1 /* utility to create the register check tables
2 * this includes inlined list.h safe for userspace.
3 *
4 * Copyright 2009 Jerome Glisse
5 * Copyright 2009 Red Hat Inc.
6 *
7 * Authors:
8 * Jerome Glisse
9 * Dave Airlie
10 */
11
12 #include <sys/types.h>
13 #include <stdlib.h>
14 #include <string.h>
15 #include <stdio.h>
16 #include <regex.h>
17 #include <libgen.h>
18
19 #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
20 /**
21 * container_of - cast a member of a structure out to the containing structure
22 * @ptr: the pointer to the member.
23 * @type: the type of the container struct this is embedded in.
24 * @member: the name of the member within the struct.
25 *
26 */
27 #define container_of(ptr, type, member) ({ \
28 const typeof(((type *)0)->member)*__mptr = (ptr); \
29 (type *)((char *)__mptr - offsetof(type, member)); })
30
31 /*
32 * Simple doubly linked list implementation.
33 *
34 * Some of the internal functions ("__xxx") are useful when
35 * manipulating whole lists rather than single entries, as
36 * sometimes we already know the next/prev entries and we can
37 * generate better code by using them directly rather than
38 * using the generic single-entry routines.
39 */
40
41 struct list_head {
42 struct list_head *next, *prev;
43 };
44
45 #define LIST_HEAD_INIT(name) { &(name), &(name) }
46
47 #define LIST_HEAD(name) \
48 struct list_head name = LIST_HEAD_INIT(name)
49
INIT_LIST_HEAD(struct list_head * list)50 static inline void INIT_LIST_HEAD(struct list_head *list)
51 {
52 list->next = list;
53 list->prev = list;
54 }
55
56 /*
57 * Insert a new entry between two known consecutive entries.
58 *
59 * This is only for internal list manipulation where we know
60 * the prev/next entries already!
61 */
62 #ifndef CONFIG_DEBUG_LIST
__list_add(struct list_head * new,struct list_head * prev,struct list_head * next)63 static inline void __list_add(struct list_head *new,
64 struct list_head *prev, struct list_head *next)
65 {
66 next->prev = new;
67 new->next = next;
68 new->prev = prev;
69 prev->next = new;
70 }
71 #else
72 extern void __list_add(struct list_head *new,
73 struct list_head *prev, struct list_head *next);
74 #endif
75
76 /**
77 * list_add - add a new entry
78 * @new: new entry to be added
79 * @head: list head to add it after
80 *
81 * Insert a new entry after the specified head.
82 * This is good for implementing stacks.
83 */
list_add(struct list_head * new,struct list_head * head)84 static inline void list_add(struct list_head *new, struct list_head *head)
85 {
86 __list_add(new, head, head->next);
87 }
88
89 /**
90 * list_add_tail - add a new entry
91 * @new: new entry to be added
92 * @head: list head to add it before
93 *
94 * Insert a new entry before the specified head.
95 * This is useful for implementing queues.
96 */
list_add_tail(struct list_head * new,struct list_head * head)97 static inline void list_add_tail(struct list_head *new, struct list_head *head)
98 {
99 __list_add(new, head->prev, head);
100 }
101
102 /*
103 * Delete a list entry by making the prev/next entries
104 * point to each other.
105 *
106 * This is only for internal list manipulation where we know
107 * the prev/next entries already!
108 */
__list_del(struct list_head * prev,struct list_head * next)109 static inline void __list_del(struct list_head *prev, struct list_head *next)
110 {
111 next->prev = prev;
112 prev->next = next;
113 }
114
115 /**
116 * list_del - deletes entry from list.
117 * @entry: the element to delete from the list.
118 * Note: list_empty() on entry does not return true after this, the entry is
119 * in an undefined state.
120 */
121 #ifndef CONFIG_DEBUG_LIST
list_del(struct list_head * entry)122 static inline void list_del(struct list_head *entry)
123 {
124 __list_del(entry->prev, entry->next);
125 entry->next = (void *)0xDEADBEEF;
126 entry->prev = (void *)0xBEEFDEAD;
127 }
128 #else
129 extern void list_del(struct list_head *entry);
130 #endif
131
132 /**
133 * list_replace - replace old entry by new one
134 * @old : the element to be replaced
135 * @new : the new element to insert
136 *
137 * If @old was empty, it will be overwritten.
138 */
list_replace(struct list_head * old,struct list_head * new)139 static inline void list_replace(struct list_head *old, struct list_head *new)
140 {
141 new->next = old->next;
142 new->next->prev = new;
143 new->prev = old->prev;
144 new->prev->next = new;
145 }
146
list_replace_init(struct list_head * old,struct list_head * new)147 static inline void list_replace_init(struct list_head *old,
148 struct list_head *new)
149 {
150 list_replace(old, new);
151 INIT_LIST_HEAD(old);
152 }
153
154 /**
155 * list_del_init - deletes entry from list and reinitialize it.
156 * @entry: the element to delete from the list.
157 */
list_del_init(struct list_head * entry)158 static inline void list_del_init(struct list_head *entry)
159 {
160 __list_del(entry->prev, entry->next);
161 INIT_LIST_HEAD(entry);
162 }
163
164 /**
165 * list_move - delete from one list and add as another's head
166 * @list: the entry to move
167 * @head: the head that will precede our entry
168 */
list_move(struct list_head * list,struct list_head * head)169 static inline void list_move(struct list_head *list, struct list_head *head)
170 {
171 __list_del(list->prev, list->next);
172 list_add(list, head);
173 }
174
175 /**
176 * list_move_tail - delete from one list and add as another's tail
177 * @list: the entry to move
178 * @head: the head that will follow our entry
179 */
list_move_tail(struct list_head * list,struct list_head * head)180 static inline void list_move_tail(struct list_head *list,
181 struct list_head *head)
182 {
183 __list_del(list->prev, list->next);
184 list_add_tail(list, head);
185 }
186
187 /**
188 * list_is_last - tests whether @list is the last entry in list @head
189 * @list: the entry to test
190 * @head: the head of the list
191 */
list_is_last(const struct list_head * list,const struct list_head * head)192 static inline int list_is_last(const struct list_head *list,
193 const struct list_head *head)
194 {
195 return list->next == head;
196 }
197
198 /**
199 * list_empty - tests whether a list is empty
200 * @head: the list to test.
201 */
list_empty(const struct list_head * head)202 static inline int list_empty(const struct list_head *head)
203 {
204 return head->next == head;
205 }
206
207 /**
208 * list_empty_careful - tests whether a list is empty and not being modified
209 * @head: the list to test
210 *
211 * Description:
212 * tests whether a list is empty _and_ checks that no other CPU might be
213 * in the process of modifying either member (next or prev)
214 *
215 * NOTE: using list_empty_careful() without synchronization
216 * can only be safe if the only activity that can happen
217 * to the list entry is list_del_init(). Eg. it cannot be used
218 * if another CPU could re-list_add() it.
219 */
list_empty_careful(const struct list_head * head)220 static inline int list_empty_careful(const struct list_head *head)
221 {
222 struct list_head *next = head->next;
223 return (next == head) && (next == head->prev);
224 }
225
226 /**
227 * list_is_singular - tests whether a list has just one entry.
228 * @head: the list to test.
229 */
list_is_singular(const struct list_head * head)230 static inline int list_is_singular(const struct list_head *head)
231 {
232 return !list_empty(head) && (head->next == head->prev);
233 }
234
__list_cut_position(struct list_head * list,struct list_head * head,struct list_head * entry)235 static inline void __list_cut_position(struct list_head *list,
236 struct list_head *head,
237 struct list_head *entry)
238 {
239 struct list_head *new_first = entry->next;
240 list->next = head->next;
241 list->next->prev = list;
242 list->prev = entry;
243 entry->next = list;
244 head->next = new_first;
245 new_first->prev = head;
246 }
247
248 /**
249 * list_cut_position - cut a list into two
250 * @list: a new list to add all removed entries
251 * @head: a list with entries
252 * @entry: an entry within head, could be the head itself
253 * and if so we won't cut the list
254 *
255 * This helper moves the initial part of @head, up to and
256 * including @entry, from @head to @list. You should
257 * pass on @entry an element you know is on @head. @list
258 * should be an empty list or a list you do not care about
259 * losing its data.
260 *
261 */
list_cut_position(struct list_head * list,struct list_head * head,struct list_head * entry)262 static inline void list_cut_position(struct list_head *list,
263 struct list_head *head,
264 struct list_head *entry)
265 {
266 if (list_empty(head))
267 return;
268 if (list_is_singular(head) && (head->next != entry && head != entry))
269 return;
270 if (entry == head)
271 INIT_LIST_HEAD(list);
272 else
273 __list_cut_position(list, head, entry);
274 }
275
__list_splice(const struct list_head * list,struct list_head * prev,struct list_head * next)276 static inline void __list_splice(const struct list_head *list,
277 struct list_head *prev, struct list_head *next)
278 {
279 struct list_head *first = list->next;
280 struct list_head *last = list->prev;
281
282 first->prev = prev;
283 prev->next = first;
284
285 last->next = next;
286 next->prev = last;
287 }
288
289 /**
290 * list_splice - join two lists, this is designed for stacks
291 * @list: the new list to add.
292 * @head: the place to add it in the first list.
293 */
list_splice(const struct list_head * list,struct list_head * head)294 static inline void list_splice(const struct list_head *list,
295 struct list_head *head)
296 {
297 if (!list_empty(list))
298 __list_splice(list, head, head->next);
299 }
300
301 /**
302 * list_splice_tail - join two lists, each list being a queue
303 * @list: the new list to add.
304 * @head: the place to add it in the first list.
305 */
list_splice_tail(struct list_head * list,struct list_head * head)306 static inline void list_splice_tail(struct list_head *list,
307 struct list_head *head)
308 {
309 if (!list_empty(list))
310 __list_splice(list, head->prev, head);
311 }
312
313 /**
314 * list_splice_init - join two lists and reinitialise the emptied list.
315 * @list: the new list to add.
316 * @head: the place to add it in the first list.
317 *
318 * The list at @list is reinitialised
319 */
list_splice_init(struct list_head * list,struct list_head * head)320 static inline void list_splice_init(struct list_head *list,
321 struct list_head *head)
322 {
323 if (!list_empty(list)) {
324 __list_splice(list, head, head->next);
325 INIT_LIST_HEAD(list);
326 }
327 }
328
329 /**
330 * list_splice_tail_init - join two lists and reinitialise the emptied list
331 * @list: the new list to add.
332 * @head: the place to add it in the first list.
333 *
334 * Each of the lists is a queue.
335 * The list at @list is reinitialised
336 */
list_splice_tail_init(struct list_head * list,struct list_head * head)337 static inline void list_splice_tail_init(struct list_head *list,
338 struct list_head *head)
339 {
340 if (!list_empty(list)) {
341 __list_splice(list, head->prev, head);
342 INIT_LIST_HEAD(list);
343 }
344 }
345
346 /**
347 * list_entry - get the struct for this entry
348 * @ptr: the &struct list_head pointer.
349 * @type: the type of the struct this is embedded in.
350 * @member: the name of the list_struct within the struct.
351 */
352 #define list_entry(ptr, type, member) \
353 container_of(ptr, type, member)
354
355 /**
356 * list_first_entry - get the first element from a list
357 * @ptr: the list head to take the element from.
358 * @type: the type of the struct this is embedded in.
359 * @member: the name of the list_struct within the struct.
360 *
361 * Note, that list is expected to be not empty.
362 */
363 #define list_first_entry(ptr, type, member) \
364 list_entry((ptr)->next, type, member)
365
366 /**
367 * list_for_each - iterate over a list
368 * @pos: the &struct list_head to use as a loop cursor.
369 * @head: the head for your list.
370 */
371 #define list_for_each(pos, head) \
372 for (pos = (head)->next; prefetch(pos->next), pos != (head); \
373 pos = pos->next)
374
375 /**
376 * __list_for_each - iterate over a list
377 * @pos: the &struct list_head to use as a loop cursor.
378 * @head: the head for your list.
379 *
380 * This variant differs from list_for_each() in that it's the
381 * simplest possible list iteration code, no prefetching is done.
382 * Use this for code that knows the list to be very short (empty
383 * or 1 entry) most of the time.
384 */
385 #define __list_for_each(pos, head) \
386 for (pos = (head)->next; pos != (head); pos = pos->next)
387
388 /**
389 * list_for_each_prev - iterate over a list backwards
390 * @pos: the &struct list_head to use as a loop cursor.
391 * @head: the head for your list.
392 */
393 #define list_for_each_prev(pos, head) \
394 for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \
395 pos = pos->prev)
396
397 /**
398 * list_for_each_safe - iterate over a list safe against removal of list entry
399 * @pos: the &struct list_head to use as a loop cursor.
400 * @n: another &struct list_head to use as temporary storage
401 * @head: the head for your list.
402 */
403 #define list_for_each_safe(pos, n, head) \
404 for (pos = (head)->next, n = pos->next; pos != (head); \
405 pos = n, n = pos->next)
406
407 /**
408 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
409 * @pos: the &struct list_head to use as a loop cursor.
410 * @n: another &struct list_head to use as temporary storage
411 * @head: the head for your list.
412 */
413 #define list_for_each_prev_safe(pos, n, head) \
414 for (pos = (head)->prev, n = pos->prev; \
415 prefetch(pos->prev), pos != (head); \
416 pos = n, n = pos->prev)
417
418 /**
419 * list_for_each_entry - iterate over list of given type
420 * @pos: the type * to use as a loop cursor.
421 * @head: the head for your list.
422 * @member: the name of the list_struct within the struct.
423 */
424 #define list_for_each_entry(pos, head, member) \
425 for (pos = list_entry((head)->next, typeof(*pos), member); \
426 &pos->member != (head); \
427 pos = list_entry(pos->member.next, typeof(*pos), member))
428
429 /**
430 * list_for_each_entry_reverse - iterate backwards over list of given type.
431 * @pos: the type * to use as a loop cursor.
432 * @head: the head for your list.
433 * @member: the name of the list_struct within the struct.
434 */
435 #define list_for_each_entry_reverse(pos, head, member) \
436 for (pos = list_entry((head)->prev, typeof(*pos), member); \
437 prefetch(pos->member.prev), &pos->member != (head); \
438 pos = list_entry(pos->member.prev, typeof(*pos), member))
439
440 /**
441 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
442 * @pos: the type * to use as a start point
443 * @head: the head of the list
444 * @member: the name of the list_struct within the struct.
445 *
446 * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
447 */
448 #define list_prepare_entry(pos, head, member) \
449 ((pos) ? : list_entry(head, typeof(*pos), member))
450
451 /**
452 * list_for_each_entry_continue - continue iteration over list of given type
453 * @pos: the type * to use as a loop cursor.
454 * @head: the head for your list.
455 * @member: the name of the list_struct within the struct.
456 *
457 * Continue to iterate over list of given type, continuing after
458 * the current position.
459 */
460 #define list_for_each_entry_continue(pos, head, member) \
461 for (pos = list_entry(pos->member.next, typeof(*pos), member); \
462 prefetch(pos->member.next), &pos->member != (head); \
463 pos = list_entry(pos->member.next, typeof(*pos), member))
464
465 /**
466 * list_for_each_entry_continue_reverse - iterate backwards from the given point
467 * @pos: the type * to use as a loop cursor.
468 * @head: the head for your list.
469 * @member: the name of the list_struct within the struct.
470 *
471 * Start to iterate over list of given type backwards, continuing after
472 * the current position.
473 */
474 #define list_for_each_entry_continue_reverse(pos, head, member) \
475 for (pos = list_entry(pos->member.prev, typeof(*pos), member); \
476 prefetch(pos->member.prev), &pos->member != (head); \
477 pos = list_entry(pos->member.prev, typeof(*pos), member))
478
479 /**
480 * list_for_each_entry_from - iterate over list of given type from the current point
481 * @pos: the type * to use as a loop cursor.
482 * @head: the head for your list.
483 * @member: the name of the list_struct within the struct.
484 *
485 * Iterate over list of given type, continuing from current position.
486 */
487 #define list_for_each_entry_from(pos, head, member) \
488 for (; prefetch(pos->member.next), &pos->member != (head); \
489 pos = list_entry(pos->member.next, typeof(*pos), member))
490
491 /**
492 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
493 * @pos: the type * to use as a loop cursor.
494 * @n: another type * to use as temporary storage
495 * @head: the head for your list.
496 * @member: the name of the list_struct within the struct.
497 */
498 #define list_for_each_entry_safe(pos, n, head, member) \
499 for (pos = list_entry((head)->next, typeof(*pos), member), \
500 n = list_entry(pos->member.next, typeof(*pos), member); \
501 &pos->member != (head); \
502 pos = n, n = list_entry(n->member.next, typeof(*n), member))
503
504 /**
505 * list_for_each_entry_safe_continue
506 * @pos: the type * to use as a loop cursor.
507 * @n: another type * to use as temporary storage
508 * @head: the head for your list.
509 * @member: the name of the list_struct within the struct.
510 *
511 * Iterate over list of given type, continuing after current point,
512 * safe against removal of list entry.
513 */
514 #define list_for_each_entry_safe_continue(pos, n, head, member) \
515 for (pos = list_entry(pos->member.next, typeof(*pos), member), \
516 n = list_entry(pos->member.next, typeof(*pos), member); \
517 &pos->member != (head); \
518 pos = n, n = list_entry(n->member.next, typeof(*n), member))
519
520 /**
521 * list_for_each_entry_safe_from
522 * @pos: the type * to use as a loop cursor.
523 * @n: another type * to use as temporary storage
524 * @head: the head for your list.
525 * @member: the name of the list_struct within the struct.
526 *
527 * Iterate over list of given type from current point, safe against
528 * removal of list entry.
529 */
530 #define list_for_each_entry_safe_from(pos, n, head, member) \
531 for (n = list_entry(pos->member.next, typeof(*pos), member); \
532 &pos->member != (head); \
533 pos = n, n = list_entry(n->member.next, typeof(*n), member))
534
535 /**
536 * list_for_each_entry_safe_reverse
537 * @pos: the type * to use as a loop cursor.
538 * @n: another type * to use as temporary storage
539 * @head: the head for your list.
540 * @member: the name of the list_struct within the struct.
541 *
542 * Iterate backwards over list of given type, safe against removal
543 * of list entry.
544 */
545 #define list_for_each_entry_safe_reverse(pos, n, head, member) \
546 for (pos = list_entry((head)->prev, typeof(*pos), member), \
547 n = list_entry(pos->member.prev, typeof(*pos), member); \
548 &pos->member != (head); \
549 pos = n, n = list_entry(n->member.prev, typeof(*n), member))
550
551 struct offset {
552 struct list_head list;
553 unsigned offset;
554 };
555
556 struct table {
557 struct list_head offsets;
558 unsigned offset_max;
559 unsigned nentry;
560 unsigned *table;
561 char *gpu_prefix;
562 };
563
offset_new(unsigned o)564 static struct offset *offset_new(unsigned o)
565 {
566 struct offset *offset;
567
568 offset = (struct offset *)malloc(sizeof(struct offset));
569 if (offset) {
570 INIT_LIST_HEAD(&offset->list);
571 offset->offset = o;
572 }
573 return offset;
574 }
575
table_offset_add(struct table * t,struct offset * offset)576 static void table_offset_add(struct table *t, struct offset *offset)
577 {
578 list_add_tail(&offset->list, &t->offsets);
579 }
580
table_init(struct table * t)581 static void table_init(struct table *t)
582 {
583 INIT_LIST_HEAD(&t->offsets);
584 t->offset_max = 0;
585 t->nentry = 0;
586 t->table = NULL;
587 }
588
table_print(struct table * t)589 static void table_print(struct table *t)
590 {
591 unsigned nlloop, i, j, n, c, id;
592
593 nlloop = (t->nentry + 3) / 4;
594 c = t->nentry;
595 printf("static const unsigned %s_reg_safe_bm[%d] = {\n", t->gpu_prefix,
596 t->nentry);
597 for (i = 0, id = 0; i < nlloop; i++) {
598 n = 4;
599 if (n > c)
600 n = c;
601 c -= n;
602 for (j = 0; j < n; j++) {
603 if (j == 0)
604 printf("\t");
605 else
606 printf(" ");
607 printf("0x%08X,", t->table[id++]);
608 }
609 printf("\n");
610 }
611 printf("};\n");
612 }
613
table_build(struct table * t)614 static int table_build(struct table *t)
615 {
616 struct offset *offset;
617 unsigned i, m;
618
619 t->nentry = ((t->offset_max >> 2) + 31) / 32;
620 t->table = (unsigned *)malloc(sizeof(unsigned) * t->nentry);
621 if (t->table == NULL)
622 return -1;
623 memset(t->table, 0xff, sizeof(unsigned) * t->nentry);
624 list_for_each_entry(offset, &t->offsets, list) {
625 i = (offset->offset >> 2) / 32;
626 m = (offset->offset >> 2) & 31;
627 m = 1 << m;
628 t->table[i] ^= m;
629 }
630 return 0;
631 }
632
633 static char gpu_name[10];
parser_auth(struct table * t,const char * filename)634 static int parser_auth(struct table *t, const char *filename)
635 {
636 FILE *file;
637 regex_t mask_rex;
638 regmatch_t match[4];
639 char buf[1024];
640 size_t end;
641 int len;
642 int done = 0;
643 int r;
644 unsigned o;
645 struct offset *offset;
646 char last_reg_s[10];
647 int last_reg;
648
649 if (regcomp
650 (&mask_rex, "(0x[0-9a-fA-F]*) *([_a-zA-Z0-9]*)", REG_EXTENDED)) {
651 fprintf(stderr, "Failed to compile regular expression\n");
652 return -1;
653 }
654 file = fopen(filename, "r");
655 if (file == NULL) {
656 fprintf(stderr, "Failed to open: %s\n", filename);
657 return -1;
658 }
659 fseek(file, 0, SEEK_END);
660 end = ftell(file);
661 fseek(file, 0, SEEK_SET);
662
663 /* get header */
664 if (fgets(buf, 1024, file) == NULL) {
665 fclose(file);
666 return -1;
667 }
668
669 /* first line will contain the last register
670 * and gpu name */
671 sscanf(buf, "%s %s", gpu_name, last_reg_s);
672 t->gpu_prefix = gpu_name;
673 last_reg = strtol(last_reg_s, NULL, 16);
674
675 do {
676 if (fgets(buf, 1024, file) == NULL) {
677 fclose(file);
678 return -1;
679 }
680 len = strlen(buf);
681 if (ftell(file) == end)
682 done = 1;
683 if (len) {
684 r = regexec(&mask_rex, buf, 4, match, 0);
685 if (r == REG_NOMATCH) {
686 } else if (r) {
687 fprintf(stderr,
688 "Error matching regular expression %d in %s\n",
689 r, filename);
690 fclose(file);
691 return -1;
692 } else {
693 buf[match[0].rm_eo] = 0;
694 buf[match[1].rm_eo] = 0;
695 buf[match[2].rm_eo] = 0;
696 o = strtol(&buf[match[1].rm_so], NULL, 16);
697 offset = offset_new(o);
698 table_offset_add(t, offset);
699 if (o > t->offset_max)
700 t->offset_max = o;
701 }
702 }
703 } while (!done);
704 fclose(file);
705 if (t->offset_max < last_reg)
706 t->offset_max = last_reg;
707 return table_build(t);
708 }
709
main(int argc,char * argv[])710 int main(int argc, char *argv[])
711 {
712 struct table t;
713
714 if (argc != 2) {
715 fprintf(stderr, "Usage: %s <authfile>\n", argv[0]);
716 exit(1);
717 }
718 table_init(&t);
719 if (parser_auth(&t, argv[1])) {
720 fprintf(stderr, "Failed to parse file %s\n", argv[1]);
721 return -1;
722 }
723 table_print(&t);
724 return 0;
725 }
726