesystem counter */
1353 	sb->s_writers.frozen = SB_FREEZE_FS;
1354 	smp_wmb();
1355 	sb_wait_write(sb, SB_FREEZE_FS);
1356 
1357 	if (sb->s_op->freeze_fs) {
1358 		ret = sb->s_op->freeze_fs(sb);
1359 		if (ret) {
1360 			printk(KERN_ERR
1361 				"VFS:Filesystem freeze failed\n");
1362 			sb->s_writers.frozen = SB_UNFROZEN;
1363 			smp_wmb();
1364 			wake_up(&sb->s_writers.wait_unfrozen);
1365 			deactivate_locked_super(sb);
1366 			return ret;
1367 		}
1368 	}
1369 	/*
1370 	 * This is just for debugging purposes so that fs can warn if it
1371 	 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1372 	 */
1373 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1374 	up_write(&sb->s_umount);
1375 	return 0;
1376 }
1377 EXPORT_SYMBOL(freeze_super);
1378 
1379 /**
1380  * thaw_super -- unlock filesystem
1381  * @sb: the super to thaw
1382  *
1383  * Unlocks the filesystem and marks it writeable again after freeze_super().
1384  */
thaw_super(struct super_block * sb)1385 int thaw_super(struct super_block *sb)
1386 {
1387 	int error;
1388 
1389 	down_write(&sb->s_umount);
1390 	if (sb->s_writers.frozen == SB_UNFROZEN) {
1391 		up_write(&sb->s_umount);
1392 		return -EINVAL;
1393 	}
1394 
1395 	if (sb->s_flags & MS_RDONLY)
1396 		goto out;
1397 
1398 	if (sb->s_op->unfreeze_fs) {
1399 		error = sb->s_op->unfreeze_fs(sb);
1400 		if (error) {
1401 			printk(KERN_ERR
1402 				"VFS:Filesystem thaw failed\n");
1403 			up_write(&sb->s_umount);
1404 			return error;
1405 		}
1406 	}
1407 
1408 out:
1409 	sb->s_writers.frozen = SB_UNFROZEN;
1410 	smp_wmb();
1411 	wake_up(&sb->s_writers.wait_unfrozen);
1412 	deactivate_locked_super(sb);
1413 
1414 	return 0;
1415 }
1416 EXPORT_SYMBOL(thaw_super);
1417