• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*P:400
2  * This contains run_guest() which actually calls into the Host<->Guest
3  * Switcher and analyzes the return, such as determining if the Guest wants the
4  * Host to do something.  This file also contains useful helper routines.
5 :*/
6 #include <linux/module.h>
7 #include <linux/stringify.h>
8 #include <linux/stddef.h>
9 #include <linux/io.h>
10 #include <linux/mm.h>
11 #include <linux/vmalloc.h>
12 #include <linux/cpu.h>
13 #include <linux/freezer.h>
14 #include <linux/highmem.h>
15 #include <linux/slab.h>
16 #include <asm/paravirt.h>
17 #include <asm/pgtable.h>
18 #include <asm/uaccess.h>
19 #include <asm/poll.h>
20 #include <asm/asm-offsets.h>
21 #include "lg.h"
22 
23 unsigned long switcher_addr;
24 struct page **lg_switcher_pages;
25 static struct vm_struct *switcher_vma;
26 
27 /* This One Big lock protects all inter-guest data structures. */
28 DEFINE_MUTEX(lguest_lock);
29 
30 /*H:010
31  * We need to set up the Switcher at a high virtual address.  Remember the
32  * Switcher is a few hundred bytes of assembler code which actually changes the
33  * CPU to run the Guest, and then changes back to the Host when a trap or
34  * interrupt happens.
35  *
36  * The Switcher code must be at the same virtual address in the Guest as the
37  * Host since it will be running as the switchover occurs.
38  *
39  * Trying to map memory at a particular address is an unusual thing to do, so
40  * it's not a simple one-liner.
41  */
map_switcher(void)42 static __init int map_switcher(void)
43 {
44 	int i, err;
45 	struct page **pagep;
46 
47 	/*
48 	 * Map the Switcher in to high memory.
49 	 *
50 	 * It turns out that if we choose the address 0xFFC00000 (4MB under the
51 	 * top virtual address), it makes setting up the page tables really
52 	 * easy.
53 	 */
54 
55 	/* We assume Switcher text fits into a single page. */
56 	if (end_switcher_text - start_switcher_text > PAGE_SIZE) {
57 		printk(KERN_ERR "lguest: switcher text too large (%zu)\n",
58 		       end_switcher_text - start_switcher_text);
59 		return -EINVAL;
60 	}
61 
62 	/*
63 	 * We allocate an array of struct page pointers.  map_vm_area() wants
64 	 * this, rather than just an array of pages.
65 	 */
66 	lg_switcher_pages = kmalloc(sizeof(lg_switcher_pages[0])
67 				    * TOTAL_SWITCHER_PAGES,
68 				    GFP_KERNEL);
69 	if (!lg_switcher_pages) {
70 		err = -ENOMEM;
71 		goto out;
72 	}
73 
74 	/*
75 	 * Now we actually allocate the pages.  The Guest will see these pages,
76 	 * so we make sure they're zeroed.
77 	 */
78 	for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
79 		lg_switcher_pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
80 		if (!lg_switcher_pages[i]) {
81 			err = -ENOMEM;
82 			goto free_some_pages;
83 		}
84 	}
85 
86 	/*
87 	 * We place the Switcher underneath the fixmap area, which is the
88 	 * highest virtual address we can get.  This is important, since we
89 	 * tell the Guest it can't access this memory, so we want its ceiling
90 	 * as high as possible.
91 	 */
92 	switcher_addr = FIXADDR_START - (TOTAL_SWITCHER_PAGES+1)*PAGE_SIZE;
93 
94 	/*
95 	 * Now we reserve the "virtual memory area" we want.  We might
96 	 * not get it in theory, but in practice it's worked so far.
97 	 * The end address needs +1 because __get_vm_area allocates an
98 	 * extra guard page, so we need space for that.
99 	 */
100 	switcher_vma = __get_vm_area(TOTAL_SWITCHER_PAGES * PAGE_SIZE,
101 				     VM_ALLOC, switcher_addr, switcher_addr
102 				     + (TOTAL_SWITCHER_PAGES+1) * PAGE_SIZE);
103 	if (!switcher_vma) {
104 		err = -ENOMEM;
105 		printk("lguest: could not map switcher pages high\n");
106 		goto free_pages;
107 	}
108 
109 	/*
110 	 * This code actually sets up the pages we've allocated to appear at
111 	 * switcher_addr.  map_vm_area() takes the vma we allocated above, the
112 	 * kind of pages we're mapping (kernel pages), and a pointer to our
113 	 * array of struct pages.  It increments that pointer, but we don't
114 	 * care.
115 	 */
116 	pagep = lg_switcher_pages;
117 	err = map_vm_area(switcher_vma, PAGE_KERNEL_EXEC, &pagep);
118 	if (err) {
119 		printk("lguest: map_vm_area failed: %i\n", err);
120 		goto free_vma;
121 	}
122 
123 	/*
124 	 * Now the Switcher is mapped at the right address, we can't fail!
125 	 * Copy in the compiled-in Switcher code (from x86/switcher_32.S).
126 	 */
127 	memcpy(switcher_vma->addr, start_switcher_text,
128 	       end_switcher_text - start_switcher_text);
129 
130 	printk(KERN_INFO "lguest: mapped switcher at %p\n",
131 	       switcher_vma->addr);
132 	/* And we succeeded... */
133 	return 0;
134 
135 free_vma:
136 	vunmap(switcher_vma->addr);
137 free_pages:
138 	i = TOTAL_SWITCHER_PAGES;
139 free_some_pages:
140 	for (--i; i >= 0; i--)
141 		__free_pages(lg_switcher_pages[i], 0);
142 	kfree(lg_switcher_pages);
143 out:
144 	return err;
145 }
146 /*:*/
147 
148 /* Cleaning up the mapping when the module is unloaded is almost... too easy. */
unmap_switcher(void)149 static void unmap_switcher(void)
150 {
151 	unsigned int i;
152 
153 	/* vunmap() undoes *both* map_vm_area() and __get_vm_area(). */
154 	vunmap(switcher_vma->addr);
155 	/* Now we just need to free the pages we copied the switcher into */
156 	for (i = 0; i < TOTAL_SWITCHER_PAGES; i++)
157 		__free_pages(lg_switcher_pages[i], 0);
158 	kfree(lg_switcher_pages);
159 }
160 
161 /*H:032
162  * Dealing With Guest Memory.
163  *
164  * Before we go too much further into the Host, we need to grok the routines
165  * we use to deal with Guest memory.
166  *
167  * When the Guest gives us (what it thinks is) a physical address, we can use
168  * the normal copy_from_user() & copy_to_user() on the corresponding place in
169  * the memory region allocated by the Launcher.
170  *
171  * But we can't trust the Guest: it might be trying to access the Launcher
172  * code.  We have to check that the range is below the pfn_limit the Launcher
173  * gave us.  We have to make sure that addr + len doesn't give us a false
174  * positive by overflowing, too.
175  */
lguest_address_ok(const struct lguest * lg,unsigned long addr,unsigned long len)176 bool lguest_address_ok(const struct lguest *lg,
177 		       unsigned long addr, unsigned long len)
178 {
179 	return (addr+len) / PAGE_SIZE < lg->pfn_limit && (addr+len >= addr);
180 }
181 
182 /*
183  * This routine copies memory from the Guest.  Here we can see how useful the
184  * kill_lguest() routine we met in the Launcher can be: we return a random
185  * value (all zeroes) instead of needing to return an error.
186  */
__lgread(struct lg_cpu * cpu,void * b,unsigned long addr,unsigned bytes)187 void __lgread(struct lg_cpu *cpu, void *b, unsigned long addr, unsigned bytes)
188 {
189 	if (!lguest_address_ok(cpu->lg, addr, bytes)
190 	    || copy_from_user(b, cpu->lg->mem_base + addr, bytes) != 0) {
191 		/* copy_from_user should do this, but as we rely on it... */
192 		memset(b, 0, bytes);
193 		kill_guest(cpu, "bad read address %#lx len %u", addr, bytes);
194 	}
195 }
196 
197 /* This is the write (copy into Guest) version. */
__lgwrite(struct lg_cpu * cpu,unsigned long addr,const void * b,unsigned bytes)198 void __lgwrite(struct lg_cpu *cpu, unsigned long addr, const void *b,
199 	       unsigned bytes)
200 {
201 	if (!lguest_address_ok(cpu->lg, addr, bytes)
202 	    || copy_to_user(cpu->lg->mem_base + addr, b, bytes) != 0)
203 		kill_guest(cpu, "bad write address %#lx len %u", addr, bytes);
204 }
205 /*:*/
206 
207 /*H:030
208  * Let's jump straight to the the main loop which runs the Guest.
209  * Remember, this is called by the Launcher reading /dev/lguest, and we keep
210  * going around and around until something interesting happens.
211  */
run_guest(struct lg_cpu * cpu,unsigned long __user * user)212 int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
213 {
214 	/* We stop running once the Guest is dead. */
215 	while (!cpu->lg->dead) {
216 		unsigned int irq;
217 		bool more;
218 
219 		/* First we run any hypercalls the Guest wants done. */
220 		if (cpu->hcall)
221 			do_hypercalls(cpu);
222 
223 		/*
224 		 * It's possible the Guest did a NOTIFY hypercall to the
225 		 * Launcher.
226 		 */
227 		if (cpu->pending_notify) {
228 			/*
229 			 * Does it just needs to write to a registered
230 			 * eventfd (ie. the appropriate virtqueue thread)?
231 			 */
232 			if (!send_notify_to_eventfd(cpu)) {
233 				/* OK, we tell the main Launcher. */
234 				if (put_user(cpu->pending_notify, user))
235 					return -EFAULT;
236 				return sizeof(cpu->pending_notify);
237 			}
238 		}
239 
240 		/*
241 		 * All long-lived kernel loops need to check with this horrible
242 		 * thing called the freezer.  If the Host is trying to suspend,
243 		 * it stops us.
244 		 */
245 		try_to_freeze();
246 
247 		/* Check for signals */
248 		if (signal_pending(current))
249 			return -ERESTARTSYS;
250 
251 		/*
252 		 * Check if there are any interrupts which can be delivered now:
253 		 * if so, this sets up the hander to be executed when we next
254 		 * run the Guest.
255 		 */
256 		irq = interrupt_pending(cpu, &more);
257 		if (irq < LGUEST_IRQS)
258 			try_deliver_interrupt(cpu, irq, more);
259 
260 		/*
261 		 * Just make absolutely sure the Guest is still alive.  One of
262 		 * those hypercalls could have been fatal, for example.
263 		 */
264 		if (cpu->lg->dead)
265 			break;
266 
267 		/*
268 		 * If the Guest asked to be stopped, we sleep.  The Guest's
269 		 * clock timer will wake us.
270 		 */
271 		if (cpu->halted) {
272 			set_current_state(TASK_INTERRUPTIBLE);
273 			/*
274 			 * Just before we sleep, make sure no interrupt snuck in
275 			 * which we should be doing.
276 			 */
277 			if (interrupt_pending(cpu, &more) < LGUEST_IRQS)
278 				set_current_state(TASK_RUNNING);
279 			else
280 				schedule();
281 			continue;
282 		}
283 
284 		/*
285 		 * OK, now we're ready to jump into the Guest.  First we put up
286 		 * the "Do Not Disturb" sign:
287 		 */
288 		local_irq_disable();
289 
290 		/* Actually run the Guest until something happens. */
291 		lguest_arch_run_guest(cpu);
292 
293 		/* Now we're ready to be interrupted or moved to other CPUs */
294 		local_irq_enable();
295 
296 		/* Now we deal with whatever happened to the Guest. */
297 		lguest_arch_handle_trap(cpu);
298 	}
299 
300 	/* Special case: Guest is 'dead' but wants a reboot. */
301 	if (cpu->lg->dead == ERR_PTR(-ERESTART))
302 		return -ERESTART;
303 
304 	/* The Guest is dead => "No such file or directory" */
305 	return -ENOENT;
306 }
307 
308 /*H:000
309  * Welcome to the Host!
310  *
311  * By this point your brain has been tickled by the Guest code and numbed by
312  * the Launcher code; prepare for it to be stretched by the Host code.  This is
313  * the heart.  Let's begin at the initialization routine for the Host's lg
314  * module.
315  */
init(void)316 static int __init init(void)
317 {
318 	int err;
319 
320 	/* Lguest can't run under Xen, VMI or itself.  It does Tricky Stuff. */
321 	if (get_kernel_rpl() != 0) {
322 		printk("lguest is afraid of being a guest\n");
323 		return -EPERM;
324 	}
325 
326 	/* First we put the Switcher up in very high virtual memory. */
327 	err = map_switcher();
328 	if (err)
329 		goto out;
330 
331 	/* We might need to reserve an interrupt vector. */
332 	err = init_interrupts();
333 	if (err)
334 		goto unmap;
335 
336 	/* /dev/lguest needs to be registered. */
337 	err = lguest_device_init();
338 	if (err)
339 		goto free_interrupts;
340 
341 	/* Finally we do some architecture-specific setup. */
342 	lguest_arch_host_init();
343 
344 	/* All good! */
345 	return 0;
346 
347 free_interrupts:
348 	free_interrupts();
349 unmap:
350 	unmap_switcher();
351 out:
352 	return err;
353 }
354 
355 /* Cleaning up is just the same code, backwards.  With a little French. */
fini(void)356 static void __exit fini(void)
357 {
358 	lguest_device_remove();
359 	free_interrupts();
360 	unmap_switcher();
361 
362 	lguest_arch_host_fini();
363 }
364 /*:*/
365 
366 /*
367  * The Host side of lguest can be a module.  This is a nice way for people to
368  * play with it.
369  */
370 module_init(init);
371 module_exit(fini);
372 MODULE_LICENSE("GPL");
373 MODULE_AUTHOR("Rusty Russell <rusty@rustcorp.com.au>");
374