• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Initialize MMU support.
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *	David Mosberger-Tang <davidm@hpl.hp.com>
6  */
7 #include <linux/kernel.h>
8 #include <linux/init.h>
9 
10 #include <linux/bootmem.h>
11 #include <linux/efi.h>
12 #include <linux/elf.h>
13 #include <linux/memblock.h>
14 #include <linux/mm.h>
15 #include <linux/mmzone.h>
16 #include <linux/module.h>
17 #include <linux/personality.h>
18 #include <linux/reboot.h>
19 #include <linux/slab.h>
20 #include <linux/swap.h>
21 #include <linux/proc_fs.h>
22 #include <linux/bitops.h>
23 #include <linux/kexec.h>
24 
25 #include <asm/dma.h>
26 #include <asm/io.h>
27 #include <asm/machvec.h>
28 #include <asm/numa.h>
29 #include <asm/patch.h>
30 #include <asm/pgalloc.h>
31 #include <asm/sal.h>
32 #include <asm/sections.h>
33 #include <asm/tlb.h>
34 #include <asm/uaccess.h>
35 #include <asm/unistd.h>
36 #include <asm/mca.h>
37 #include <asm/paravirt.h>
38 
39 extern void ia64_tlb_init (void);
40 
41 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
42 
43 #ifdef CONFIG_VIRTUAL_MEM_MAP
44 unsigned long VMALLOC_END = VMALLOC_END_INIT;
45 EXPORT_SYMBOL(VMALLOC_END);
46 struct page *vmem_map;
47 EXPORT_SYMBOL(vmem_map);
48 #endif
49 
50 struct page *zero_page_memmap_ptr;	/* map entry for zero page */
51 EXPORT_SYMBOL(zero_page_memmap_ptr);
52 
53 void
__ia64_sync_icache_dcache(pte_t pte)54 __ia64_sync_icache_dcache (pte_t pte)
55 {
56 	unsigned long addr;
57 	struct page *page;
58 
59 	page = pte_page(pte);
60 	addr = (unsigned long) page_address(page);
61 
62 	if (test_bit(PG_arch_1, &page->flags))
63 		return;				/* i-cache is already coherent with d-cache */
64 
65 	flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
66 	set_bit(PG_arch_1, &page->flags);	/* mark page as clean */
67 }
68 
69 /*
70  * Since DMA is i-cache coherent, any (complete) pages that were written via
71  * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
72  * flush them when they get mapped into an executable vm-area.
73  */
74 void
dma_mark_clean(void * addr,size_t size)75 dma_mark_clean(void *addr, size_t size)
76 {
77 	unsigned long pg_addr, end;
78 
79 	pg_addr = PAGE_ALIGN((unsigned long) addr);
80 	end = (unsigned long) addr + size;
81 	while (pg_addr + PAGE_SIZE <= end) {
82 		struct page *page = virt_to_page(pg_addr);
83 		set_bit(PG_arch_1, &page->flags);
84 		pg_addr += PAGE_SIZE;
85 	}
86 }
87 
88 inline void
ia64_set_rbs_bot(void)89 ia64_set_rbs_bot (void)
90 {
91 	unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
92 
93 	if (stack_size > MAX_USER_STACK_SIZE)
94 		stack_size = MAX_USER_STACK_SIZE;
95 	current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
96 }
97 
98 /*
99  * This performs some platform-dependent address space initialization.
100  * On IA-64, we want to setup the VM area for the register backing
101  * store (which grows upwards) and install the gateway page which is
102  * used for signal trampolines, etc.
103  */
104 void
ia64_init_addr_space(void)105 ia64_init_addr_space (void)
106 {
107 	struct vm_area_struct *vma;
108 
109 	ia64_set_rbs_bot();
110 
111 	/*
112 	 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
113 	 * the problem.  When the process attempts to write to the register backing store
114 	 * for the first time, it will get a SEGFAULT in this case.
115 	 */
116 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
117 	if (vma) {
118 		INIT_LIST_HEAD(&vma->anon_vma_chain);
119 		vma->vm_mm = current->mm;
120 		vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
121 		vma->vm_end = vma->vm_start + PAGE_SIZE;
122 		vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
123 		vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
124 		down_write(&current->mm->mmap_sem);
125 		if (insert_vm_struct(current->mm, vma)) {
126 			up_write(&current->mm->mmap_sem);
127 			kmem_cache_free(vm_area_cachep, vma);
128 			return;
129 		}
130 		up_write(&current->mm->mmap_sem);
131 	}
132 
133 	/* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
134 	if (!(current->personality & MMAP_PAGE_ZERO)) {
135 		vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
136 		if (vma) {
137 			INIT_LIST_HEAD(&vma->anon_vma_chain);
138 			vma->vm_mm = current->mm;
139 			vma->vm_end = PAGE_SIZE;
140 			vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
141 			vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO |
142 					VM_DONTEXPAND | VM_DONTDUMP;
143 			down_write(&current->mm->mmap_sem);
144 			if (insert_vm_struct(current->mm, vma)) {
145 				up_write(&current->mm->mmap_sem);
146 				kmem_cache_free(vm_area_cachep, vma);
147 				return;
148 			}
149 			up_write(&current->mm->mmap_sem);
150 		}
151 	}
152 }
153 
154 void
free_initmem(void)155 free_initmem (void)
156 {
157 	free_reserved_area((unsigned long)ia64_imva(__init_begin),
158 			   (unsigned long)ia64_imva(__init_end),
159 			   0, "unused kernel");
160 }
161 
162 void __init
free_initrd_mem(unsigned long start,unsigned long end)163 free_initrd_mem (unsigned long start, unsigned long end)
164 {
165 	/*
166 	 * EFI uses 4KB pages while the kernel can use 4KB or bigger.
167 	 * Thus EFI and the kernel may have different page sizes. It is
168 	 * therefore possible to have the initrd share the same page as
169 	 * the end of the kernel (given current setup).
170 	 *
171 	 * To avoid freeing/using the wrong page (kernel sized) we:
172 	 *	- align up the beginning of initrd
173 	 *	- align down the end of initrd
174 	 *
175 	 *  |             |
176 	 *  |=============| a000
177 	 *  |             |
178 	 *  |             |
179 	 *  |             | 9000
180 	 *  |/////////////|
181 	 *  |/////////////|
182 	 *  |=============| 8000
183 	 *  |///INITRD////|
184 	 *  |/////////////|
185 	 *  |/////////////| 7000
186 	 *  |             |
187 	 *  |KKKKKKKKKKKKK|
188 	 *  |=============| 6000
189 	 *  |KKKKKKKKKKKKK|
190 	 *  |KKKKKKKKKKKKK|
191 	 *  K=kernel using 8KB pages
192 	 *
193 	 * In this example, we must free page 8000 ONLY. So we must align up
194 	 * initrd_start and keep initrd_end as is.
195 	 */
196 	start = PAGE_ALIGN(start);
197 	end = end & PAGE_MASK;
198 
199 	if (start < end)
200 		printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
201 
202 	for (; start < end; start += PAGE_SIZE) {
203 		if (!virt_addr_valid(start))
204 			continue;
205 		free_reserved_page(virt_to_page(start));
206 	}
207 }
208 
209 /*
210  * This installs a clean page in the kernel's page table.
211  */
212 static struct page * __init
put_kernel_page(struct page * page,unsigned long address,pgprot_t pgprot)213 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
214 {
215 	pgd_t *pgd;
216 	pud_t *pud;
217 	pmd_t *pmd;
218 	pte_t *pte;
219 
220 	if (!PageReserved(page))
221 		printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
222 		       page_address(page));
223 
224 	pgd = pgd_offset_k(address);		/* note: this is NOT pgd_offset()! */
225 
226 	{
227 		pud = pud_alloc(&init_mm, pgd, address);
228 		if (!pud)
229 			goto out;
230 		pmd = pmd_alloc(&init_mm, pud, address);
231 		if (!pmd)
232 			goto out;
233 		pte = pte_alloc_kernel(pmd, address);
234 		if (!pte)
235 			goto out;
236 		if (!pte_none(*pte))
237 			goto out;
238 		set_pte(pte, mk_pte(page, pgprot));
239 	}
240   out:
241 	/* no need for flush_tlb */
242 	return page;
243 }
244 
245 static void __init
setup_gate(void)246 setup_gate (void)
247 {
248 	void *gate_section;
249 	struct page *page;
250 
251 	/*
252 	 * Map the gate page twice: once read-only to export the ELF
253 	 * headers etc. and once execute-only page to enable
254 	 * privilege-promotion via "epc":
255 	 */
256 	gate_section = paravirt_get_gate_section();
257 	page = virt_to_page(ia64_imva(gate_section));
258 	put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
259 #ifdef HAVE_BUGGY_SEGREL
260 	page = virt_to_page(ia64_imva(gate_section + PAGE_SIZE));
261 	put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
262 #else
263 	put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
264 	/* Fill in the holes (if any) with read-only zero pages: */
265 	{
266 		unsigned long addr;
267 
268 		for (addr = GATE_ADDR + PAGE_SIZE;
269 		     addr < GATE_ADDR + PERCPU_PAGE_SIZE;
270 		     addr += PAGE_SIZE)
271 		{
272 			put_kernel_page(ZERO_PAGE(0), addr,
273 					PAGE_READONLY);
274 			put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
275 					PAGE_READONLY);
276 		}
277 	}
278 #endif
279 	ia64_patch_gate();
280 }
281 
ia64_mmu_init(void * my_cpu_data)282 void ia64_mmu_init(void *my_cpu_data)
283 {
284 	unsigned long pta, impl_va_bits;
285 	extern void tlb_init(void);
286 
287 #ifdef CONFIG_DISABLE_VHPT
288 #	define VHPT_ENABLE_BIT	0
289 #else
290 #	define VHPT_ENABLE_BIT	1
291 #endif
292 
293 	/*
294 	 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
295 	 * address space.  The IA-64 architecture guarantees that at least 50 bits of
296 	 * virtual address space are implemented but if we pick a large enough page size
297 	 * (e.g., 64KB), the mapped address space is big enough that it will overlap with
298 	 * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
299 	 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
300 	 * problem in practice.  Alternatively, we could truncate the top of the mapped
301 	 * address space to not permit mappings that would overlap with the VMLPT.
302 	 * --davidm 00/12/06
303 	 */
304 #	define pte_bits			3
305 #	define mapped_space_bits	(3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
306 	/*
307 	 * The virtual page table has to cover the entire implemented address space within
308 	 * a region even though not all of this space may be mappable.  The reason for
309 	 * this is that the Access bit and Dirty bit fault handlers perform
310 	 * non-speculative accesses to the virtual page table, so the address range of the
311 	 * virtual page table itself needs to be covered by virtual page table.
312 	 */
313 #	define vmlpt_bits		(impl_va_bits - PAGE_SHIFT + pte_bits)
314 #	define POW2(n)			(1ULL << (n))
315 
316 	impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
317 
318 	if (impl_va_bits < 51 || impl_va_bits > 61)
319 		panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
320 	/*
321 	 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
322 	 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
323 	 * the test makes sure that our mapped space doesn't overlap the
324 	 * unimplemented hole in the middle of the region.
325 	 */
326 	if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
327 	    (mapped_space_bits > impl_va_bits - 1))
328 		panic("Cannot build a big enough virtual-linear page table"
329 		      " to cover mapped address space.\n"
330 		      " Try using a smaller page size.\n");
331 
332 
333 	/* place the VMLPT at the end of each page-table mapped region: */
334 	pta = POW2(61) - POW2(vmlpt_bits);
335 
336 	/*
337 	 * Set the (virtually mapped linear) page table address.  Bit
338 	 * 8 selects between the short and long format, bits 2-7 the
339 	 * size of the table, and bit 0 whether the VHPT walker is
340 	 * enabled.
341 	 */
342 	ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
343 
344 	ia64_tlb_init();
345 
346 #ifdef	CONFIG_HUGETLB_PAGE
347 	ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
348 	ia64_srlz_d();
349 #endif
350 }
351 
352 #ifdef CONFIG_VIRTUAL_MEM_MAP
vmemmap_find_next_valid_pfn(int node,int i)353 int vmemmap_find_next_valid_pfn(int node, int i)
354 {
355 	unsigned long end_address, hole_next_pfn;
356 	unsigned long stop_address;
357 	pg_data_t *pgdat = NODE_DATA(node);
358 
359 	end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
360 	end_address = PAGE_ALIGN(end_address);
361 
362 	stop_address = (unsigned long) &vmem_map[
363 		pgdat->node_start_pfn + pgdat->node_spanned_pages];
364 
365 	do {
366 		pgd_t *pgd;
367 		pud_t *pud;
368 		pmd_t *pmd;
369 		pte_t *pte;
370 
371 		pgd = pgd_offset_k(end_address);
372 		if (pgd_none(*pgd)) {
373 			end_address += PGDIR_SIZE;
374 			continue;
375 		}
376 
377 		pud = pud_offset(pgd, end_address);
378 		if (pud_none(*pud)) {
379 			end_address += PUD_SIZE;
380 			continue;
381 		}
382 
383 		pmd = pmd_offset(pud, end_address);
384 		if (pmd_none(*pmd)) {
385 			end_address += PMD_SIZE;
386 			continue;
387 		}
388 
389 		pte = pte_offset_kernel(pmd, end_address);
390 retry_pte:
391 		if (pte_none(*pte)) {
392 			end_address += PAGE_SIZE;
393 			pte++;
394 			if ((end_address < stop_address) &&
395 			    (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
396 				goto retry_pte;
397 			continue;
398 		}
399 		/* Found next valid vmem_map page */
400 		break;
401 	} while (end_address < stop_address);
402 
403 	end_address = min(end_address, stop_address);
404 	end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
405 	hole_next_pfn = end_address / sizeof(struct page);
406 	return hole_next_pfn - pgdat->node_start_pfn;
407 }
408 
create_mem_map_page_table(u64 start,u64 end,void * arg)409 int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
410 {
411 	unsigned long address, start_page, end_page;
412 	struct page *map_start, *map_end;
413 	int node;
414 	pgd_t *pgd;
415 	pud_t *pud;
416 	pmd_t *pmd;
417 	pte_t *pte;
418 
419 	map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
420 	map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
421 
422 	start_page = (unsigned long) map_start & PAGE_MASK;
423 	end_page = PAGE_ALIGN((unsigned long) map_end);
424 	node = paddr_to_nid(__pa(start));
425 
426 	for (address = start_page; address < end_page; address += PAGE_SIZE) {
427 		pgd = pgd_offset_k(address);
428 		if (pgd_none(*pgd))
429 			pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
430 		pud = pud_offset(pgd, address);
431 
432 		if (pud_none(*pud))
433 			pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
434 		pmd = pmd_offset(pud, address);
435 
436 		if (pmd_none(*pmd))
437 			pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
438 		pte = pte_offset_kernel(pmd, address);
439 
440 		if (pte_none(*pte))
441 			set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
442 					     PAGE_KERNEL));
443 	}
444 	return 0;
445 }
446 
447 struct memmap_init_callback_data {
448 	struct page *start;
449 	struct page *end;
450 	int nid;
451 	unsigned long zone;
452 };
453 
454 static int __meminit
virtual_memmap_init(u64 start,u64 end,void * arg)455 virtual_memmap_init(u64 start, u64 end, void *arg)
456 {
457 	struct memmap_init_callback_data *args;
458 	struct page *map_start, *map_end;
459 
460 	args = (struct memmap_init_callback_data *) arg;
461 	map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
462 	map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
463 
464 	if (map_start < args->start)
465 		map_start = args->start;
466 	if (map_end > args->end)
467 		map_end = args->end;
468 
469 	/*
470 	 * We have to initialize "out of bounds" struct page elements that fit completely
471 	 * on the same pages that were allocated for the "in bounds" elements because they
472 	 * may be referenced later (and found to be "reserved").
473 	 */
474 	map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
475 	map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
476 		    / sizeof(struct page));
477 
478 	if (map_start < map_end)
479 		memmap_init_zone((unsigned long)(map_end - map_start),
480 				 args->nid, args->zone, page_to_pfn(map_start),
481 				 MEMMAP_EARLY);
482 	return 0;
483 }
484 
485 void __meminit
memmap_init(unsigned long size,int nid,unsigned long zone,unsigned long start_pfn)486 memmap_init (unsigned long size, int nid, unsigned long zone,
487 	     unsigned long start_pfn)
488 {
489 	if (!vmem_map)
490 		memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
491 	else {
492 		struct page *start;
493 		struct memmap_init_callback_data args;
494 
495 		start = pfn_to_page(start_pfn);
496 		args.start = start;
497 		args.end = start + size;
498 		args.nid = nid;
499 		args.zone = zone;
500 
501 		efi_memmap_walk(virtual_memmap_init, &args);
502 	}
503 }
504 
505 int
ia64_pfn_valid(unsigned long pfn)506 ia64_pfn_valid (unsigned long pfn)
507 {
508 	char byte;
509 	struct page *pg = pfn_to_page(pfn);
510 
511 	return     (__get_user(byte, (char __user *) pg) == 0)
512 		&& ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
513 			|| (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
514 }
515 EXPORT_SYMBOL(ia64_pfn_valid);
516 
find_largest_hole(u64 start,u64 end,void * arg)517 int __init find_largest_hole(u64 start, u64 end, void *arg)
518 {
519 	u64 *max_gap = arg;
520 
521 	static u64 last_end = PAGE_OFFSET;
522 
523 	/* NOTE: this algorithm assumes efi memmap table is ordered */
524 
525 	if (*max_gap < (start - last_end))
526 		*max_gap = start - last_end;
527 	last_end = end;
528 	return 0;
529 }
530 
531 #endif /* CONFIG_VIRTUAL_MEM_MAP */
532 
register_active_ranges(u64 start,u64 len,int nid)533 int __init register_active_ranges(u64 start, u64 len, int nid)
534 {
535 	u64 end = start + len;
536 
537 #ifdef CONFIG_KEXEC
538 	if (start > crashk_res.start && start < crashk_res.end)
539 		start = crashk_res.end;
540 	if (end > crashk_res.start && end < crashk_res.end)
541 		end = crashk_res.start;
542 #endif
543 
544 	if (start < end)
545 		memblock_add_node(__pa(start), end - start, nid);
546 	return 0;
547 }
548 
549 static int __init
count_reserved_pages(u64 start,u64 end,void * arg)550 count_reserved_pages(u64 start, u64 end, void *arg)
551 {
552 	unsigned long num_reserved = 0;
553 	unsigned long *count = arg;
554 
555 	for (; start < end; start += PAGE_SIZE)
556 		if (PageReserved(virt_to_page(start)))
557 			++num_reserved;
558 	*count += num_reserved;
559 	return 0;
560 }
561 
562 int
find_max_min_low_pfn(u64 start,u64 end,void * arg)563 find_max_min_low_pfn (u64 start, u64 end, void *arg)
564 {
565 	unsigned long pfn_start, pfn_end;
566 #ifdef CONFIG_FLATMEM
567 	pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
568 	pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
569 #else
570 	pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
571 	pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
572 #endif
573 	min_low_pfn = min(min_low_pfn, pfn_start);
574 	max_low_pfn = max(max_low_pfn, pfn_end);
575 	return 0;
576 }
577 
578 /*
579  * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
580  * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
581  * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
582  * useful for performance testing, but conceivably could also come in handy for debugging
583  * purposes.
584  */
585 
586 static int nolwsys __initdata;
587 
588 static int __init
nolwsys_setup(char * s)589 nolwsys_setup (char *s)
590 {
591 	nolwsys = 1;
592 	return 1;
593 }
594 
595 __setup("nolwsys", nolwsys_setup);
596 
597 void __init
mem_init(void)598 mem_init (void)
599 {
600 	long reserved_pages, codesize, datasize, initsize;
601 	pg_data_t *pgdat;
602 	int i;
603 
604 	BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
605 	BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
606 	BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
607 
608 #ifdef CONFIG_PCI
609 	/*
610 	 * This needs to be called _after_ the command line has been parsed but _before_
611 	 * any drivers that may need the PCI DMA interface are initialized or bootmem has
612 	 * been freed.
613 	 */
614 	platform_dma_init();
615 #endif
616 
617 #ifdef CONFIG_FLATMEM
618 	BUG_ON(!mem_map);
619 	max_mapnr = max_low_pfn;
620 #endif
621 
622 	high_memory = __va(max_low_pfn * PAGE_SIZE);
623 
624 	for_each_online_pgdat(pgdat)
625 		if (pgdat->bdata->node_bootmem_map)
626 			totalram_pages += free_all_bootmem_node(pgdat);
627 
628 	reserved_pages = 0;
629 	efi_memmap_walk(count_reserved_pages, &reserved_pages);
630 
631 	codesize =  (unsigned long) _etext - (unsigned long) _stext;
632 	datasize =  (unsigned long) _edata - (unsigned long) _etext;
633 	initsize =  (unsigned long) __init_end - (unsigned long) __init_begin;
634 
635 	printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
636 	       "%luk data, %luk init)\n", nr_free_pages() << (PAGE_SHIFT - 10),
637 	       num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
638 	       reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
639 
640 
641 	/*
642 	 * For fsyscall entrpoints with no light-weight handler, use the ordinary
643 	 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
644 	 * code can tell them apart.
645 	 */
646 	for (i = 0; i < NR_syscalls; ++i) {
647 		extern unsigned long sys_call_table[NR_syscalls];
648 		unsigned long *fsyscall_table = paravirt_get_fsyscall_table();
649 
650 		if (!fsyscall_table[i] || nolwsys)
651 			fsyscall_table[i] = sys_call_table[i] | 1;
652 	}
653 	setup_gate();
654 }
655 
656 #ifdef CONFIG_MEMORY_HOTPLUG
arch_add_memory(int nid,u64 start,u64 size)657 int arch_add_memory(int nid, u64 start, u64 size)
658 {
659 	pg_data_t *pgdat;
660 	struct zone *zone;
661 	unsigned long start_pfn = start >> PAGE_SHIFT;
662 	unsigned long nr_pages = size >> PAGE_SHIFT;
663 	int ret;
664 
665 	pgdat = NODE_DATA(nid);
666 
667 	zone = pgdat->node_zones + ZONE_NORMAL;
668 	ret = __add_pages(nid, zone, start_pfn, nr_pages);
669 
670 	if (ret)
671 		printk("%s: Problem encountered in __add_pages() as ret=%d\n",
672 		       __func__,  ret);
673 
674 	return ret;
675 }
676 
677 #ifdef CONFIG_MEMORY_HOTREMOVE
arch_remove_memory(u64 start,u64 size)678 int arch_remove_memory(u64 start, u64 size)
679 {
680 	unsigned long start_pfn = start >> PAGE_SHIFT;
681 	unsigned long nr_pages = size >> PAGE_SHIFT;
682 	struct zone *zone;
683 	int ret;
684 
685 	zone = page_zone(pfn_to_page(start_pfn));
686 	ret = __remove_pages(zone, start_pfn, nr_pages);
687 	if (ret)
688 		pr_warn("%s: Problem encountered in __remove_pages() as"
689 			" ret=%d\n", __func__,  ret);
690 
691 	return ret;
692 }
693 #endif
694 #endif
695 
696 /*
697  * Even when CONFIG_IA32_SUPPORT is not enabled it is
698  * useful to have the Linux/x86 domain registered to
699  * avoid an attempted module load when emulators call
700  * personality(PER_LINUX32). This saves several milliseconds
701  * on each such call.
702  */
703 static struct exec_domain ia32_exec_domain;
704 
705 static int __init
per_linux32_init(void)706 per_linux32_init(void)
707 {
708 	ia32_exec_domain.name = "Linux/x86";
709 	ia32_exec_domain.handler = NULL;
710 	ia32_exec_domain.pers_low = PER_LINUX32;
711 	ia32_exec_domain.pers_high = PER_LINUX32;
712 	ia32_exec_domain.signal_map = default_exec_domain.signal_map;
713 	ia32_exec_domain.signal_invmap = default_exec_domain.signal_invmap;
714 	register_exec_domain(&ia32_exec_domain);
715 
716 	return 0;
717 }
718 
719 __initcall(per_linux32_init);
720