• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *    Optimized memory copy routines.
3  *
4  *    Copyright (C) 2004 Randolph Chung <tausq@debian.org>
5  *
6  *    This program is free software; you can redistribute it and/or modify
7  *    it under the terms of the GNU General Public License as published by
8  *    the Free Software Foundation; either version 2, or (at your option)
9  *    any later version.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *    GNU General Public License for more details.
15  *
16  *    You should have received a copy of the GNU General Public License
17  *    along with this program; if not, write to the Free Software
18  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  *
20  *    Portions derived from the GNU C Library
21  *    Copyright (C) 1991, 1997, 2003 Free Software Foundation, Inc.
22  *
23  * Several strategies are tried to try to get the best performance for various
24  * conditions. In the optimal case, we copy 64-bytes in an unrolled loop using
25  * fp regs. This is followed by loops that copy 32- or 16-bytes at a time using
26  * general registers.  Unaligned copies are handled either by aligning the
27  * destination and then using shift-and-write method, or in a few cases by
28  * falling back to a byte-at-a-time copy.
29  *
30  * I chose to implement this in C because it is easier to maintain and debug,
31  * and in my experiments it appears that the C code generated by gcc (3.3/3.4
32  * at the time of writing) is fairly optimal. Unfortunately some of the
33  * semantics of the copy routine (exception handling) is difficult to express
34  * in C, so we have to play some tricks to get it to work.
35  *
36  * All the loads and stores are done via explicit asm() code in order to use
37  * the right space registers.
38  *
39  * Testing with various alignments and buffer sizes shows that this code is
40  * often >10x faster than a simple byte-at-a-time copy, even for strangely
41  * aligned operands. It is interesting to note that the glibc version
42  * of memcpy (written in C) is actually quite fast already. This routine is
43  * able to beat it by 30-40% for aligned copies because of the loop unrolling,
44  * but in some cases the glibc version is still slightly faster. This lends
45  * more credibility that gcc can generate very good code as long as we are
46  * careful.
47  *
48  * TODO:
49  * - cache prefetching needs more experimentation to get optimal settings
50  * - try not to use the post-increment address modifiers; they create additional
51  *   interlocks
52  * - replace byte-copy loops with stybs sequences
53  */
54 
55 #ifdef __KERNEL__
56 #include <linux/module.h>
57 #include <linux/compiler.h>
58 #include <asm/uaccess.h>
59 #define s_space "%%sr1"
60 #define d_space "%%sr2"
61 #else
62 #include "memcpy.h"
63 #define s_space "%%sr0"
64 #define d_space "%%sr0"
65 #define pa_memcpy new2_copy
66 #endif
67 
68 DECLARE_PER_CPU(struct exception_data, exception_data);
69 
70 #define preserve_branch(label)	do {					\
71 	volatile int dummy = 0;						\
72 	/* The following branch is never taken, it's just here to  */	\
73 	/* prevent gcc from optimizing away our exception code. */ 	\
74 	if (unlikely(dummy != dummy))					\
75 		goto label;						\
76 } while (0)
77 
78 #define get_user_space() (segment_eq(get_fs(), KERNEL_DS) ? 0 : mfsp(3))
79 #define get_kernel_space() (0)
80 
81 #define MERGE(w0, sh_1, w1, sh_2)  ({					\
82 	unsigned int _r;						\
83 	asm volatile (							\
84 	"mtsar %3\n"							\
85 	"shrpw %1, %2, %%sar, %0\n"					\
86 	: "=r"(_r)							\
87 	: "r"(w0), "r"(w1), "r"(sh_2)					\
88 	);								\
89 	_r;								\
90 })
91 #define THRESHOLD	16
92 
93 #ifdef DEBUG_MEMCPY
94 #define DPRINTF(fmt, args...) do { printk(KERN_DEBUG "%s:%d:%s ", __FILE__, __LINE__, __func__ ); printk(KERN_DEBUG fmt, ##args ); } while (0)
95 #else
96 #define DPRINTF(fmt, args...)
97 #endif
98 
99 #define def_load_ai_insn(_insn,_sz,_tt,_s,_a,_t,_e)	\
100 	__asm__ __volatile__ (				\
101 	"1:\t" #_insn ",ma " #_sz "(" _s ",%1), %0\n\t"	\
102 	ASM_EXCEPTIONTABLE_ENTRY(1b,_e)			\
103 	: _tt(_t), "+r"(_a)				\
104 	: 						\
105 	: "r8")
106 
107 #define def_store_ai_insn(_insn,_sz,_tt,_s,_a,_t,_e) 	\
108 	__asm__ __volatile__ (				\
109 	"1:\t" #_insn ",ma %1, " #_sz "(" _s ",%0)\n\t"	\
110 	ASM_EXCEPTIONTABLE_ENTRY(1b,_e)			\
111 	: "+r"(_a) 					\
112 	: _tt(_t)					\
113 	: "r8")
114 
115 #define ldbma(_s, _a, _t, _e) def_load_ai_insn(ldbs,1,"=r",_s,_a,_t,_e)
116 #define stbma(_s, _t, _a, _e) def_store_ai_insn(stbs,1,"r",_s,_a,_t,_e)
117 #define ldwma(_s, _a, _t, _e) def_load_ai_insn(ldw,4,"=r",_s,_a,_t,_e)
118 #define stwma(_s, _t, _a, _e) def_store_ai_insn(stw,4,"r",_s,_a,_t,_e)
119 #define flddma(_s, _a, _t, _e) def_load_ai_insn(fldd,8,"=f",_s,_a,_t,_e)
120 #define fstdma(_s, _t, _a, _e) def_store_ai_insn(fstd,8,"f",_s,_a,_t,_e)
121 
122 #define def_load_insn(_insn,_tt,_s,_o,_a,_t,_e) 	\
123 	__asm__ __volatile__ (				\
124 	"1:\t" #_insn " " #_o "(" _s ",%1), %0\n\t"	\
125 	ASM_EXCEPTIONTABLE_ENTRY(1b,_e)			\
126 	: _tt(_t) 					\
127 	: "r"(_a)					\
128 	: "r8")
129 
130 #define def_store_insn(_insn,_tt,_s,_t,_o,_a,_e) 	\
131 	__asm__ __volatile__ (				\
132 	"1:\t" #_insn " %0, " #_o "(" _s ",%1)\n\t" 	\
133 	ASM_EXCEPTIONTABLE_ENTRY(1b,_e)			\
134 	: 						\
135 	: _tt(_t), "r"(_a)				\
136 	: "r8")
137 
138 #define ldw(_s,_o,_a,_t,_e)	def_load_insn(ldw,"=r",_s,_o,_a,_t,_e)
139 #define stw(_s,_t,_o,_a,_e) 	def_store_insn(stw,"r",_s,_t,_o,_a,_e)
140 
141 #ifdef  CONFIG_PREFETCH
prefetch_src(const void * addr)142 static inline void prefetch_src(const void *addr)
143 {
144 	__asm__("ldw 0(" s_space ",%0), %%r0" : : "r" (addr));
145 }
146 
prefetch_dst(const void * addr)147 static inline void prefetch_dst(const void *addr)
148 {
149 	__asm__("ldd 0(" d_space ",%0), %%r0" : : "r" (addr));
150 }
151 #else
152 #define prefetch_src(addr) do { } while(0)
153 #define prefetch_dst(addr) do { } while(0)
154 #endif
155 
156 /* Copy from a not-aligned src to an aligned dst, using shifts. Handles 4 words
157  * per loop.  This code is derived from glibc.
158  */
copy_dstaligned(unsigned long dst,unsigned long src,unsigned long len,unsigned long o_dst,unsigned long o_src,unsigned long o_len)159 static inline unsigned long copy_dstaligned(unsigned long dst, unsigned long src, unsigned long len, unsigned long o_dst, unsigned long o_src, unsigned long o_len)
160 {
161 	/* gcc complains that a2 and a3 may be uninitialized, but actually
162 	 * they cannot be.  Initialize a2/a3 to shut gcc up.
163 	 */
164 	register unsigned int a0, a1, a2 = 0, a3 = 0;
165 	int sh_1, sh_2;
166 	struct exception_data *d;
167 
168 	/* prefetch_src((const void *)src); */
169 
170 	/* Calculate how to shift a word read at the memory operation
171 	   aligned srcp to make it aligned for copy.  */
172 	sh_1 = 8 * (src % sizeof(unsigned int));
173 	sh_2 = 8 * sizeof(unsigned int) - sh_1;
174 
175 	/* Make src aligned by rounding it down.  */
176 	src &= -sizeof(unsigned int);
177 
178 	switch (len % 4)
179 	{
180 		case 2:
181 			/* a1 = ((unsigned int *) src)[0];
182 			   a2 = ((unsigned int *) src)[1]; */
183 			ldw(s_space, 0, src, a1, cda_ldw_exc);
184 			ldw(s_space, 4, src, a2, cda_ldw_exc);
185 			src -= 1 * sizeof(unsigned int);
186 			dst -= 3 * sizeof(unsigned int);
187 			len += 2;
188 			goto do1;
189 		case 3:
190 			/* a0 = ((unsigned int *) src)[0];
191 			   a1 = ((unsigned int *) src)[1]; */
192 			ldw(s_space, 0, src, a0, cda_ldw_exc);
193 			ldw(s_space, 4, src, a1, cda_ldw_exc);
194 			src -= 0 * sizeof(unsigned int);
195 			dst -= 2 * sizeof(unsigned int);
196 			len += 1;
197 			goto do2;
198 		case 0:
199 			if (len == 0)
200 				return 0;
201 			/* a3 = ((unsigned int *) src)[0];
202 			   a0 = ((unsigned int *) src)[1]; */
203 			ldw(s_space, 0, src, a3, cda_ldw_exc);
204 			ldw(s_space, 4, src, a0, cda_ldw_exc);
205 			src -=-1 * sizeof(unsigned int);
206 			dst -= 1 * sizeof(unsigned int);
207 			len += 0;
208 			goto do3;
209 		case 1:
210 			/* a2 = ((unsigned int *) src)[0];
211 			   a3 = ((unsigned int *) src)[1]; */
212 			ldw(s_space, 0, src, a2, cda_ldw_exc);
213 			ldw(s_space, 4, src, a3, cda_ldw_exc);
214 			src -=-2 * sizeof(unsigned int);
215 			dst -= 0 * sizeof(unsigned int);
216 			len -= 1;
217 			if (len == 0)
218 				goto do0;
219 			goto do4;			/* No-op.  */
220 	}
221 
222 	do
223 	{
224 		/* prefetch_src((const void *)(src + 4 * sizeof(unsigned int))); */
225 do4:
226 		/* a0 = ((unsigned int *) src)[0]; */
227 		ldw(s_space, 0, src, a0, cda_ldw_exc);
228 		/* ((unsigned int *) dst)[0] = MERGE (a2, sh_1, a3, sh_2); */
229 		stw(d_space, MERGE (a2, sh_1, a3, sh_2), 0, dst, cda_stw_exc);
230 do3:
231 		/* a1 = ((unsigned int *) src)[1]; */
232 		ldw(s_space, 4, src, a1, cda_ldw_exc);
233 		/* ((unsigned int *) dst)[1] = MERGE (a3, sh_1, a0, sh_2); */
234 		stw(d_space, MERGE (a3, sh_1, a0, sh_2), 4, dst, cda_stw_exc);
235 do2:
236 		/* a2 = ((unsigned int *) src)[2]; */
237 		ldw(s_space, 8, src, a2, cda_ldw_exc);
238 		/* ((unsigned int *) dst)[2] = MERGE (a0, sh_1, a1, sh_2); */
239 		stw(d_space, MERGE (a0, sh_1, a1, sh_2), 8, dst, cda_stw_exc);
240 do1:
241 		/* a3 = ((unsigned int *) src)[3]; */
242 		ldw(s_space, 12, src, a3, cda_ldw_exc);
243 		/* ((unsigned int *) dst)[3] = MERGE (a1, sh_1, a2, sh_2); */
244 		stw(d_space, MERGE (a1, sh_1, a2, sh_2), 12, dst, cda_stw_exc);
245 
246 		src += 4 * sizeof(unsigned int);
247 		dst += 4 * sizeof(unsigned int);
248 		len -= 4;
249 	}
250 	while (len != 0);
251 
252 do0:
253 	/* ((unsigned int *) dst)[0] = MERGE (a2, sh_1, a3, sh_2); */
254 	stw(d_space, MERGE (a2, sh_1, a3, sh_2), 0, dst, cda_stw_exc);
255 
256 	preserve_branch(handle_load_error);
257 	preserve_branch(handle_store_error);
258 
259 	return 0;
260 
261 handle_load_error:
262 	__asm__ __volatile__ ("cda_ldw_exc:\n");
263 	d = &__get_cpu_var(exception_data);
264 	DPRINTF("cda_ldw_exc: o_len=%lu fault_addr=%lu o_src=%lu ret=%lu\n",
265 		o_len, d->fault_addr, o_src, o_len - d->fault_addr + o_src);
266 	return o_len * 4 - d->fault_addr + o_src;
267 
268 handle_store_error:
269 	__asm__ __volatile__ ("cda_stw_exc:\n");
270 	d = &__get_cpu_var(exception_data);
271 	DPRINTF("cda_stw_exc: o_len=%lu fault_addr=%lu o_dst=%lu ret=%lu\n",
272 		o_len, d->fault_addr, o_dst, o_len - d->fault_addr + o_dst);
273 	return o_len * 4 - d->fault_addr + o_dst;
274 }
275 
276 
277 /* Returns 0 for success, otherwise, returns number of bytes not transferred. */
pa_memcpy(void * dstp,const void * srcp,unsigned long len)278 static unsigned long pa_memcpy(void *dstp, const void *srcp, unsigned long len)
279 {
280 	register unsigned long src, dst, t1, t2, t3;
281 	register unsigned char *pcs, *pcd;
282 	register unsigned int *pws, *pwd;
283 	register double *pds, *pdd;
284 	unsigned long ret = 0;
285 	unsigned long o_dst, o_src, o_len;
286 	struct exception_data *d;
287 
288 	src = (unsigned long)srcp;
289 	dst = (unsigned long)dstp;
290 	pcs = (unsigned char *)srcp;
291 	pcd = (unsigned char *)dstp;
292 
293 	o_dst = dst; o_src = src; o_len = len;
294 
295 	/* prefetch_src((const void *)srcp); */
296 
297 	if (len < THRESHOLD)
298 		goto byte_copy;
299 
300 	/* Check alignment */
301 	t1 = (src ^ dst);
302 	if (unlikely(t1 & (sizeof(double)-1)))
303 		goto unaligned_copy;
304 
305 	/* src and dst have same alignment. */
306 
307 	/* Copy bytes till we are double-aligned. */
308 	t2 = src & (sizeof(double) - 1);
309 	if (unlikely(t2 != 0)) {
310 		t2 = sizeof(double) - t2;
311 		while (t2 && len) {
312 			/* *pcd++ = *pcs++; */
313 			ldbma(s_space, pcs, t3, pmc_load_exc);
314 			len--;
315 			stbma(d_space, t3, pcd, pmc_store_exc);
316 			t2--;
317 		}
318 	}
319 
320 	pds = (double *)pcs;
321 	pdd = (double *)pcd;
322 
323 #if 0
324 	/* Copy 8 doubles at a time */
325 	while (len >= 8*sizeof(double)) {
326 		register double r1, r2, r3, r4, r5, r6, r7, r8;
327 		/* prefetch_src((char *)pds + L1_CACHE_BYTES); */
328 		flddma(s_space, pds, r1, pmc_load_exc);
329 		flddma(s_space, pds, r2, pmc_load_exc);
330 		flddma(s_space, pds, r3, pmc_load_exc);
331 		flddma(s_space, pds, r4, pmc_load_exc);
332 		fstdma(d_space, r1, pdd, pmc_store_exc);
333 		fstdma(d_space, r2, pdd, pmc_store_exc);
334 		fstdma(d_space, r3, pdd, pmc_store_exc);
335 		fstdma(d_space, r4, pdd, pmc_store_exc);
336 
337 #if 0
338 		if (L1_CACHE_BYTES <= 32)
339 			prefetch_src((char *)pds + L1_CACHE_BYTES);
340 #endif
341 		flddma(s_space, pds, r5, pmc_load_exc);
342 		flddma(s_space, pds, r6, pmc_load_exc);
343 		flddma(s_space, pds, r7, pmc_load_exc);
344 		flddma(s_space, pds, r8, pmc_load_exc);
345 		fstdma(d_space, r5, pdd, pmc_store_exc);
346 		fstdma(d_space, r6, pdd, pmc_store_exc);
347 		fstdma(d_space, r7, pdd, pmc_store_exc);
348 		fstdma(d_space, r8, pdd, pmc_store_exc);
349 		len -= 8*sizeof(double);
350 	}
351 #endif
352 
353 	pws = (unsigned int *)pds;
354 	pwd = (unsigned int *)pdd;
355 
356 word_copy:
357 	while (len >= 8*sizeof(unsigned int)) {
358 		register unsigned int r1,r2,r3,r4,r5,r6,r7,r8;
359 		/* prefetch_src((char *)pws + L1_CACHE_BYTES); */
360 		ldwma(s_space, pws, r1, pmc_load_exc);
361 		ldwma(s_space, pws, r2, pmc_load_exc);
362 		ldwma(s_space, pws, r3, pmc_load_exc);
363 		ldwma(s_space, pws, r4, pmc_load_exc);
364 		stwma(d_space, r1, pwd, pmc_store_exc);
365 		stwma(d_space, r2, pwd, pmc_store_exc);
366 		stwma(d_space, r3, pwd, pmc_store_exc);
367 		stwma(d_space, r4, pwd, pmc_store_exc);
368 
369 		ldwma(s_space, pws, r5, pmc_load_exc);
370 		ldwma(s_space, pws, r6, pmc_load_exc);
371 		ldwma(s_space, pws, r7, pmc_load_exc);
372 		ldwma(s_space, pws, r8, pmc_load_exc);
373 		stwma(d_space, r5, pwd, pmc_store_exc);
374 		stwma(d_space, r6, pwd, pmc_store_exc);
375 		stwma(d_space, r7, pwd, pmc_store_exc);
376 		stwma(d_space, r8, pwd, pmc_store_exc);
377 		len -= 8*sizeof(unsigned int);
378 	}
379 
380 	while (len >= 4*sizeof(unsigned int)) {
381 		register unsigned int r1,r2,r3,r4;
382 		ldwma(s_space, pws, r1, pmc_load_exc);
383 		ldwma(s_space, pws, r2, pmc_load_exc);
384 		ldwma(s_space, pws, r3, pmc_load_exc);
385 		ldwma(s_space, pws, r4, pmc_load_exc);
386 		stwma(d_space, r1, pwd, pmc_store_exc);
387 		stwma(d_space, r2, pwd, pmc_store_exc);
388 		stwma(d_space, r3, pwd, pmc_store_exc);
389 		stwma(d_space, r4, pwd, pmc_store_exc);
390 		len -= 4*sizeof(unsigned int);
391 	}
392 
393 	pcs = (unsigned char *)pws;
394 	pcd = (unsigned char *)pwd;
395 
396 byte_copy:
397 	while (len) {
398 		/* *pcd++ = *pcs++; */
399 		ldbma(s_space, pcs, t3, pmc_load_exc);
400 		stbma(d_space, t3, pcd, pmc_store_exc);
401 		len--;
402 	}
403 
404 	return 0;
405 
406 unaligned_copy:
407 	/* possibly we are aligned on a word, but not on a double... */
408 	if (likely((t1 & (sizeof(unsigned int)-1)) == 0)) {
409 		t2 = src & (sizeof(unsigned int) - 1);
410 
411 		if (unlikely(t2 != 0)) {
412 			t2 = sizeof(unsigned int) - t2;
413 			while (t2) {
414 				/* *pcd++ = *pcs++; */
415 				ldbma(s_space, pcs, t3, pmc_load_exc);
416 				stbma(d_space, t3, pcd, pmc_store_exc);
417 				len--;
418 				t2--;
419 			}
420 		}
421 
422 		pws = (unsigned int *)pcs;
423 		pwd = (unsigned int *)pcd;
424 		goto word_copy;
425 	}
426 
427 	/* Align the destination.  */
428 	if (unlikely((dst & (sizeof(unsigned int) - 1)) != 0)) {
429 		t2 = sizeof(unsigned int) - (dst & (sizeof(unsigned int) - 1));
430 		while (t2) {
431 			/* *pcd++ = *pcs++; */
432 			ldbma(s_space, pcs, t3, pmc_load_exc);
433 			stbma(d_space, t3, pcd, pmc_store_exc);
434 			len--;
435 			t2--;
436 		}
437 		dst = (unsigned long)pcd;
438 		src = (unsigned long)pcs;
439 	}
440 
441 	ret = copy_dstaligned(dst, src, len / sizeof(unsigned int),
442 		o_dst, o_src, o_len);
443 	if (ret)
444 		return ret;
445 
446 	pcs += (len & -sizeof(unsigned int));
447 	pcd += (len & -sizeof(unsigned int));
448 	len %= sizeof(unsigned int);
449 
450 	preserve_branch(handle_load_error);
451 	preserve_branch(handle_store_error);
452 
453 	goto byte_copy;
454 
455 handle_load_error:
456 	__asm__ __volatile__ ("pmc_load_exc:\n");
457 	d = &__get_cpu_var(exception_data);
458 	DPRINTF("pmc_load_exc: o_len=%lu fault_addr=%lu o_src=%lu ret=%lu\n",
459 		o_len, d->fault_addr, o_src, o_len - d->fault_addr + o_src);
460 	return o_len - d->fault_addr + o_src;
461 
462 handle_store_error:
463 	__asm__ __volatile__ ("pmc_store_exc:\n");
464 	d = &__get_cpu_var(exception_data);
465 	DPRINTF("pmc_store_exc: o_len=%lu fault_addr=%lu o_dst=%lu ret=%lu\n",
466 		o_len, d->fault_addr, o_dst, o_len - d->fault_addr + o_dst);
467 	return o_len - d->fault_addr + o_dst;
468 }
469 
470 #ifdef __KERNEL__
copy_to_user(void __user * dst,const void * src,unsigned long len)471 unsigned long copy_to_user(void __user *dst, const void *src, unsigned long len)
472 {
473 	mtsp(get_kernel_space(), 1);
474 	mtsp(get_user_space(), 2);
475 	return pa_memcpy((void __force *)dst, src, len);
476 }
477 
478 EXPORT_SYMBOL(__copy_from_user);
__copy_from_user(void * dst,const void __user * src,unsigned long len)479 unsigned long __copy_from_user(void *dst, const void __user *src, unsigned long len)
480 {
481 	mtsp(get_user_space(), 1);
482 	mtsp(get_kernel_space(), 2);
483 	return pa_memcpy(dst, (void __force *)src, len);
484 }
485 
copy_in_user(void __user * dst,const void __user * src,unsigned long len)486 unsigned long copy_in_user(void __user *dst, const void __user *src, unsigned long len)
487 {
488 	mtsp(get_user_space(), 1);
489 	mtsp(get_user_space(), 2);
490 	return pa_memcpy((void __force *)dst, (void __force *)src, len);
491 }
492 
493 
memcpy(void * dst,const void * src,size_t count)494 void * memcpy(void * dst,const void *src, size_t count)
495 {
496 	mtsp(get_kernel_space(), 1);
497 	mtsp(get_kernel_space(), 2);
498 	pa_memcpy(dst, src, count);
499 	return dst;
500 }
501 
502 EXPORT_SYMBOL(copy_to_user);
503 EXPORT_SYMBOL(copy_from_user);
504 EXPORT_SYMBOL(copy_in_user);
505 EXPORT_SYMBOL(memcpy);
506 #endif
507