1 /*
2 * Initialize MMU support.
3 *
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 */
7 #include <linux/kernel.h>
8 #include <linux/init.h>
9
10 #include <linux/bootmem.h>
11 #include <linux/efi.h>
12 #include <linux/elf.h>
13 #include <linux/memblock.h>
14 #include <linux/mm.h>
15 #include <linux/mmzone.h>
16 #include <linux/module.h>
17 #include <linux/personality.h>
18 #include <linux/reboot.h>
19 #include <linux/slab.h>
20 #include <linux/swap.h>
21 #include <linux/proc_fs.h>
22 #include <linux/bitops.h>
23 #include <linux/kexec.h>
24
25 #include <asm/dma.h>
26 #include <asm/io.h>
27 #include <asm/machvec.h>
28 #include <asm/numa.h>
29 #include <asm/patch.h>
30 #include <asm/pgalloc.h>
31 #include <asm/sal.h>
32 #include <asm/sections.h>
33 #include <asm/tlb.h>
34 #include <asm/uaccess.h>
35 #include <asm/unistd.h>
36 #include <asm/mca.h>
37 #include <asm/paravirt.h>
38
39 extern void ia64_tlb_init (void);
40
41 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
42
43 #ifdef CONFIG_VIRTUAL_MEM_MAP
44 unsigned long VMALLOC_END = VMALLOC_END_INIT;
45 EXPORT_SYMBOL(VMALLOC_END);
46 struct page *vmem_map;
47 EXPORT_SYMBOL(vmem_map);
48 #endif
49
50 struct page *zero_page_memmap_ptr; /* map entry for zero page */
51 EXPORT_SYMBOL(zero_page_memmap_ptr);
52
53 void
__ia64_sync_icache_dcache(pte_t pte)54 __ia64_sync_icache_dcache (pte_t pte)
55 {
56 unsigned long addr;
57 struct page *page;
58
59 page = pte_page(pte);
60 addr = (unsigned long) page_address(page);
61
62 if (test_bit(PG_arch_1, &page->flags))
63 return; /* i-cache is already coherent with d-cache */
64
65 flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
66 set_bit(PG_arch_1, &page->flags); /* mark page as clean */
67 }
68
69 /*
70 * Since DMA is i-cache coherent, any (complete) pages that were written via
71 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
72 * flush them when they get mapped into an executable vm-area.
73 */
74 void
dma_mark_clean(void * addr,size_t size)75 dma_mark_clean(void *addr, size_t size)
76 {
77 unsigned long pg_addr, end;
78
79 pg_addr = PAGE_ALIGN((unsigned long) addr);
80 end = (unsigned long) addr + size;
81 while (pg_addr + PAGE_SIZE <= end) {
82 struct page *page = virt_to_page(pg_addr);
83 set_bit(PG_arch_1, &page->flags);
84 pg_addr += PAGE_SIZE;
85 }
86 }
87
88 inline void
ia64_set_rbs_bot(void)89 ia64_set_rbs_bot (void)
90 {
91 unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
92
93 if (stack_size > MAX_USER_STACK_SIZE)
94 stack_size = MAX_USER_STACK_SIZE;
95 current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
96 }
97
98 /*
99 * This performs some platform-dependent address space initialization.
100 * On IA-64, we want to setup the VM area for the register backing
101 * store (which grows upwards) and install the gateway page which is
102 * used for signal trampolines, etc.
103 */
104 void
ia64_init_addr_space(void)105 ia64_init_addr_space (void)
106 {
107 struct vm_area_struct *vma;
108
109 ia64_set_rbs_bot();
110
111 /*
112 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
113 * the problem. When the process attempts to write to the register backing store
114 * for the first time, it will get a SEGFAULT in this case.
115 */
116 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
117 if (vma) {
118 INIT_LIST_HEAD(&vma->anon_vma_chain);
119 vma->vm_mm = current->mm;
120 vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
121 vma->vm_end = vma->vm_start + PAGE_SIZE;
122 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
123 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
124 down_write(¤t->mm->mmap_sem);
125 if (insert_vm_struct(current->mm, vma)) {
126 up_write(¤t->mm->mmap_sem);
127 kmem_cache_free(vm_area_cachep, vma);
128 return;
129 }
130 up_write(¤t->mm->mmap_sem);
131 }
132
133 /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
134 if (!(current->personality & MMAP_PAGE_ZERO)) {
135 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
136 if (vma) {
137 INIT_LIST_HEAD(&vma->anon_vma_chain);
138 vma->vm_mm = current->mm;
139 vma->vm_end = PAGE_SIZE;
140 vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
141 vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO |
142 VM_DONTEXPAND | VM_DONTDUMP;
143 down_write(¤t->mm->mmap_sem);
144 if (insert_vm_struct(current->mm, vma)) {
145 up_write(¤t->mm->mmap_sem);
146 kmem_cache_free(vm_area_cachep, vma);
147 return;
148 }
149 up_write(¤t->mm->mmap_sem);
150 }
151 }
152 }
153
154 void
free_initmem(void)155 free_initmem (void)
156 {
157 free_reserved_area((unsigned long)ia64_imva(__init_begin),
158 (unsigned long)ia64_imva(__init_end),
159 0, "unused kernel");
160 }
161
162 void __init
free_initrd_mem(unsigned long start,unsigned long end)163 free_initrd_mem (unsigned long start, unsigned long end)
164 {
165 /*
166 * EFI uses 4KB pages while the kernel can use 4KB or bigger.
167 * Thus EFI and the kernel may have different page sizes. It is
168 * therefore possible to have the initrd share the same page as
169 * the end of the kernel (given current setup).
170 *
171 * To avoid freeing/using the wrong page (kernel sized) we:
172 * - align up the beginning of initrd
173 * - align down the end of initrd
174 *
175 * | |
176 * |=============| a000
177 * | |
178 * | |
179 * | | 9000
180 * |/////////////|
181 * |/////////////|
182 * |=============| 8000
183 * |///INITRD////|
184 * |/////////////|
185 * |/////////////| 7000
186 * | |
187 * |KKKKKKKKKKKKK|
188 * |=============| 6000
189 * |KKKKKKKKKKKKK|
190 * |KKKKKKKKKKKKK|
191 * K=kernel using 8KB pages
192 *
193 * In this example, we must free page 8000 ONLY. So we must align up
194 * initrd_start and keep initrd_end as is.
195 */
196 start = PAGE_ALIGN(start);
197 end = end & PAGE_MASK;
198
199 if (start < end)
200 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
201
202 for (; start < end; start += PAGE_SIZE) {
203 if (!virt_addr_valid(start))
204 continue;
205 free_reserved_page(virt_to_page(start));
206 }
207 }
208
209 /*
210 * This installs a clean page in the kernel's page table.
211 */
212 static struct page * __init
put_kernel_page(struct page * page,unsigned long address,pgprot_t pgprot)213 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
214 {
215 pgd_t *pgd;
216 pud_t *pud;
217 pmd_t *pmd;
218 pte_t *pte;
219
220 if (!PageReserved(page))
221 printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
222 page_address(page));
223
224 pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */
225
226 {
227 pud = pud_alloc(&init_mm, pgd, address);
228 if (!pud)
229 goto out;
230 pmd = pmd_alloc(&init_mm, pud, address);
231 if (!pmd)
232 goto out;
233 pte = pte_alloc_kernel(pmd, address);
234 if (!pte)
235 goto out;
236 if (!pte_none(*pte))
237 goto out;
238 set_pte(pte, mk_pte(page, pgprot));
239 }
240 out:
241 /* no need for flush_tlb */
242 return page;
243 }
244
245 static void __init
setup_gate(void)246 setup_gate (void)
247 {
248 void *gate_section;
249 struct page *page;
250
251 /*
252 * Map the gate page twice: once read-only to export the ELF
253 * headers etc. and once execute-only page to enable
254 * privilege-promotion via "epc":
255 */
256 gate_section = paravirt_get_gate_section();
257 page = virt_to_page(ia64_imva(gate_section));
258 put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
259 #ifdef HAVE_BUGGY_SEGREL
260 page = virt_to_page(ia64_imva(gate_section + PAGE_SIZE));
261 put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
262 #else
263 put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
264 /* Fill in the holes (if any) with read-only zero pages: */
265 {
266 unsigned long addr;
267
268 for (addr = GATE_ADDR + PAGE_SIZE;
269 addr < GATE_ADDR + PERCPU_PAGE_SIZE;
270 addr += PAGE_SIZE)
271 {
272 put_kernel_page(ZERO_PAGE(0), addr,
273 PAGE_READONLY);
274 put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
275 PAGE_READONLY);
276 }
277 }
278 #endif
279 ia64_patch_gate();
280 }
281
ia64_mmu_init(void * my_cpu_data)282 void ia64_mmu_init(void *my_cpu_data)
283 {
284 unsigned long pta, impl_va_bits;
285 extern void tlb_init(void);
286
287 #ifdef CONFIG_DISABLE_VHPT
288 # define VHPT_ENABLE_BIT 0
289 #else
290 # define VHPT_ENABLE_BIT 1
291 #endif
292
293 /*
294 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
295 * address space. The IA-64 architecture guarantees that at least 50 bits of
296 * virtual address space are implemented but if we pick a large enough page size
297 * (e.g., 64KB), the mapped address space is big enough that it will overlap with
298 * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages,
299 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
300 * problem in practice. Alternatively, we could truncate the top of the mapped
301 * address space to not permit mappings that would overlap with the VMLPT.
302 * --davidm 00/12/06
303 */
304 # define pte_bits 3
305 # define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
306 /*
307 * The virtual page table has to cover the entire implemented address space within
308 * a region even though not all of this space may be mappable. The reason for
309 * this is that the Access bit and Dirty bit fault handlers perform
310 * non-speculative accesses to the virtual page table, so the address range of the
311 * virtual page table itself needs to be covered by virtual page table.
312 */
313 # define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits)
314 # define POW2(n) (1ULL << (n))
315
316 impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
317
318 if (impl_va_bits < 51 || impl_va_bits > 61)
319 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
320 /*
321 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
322 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
323 * the test makes sure that our mapped space doesn't overlap the
324 * unimplemented hole in the middle of the region.
325 */
326 if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
327 (mapped_space_bits > impl_va_bits - 1))
328 panic("Cannot build a big enough virtual-linear page table"
329 " to cover mapped address space.\n"
330 " Try using a smaller page size.\n");
331
332
333 /* place the VMLPT at the end of each page-table mapped region: */
334 pta = POW2(61) - POW2(vmlpt_bits);
335
336 /*
337 * Set the (virtually mapped linear) page table address. Bit
338 * 8 selects between the short and long format, bits 2-7 the
339 * size of the table, and bit 0 whether the VHPT walker is
340 * enabled.
341 */
342 ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
343
344 ia64_tlb_init();
345
346 #ifdef CONFIG_HUGETLB_PAGE
347 ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
348 ia64_srlz_d();
349 #endif
350 }
351
352 #ifdef CONFIG_VIRTUAL_MEM_MAP
vmemmap_find_next_valid_pfn(int node,int i)353 int vmemmap_find_next_valid_pfn(int node, int i)
354 {
355 unsigned long end_address, hole_next_pfn;
356 unsigned long stop_address;
357 pg_data_t *pgdat = NODE_DATA(node);
358
359 end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
360 end_address = PAGE_ALIGN(end_address);
361
362 stop_address = (unsigned long) &vmem_map[
363 pgdat->node_start_pfn + pgdat->node_spanned_pages];
364
365 do {
366 pgd_t *pgd;
367 pud_t *pud;
368 pmd_t *pmd;
369 pte_t *pte;
370
371 pgd = pgd_offset_k(end_address);
372 if (pgd_none(*pgd)) {
373 end_address += PGDIR_SIZE;
374 continue;
375 }
376
377 pud = pud_offset(pgd, end_address);
378 if (pud_none(*pud)) {
379 end_address += PUD_SIZE;
380 continue;
381 }
382
383 pmd = pmd_offset(pud, end_address);
384 if (pmd_none(*pmd)) {
385 end_address += PMD_SIZE;
386 continue;
387 }
388
389 pte = pte_offset_kernel(pmd, end_address);
390 retry_pte:
391 if (pte_none(*pte)) {
392 end_address += PAGE_SIZE;
393 pte++;
394 if ((end_address < stop_address) &&
395 (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
396 goto retry_pte;
397 continue;
398 }
399 /* Found next valid vmem_map page */
400 break;
401 } while (end_address < stop_address);
402
403 end_address = min(end_address, stop_address);
404 end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
405 hole_next_pfn = end_address / sizeof(struct page);
406 return hole_next_pfn - pgdat->node_start_pfn;
407 }
408
create_mem_map_page_table(u64 start,u64 end,void * arg)409 int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
410 {
411 unsigned long address, start_page, end_page;
412 struct page *map_start, *map_end;
413 int node;
414 pgd_t *pgd;
415 pud_t *pud;
416 pmd_t *pmd;
417 pte_t *pte;
418
419 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
420 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
421
422 start_page = (unsigned long) map_start & PAGE_MASK;
423 end_page = PAGE_ALIGN((unsigned long) map_end);
424 node = paddr_to_nid(__pa(start));
425
426 for (address = start_page; address < end_page; address += PAGE_SIZE) {
427 pgd = pgd_offset_k(address);
428 if (pgd_none(*pgd))
429 pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
430 pud = pud_offset(pgd, address);
431
432 if (pud_none(*pud))
433 pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
434 pmd = pmd_offset(pud, address);
435
436 if (pmd_none(*pmd))
437 pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
438 pte = pte_offset_kernel(pmd, address);
439
440 if (pte_none(*pte))
441 set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
442 PAGE_KERNEL));
443 }
444 return 0;
445 }
446
447 struct memmap_init_callback_data {
448 struct page *start;
449 struct page *end;
450 int nid;
451 unsigned long zone;
452 };
453
454 static int __meminit
virtual_memmap_init(u64 start,u64 end,void * arg)455 virtual_memmap_init(u64 start, u64 end, void *arg)
456 {
457 struct memmap_init_callback_data *args;
458 struct page *map_start, *map_end;
459
460 args = (struct memmap_init_callback_data *) arg;
461 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
462 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
463
464 if (map_start < args->start)
465 map_start = args->start;
466 if (map_end > args->end)
467 map_end = args->end;
468
469 /*
470 * We have to initialize "out of bounds" struct page elements that fit completely
471 * on the same pages that were allocated for the "in bounds" elements because they
472 * may be referenced later (and found to be "reserved").
473 */
474 map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
475 map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
476 / sizeof(struct page));
477
478 if (map_start < map_end)
479 memmap_init_zone((unsigned long)(map_end - map_start),
480 args->nid, args->zone, page_to_pfn(map_start),
481 MEMMAP_EARLY);
482 return 0;
483 }
484
485 void __meminit
memmap_init(unsigned long size,int nid,unsigned long zone,unsigned long start_pfn)486 memmap_init (unsigned long size, int nid, unsigned long zone,
487 unsigned long start_pfn)
488 {
489 if (!vmem_map)
490 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
491 else {
492 struct page *start;
493 struct memmap_init_callback_data args;
494
495 start = pfn_to_page(start_pfn);
496 args.start = start;
497 args.end = start + size;
498 args.nid = nid;
499 args.zone = zone;
500
501 efi_memmap_walk(virtual_memmap_init, &args);
502 }
503 }
504
505 int
ia64_pfn_valid(unsigned long pfn)506 ia64_pfn_valid (unsigned long pfn)
507 {
508 char byte;
509 struct page *pg = pfn_to_page(pfn);
510
511 return (__get_user(byte, (char __user *) pg) == 0)
512 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
513 || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
514 }
515 EXPORT_SYMBOL(ia64_pfn_valid);
516
find_largest_hole(u64 start,u64 end,void * arg)517 int __init find_largest_hole(u64 start, u64 end, void *arg)
518 {
519 u64 *max_gap = arg;
520
521 static u64 last_end = PAGE_OFFSET;
522
523 /* NOTE: this algorithm assumes efi memmap table is ordered */
524
525 if (*max_gap < (start - last_end))
526 *max_gap = start - last_end;
527 last_end = end;
528 return 0;
529 }
530
531 #endif /* CONFIG_VIRTUAL_MEM_MAP */
532
register_active_ranges(u64 start,u64 len,int nid)533 int __init register_active_ranges(u64 start, u64 len, int nid)
534 {
535 u64 end = start + len;
536
537 #ifdef CONFIG_KEXEC
538 if (start > crashk_res.start && start < crashk_res.end)
539 start = crashk_res.end;
540 if (end > crashk_res.start && end < crashk_res.end)
541 end = crashk_res.start;
542 #endif
543
544 if (start < end)
545 memblock_add_node(__pa(start), end - start, nid);
546 return 0;
547 }
548
549 static int __init
count_reserved_pages(u64 start,u64 end,void * arg)550 count_reserved_pages(u64 start, u64 end, void *arg)
551 {
552 unsigned long num_reserved = 0;
553 unsigned long *count = arg;
554
555 for (; start < end; start += PAGE_SIZE)
556 if (PageReserved(virt_to_page(start)))
557 ++num_reserved;
558 *count += num_reserved;
559 return 0;
560 }
561
562 int
find_max_min_low_pfn(u64 start,u64 end,void * arg)563 find_max_min_low_pfn (u64 start, u64 end, void *arg)
564 {
565 unsigned long pfn_start, pfn_end;
566 #ifdef CONFIG_FLATMEM
567 pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
568 pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
569 #else
570 pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
571 pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
572 #endif
573 min_low_pfn = min(min_low_pfn, pfn_start);
574 max_low_pfn = max(max_low_pfn, pfn_end);
575 return 0;
576 }
577
578 /*
579 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
580 * system call handler. When this option is in effect, all fsyscalls will end up bubbling
581 * down into the kernel and calling the normal (heavy-weight) syscall handler. This is
582 * useful for performance testing, but conceivably could also come in handy for debugging
583 * purposes.
584 */
585
586 static int nolwsys __initdata;
587
588 static int __init
nolwsys_setup(char * s)589 nolwsys_setup (char *s)
590 {
591 nolwsys = 1;
592 return 1;
593 }
594
595 __setup("nolwsys", nolwsys_setup);
596
597 void __init
mem_init(void)598 mem_init (void)
599 {
600 long reserved_pages, codesize, datasize, initsize;
601 pg_data_t *pgdat;
602 int i;
603
604 BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
605 BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
606 BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
607
608 #ifdef CONFIG_PCI
609 /*
610 * This needs to be called _after_ the command line has been parsed but _before_
611 * any drivers that may need the PCI DMA interface are initialized or bootmem has
612 * been freed.
613 */
614 platform_dma_init();
615 #endif
616
617 #ifdef CONFIG_FLATMEM
618 BUG_ON(!mem_map);
619 max_mapnr = max_low_pfn;
620 #endif
621
622 high_memory = __va(max_low_pfn * PAGE_SIZE);
623
624 for_each_online_pgdat(pgdat)
625 if (pgdat->bdata->node_bootmem_map)
626 totalram_pages += free_all_bootmem_node(pgdat);
627
628 reserved_pages = 0;
629 efi_memmap_walk(count_reserved_pages, &reserved_pages);
630
631 codesize = (unsigned long) _etext - (unsigned long) _stext;
632 datasize = (unsigned long) _edata - (unsigned long) _etext;
633 initsize = (unsigned long) __init_end - (unsigned long) __init_begin;
634
635 printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
636 "%luk data, %luk init)\n", nr_free_pages() << (PAGE_SHIFT - 10),
637 num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
638 reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
639
640
641 /*
642 * For fsyscall entrpoints with no light-weight handler, use the ordinary
643 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
644 * code can tell them apart.
645 */
646 for (i = 0; i < NR_syscalls; ++i) {
647 extern unsigned long sys_call_table[NR_syscalls];
648 unsigned long *fsyscall_table = paravirt_get_fsyscall_table();
649
650 if (!fsyscall_table[i] || nolwsys)
651 fsyscall_table[i] = sys_call_table[i] | 1;
652 }
653 setup_gate();
654 }
655
656 #ifdef CONFIG_MEMORY_HOTPLUG
arch_add_memory(int nid,u64 start,u64 size)657 int arch_add_memory(int nid, u64 start, u64 size)
658 {
659 pg_data_t *pgdat;
660 struct zone *zone;
661 unsigned long start_pfn = start >> PAGE_SHIFT;
662 unsigned long nr_pages = size >> PAGE_SHIFT;
663 int ret;
664
665 pgdat = NODE_DATA(nid);
666
667 zone = pgdat->node_zones + ZONE_NORMAL;
668 ret = __add_pages(nid, zone, start_pfn, nr_pages);
669
670 if (ret)
671 printk("%s: Problem encountered in __add_pages() as ret=%d\n",
672 __func__, ret);
673
674 return ret;
675 }
676
677 #ifdef CONFIG_MEMORY_HOTREMOVE
arch_remove_memory(u64 start,u64 size)678 int arch_remove_memory(u64 start, u64 size)
679 {
680 unsigned long start_pfn = start >> PAGE_SHIFT;
681 unsigned long nr_pages = size >> PAGE_SHIFT;
682 struct zone *zone;
683 int ret;
684
685 zone = page_zone(pfn_to_page(start_pfn));
686 ret = __remove_pages(zone, start_pfn, nr_pages);
687 if (ret)
688 pr_warn("%s: Problem encountered in __remove_pages() as"
689 " ret=%d\n", __func__, ret);
690
691 return ret;
692 }
693 #endif
694 #endif
695
696 /*
697 * Even when CONFIG_IA32_SUPPORT is not enabled it is
698 * useful to have the Linux/x86 domain registered to
699 * avoid an attempted module load when emulators call
700 * personality(PER_LINUX32). This saves several milliseconds
701 * on each such call.
702 */
703 static struct exec_domain ia32_exec_domain;
704
705 static int __init
per_linux32_init(void)706 per_linux32_init(void)
707 {
708 ia32_exec_domain.name = "Linux/x86";
709 ia32_exec_domain.handler = NULL;
710 ia32_exec_domain.pers_low = PER_LINUX32;
711 ia32_exec_domain.pers_high = PER_LINUX32;
712 ia32_exec_domain.signal_map = default_exec_domain.signal_map;
713 ia32_exec_domain.signal_invmap = default_exec_domain.signal_invmap;
714 register_exec_domain(&ia32_exec_domain);
715
716 return 0;
717 }
718
719 __initcall(per_linux32_init);
720