• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2006, Rusty Russell <rusty@rustcorp.com.au> IBM Corporation.
3  * Copyright (C) 2007, Jes Sorensen <jes@sgi.com> SGI.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13  * NON INFRINGEMENT.  See the GNU General Public License for more
14  * details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 /*P:450
21  * This file contains the x86-specific lguest code.  It used to be all
22  * mixed in with drivers/lguest/core.c but several foolhardy code slashers
23  * wrestled most of the dependencies out to here in preparation for porting
24  * lguest to other architectures (see what I mean by foolhardy?).
25  *
26  * This also contains a couple of non-obvious setup and teardown pieces which
27  * were implemented after days of debugging pain.
28 :*/
29 #include <linux/kernel.h>
30 #include <linux/start_kernel.h>
31 #include <linux/string.h>
32 #include <linux/console.h>
33 #include <linux/screen_info.h>
34 #include <linux/irq.h>
35 #include <linux/interrupt.h>
36 #include <linux/clocksource.h>
37 #include <linux/clockchips.h>
38 #include <linux/cpu.h>
39 #include <linux/lguest.h>
40 #include <linux/lguest_launcher.h>
41 #include <asm/paravirt.h>
42 #include <asm/param.h>
43 #include <asm/page.h>
44 #include <asm/pgtable.h>
45 #include <asm/desc.h>
46 #include <asm/setup.h>
47 #include <asm/lguest.h>
48 #include <asm/uaccess.h>
49 #include <asm/i387.h>
50 #include "../lg.h"
51 
52 static int cpu_had_pge;
53 
54 static struct {
55 	unsigned long offset;
56 	unsigned short segment;
57 } lguest_entry;
58 
59 /* Offset from where switcher.S was compiled to where we've copied it */
switcher_offset(void)60 static unsigned long switcher_offset(void)
61 {
62 	return switcher_addr - (unsigned long)start_switcher_text;
63 }
64 
65 /* This cpu's struct lguest_pages (after the Switcher text page) */
lguest_pages(unsigned int cpu)66 static struct lguest_pages *lguest_pages(unsigned int cpu)
67 {
68 	return &(((struct lguest_pages *)(switcher_addr + PAGE_SIZE))[cpu]);
69 }
70 
71 static DEFINE_PER_CPU(struct lg_cpu *, lg_last_cpu);
72 
73 /*S:010
74  * We approach the Switcher.
75  *
76  * Remember that each CPU has two pages which are visible to the Guest when it
77  * runs on that CPU.  This has to contain the state for that Guest: we copy the
78  * state in just before we run the Guest.
79  *
80  * Each Guest has "changed" flags which indicate what has changed in the Guest
81  * since it last ran.  We saw this set in interrupts_and_traps.c and
82  * segments.c.
83  */
copy_in_guest_info(struct lg_cpu * cpu,struct lguest_pages * pages)84 static void copy_in_guest_info(struct lg_cpu *cpu, struct lguest_pages *pages)
85 {
86 	/*
87 	 * Copying all this data can be quite expensive.  We usually run the
88 	 * same Guest we ran last time (and that Guest hasn't run anywhere else
89 	 * meanwhile).  If that's not the case, we pretend everything in the
90 	 * Guest has changed.
91 	 */
92 	if (__this_cpu_read(lg_last_cpu) != cpu || cpu->last_pages != pages) {
93 		__this_cpu_write(lg_last_cpu, cpu);
94 		cpu->last_pages = pages;
95 		cpu->changed = CHANGED_ALL;
96 	}
97 
98 	/*
99 	 * These copies are pretty cheap, so we do them unconditionally: */
100 	/* Save the current Host top-level page directory.
101 	 */
102 	pages->state.host_cr3 = __pa(current->mm->pgd);
103 	/*
104 	 * Set up the Guest's page tables to see this CPU's pages (and no
105 	 * other CPU's pages).
106 	 */
107 	map_switcher_in_guest(cpu, pages);
108 	/*
109 	 * Set up the two "TSS" members which tell the CPU what stack to use
110 	 * for traps which do directly into the Guest (ie. traps at privilege
111 	 * level 1).
112 	 */
113 	pages->state.guest_tss.sp1 = cpu->esp1;
114 	pages->state.guest_tss.ss1 = cpu->ss1;
115 
116 	/* Copy direct-to-Guest trap entries. */
117 	if (cpu->changed & CHANGED_IDT)
118 		copy_traps(cpu, pages->state.guest_idt, default_idt_entries);
119 
120 	/* Copy all GDT entries which the Guest can change. */
121 	if (cpu->changed & CHANGED_GDT)
122 		copy_gdt(cpu, pages->state.guest_gdt);
123 	/* If only the TLS entries have changed, copy them. */
124 	else if (cpu->changed & CHANGED_GDT_TLS)
125 		copy_gdt_tls(cpu, pages->state.guest_gdt);
126 
127 	/* Mark the Guest as unchanged for next time. */
128 	cpu->changed = 0;
129 }
130 
131 /* Finally: the code to actually call into the Switcher to run the Guest. */
run_guest_once(struct lg_cpu * cpu,struct lguest_pages * pages)132 static void run_guest_once(struct lg_cpu *cpu, struct lguest_pages *pages)
133 {
134 	/* This is a dummy value we need for GCC's sake. */
135 	unsigned int clobber;
136 
137 	/*
138 	 * Copy the guest-specific information into this CPU's "struct
139 	 * lguest_pages".
140 	 */
141 	copy_in_guest_info(cpu, pages);
142 
143 	/*
144 	 * Set the trap number to 256 (impossible value).  If we fault while
145 	 * switching to the Guest (bad segment registers or bug), this will
146 	 * cause us to abort the Guest.
147 	 */
148 	cpu->regs->trapnum = 256;
149 
150 	/*
151 	 * Now: we push the "eflags" register on the stack, then do an "lcall".
152 	 * This is how we change from using the kernel code segment to using
153 	 * the dedicated lguest code segment, as well as jumping into the
154 	 * Switcher.
155 	 *
156 	 * The lcall also pushes the old code segment (KERNEL_CS) onto the
157 	 * stack, then the address of this call.  This stack layout happens to
158 	 * exactly match the stack layout created by an interrupt...
159 	 */
160 	asm volatile("pushf; lcall *lguest_entry"
161 		     /*
162 		      * This is how we tell GCC that %eax ("a") and %ebx ("b")
163 		      * are changed by this routine.  The "=" means output.
164 		      */
165 		     : "=a"(clobber), "=b"(clobber)
166 		     /*
167 		      * %eax contains the pages pointer.  ("0" refers to the
168 		      * 0-th argument above, ie "a").  %ebx contains the
169 		      * physical address of the Guest's top-level page
170 		      * directory.
171 		      */
172 		     : "0"(pages), "1"(__pa(cpu->lg->pgdirs[cpu->cpu_pgd].pgdir))
173 		     /*
174 		      * We tell gcc that all these registers could change,
175 		      * which means we don't have to save and restore them in
176 		      * the Switcher.
177 		      */
178 		     : "memory", "%edx", "%ecx", "%edi", "%esi");
179 }
180 /*:*/
181 
182 /*M:002
183  * There are hooks in the scheduler which we can register to tell when we
184  * get kicked off the CPU (preempt_notifier_register()).  This would allow us
185  * to lazily disable SYSENTER which would regain some performance, and should
186  * also simplify copy_in_guest_info().  Note that we'd still need to restore
187  * things when we exit to Launcher userspace, but that's fairly easy.
188  *
189  * We could also try using these hooks for PGE, but that might be too expensive.
190  *
191  * The hooks were designed for KVM, but we can also put them to good use.
192 :*/
193 
194 /*H:040
195  * This is the i386-specific code to setup and run the Guest.  Interrupts
196  * are disabled: we own the CPU.
197  */
lguest_arch_run_guest(struct lg_cpu * cpu)198 void lguest_arch_run_guest(struct lg_cpu *cpu)
199 {
200 	/*
201 	 * Remember the awfully-named TS bit?  If the Guest has asked to set it
202 	 * we set it now, so we can trap and pass that trap to the Guest if it
203 	 * uses the FPU.
204 	 */
205 	if (cpu->ts && user_has_fpu())
206 		stts();
207 
208 	/*
209 	 * SYSENTER is an optimized way of doing system calls.  We can't allow
210 	 * it because it always jumps to privilege level 0.  A normal Guest
211 	 * won't try it because we don't advertise it in CPUID, but a malicious
212 	 * Guest (or malicious Guest userspace program) could, so we tell the
213 	 * CPU to disable it before running the Guest.
214 	 */
215 	if (boot_cpu_has(X86_FEATURE_SEP))
216 		wrmsr(MSR_IA32_SYSENTER_CS, 0, 0);
217 
218 	/*
219 	 * Now we actually run the Guest.  It will return when something
220 	 * interesting happens, and we can examine its registers to see what it
221 	 * was doing.
222 	 */
223 	run_guest_once(cpu, lguest_pages(raw_smp_processor_id()));
224 
225 	/*
226 	 * Note that the "regs" structure contains two extra entries which are
227 	 * not really registers: a trap number which says what interrupt or
228 	 * trap made the switcher code come back, and an error code which some
229 	 * traps set.
230 	 */
231 
232 	 /* Restore SYSENTER if it's supposed to be on. */
233 	 if (boot_cpu_has(X86_FEATURE_SEP))
234 		wrmsr(MSR_IA32_SYSENTER_CS, __KERNEL_CS, 0);
235 
236 	/* Clear the host TS bit if it was set above. */
237 	if (cpu->ts && user_has_fpu())
238 		clts();
239 
240 	/*
241 	 * If the Guest page faulted, then the cr2 register will tell us the
242 	 * bad virtual address.  We have to grab this now, because once we
243 	 * re-enable interrupts an interrupt could fault and thus overwrite
244 	 * cr2, or we could even move off to a different CPU.
245 	 */
246 	if (cpu->regs->trapnum == 14)
247 		cpu->arch.last_pagefault = read_cr2();
248 	/*
249 	 * Similarly, if we took a trap because the Guest used the FPU,
250 	 * we have to restore the FPU it expects to see.
251 	 * math_state_restore() may sleep and we may even move off to
252 	 * a different CPU. So all the critical stuff should be done
253 	 * before this.
254 	 */
255 	else if (cpu->regs->trapnum == 7 && !user_has_fpu())
256 		math_state_restore();
257 }
258 
259 /*H:130
260  * Now we've examined the hypercall code; our Guest can make requests.
261  * Our Guest is usually so well behaved; it never tries to do things it isn't
262  * allowed to, and uses hypercalls instead.  Unfortunately, Linux's paravirtual
263  * infrastructure isn't quite complete, because it doesn't contain replacements
264  * for the Intel I/O instructions.  As a result, the Guest sometimes fumbles
265  * across one during the boot process as it probes for various things which are
266  * usually attached to a PC.
267  *
268  * When the Guest uses one of these instructions, we get a trap (General
269  * Protection Fault) and come here.  We see if it's one of those troublesome
270  * instructions and skip over it.  We return true if we did.
271  */
emulate_insn(struct lg_cpu * cpu)272 static int emulate_insn(struct lg_cpu *cpu)
273 {
274 	u8 insn;
275 	unsigned int insnlen = 0, in = 0, small_operand = 0;
276 	/*
277 	 * The eip contains the *virtual* address of the Guest's instruction:
278 	 * walk the Guest's page tables to find the "physical" address.
279 	 */
280 	unsigned long physaddr = guest_pa(cpu, cpu->regs->eip);
281 
282 	/*
283 	 * This must be the Guest kernel trying to do something, not userspace!
284 	 * The bottom two bits of the CS segment register are the privilege
285 	 * level.
286 	 */
287 	if ((cpu->regs->cs & 3) != GUEST_PL)
288 		return 0;
289 
290 	/* Decoding x86 instructions is icky. */
291 	insn = lgread(cpu, physaddr, u8);
292 
293 	/*
294 	 * Around 2.6.33, the kernel started using an emulation for the
295 	 * cmpxchg8b instruction in early boot on many configurations.  This
296 	 * code isn't paravirtualized, and it tries to disable interrupts.
297 	 * Ignore it, which will Mostly Work.
298 	 */
299 	if (insn == 0xfa) {
300 		/* "cli", or Clear Interrupt Enable instruction.  Skip it. */
301 		cpu->regs->eip++;
302 		return 1;
303 	}
304 
305 	/*
306 	 * 0x66 is an "operand prefix".  It means a 16, not 32 bit in/out.
307 	 */
308 	if (insn == 0x66) {
309 		small_operand = 1;
310 		/* The instruction is 1 byte so far, read the next byte. */
311 		insnlen = 1;
312 		insn = lgread(cpu, physaddr + insnlen, u8);
313 	}
314 
315 	/*
316 	 * We can ignore the lower bit for the moment and decode the 4 opcodes
317 	 * we need to emulate.
318 	 */
319 	switch (insn & 0xFE) {
320 	case 0xE4: /* in     <next byte>,%al */
321 		insnlen += 2;
322 		in = 1;
323 		break;
324 	case 0xEC: /* in     (%dx),%al */
325 		insnlen += 1;
326 		in = 1;
327 		break;
328 	case 0xE6: /* out    %al,<next byte> */
329 		insnlen += 2;
330 		break;
331 	case 0xEE: /* out    %al,(%dx) */
332 		insnlen += 1;
333 		break;
334 	default:
335 		/* OK, we don't know what this is, can't emulate. */
336 		return 0;
337 	}
338 
339 	/*
340 	 * If it was an "IN" instruction, they expect the result to be read
341 	 * into %eax, so we change %eax.  We always return all-ones, which
342 	 * traditionally means "there's nothing there".
343 	 */
344 	if (in) {
345 		/* Lower bit tells means it's a 32/16 bit access */
346 		if (insn & 0x1) {
347 			if (small_operand)
348 				cpu->regs->eax |= 0xFFFF;
349 			else
350 				cpu->regs->eax = 0xFFFFFFFF;
351 		} else
352 			cpu->regs->eax |= 0xFF;
353 	}
354 	/* Finally, we've "done" the instruction, so move past it. */
355 	cpu->regs->eip += insnlen;
356 	/* Success! */
357 	return 1;
358 }
359 
360 /*H:050 Once we've re-enabled interrupts, we look at why the Guest exited. */
lguest_arch_handle_trap(struct lg_cpu * cpu)361 void lguest_arch_handle_trap(struct lg_cpu *cpu)
362 {
363 	switch (cpu->regs->trapnum) {
364 	case 13: /* We've intercepted a General Protection Fault. */
365 		/*
366 		 * Check if this was one of those annoying IN or OUT
367 		 * instructions which we need to emulate.  If so, we just go
368 		 * back into the Guest after we've done it.
369 		 */
370 		if (cpu->regs->errcode == 0) {
371 			if (emulate_insn(cpu))
372 				return;
373 		}
374 		break;
375 	case 14: /* We've intercepted a Page Fault. */
376 		/*
377 		 * The Guest accessed a virtual address that wasn't mapped.
378 		 * This happens a lot: we don't actually set up most of the page
379 		 * tables for the Guest at all when we start: as it runs it asks
380 		 * for more and more, and we set them up as required. In this
381 		 * case, we don't even tell the Guest that the fault happened.
382 		 *
383 		 * The errcode tells whether this was a read or a write, and
384 		 * whether kernel or userspace code.
385 		 */
386 		if (demand_page(cpu, cpu->arch.last_pagefault,
387 				cpu->regs->errcode))
388 			return;
389 
390 		/*
391 		 * OK, it's really not there (or not OK): the Guest needs to
392 		 * know.  We write out the cr2 value so it knows where the
393 		 * fault occurred.
394 		 *
395 		 * Note that if the Guest were really messed up, this could
396 		 * happen before it's done the LHCALL_LGUEST_INIT hypercall, so
397 		 * lg->lguest_data could be NULL
398 		 */
399 		if (cpu->lg->lguest_data &&
400 		    put_user(cpu->arch.last_pagefault,
401 			     &cpu->lg->lguest_data->cr2))
402 			kill_guest(cpu, "Writing cr2");
403 		break;
404 	case 7: /* We've intercepted a Device Not Available fault. */
405 		/*
406 		 * If the Guest doesn't want to know, we already restored the
407 		 * Floating Point Unit, so we just continue without telling it.
408 		 */
409 		if (!cpu->ts)
410 			return;
411 		break;
412 	case 32 ... 255:
413 		/*
414 		 * These values mean a real interrupt occurred, in which case
415 		 * the Host handler has already been run. We just do a
416 		 * friendly check if another process should now be run, then
417 		 * return to run the Guest again.
418 		 */
419 		cond_resched();
420 		return;
421 	case LGUEST_TRAP_ENTRY:
422 		/*
423 		 * Our 'struct hcall_args' maps directly over our regs: we set
424 		 * up the pointer now to indicate a hypercall is pending.
425 		 */
426 		cpu->hcall = (struct hcall_args *)cpu->regs;
427 		return;
428 	}
429 
430 	/* We didn't handle the trap, so it needs to go to the Guest. */
431 	if (!deliver_trap(cpu, cpu->regs->trapnum))
432 		/*
433 		 * If the Guest doesn't have a handler (either it hasn't
434 		 * registered any yet, or it's one of the faults we don't let
435 		 * it handle), it dies with this cryptic error message.
436 		 */
437 		kill_guest(cpu, "unhandled trap %li at %#lx (%#lx)",
438 			   cpu->regs->trapnum, cpu->regs->eip,
439 			   cpu->regs->trapnum == 14 ? cpu->arch.last_pagefault
440 			   : cpu->regs->errcode);
441 }
442 
443 /*
444  * Now we can look at each of the routines this calls, in increasing order of
445  * complexity: do_hypercalls(), emulate_insn(), maybe_do_interrupt(),
446  * deliver_trap() and demand_page().  After all those, we'll be ready to
447  * examine the Switcher, and our philosophical understanding of the Host/Guest
448  * duality will be complete.
449 :*/
adjust_pge(void * on)450 static void adjust_pge(void *on)
451 {
452 	if (on)
453 		write_cr4(read_cr4() | X86_CR4_PGE);
454 	else
455 		write_cr4(read_cr4() & ~X86_CR4_PGE);
456 }
457 
458 /*H:020
459  * Now the Switcher is mapped and every thing else is ready, we need to do
460  * some more i386-specific initialization.
461  */
lguest_arch_host_init(void)462 void __init lguest_arch_host_init(void)
463 {
464 	int i;
465 
466 	/*
467 	 * Most of the x86/switcher_32.S doesn't care that it's been moved; on
468 	 * Intel, jumps are relative, and it doesn't access any references to
469 	 * external code or data.
470 	 *
471 	 * The only exception is the interrupt handlers in switcher.S: their
472 	 * addresses are placed in a table (default_idt_entries), so we need to
473 	 * update the table with the new addresses.  switcher_offset() is a
474 	 * convenience function which returns the distance between the
475 	 * compiled-in switcher code and the high-mapped copy we just made.
476 	 */
477 	for (i = 0; i < IDT_ENTRIES; i++)
478 		default_idt_entries[i] += switcher_offset();
479 
480 	/*
481 	 * Set up the Switcher's per-cpu areas.
482 	 *
483 	 * Each CPU gets two pages of its own within the high-mapped region
484 	 * (aka. "struct lguest_pages").  Much of this can be initialized now,
485 	 * but some depends on what Guest we are running (which is set up in
486 	 * copy_in_guest_info()).
487 	 */
488 	for_each_possible_cpu(i) {
489 		/* lguest_pages() returns this CPU's two pages. */
490 		struct lguest_pages *pages = lguest_pages(i);
491 		/* This is a convenience pointer to make the code neater. */
492 		struct lguest_ro_state *state = &pages->state;
493 
494 		/*
495 		 * The Global Descriptor Table: the Host has a different one
496 		 * for each CPU.  We keep a descriptor for the GDT which says
497 		 * where it is and how big it is (the size is actually the last
498 		 * byte, not the size, hence the "-1").
499 		 */
500 		state->host_gdt_desc.size = GDT_SIZE-1;
501 		state->host_gdt_desc.address = (long)get_cpu_gdt_table(i);
502 
503 		/*
504 		 * All CPUs on the Host use the same Interrupt Descriptor
505 		 * Table, so we just use store_idt(), which gets this CPU's IDT
506 		 * descriptor.
507 		 */
508 		store_idt(&state->host_idt_desc);
509 
510 		/*
511 		 * The descriptors for the Guest's GDT and IDT can be filled
512 		 * out now, too.  We copy the GDT & IDT into ->guest_gdt and
513 		 * ->guest_idt before actually running the Guest.
514 		 */
515 		state->guest_idt_desc.size = sizeof(state->guest_idt)-1;
516 		state->guest_idt_desc.address = (long)&state->guest_idt;
517 		state->guest_gdt_desc.size = sizeof(state->guest_gdt)-1;
518 		state->guest_gdt_desc.address = (long)&state->guest_gdt;
519 
520 		/*
521 		 * We know where we want the stack to be when the Guest enters
522 		 * the Switcher: in pages->regs.  The stack grows upwards, so
523 		 * we start it at the end of that structure.
524 		 */
525 		state->guest_tss.sp0 = (long)(&pages->regs + 1);
526 		/*
527 		 * And this is the GDT entry to use for the stack: we keep a
528 		 * couple of special LGUEST entries.
529 		 */
530 		state->guest_tss.ss0 = LGUEST_DS;
531 
532 		/*
533 		 * x86 can have a finegrained bitmap which indicates what I/O
534 		 * ports the process can use.  We set it to the end of our
535 		 * structure, meaning "none".
536 		 */
537 		state->guest_tss.io_bitmap_base = sizeof(state->guest_tss);
538 
539 		/*
540 		 * Some GDT entries are the same across all Guests, so we can
541 		 * set them up now.
542 		 */
543 		setup_default_gdt_entries(state);
544 		/* Most IDT entries are the same for all Guests, too.*/
545 		setup_default_idt_entries(state, default_idt_entries);
546 
547 		/*
548 		 * The Host needs to be able to use the LGUEST segments on this
549 		 * CPU, too, so put them in the Host GDT.
550 		 */
551 		get_cpu_gdt_table(i)[GDT_ENTRY_LGUEST_CS] = FULL_EXEC_SEGMENT;
552 		get_cpu_gdt_table(i)[GDT_ENTRY_LGUEST_DS] = FULL_SEGMENT;
553 	}
554 
555 	/*
556 	 * In the Switcher, we want the %cs segment register to use the
557 	 * LGUEST_CS GDT entry: we've put that in the Host and Guest GDTs, so
558 	 * it will be undisturbed when we switch.  To change %cs and jump we
559 	 * need this structure to feed to Intel's "lcall" instruction.
560 	 */
561 	lguest_entry.offset = (long)switch_to_guest + switcher_offset();
562 	lguest_entry.segment = LGUEST_CS;
563 
564 	/*
565 	 * Finally, we need to turn off "Page Global Enable".  PGE is an
566 	 * optimization where page table entries are specially marked to show
567 	 * they never change.  The Host kernel marks all the kernel pages this
568 	 * way because it's always present, even when userspace is running.
569 	 *
570 	 * Lguest breaks this: unbeknownst to the rest of the Host kernel, we
571 	 * switch to the Guest kernel.  If you don't disable this on all CPUs,
572 	 * you'll get really weird bugs that you'll chase for two days.
573 	 *
574 	 * I used to turn PGE off every time we switched to the Guest and back
575 	 * on when we return, but that slowed the Switcher down noticibly.
576 	 */
577 
578 	/*
579 	 * We don't need the complexity of CPUs coming and going while we're
580 	 * doing this.
581 	 */
582 	get_online_cpus();
583 	if (cpu_has_pge) { /* We have a broader idea of "global". */
584 		/* Remember that this was originally set (for cleanup). */
585 		cpu_had_pge = 1;
586 		/*
587 		 * adjust_pge is a helper function which sets or unsets the PGE
588 		 * bit on its CPU, depending on the argument (0 == unset).
589 		 */
590 		on_each_cpu(adjust_pge, (void *)0, 1);
591 		/* Turn off the feature in the global feature set. */
592 		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_PGE);
593 	}
594 	put_online_cpus();
595 }
596 /*:*/
597 
lguest_arch_host_fini(void)598 void __exit lguest_arch_host_fini(void)
599 {
600 	/* If we had PGE before we started, turn it back on now. */
601 	get_online_cpus();
602 	if (cpu_had_pge) {
603 		set_cpu_cap(&boot_cpu_data, X86_FEATURE_PGE);
604 		/* adjust_pge's argument "1" means set PGE. */
605 		on_each_cpu(adjust_pge, (void *)1, 1);
606 	}
607 	put_online_cpus();
608 }
609 
610 
611 /*H:122 The i386-specific hypercalls simply farm out to the right functions. */
lguest_arch_do_hcall(struct lg_cpu * cpu,struct hcall_args * args)612 int lguest_arch_do_hcall(struct lg_cpu *cpu, struct hcall_args *args)
613 {
614 	switch (args->arg0) {
615 	case LHCALL_LOAD_GDT_ENTRY:
616 		load_guest_gdt_entry(cpu, args->arg1, args->arg2, args->arg3);
617 		break;
618 	case LHCALL_LOAD_IDT_ENTRY:
619 		load_guest_idt_entry(cpu, args->arg1, args->arg2, args->arg3);
620 		break;
621 	case LHCALL_LOAD_TLS:
622 		guest_load_tls(cpu, args->arg1);
623 		break;
624 	default:
625 		/* Bad Guest.  Bad! */
626 		return -EIO;
627 	}
628 	return 0;
629 }
630 
631 /*H:126 i386-specific hypercall initialization: */
lguest_arch_init_hypercalls(struct lg_cpu * cpu)632 int lguest_arch_init_hypercalls(struct lg_cpu *cpu)
633 {
634 	u32 tsc_speed;
635 
636 	/*
637 	 * The pointer to the Guest's "struct lguest_data" is the only argument.
638 	 * We check that address now.
639 	 */
640 	if (!lguest_address_ok(cpu->lg, cpu->hcall->arg1,
641 			       sizeof(*cpu->lg->lguest_data)))
642 		return -EFAULT;
643 
644 	/*
645 	 * Having checked it, we simply set lg->lguest_data to point straight
646 	 * into the Launcher's memory at the right place and then use
647 	 * copy_to_user/from_user from now on, instead of lgread/write.  I put
648 	 * this in to show that I'm not immune to writing stupid
649 	 * optimizations.
650 	 */
651 	cpu->lg->lguest_data = cpu->lg->mem_base + cpu->hcall->arg1;
652 
653 	/*
654 	 * We insist that the Time Stamp Counter exist and doesn't change with
655 	 * cpu frequency.  Some devious chip manufacturers decided that TSC
656 	 * changes could be handled in software.  I decided that time going
657 	 * backwards might be good for benchmarks, but it's bad for users.
658 	 *
659 	 * We also insist that the TSC be stable: the kernel detects unreliable
660 	 * TSCs for its own purposes, and we use that here.
661 	 */
662 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) && !check_tsc_unstable())
663 		tsc_speed = tsc_khz;
664 	else
665 		tsc_speed = 0;
666 	if (put_user(tsc_speed, &cpu->lg->lguest_data->tsc_khz))
667 		return -EFAULT;
668 
669 	/* The interrupt code might not like the system call vector. */
670 	if (!check_syscall_vector(cpu->lg))
671 		kill_guest(cpu, "bad syscall vector");
672 
673 	return 0;
674 }
675 /*:*/
676 
677 /*L:030
678  * Most of the Guest's registers are left alone: we used get_zeroed_page() to
679  * allocate the structure, so they will be 0.
680  */
lguest_arch_setup_regs(struct lg_cpu * cpu,unsigned long start)681 void lguest_arch_setup_regs(struct lg_cpu *cpu, unsigned long start)
682 {
683 	struct lguest_regs *regs = cpu->regs;
684 
685 	/*
686 	 * There are four "segment" registers which the Guest needs to boot:
687 	 * The "code segment" register (cs) refers to the kernel code segment
688 	 * __KERNEL_CS, and the "data", "extra" and "stack" segment registers
689 	 * refer to the kernel data segment __KERNEL_DS.
690 	 *
691 	 * The privilege level is packed into the lower bits.  The Guest runs
692 	 * at privilege level 1 (GUEST_PL).
693 	 */
694 	regs->ds = regs->es = regs->ss = __KERNEL_DS|GUEST_PL;
695 	regs->cs = __KERNEL_CS|GUEST_PL;
696 
697 	/*
698 	 * The "eflags" register contains miscellaneous flags.  Bit 1 (0x002)
699 	 * is supposed to always be "1".  Bit 9 (0x200) controls whether
700 	 * interrupts are enabled.  We always leave interrupts enabled while
701 	 * running the Guest.
702 	 */
703 	regs->eflags = X86_EFLAGS_IF | X86_EFLAGS_BIT1;
704 
705 	/*
706 	 * The "Extended Instruction Pointer" register says where the Guest is
707 	 * running.
708 	 */
709 	regs->eip = start;
710 
711 	/*
712 	 * %esi points to our boot information, at physical address 0, so don't
713 	 * touch it.
714 	 */
715 
716 	/* There are a couple of GDT entries the Guest expects at boot. */
717 	setup_guest_gdt(cpu);
718 }
719