1 /*
2 * linux/drivers/mmc/core/core.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/suspend.h>
27 #include <linux/fault-inject.h>
28 #include <linux/random.h>
29 #include <linux/slab.h>
30 #include <linux/wakelock.h>
31
32 #include <trace/events/mmc.h>
33
34 #include <linux/mmc/card.h>
35 #include <linux/mmc/host.h>
36 #include <linux/mmc/mmc.h>
37 #include <linux/mmc/sd.h>
38
39 #include <linux/math64.h>
40
41 #include "core.h"
42 #include "bus.h"
43 #include "host.h"
44 #include "sdio_bus.h"
45
46 #include "mmc_ops.h"
47 #include "sd_ops.h"
48 #include "sdio_ops.h"
49
50 /* If the device is not responding */
51 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
52
53 /*
54 * Background operations can take a long time, depending on the housekeeping
55 * operations the card has to perform.
56 */
57 #define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
58
59 static struct workqueue_struct *workqueue;
60 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
61
62 /*
63 * Enabling software CRCs on the data blocks can be a significant (30%)
64 * performance cost, and for other reasons may not always be desired.
65 * So we allow it it to be disabled.
66 */
67 bool use_spi_crc = 1;
68 module_param(use_spi_crc, bool, 0);
69
70 static inline void
mmc_update_latency_hist(struct mmc_host * host,int read,u_int64_t delta_us)71 mmc_update_latency_hist(struct mmc_host *host, int read, u_int64_t delta_us)
72 {
73 int i;
74
75 for (i = 0; i < ARRAY_SIZE(latency_x_axis_us); i++) {
76 if (delta_us < (u_int64_t)latency_x_axis_us[i]) {
77 if (read)
78 host->latency_y_axis_read[i]++;
79 else
80 host->latency_y_axis_write[i]++;
81 break;
82 }
83 }
84 if (i == ARRAY_SIZE(latency_x_axis_us)) {
85 /* Overflowed the histogram */
86 if (read)
87 host->latency_y_axis_read[i]++;
88 else
89 host->latency_y_axis_write[i]++;
90 }
91 if (read)
92 host->latency_reads_elems++;
93 else
94 host->latency_writes_elems++;
95 }
96
97 /*
98 * We normally treat cards as removed during suspend if they are not
99 * known to be on a non-removable bus, to avoid the risk of writing
100 * back data to a different card after resume. Allow this to be
101 * overridden if necessary.
102 */
103 #ifdef CONFIG_MMC_UNSAFE_RESUME
104 bool mmc_assume_removable;
105 #else
106 bool mmc_assume_removable = 1;
107 #endif
108 EXPORT_SYMBOL(mmc_assume_removable);
109 module_param_named(removable, mmc_assume_removable, bool, 0644);
110 MODULE_PARM_DESC(
111 removable,
112 "MMC/SD cards are removable and may be removed during suspend");
113
114 /*
115 * Internal function. Schedule delayed work in the MMC work queue.
116 */
mmc_schedule_delayed_work(struct delayed_work * work,unsigned long delay)117 static int mmc_schedule_delayed_work(struct delayed_work *work,
118 unsigned long delay)
119 {
120 return queue_delayed_work(workqueue, work, delay);
121 }
122
123 /*
124 * Internal function. Flush all scheduled work from the MMC work queue.
125 */
mmc_flush_scheduled_work(void)126 static void mmc_flush_scheduled_work(void)
127 {
128 flush_workqueue(workqueue);
129 }
130
131 #ifdef CONFIG_FAIL_MMC_REQUEST
132
133 /*
134 * Internal function. Inject random data errors.
135 * If mmc_data is NULL no errors are injected.
136 */
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)137 static void mmc_should_fail_request(struct mmc_host *host,
138 struct mmc_request *mrq)
139 {
140 struct mmc_command *cmd = mrq->cmd;
141 struct mmc_data *data = mrq->data;
142 static const int data_errors[] = {
143 -ETIMEDOUT,
144 -EILSEQ,
145 -EIO,
146 };
147
148 if (!data)
149 return;
150
151 if (cmd->error || data->error ||
152 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
153 return;
154
155 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
156 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
157 }
158
159 #else /* CONFIG_FAIL_MMC_REQUEST */
160
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)161 static inline void mmc_should_fail_request(struct mmc_host *host,
162 struct mmc_request *mrq)
163 {
164 }
165
166 #endif /* CONFIG_FAIL_MMC_REQUEST */
167
168 /**
169 * mmc_request_done - finish processing an MMC request
170 * @host: MMC host which completed request
171 * @mrq: MMC request which request
172 *
173 * MMC drivers should call this function when they have completed
174 * their processing of a request.
175 */
mmc_request_done(struct mmc_host * host,struct mmc_request * mrq)176 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
177 {
178 struct mmc_command *cmd = mrq->cmd;
179 int err = cmd->error;
180
181 if (err && cmd->retries && mmc_host_is_spi(host)) {
182 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
183 cmd->retries = 0;
184 }
185
186 if (err && cmd->retries && !mmc_card_removed(host->card)) {
187 /*
188 * Request starter must handle retries - see
189 * mmc_wait_for_req_done().
190 */
191 if (mrq->done)
192 mrq->done(mrq);
193 } else {
194 mmc_should_fail_request(host, mrq);
195
196 led_trigger_event(host->led, LED_OFF);
197
198 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
199 mmc_hostname(host), cmd->opcode, err,
200 cmd->resp[0], cmd->resp[1],
201 cmd->resp[2], cmd->resp[3]);
202
203 if (mrq->data) {
204 pr_debug("%s: %d bytes transferred: %d\n",
205 mmc_hostname(host),
206 mrq->data->bytes_xfered, mrq->data->error);
207 if (mrq->lat_hist_enabled) {
208 ktime_t completion;
209 u_int64_t delta_us;
210
211 completion = ktime_get();
212 delta_us = ktime_us_delta(completion,
213 mrq->io_start);
214 mmc_update_latency_hist(host,
215 (mrq->data->flags & MMC_DATA_READ),
216 delta_us);
217 }
218 trace_mmc_blk_rw_end(cmd->opcode, cmd->arg, mrq->data);
219 }
220
221 if (mrq->stop) {
222 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
223 mmc_hostname(host), mrq->stop->opcode,
224 mrq->stop->error,
225 mrq->stop->resp[0], mrq->stop->resp[1],
226 mrq->stop->resp[2], mrq->stop->resp[3]);
227 }
228
229 if (mrq->done)
230 mrq->done(mrq);
231
232 mmc_host_clk_release(host);
233 }
234 }
235
236 EXPORT_SYMBOL(mmc_request_done);
237
238 static void
mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)239 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
240 {
241 #ifdef CONFIG_MMC_DEBUG
242 unsigned int i, sz;
243 struct scatterlist *sg;
244 #endif
245
246 if (mrq->sbc) {
247 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
248 mmc_hostname(host), mrq->sbc->opcode,
249 mrq->sbc->arg, mrq->sbc->flags);
250 }
251
252 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
253 mmc_hostname(host), mrq->cmd->opcode,
254 mrq->cmd->arg, mrq->cmd->flags);
255
256 if (mrq->data) {
257 pr_debug("%s: blksz %d blocks %d flags %08x "
258 "tsac %d ms nsac %d\n",
259 mmc_hostname(host), mrq->data->blksz,
260 mrq->data->blocks, mrq->data->flags,
261 mrq->data->timeout_ns / 1000000,
262 mrq->data->timeout_clks);
263 }
264
265 if (mrq->stop) {
266 pr_debug("%s: CMD%u arg %08x flags %08x\n",
267 mmc_hostname(host), mrq->stop->opcode,
268 mrq->stop->arg, mrq->stop->flags);
269 }
270
271 WARN_ON(!host->claimed);
272
273 mrq->cmd->error = 0;
274 mrq->cmd->mrq = mrq;
275 if (mrq->data) {
276 BUG_ON(mrq->data->blksz > host->max_blk_size);
277 BUG_ON(mrq->data->blocks > host->max_blk_count);
278 BUG_ON(mrq->data->blocks * mrq->data->blksz >
279 host->max_req_size);
280
281 #ifdef CONFIG_MMC_DEBUG
282 sz = 0;
283 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
284 sz += sg->length;
285 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
286 #endif
287
288 mrq->cmd->data = mrq->data;
289 mrq->data->error = 0;
290 mrq->data->mrq = mrq;
291 if (mrq->stop) {
292 mrq->data->stop = mrq->stop;
293 mrq->stop->error = 0;
294 mrq->stop->mrq = mrq;
295 }
296 }
297 mmc_host_clk_hold(host);
298 led_trigger_event(host->led, LED_FULL);
299 host->ops->request(host, mrq);
300 }
301
302 /**
303 * mmc_start_bkops - start BKOPS for supported cards
304 * @card: MMC card to start BKOPS
305 * @form_exception: A flag to indicate if this function was
306 * called due to an exception raised by the card
307 *
308 * Start background operations whenever requested.
309 * When the urgent BKOPS bit is set in a R1 command response
310 * then background operations should be started immediately.
311 */
mmc_start_bkops(struct mmc_card * card,bool from_exception)312 void mmc_start_bkops(struct mmc_card *card, bool from_exception)
313 {
314 int err;
315 int timeout;
316 bool use_busy_signal;
317
318 BUG_ON(!card);
319
320 if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card))
321 return;
322
323 err = mmc_read_bkops_status(card);
324 if (err) {
325 pr_err("%s: Failed to read bkops status: %d\n",
326 mmc_hostname(card->host), err);
327 return;
328 }
329
330 if (!card->ext_csd.raw_bkops_status)
331 return;
332
333 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
334 from_exception)
335 return;
336
337 mmc_claim_host(card->host);
338 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
339 timeout = MMC_BKOPS_MAX_TIMEOUT;
340 use_busy_signal = true;
341 } else {
342 timeout = 0;
343 use_busy_signal = false;
344 }
345
346 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
347 EXT_CSD_BKOPS_START, 1, timeout, use_busy_signal);
348 if (err) {
349 pr_warn("%s: Error %d starting bkops\n",
350 mmc_hostname(card->host), err);
351 goto out;
352 }
353
354 /*
355 * For urgent bkops status (LEVEL_2 and more)
356 * bkops executed synchronously, otherwise
357 * the operation is in progress
358 */
359 if (!use_busy_signal)
360 mmc_card_set_doing_bkops(card);
361 out:
362 mmc_release_host(card->host);
363 }
364 EXPORT_SYMBOL(mmc_start_bkops);
365
366 /*
367 * mmc_wait_data_done() - done callback for data request
368 * @mrq: done data request
369 *
370 * Wakes up mmc context, passed as a callback to host controller driver
371 */
mmc_wait_data_done(struct mmc_request * mrq)372 static void mmc_wait_data_done(struct mmc_request *mrq)
373 {
374 mrq->host->context_info.is_done_rcv = true;
375 wake_up_interruptible(&mrq->host->context_info.wait);
376 }
377
mmc_wait_done(struct mmc_request * mrq)378 static void mmc_wait_done(struct mmc_request *mrq)
379 {
380 complete(&mrq->completion);
381 }
382
383 /*
384 *__mmc_start_data_req() - starts data request
385 * @host: MMC host to start the request
386 * @mrq: data request to start
387 *
388 * Sets the done callback to be called when request is completed by the card.
389 * Starts data mmc request execution
390 */
__mmc_start_data_req(struct mmc_host * host,struct mmc_request * mrq)391 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
392 {
393 mrq->done = mmc_wait_data_done;
394 mrq->host = host;
395 if (mmc_card_removed(host->card)) {
396 mrq->cmd->error = -ENOMEDIUM;
397 mmc_wait_data_done(mrq);
398 return -ENOMEDIUM;
399 }
400 mmc_start_request(host, mrq);
401
402 return 0;
403 }
404
__mmc_start_req(struct mmc_host * host,struct mmc_request * mrq)405 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
406 {
407 init_completion(&mrq->completion);
408 mrq->done = mmc_wait_done;
409 if (mmc_card_removed(host->card)) {
410 mrq->cmd->error = -ENOMEDIUM;
411 complete(&mrq->completion);
412 return -ENOMEDIUM;
413 }
414 mmc_start_request(host, mrq);
415 return 0;
416 }
417
418 /*
419 * mmc_wait_for_data_req_done() - wait for request completed
420 * @host: MMC host to prepare the command.
421 * @mrq: MMC request to wait for
422 *
423 * Blocks MMC context till host controller will ack end of data request
424 * execution or new request notification arrives from the block layer.
425 * Handles command retries.
426 *
427 * Returns enum mmc_blk_status after checking errors.
428 */
mmc_wait_for_data_req_done(struct mmc_host * host,struct mmc_request * mrq,struct mmc_async_req * next_req)429 static int mmc_wait_for_data_req_done(struct mmc_host *host,
430 struct mmc_request *mrq,
431 struct mmc_async_req *next_req)
432 {
433 struct mmc_command *cmd;
434 struct mmc_context_info *context_info = &host->context_info;
435 int err;
436 unsigned long flags;
437
438 while (1) {
439 wait_event_interruptible(context_info->wait,
440 (context_info->is_done_rcv ||
441 context_info->is_new_req));
442 spin_lock_irqsave(&context_info->lock, flags);
443 context_info->is_waiting_last_req = false;
444 spin_unlock_irqrestore(&context_info->lock, flags);
445 if (context_info->is_done_rcv) {
446 context_info->is_done_rcv = false;
447 context_info->is_new_req = false;
448 cmd = mrq->cmd;
449 if (!cmd->error || !cmd->retries ||
450 mmc_card_removed(host->card)) {
451 err = host->areq->err_check(host->card,
452 host->areq);
453 break; /* return err */
454 } else {
455 pr_info("%s: req failed (CMD%u): %d, retrying...\n",
456 mmc_hostname(host),
457 cmd->opcode, cmd->error);
458 cmd->retries--;
459 cmd->error = 0;
460 host->ops->request(host, mrq);
461 continue; /* wait for done/new event again */
462 }
463 } else if (context_info->is_new_req) {
464 context_info->is_new_req = false;
465 if (!next_req) {
466 err = MMC_BLK_NEW_REQUEST;
467 break; /* return err */
468 }
469 }
470 }
471 return err;
472 }
473
mmc_wait_for_req_done(struct mmc_host * host,struct mmc_request * mrq)474 static void mmc_wait_for_req_done(struct mmc_host *host,
475 struct mmc_request *mrq)
476 {
477 struct mmc_command *cmd;
478
479 while (1) {
480 wait_for_completion(&mrq->completion);
481
482 cmd = mrq->cmd;
483 if (!cmd->error || !cmd->retries ||
484 mmc_card_removed(host->card))
485 break;
486
487 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
488 mmc_hostname(host), cmd->opcode, cmd->error);
489 cmd->retries--;
490 cmd->error = 0;
491 host->ops->request(host, mrq);
492 }
493 }
494
495 /**
496 * mmc_pre_req - Prepare for a new request
497 * @host: MMC host to prepare command
498 * @mrq: MMC request to prepare for
499 * @is_first_req: true if there is no previous started request
500 * that may run in parellel to this call, otherwise false
501 *
502 * mmc_pre_req() is called in prior to mmc_start_req() to let
503 * host prepare for the new request. Preparation of a request may be
504 * performed while another request is running on the host.
505 */
mmc_pre_req(struct mmc_host * host,struct mmc_request * mrq,bool is_first_req)506 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
507 bool is_first_req)
508 {
509 if (host->ops->pre_req) {
510 mmc_host_clk_hold(host);
511 host->ops->pre_req(host, mrq, is_first_req);
512 mmc_host_clk_release(host);
513 }
514 }
515
516 /**
517 * mmc_post_req - Post process a completed request
518 * @host: MMC host to post process command
519 * @mrq: MMC request to post process for
520 * @err: Error, if non zero, clean up any resources made in pre_req
521 *
522 * Let the host post process a completed request. Post processing of
523 * a request may be performed while another reuqest is running.
524 */
mmc_post_req(struct mmc_host * host,struct mmc_request * mrq,int err)525 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
526 int err)
527 {
528 if (host->ops->post_req) {
529 mmc_host_clk_hold(host);
530 host->ops->post_req(host, mrq, err);
531 mmc_host_clk_release(host);
532 }
533 }
534
535 /**
536 * mmc_start_req - start a non-blocking request
537 * @host: MMC host to start command
538 * @areq: async request to start
539 * @error: out parameter returns 0 for success, otherwise non zero
540 *
541 * Start a new MMC custom command request for a host.
542 * If there is on ongoing async request wait for completion
543 * of that request and start the new one and return.
544 * Does not wait for the new request to complete.
545 *
546 * Returns the completed request, NULL in case of none completed.
547 * Wait for the an ongoing request (previoulsy started) to complete and
548 * return the completed request. If there is no ongoing request, NULL
549 * is returned without waiting. NULL is not an error condition.
550 */
mmc_start_req(struct mmc_host * host,struct mmc_async_req * areq,int * error)551 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
552 struct mmc_async_req *areq, int *error)
553 {
554 int err = 0;
555 int start_err = 0;
556 struct mmc_async_req *data = host->areq;
557
558 /* Prepare a new request */
559 if (areq)
560 mmc_pre_req(host, areq->mrq, !host->areq);
561
562 if (host->areq) {
563 err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq);
564 if (err == MMC_BLK_NEW_REQUEST) {
565 if (error)
566 *error = err;
567 /*
568 * The previous request was not completed,
569 * nothing to return
570 */
571 return NULL;
572 }
573 /*
574 * Check BKOPS urgency for each R1 response
575 */
576 if (host->card && mmc_card_mmc(host->card) &&
577 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
578 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
579 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT))
580 mmc_start_bkops(host->card, true);
581 }
582
583 if (!err && areq) {
584 if (host->latency_hist_enabled) {
585 areq->mrq->io_start = ktime_get();
586 areq->mrq->lat_hist_enabled = 1;
587 } else
588 areq->mrq->lat_hist_enabled = 0;
589 trace_mmc_blk_rw_start(areq->mrq->cmd->opcode,
590 areq->mrq->cmd->arg,
591 areq->mrq->data);
592 start_err = __mmc_start_data_req(host, areq->mrq);
593 }
594
595 if (host->areq)
596 mmc_post_req(host, host->areq->mrq, 0);
597
598 /* Cancel a prepared request if it was not started. */
599 if ((err || start_err) && areq)
600 mmc_post_req(host, areq->mrq, -EINVAL);
601
602 if (err)
603 host->areq = NULL;
604 else
605 host->areq = areq;
606
607 if (error)
608 *error = err;
609 return data;
610 }
611 EXPORT_SYMBOL(mmc_start_req);
612
613 /**
614 * mmc_wait_for_req - start a request and wait for completion
615 * @host: MMC host to start command
616 * @mrq: MMC request to start
617 *
618 * Start a new MMC custom command request for a host, and wait
619 * for the command to complete. Does not attempt to parse the
620 * response.
621 */
mmc_wait_for_req(struct mmc_host * host,struct mmc_request * mrq)622 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
623 {
624 __mmc_start_req(host, mrq);
625 mmc_wait_for_req_done(host, mrq);
626 }
627 EXPORT_SYMBOL(mmc_wait_for_req);
628
629 /**
630 * mmc_interrupt_hpi - Issue for High priority Interrupt
631 * @card: the MMC card associated with the HPI transfer
632 *
633 * Issued High Priority Interrupt, and check for card status
634 * until out-of prg-state.
635 */
mmc_interrupt_hpi(struct mmc_card * card)636 int mmc_interrupt_hpi(struct mmc_card *card)
637 {
638 int err;
639 u32 status;
640 unsigned long prg_wait;
641
642 BUG_ON(!card);
643
644 if (!card->ext_csd.hpi_en) {
645 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
646 return 1;
647 }
648
649 mmc_claim_host(card->host);
650 err = mmc_send_status(card, &status);
651 if (err) {
652 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
653 goto out;
654 }
655
656 switch (R1_CURRENT_STATE(status)) {
657 case R1_STATE_IDLE:
658 case R1_STATE_READY:
659 case R1_STATE_STBY:
660 case R1_STATE_TRAN:
661 /*
662 * In idle and transfer states, HPI is not needed and the caller
663 * can issue the next intended command immediately
664 */
665 goto out;
666 case R1_STATE_PRG:
667 break;
668 default:
669 /* In all other states, it's illegal to issue HPI */
670 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
671 mmc_hostname(card->host), R1_CURRENT_STATE(status));
672 err = -EINVAL;
673 goto out;
674 }
675
676 err = mmc_send_hpi_cmd(card, &status);
677 if (err)
678 goto out;
679
680 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
681 do {
682 err = mmc_send_status(card, &status);
683
684 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
685 break;
686 if (time_after(jiffies, prg_wait))
687 err = -ETIMEDOUT;
688 } while (!err);
689
690 out:
691 mmc_release_host(card->host);
692 return err;
693 }
694 EXPORT_SYMBOL(mmc_interrupt_hpi);
695
696 /**
697 * mmc_wait_for_cmd - start a command and wait for completion
698 * @host: MMC host to start command
699 * @cmd: MMC command to start
700 * @retries: maximum number of retries
701 *
702 * Start a new MMC command for a host, and wait for the command
703 * to complete. Return any error that occurred while the command
704 * was executing. Do not attempt to parse the response.
705 */
mmc_wait_for_cmd(struct mmc_host * host,struct mmc_command * cmd,int retries)706 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
707 {
708 struct mmc_request mrq = {NULL};
709
710 WARN_ON(!host->claimed);
711
712 memset(cmd->resp, 0, sizeof(cmd->resp));
713 cmd->retries = retries;
714
715 mrq.cmd = cmd;
716 cmd->data = NULL;
717
718 mmc_wait_for_req(host, &mrq);
719
720 return cmd->error;
721 }
722
723 EXPORT_SYMBOL(mmc_wait_for_cmd);
724
725 /**
726 * mmc_stop_bkops - stop ongoing BKOPS
727 * @card: MMC card to check BKOPS
728 *
729 * Send HPI command to stop ongoing background operations to
730 * allow rapid servicing of foreground operations, e.g. read/
731 * writes. Wait until the card comes out of the programming state
732 * to avoid errors in servicing read/write requests.
733 */
mmc_stop_bkops(struct mmc_card * card)734 int mmc_stop_bkops(struct mmc_card *card)
735 {
736 int err = 0;
737
738 BUG_ON(!card);
739 err = mmc_interrupt_hpi(card);
740
741 /*
742 * If err is EINVAL, we can't issue an HPI.
743 * It should complete the BKOPS.
744 */
745 if (!err || (err == -EINVAL)) {
746 mmc_card_clr_doing_bkops(card);
747 err = 0;
748 }
749
750 return err;
751 }
752 EXPORT_SYMBOL(mmc_stop_bkops);
753
mmc_read_bkops_status(struct mmc_card * card)754 int mmc_read_bkops_status(struct mmc_card *card)
755 {
756 int err;
757 u8 *ext_csd;
758
759 /*
760 * In future work, we should consider storing the entire ext_csd.
761 */
762 ext_csd = kmalloc(512, GFP_KERNEL);
763 if (!ext_csd) {
764 pr_err("%s: could not allocate buffer to receive the ext_csd.\n",
765 mmc_hostname(card->host));
766 return -ENOMEM;
767 }
768
769 mmc_claim_host(card->host);
770 err = mmc_send_ext_csd(card, ext_csd);
771 mmc_release_host(card->host);
772 if (err)
773 goto out;
774
775 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
776 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
777 out:
778 kfree(ext_csd);
779 return err;
780 }
781 EXPORT_SYMBOL(mmc_read_bkops_status);
782
783 /**
784 * mmc_set_data_timeout - set the timeout for a data command
785 * @data: data phase for command
786 * @card: the MMC card associated with the data transfer
787 *
788 * Computes the data timeout parameters according to the
789 * correct algorithm given the card type.
790 */
mmc_set_data_timeout(struct mmc_data * data,const struct mmc_card * card)791 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
792 {
793 unsigned int mult;
794
795 /*
796 * SDIO cards only define an upper 1 s limit on access.
797 */
798 if (mmc_card_sdio(card)) {
799 data->timeout_ns = 1000000000;
800 data->timeout_clks = 0;
801 return;
802 }
803
804 /*
805 * SD cards use a 100 multiplier rather than 10
806 */
807 mult = mmc_card_sd(card) ? 100 : 10;
808
809 /*
810 * Scale up the multiplier (and therefore the timeout) by
811 * the r2w factor for writes.
812 */
813 if (data->flags & MMC_DATA_WRITE)
814 mult <<= card->csd.r2w_factor;
815
816 data->timeout_ns = card->csd.tacc_ns * mult;
817 data->timeout_clks = card->csd.tacc_clks * mult;
818
819 /*
820 * SD cards also have an upper limit on the timeout.
821 */
822 if (mmc_card_sd(card)) {
823 unsigned int timeout_us, limit_us;
824
825 timeout_us = data->timeout_ns / 1000;
826 if (mmc_host_clk_rate(card->host))
827 timeout_us += data->timeout_clks * 1000 /
828 (mmc_host_clk_rate(card->host) / 1000);
829
830 if (data->flags & MMC_DATA_WRITE)
831 /*
832 * The MMC spec "It is strongly recommended
833 * for hosts to implement more than 500ms
834 * timeout value even if the card indicates
835 * the 250ms maximum busy length." Even the
836 * previous value of 300ms is known to be
837 * insufficient for some cards.
838 */
839 limit_us = 3000000;
840 else
841 limit_us = 100000;
842
843 /*
844 * SDHC cards always use these fixed values.
845 */
846 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
847 data->timeout_ns = limit_us * 1000;
848 data->timeout_clks = 0;
849 }
850 }
851
852 /*
853 * Some cards require longer data read timeout than indicated in CSD.
854 * Address this by setting the read timeout to a "reasonably high"
855 * value. For the cards tested, 300ms has proven enough. If necessary,
856 * this value can be increased if other problematic cards require this.
857 */
858 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
859 data->timeout_ns = 300000000;
860 data->timeout_clks = 0;
861 }
862
863 /*
864 * Some cards need very high timeouts if driven in SPI mode.
865 * The worst observed timeout was 900ms after writing a
866 * continuous stream of data until the internal logic
867 * overflowed.
868 */
869 if (mmc_host_is_spi(card->host)) {
870 if (data->flags & MMC_DATA_WRITE) {
871 if (data->timeout_ns < 1000000000)
872 data->timeout_ns = 1000000000; /* 1s */
873 } else {
874 if (data->timeout_ns < 100000000)
875 data->timeout_ns = 100000000; /* 100ms */
876 }
877 }
878 }
879 EXPORT_SYMBOL(mmc_set_data_timeout);
880
881 /**
882 * mmc_align_data_size - pads a transfer size to a more optimal value
883 * @card: the MMC card associated with the data transfer
884 * @sz: original transfer size
885 *
886 * Pads the original data size with a number of extra bytes in
887 * order to avoid controller bugs and/or performance hits
888 * (e.g. some controllers revert to PIO for certain sizes).
889 *
890 * Returns the improved size, which might be unmodified.
891 *
892 * Note that this function is only relevant when issuing a
893 * single scatter gather entry.
894 */
mmc_align_data_size(struct mmc_card * card,unsigned int sz)895 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
896 {
897 /*
898 * FIXME: We don't have a system for the controller to tell
899 * the core about its problems yet, so for now we just 32-bit
900 * align the size.
901 */
902 sz = ((sz + 3) / 4) * 4;
903
904 return sz;
905 }
906 EXPORT_SYMBOL(mmc_align_data_size);
907
908 /**
909 * __mmc_claim_host - exclusively claim a host
910 * @host: mmc host to claim
911 * @abort: whether or not the operation should be aborted
912 *
913 * Claim a host for a set of operations. If @abort is non null and
914 * dereference a non-zero value then this will return prematurely with
915 * that non-zero value without acquiring the lock. Returns zero
916 * with the lock held otherwise.
917 */
__mmc_claim_host(struct mmc_host * host,atomic_t * abort)918 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
919 {
920 DECLARE_WAITQUEUE(wait, current);
921 unsigned long flags;
922 int stop;
923
924 might_sleep();
925
926 add_wait_queue(&host->wq, &wait);
927 spin_lock_irqsave(&host->lock, flags);
928 while (1) {
929 set_current_state(TASK_UNINTERRUPTIBLE);
930 stop = abort ? atomic_read(abort) : 0;
931 if (stop || !host->claimed || host->claimer == current)
932 break;
933 spin_unlock_irqrestore(&host->lock, flags);
934 schedule();
935 spin_lock_irqsave(&host->lock, flags);
936 }
937 set_current_state(TASK_RUNNING);
938 if (!stop) {
939 host->claimed = 1;
940 host->claimer = current;
941 host->claim_cnt += 1;
942 } else
943 wake_up(&host->wq);
944 spin_unlock_irqrestore(&host->lock, flags);
945 remove_wait_queue(&host->wq, &wait);
946 if (host->ops->enable && !stop && host->claim_cnt == 1)
947 host->ops->enable(host);
948 return stop;
949 }
950
951 EXPORT_SYMBOL(__mmc_claim_host);
952
953 /**
954 * mmc_try_claim_host - try exclusively to claim a host
955 * @host: mmc host to claim
956 *
957 * Returns %1 if the host is claimed, %0 otherwise.
958 */
mmc_try_claim_host(struct mmc_host * host)959 int mmc_try_claim_host(struct mmc_host *host)
960 {
961 int claimed_host = 0;
962 unsigned long flags;
963
964 spin_lock_irqsave(&host->lock, flags);
965 if (!host->claimed || host->claimer == current) {
966 host->claimed = 1;
967 host->claimer = current;
968 host->claim_cnt += 1;
969 claimed_host = 1;
970 }
971 spin_unlock_irqrestore(&host->lock, flags);
972 if (host->ops->enable && claimed_host && host->claim_cnt == 1)
973 host->ops->enable(host);
974 return claimed_host;
975 }
976 EXPORT_SYMBOL(mmc_try_claim_host);
977
978 /**
979 * mmc_release_host - release a host
980 * @host: mmc host to release
981 *
982 * Release a MMC host, allowing others to claim the host
983 * for their operations.
984 */
mmc_release_host(struct mmc_host * host)985 void mmc_release_host(struct mmc_host *host)
986 {
987 unsigned long flags;
988
989 WARN_ON(!host->claimed);
990
991 if (host->ops->disable && host->claim_cnt == 1)
992 host->ops->disable(host);
993
994 spin_lock_irqsave(&host->lock, flags);
995 if (--host->claim_cnt) {
996 /* Release for nested claim */
997 spin_unlock_irqrestore(&host->lock, flags);
998 } else {
999 host->claimed = 0;
1000 host->claimer = NULL;
1001 spin_unlock_irqrestore(&host->lock, flags);
1002 wake_up(&host->wq);
1003 }
1004 }
1005 EXPORT_SYMBOL(mmc_release_host);
1006
1007 /*
1008 * Internal function that does the actual ios call to the host driver,
1009 * optionally printing some debug output.
1010 */
mmc_set_ios(struct mmc_host * host)1011 static inline void mmc_set_ios(struct mmc_host *host)
1012 {
1013 struct mmc_ios *ios = &host->ios;
1014
1015 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1016 "width %u timing %u\n",
1017 mmc_hostname(host), ios->clock, ios->bus_mode,
1018 ios->power_mode, ios->chip_select, ios->vdd,
1019 ios->bus_width, ios->timing);
1020
1021 if (ios->clock > 0)
1022 mmc_set_ungated(host);
1023 host->ops->set_ios(host, ios);
1024 }
1025
1026 /*
1027 * Control chip select pin on a host.
1028 */
mmc_set_chip_select(struct mmc_host * host,int mode)1029 void mmc_set_chip_select(struct mmc_host *host, int mode)
1030 {
1031 mmc_host_clk_hold(host);
1032 host->ios.chip_select = mode;
1033 mmc_set_ios(host);
1034 mmc_host_clk_release(host);
1035 }
1036
1037 /*
1038 * Sets the host clock to the highest possible frequency that
1039 * is below "hz".
1040 */
__mmc_set_clock(struct mmc_host * host,unsigned int hz)1041 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
1042 {
1043 WARN_ON(hz < host->f_min);
1044
1045 if (hz > host->f_max)
1046 hz = host->f_max;
1047
1048 host->ios.clock = hz;
1049 mmc_set_ios(host);
1050 }
1051
mmc_set_clock(struct mmc_host * host,unsigned int hz)1052 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1053 {
1054 mmc_host_clk_hold(host);
1055 __mmc_set_clock(host, hz);
1056 mmc_host_clk_release(host);
1057 }
1058
1059 #ifdef CONFIG_MMC_CLKGATE
1060 /*
1061 * This gates the clock by setting it to 0 Hz.
1062 */
mmc_gate_clock(struct mmc_host * host)1063 void mmc_gate_clock(struct mmc_host *host)
1064 {
1065 unsigned long flags;
1066
1067 spin_lock_irqsave(&host->clk_lock, flags);
1068 host->clk_old = host->ios.clock;
1069 host->ios.clock = 0;
1070 host->clk_gated = true;
1071 spin_unlock_irqrestore(&host->clk_lock, flags);
1072 mmc_set_ios(host);
1073 }
1074
1075 /*
1076 * This restores the clock from gating by using the cached
1077 * clock value.
1078 */
mmc_ungate_clock(struct mmc_host * host)1079 void mmc_ungate_clock(struct mmc_host *host)
1080 {
1081 /*
1082 * We should previously have gated the clock, so the clock shall
1083 * be 0 here! The clock may however be 0 during initialization,
1084 * when some request operations are performed before setting
1085 * the frequency. When ungate is requested in that situation
1086 * we just ignore the call.
1087 */
1088 if (host->clk_old) {
1089 BUG_ON(host->ios.clock);
1090 /* This call will also set host->clk_gated to false */
1091 __mmc_set_clock(host, host->clk_old);
1092 }
1093 }
1094
mmc_set_ungated(struct mmc_host * host)1095 void mmc_set_ungated(struct mmc_host *host)
1096 {
1097 unsigned long flags;
1098
1099 /*
1100 * We've been given a new frequency while the clock is gated,
1101 * so make sure we regard this as ungating it.
1102 */
1103 spin_lock_irqsave(&host->clk_lock, flags);
1104 host->clk_gated = false;
1105 spin_unlock_irqrestore(&host->clk_lock, flags);
1106 }
1107
1108 #else
mmc_set_ungated(struct mmc_host * host)1109 void mmc_set_ungated(struct mmc_host *host)
1110 {
1111 }
1112 #endif
1113
1114 /*
1115 * Change the bus mode (open drain/push-pull) of a host.
1116 */
mmc_set_bus_mode(struct mmc_host * host,unsigned int mode)1117 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1118 {
1119 mmc_host_clk_hold(host);
1120 host->ios.bus_mode = mode;
1121 mmc_set_ios(host);
1122 mmc_host_clk_release(host);
1123 }
1124
1125 /*
1126 * Change data bus width of a host.
1127 */
mmc_set_bus_width(struct mmc_host * host,unsigned int width)1128 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1129 {
1130 mmc_host_clk_hold(host);
1131 host->ios.bus_width = width;
1132 mmc_set_ios(host);
1133 mmc_host_clk_release(host);
1134 }
1135
1136 /**
1137 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1138 * @vdd: voltage (mV)
1139 * @low_bits: prefer low bits in boundary cases
1140 *
1141 * This function returns the OCR bit number according to the provided @vdd
1142 * value. If conversion is not possible a negative errno value returned.
1143 *
1144 * Depending on the @low_bits flag the function prefers low or high OCR bits
1145 * on boundary voltages. For example,
1146 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1147 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1148 *
1149 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1150 */
mmc_vdd_to_ocrbitnum(int vdd,bool low_bits)1151 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1152 {
1153 const int max_bit = ilog2(MMC_VDD_35_36);
1154 int bit;
1155
1156 if (vdd < 1650 || vdd > 3600)
1157 return -EINVAL;
1158
1159 if (vdd >= 1650 && vdd <= 1950)
1160 return ilog2(MMC_VDD_165_195);
1161
1162 if (low_bits)
1163 vdd -= 1;
1164
1165 /* Base 2000 mV, step 100 mV, bit's base 8. */
1166 bit = (vdd - 2000) / 100 + 8;
1167 if (bit > max_bit)
1168 return max_bit;
1169 return bit;
1170 }
1171
1172 /**
1173 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1174 * @vdd_min: minimum voltage value (mV)
1175 * @vdd_max: maximum voltage value (mV)
1176 *
1177 * This function returns the OCR mask bits according to the provided @vdd_min
1178 * and @vdd_max values. If conversion is not possible the function returns 0.
1179 *
1180 * Notes wrt boundary cases:
1181 * This function sets the OCR bits for all boundary voltages, for example
1182 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1183 * MMC_VDD_34_35 mask.
1184 */
mmc_vddrange_to_ocrmask(int vdd_min,int vdd_max)1185 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1186 {
1187 u32 mask = 0;
1188
1189 if (vdd_max < vdd_min)
1190 return 0;
1191
1192 /* Prefer high bits for the boundary vdd_max values. */
1193 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1194 if (vdd_max < 0)
1195 return 0;
1196
1197 /* Prefer low bits for the boundary vdd_min values. */
1198 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1199 if (vdd_min < 0)
1200 return 0;
1201
1202 /* Fill the mask, from max bit to min bit. */
1203 while (vdd_max >= vdd_min)
1204 mask |= 1 << vdd_max--;
1205
1206 return mask;
1207 }
1208 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1209
1210 #ifdef CONFIG_REGULATOR
1211
1212 /**
1213 * mmc_regulator_get_ocrmask - return mask of supported voltages
1214 * @supply: regulator to use
1215 *
1216 * This returns either a negative errno, or a mask of voltages that
1217 * can be provided to MMC/SD/SDIO devices using the specified voltage
1218 * regulator. This would normally be called before registering the
1219 * MMC host adapter.
1220 */
mmc_regulator_get_ocrmask(struct regulator * supply)1221 int mmc_regulator_get_ocrmask(struct regulator *supply)
1222 {
1223 int result = 0;
1224 int count;
1225 int i;
1226
1227 count = regulator_count_voltages(supply);
1228 if (count < 0)
1229 return count;
1230
1231 for (i = 0; i < count; i++) {
1232 int vdd_uV;
1233 int vdd_mV;
1234
1235 vdd_uV = regulator_list_voltage(supply, i);
1236 if (vdd_uV <= 0)
1237 continue;
1238
1239 vdd_mV = vdd_uV / 1000;
1240 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1241 }
1242
1243 return result;
1244 }
1245 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1246
1247 /**
1248 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1249 * @mmc: the host to regulate
1250 * @supply: regulator to use
1251 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1252 *
1253 * Returns zero on success, else negative errno.
1254 *
1255 * MMC host drivers may use this to enable or disable a regulator using
1256 * a particular supply voltage. This would normally be called from the
1257 * set_ios() method.
1258 */
mmc_regulator_set_ocr(struct mmc_host * mmc,struct regulator * supply,unsigned short vdd_bit)1259 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1260 struct regulator *supply,
1261 unsigned short vdd_bit)
1262 {
1263 int result = 0;
1264 int min_uV, max_uV;
1265
1266 if (vdd_bit) {
1267 int tmp;
1268 int voltage;
1269
1270 /*
1271 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1272 * bits this regulator doesn't quite support ... don't
1273 * be too picky, most cards and regulators are OK with
1274 * a 0.1V range goof (it's a small error percentage).
1275 */
1276 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1277 if (tmp == 0) {
1278 min_uV = 1650 * 1000;
1279 max_uV = 1950 * 1000;
1280 } else {
1281 min_uV = 1900 * 1000 + tmp * 100 * 1000;
1282 max_uV = min_uV + 100 * 1000;
1283 }
1284
1285 /*
1286 * If we're using a fixed/static regulator, don't call
1287 * regulator_set_voltage; it would fail.
1288 */
1289 voltage = regulator_get_voltage(supply);
1290
1291 if (!regulator_can_change_voltage(supply))
1292 min_uV = max_uV = voltage;
1293
1294 if (voltage < 0)
1295 result = voltage;
1296 else if (voltage < min_uV || voltage > max_uV)
1297 result = regulator_set_voltage(supply, min_uV, max_uV);
1298 else
1299 result = 0;
1300
1301 if (result == 0 && !mmc->regulator_enabled) {
1302 result = regulator_enable(supply);
1303 if (!result)
1304 mmc->regulator_enabled = true;
1305 }
1306 } else if (mmc->regulator_enabled) {
1307 result = regulator_disable(supply);
1308 if (result == 0)
1309 mmc->regulator_enabled = false;
1310 }
1311
1312 if (result)
1313 dev_err(mmc_dev(mmc),
1314 "could not set regulator OCR (%d)\n", result);
1315 return result;
1316 }
1317 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1318
mmc_regulator_get_supply(struct mmc_host * mmc)1319 int mmc_regulator_get_supply(struct mmc_host *mmc)
1320 {
1321 struct device *dev = mmc_dev(mmc);
1322 struct regulator *supply;
1323 int ret;
1324
1325 supply = devm_regulator_get(dev, "vmmc");
1326 mmc->supply.vmmc = supply;
1327 mmc->supply.vqmmc = devm_regulator_get(dev, "vqmmc");
1328
1329 if (IS_ERR(supply))
1330 return PTR_ERR(supply);
1331
1332 ret = mmc_regulator_get_ocrmask(supply);
1333 if (ret > 0)
1334 mmc->ocr_avail = ret;
1335 else
1336 dev_warn(mmc_dev(mmc), "Failed getting OCR mask: %d\n", ret);
1337
1338 return 0;
1339 }
1340 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1341
1342 #endif /* CONFIG_REGULATOR */
1343
1344 /*
1345 * Mask off any voltages we don't support and select
1346 * the lowest voltage
1347 */
mmc_select_voltage(struct mmc_host * host,u32 ocr)1348 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1349 {
1350 int bit;
1351
1352 ocr &= host->ocr_avail;
1353
1354 bit = ffs(ocr);
1355 if (bit) {
1356 bit -= 1;
1357
1358 ocr &= 3 << bit;
1359
1360 mmc_host_clk_hold(host);
1361 host->ios.vdd = bit;
1362 mmc_set_ios(host);
1363 mmc_host_clk_release(host);
1364 } else {
1365 pr_warning("%s: host doesn't support card's voltages\n",
1366 mmc_hostname(host));
1367 ocr = 0;
1368 }
1369
1370 return ocr;
1371 }
1372
__mmc_set_signal_voltage(struct mmc_host * host,int signal_voltage)1373 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1374 {
1375 int err = 0;
1376 int old_signal_voltage = host->ios.signal_voltage;
1377
1378 host->ios.signal_voltage = signal_voltage;
1379 if (host->ops->start_signal_voltage_switch) {
1380 mmc_host_clk_hold(host);
1381 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1382 mmc_host_clk_release(host);
1383 }
1384
1385 if (err)
1386 host->ios.signal_voltage = old_signal_voltage;
1387
1388 return err;
1389
1390 }
1391
mmc_set_signal_voltage(struct mmc_host * host,int signal_voltage)1392 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1393 {
1394 struct mmc_command cmd = {0};
1395 int err = 0;
1396 u32 clock;
1397
1398 BUG_ON(!host);
1399
1400 /*
1401 * Send CMD11 only if the request is to switch the card to
1402 * 1.8V signalling.
1403 */
1404 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1405 return __mmc_set_signal_voltage(host, signal_voltage);
1406
1407 /*
1408 * If we cannot switch voltages, return failure so the caller
1409 * can continue without UHS mode
1410 */
1411 if (!host->ops->start_signal_voltage_switch)
1412 return -EPERM;
1413 if (!host->ops->card_busy)
1414 pr_warning("%s: cannot verify signal voltage switch\n",
1415 mmc_hostname(host));
1416
1417 cmd.opcode = SD_SWITCH_VOLTAGE;
1418 cmd.arg = 0;
1419 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1420
1421 err = mmc_wait_for_cmd(host, &cmd, 0);
1422 if (err)
1423 return err;
1424
1425 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1426 return -EIO;
1427
1428 mmc_host_clk_hold(host);
1429 /*
1430 * The card should drive cmd and dat[0:3] low immediately
1431 * after the response of cmd11, but wait 1 ms to be sure
1432 */
1433 mmc_delay(1);
1434 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1435 err = -EAGAIN;
1436 goto power_cycle;
1437 }
1438 /*
1439 * During a signal voltage level switch, the clock must be gated
1440 * for 5 ms according to the SD spec
1441 */
1442 clock = host->ios.clock;
1443 host->ios.clock = 0;
1444 mmc_set_ios(host);
1445
1446 if (__mmc_set_signal_voltage(host, signal_voltage)) {
1447 /*
1448 * Voltages may not have been switched, but we've already
1449 * sent CMD11, so a power cycle is required anyway
1450 */
1451 err = -EAGAIN;
1452 goto power_cycle;
1453 }
1454
1455 /* Keep clock gated for at least 5 ms */
1456 mmc_delay(5);
1457 host->ios.clock = clock;
1458 mmc_set_ios(host);
1459
1460 /* Wait for at least 1 ms according to spec */
1461 mmc_delay(1);
1462
1463 /*
1464 * Failure to switch is indicated by the card holding
1465 * dat[0:3] low
1466 */
1467 if (host->ops->card_busy && host->ops->card_busy(host))
1468 err = -EAGAIN;
1469
1470 power_cycle:
1471 if (err) {
1472 pr_debug("%s: Signal voltage switch failed, "
1473 "power cycling card\n", mmc_hostname(host));
1474 mmc_power_cycle(host);
1475 }
1476
1477 mmc_host_clk_release(host);
1478
1479 return err;
1480 }
1481
1482 /*
1483 * Select timing parameters for host.
1484 */
mmc_set_timing(struct mmc_host * host,unsigned int timing)1485 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1486 {
1487 mmc_host_clk_hold(host);
1488 host->ios.timing = timing;
1489 mmc_set_ios(host);
1490 mmc_host_clk_release(host);
1491 }
1492
1493 /*
1494 * Select appropriate driver type for host.
1495 */
mmc_set_driver_type(struct mmc_host * host,unsigned int drv_type)1496 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1497 {
1498 mmc_host_clk_hold(host);
1499 host->ios.drv_type = drv_type;
1500 mmc_set_ios(host);
1501 mmc_host_clk_release(host);
1502 }
1503
1504 /*
1505 * Apply power to the MMC stack. This is a two-stage process.
1506 * First, we enable power to the card without the clock running.
1507 * We then wait a bit for the power to stabilise. Finally,
1508 * enable the bus drivers and clock to the card.
1509 *
1510 * We must _NOT_ enable the clock prior to power stablising.
1511 *
1512 * If a host does all the power sequencing itself, ignore the
1513 * initial MMC_POWER_UP stage.
1514 */
mmc_power_up(struct mmc_host * host)1515 static void mmc_power_up(struct mmc_host *host)
1516 {
1517 int bit;
1518
1519 if (host->ios.power_mode == MMC_POWER_ON)
1520 return;
1521
1522 mmc_host_clk_hold(host);
1523
1524 /* If ocr is set, we use it */
1525 if (host->ocr)
1526 bit = ffs(host->ocr) - 1;
1527 else
1528 bit = fls(host->ocr_avail) - 1;
1529
1530 host->ios.vdd = bit;
1531 if (mmc_host_is_spi(host))
1532 host->ios.chip_select = MMC_CS_HIGH;
1533 else
1534 host->ios.chip_select = MMC_CS_DONTCARE;
1535 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1536 host->ios.power_mode = MMC_POWER_UP;
1537 host->ios.bus_width = MMC_BUS_WIDTH_1;
1538 host->ios.timing = MMC_TIMING_LEGACY;
1539 mmc_set_ios(host);
1540
1541 /* Set signal voltage to 3.3V */
1542 __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1543
1544 /*
1545 * This delay should be sufficient to allow the power supply
1546 * to reach the minimum voltage.
1547 */
1548 mmc_delay(10);
1549
1550 host->ios.clock = host->f_init;
1551
1552 host->ios.power_mode = MMC_POWER_ON;
1553 mmc_set_ios(host);
1554
1555 /*
1556 * This delay must be at least 74 clock sizes, or 1 ms, or the
1557 * time required to reach a stable voltage.
1558 */
1559 mmc_delay(10);
1560
1561 mmc_host_clk_release(host);
1562 }
1563
mmc_power_off(struct mmc_host * host)1564 void mmc_power_off(struct mmc_host *host)
1565 {
1566 if (host->ios.power_mode == MMC_POWER_OFF)
1567 return;
1568
1569 mmc_host_clk_hold(host);
1570
1571 host->ios.clock = 0;
1572 host->ios.vdd = 0;
1573
1574
1575 /*
1576 * Reset ocr mask to be the highest possible voltage supported for
1577 * this mmc host. This value will be used at next power up.
1578 */
1579 host->ocr = 1 << (fls(host->ocr_avail) - 1);
1580
1581 if (!mmc_host_is_spi(host)) {
1582 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1583 host->ios.chip_select = MMC_CS_DONTCARE;
1584 }
1585 host->ios.power_mode = MMC_POWER_OFF;
1586 host->ios.bus_width = MMC_BUS_WIDTH_1;
1587 host->ios.timing = MMC_TIMING_LEGACY;
1588 mmc_set_ios(host);
1589
1590 /*
1591 * Some configurations, such as the 802.11 SDIO card in the OLPC
1592 * XO-1.5, require a short delay after poweroff before the card
1593 * can be successfully turned on again.
1594 */
1595 mmc_delay(1);
1596
1597 mmc_host_clk_release(host);
1598 }
1599
mmc_power_cycle(struct mmc_host * host)1600 void mmc_power_cycle(struct mmc_host *host)
1601 {
1602 mmc_power_off(host);
1603 /* Wait at least 1 ms according to SD spec */
1604 mmc_delay(1);
1605 mmc_power_up(host);
1606 }
1607
1608 /*
1609 * Cleanup when the last reference to the bus operator is dropped.
1610 */
__mmc_release_bus(struct mmc_host * host)1611 static void __mmc_release_bus(struct mmc_host *host)
1612 {
1613 BUG_ON(!host);
1614 BUG_ON(host->bus_refs);
1615 BUG_ON(!host->bus_dead);
1616
1617 host->bus_ops = NULL;
1618 }
1619
1620 /*
1621 * Increase reference count of bus operator
1622 */
mmc_bus_get(struct mmc_host * host)1623 static inline void mmc_bus_get(struct mmc_host *host)
1624 {
1625 unsigned long flags;
1626
1627 spin_lock_irqsave(&host->lock, flags);
1628 host->bus_refs++;
1629 spin_unlock_irqrestore(&host->lock, flags);
1630 }
1631
1632 /*
1633 * Decrease reference count of bus operator and free it if
1634 * it is the last reference.
1635 */
mmc_bus_put(struct mmc_host * host)1636 static inline void mmc_bus_put(struct mmc_host *host)
1637 {
1638 unsigned long flags;
1639
1640 spin_lock_irqsave(&host->lock, flags);
1641 host->bus_refs--;
1642 if ((host->bus_refs == 0) && host->bus_ops)
1643 __mmc_release_bus(host);
1644 spin_unlock_irqrestore(&host->lock, flags);
1645 }
1646
mmc_resume_bus(struct mmc_host * host)1647 int mmc_resume_bus(struct mmc_host *host)
1648 {
1649 unsigned long flags;
1650
1651 if (!mmc_bus_needs_resume(host))
1652 return -EINVAL;
1653
1654 printk("%s: Starting deferred resume\n", mmc_hostname(host));
1655 spin_lock_irqsave(&host->lock, flags);
1656 host->bus_resume_flags &= ~MMC_BUSRESUME_NEEDS_RESUME;
1657 host->rescan_disable = 0;
1658 spin_unlock_irqrestore(&host->lock, flags);
1659
1660 mmc_bus_get(host);
1661 if (host->bus_ops && !host->bus_dead) {
1662 mmc_power_up(host);
1663 BUG_ON(!host->bus_ops->resume);
1664 host->bus_ops->resume(host);
1665 }
1666
1667 if (host->bus_ops->detect && !host->bus_dead)
1668 host->bus_ops->detect(host);
1669
1670 mmc_bus_put(host);
1671 printk("%s: Deferred resume completed\n", mmc_hostname(host));
1672 return 0;
1673 }
1674
1675 EXPORT_SYMBOL(mmc_resume_bus);
1676
1677 /*
1678 * Assign a mmc bus handler to a host. Only one bus handler may control a
1679 * host at any given time.
1680 */
mmc_attach_bus(struct mmc_host * host,const struct mmc_bus_ops * ops)1681 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1682 {
1683 unsigned long flags;
1684
1685 BUG_ON(!host);
1686 BUG_ON(!ops);
1687
1688 WARN_ON(!host->claimed);
1689
1690 spin_lock_irqsave(&host->lock, flags);
1691
1692 BUG_ON(host->bus_ops);
1693 BUG_ON(host->bus_refs);
1694
1695 host->bus_ops = ops;
1696 host->bus_refs = 1;
1697 host->bus_dead = 0;
1698
1699 spin_unlock_irqrestore(&host->lock, flags);
1700 }
1701
1702 /*
1703 * Remove the current bus handler from a host.
1704 */
mmc_detach_bus(struct mmc_host * host)1705 void mmc_detach_bus(struct mmc_host *host)
1706 {
1707 unsigned long flags;
1708
1709 BUG_ON(!host);
1710
1711 WARN_ON(!host->claimed);
1712 WARN_ON(!host->bus_ops);
1713
1714 spin_lock_irqsave(&host->lock, flags);
1715
1716 host->bus_dead = 1;
1717
1718 spin_unlock_irqrestore(&host->lock, flags);
1719
1720 mmc_bus_put(host);
1721 }
1722
1723 /**
1724 * mmc_detect_change - process change of state on a MMC socket
1725 * @host: host which changed state.
1726 * @delay: optional delay to wait before detection (jiffies)
1727 *
1728 * MMC drivers should call this when they detect a card has been
1729 * inserted or removed. The MMC layer will confirm that any
1730 * present card is still functional, and initialize any newly
1731 * inserted.
1732 */
mmc_detect_change(struct mmc_host * host,unsigned long delay)1733 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1734 {
1735 #ifdef CONFIG_MMC_DEBUG
1736 unsigned long flags;
1737 spin_lock_irqsave(&host->lock, flags);
1738 WARN_ON(host->removed);
1739 spin_unlock_irqrestore(&host->lock, flags);
1740 #endif
1741 host->detect_change = 1;
1742
1743 wake_lock(&host->detect_wake_lock);
1744 mmc_schedule_delayed_work(&host->detect, delay);
1745 }
1746
1747 EXPORT_SYMBOL(mmc_detect_change);
1748
mmc_init_erase(struct mmc_card * card)1749 void mmc_init_erase(struct mmc_card *card)
1750 {
1751 unsigned int sz;
1752
1753 if (is_power_of_2(card->erase_size))
1754 card->erase_shift = ffs(card->erase_size) - 1;
1755 else
1756 card->erase_shift = 0;
1757
1758 /*
1759 * It is possible to erase an arbitrarily large area of an SD or MMC
1760 * card. That is not desirable because it can take a long time
1761 * (minutes) potentially delaying more important I/O, and also the
1762 * timeout calculations become increasingly hugely over-estimated.
1763 * Consequently, 'pref_erase' is defined as a guide to limit erases
1764 * to that size and alignment.
1765 *
1766 * For SD cards that define Allocation Unit size, limit erases to one
1767 * Allocation Unit at a time. For MMC cards that define High Capacity
1768 * Erase Size, whether it is switched on or not, limit to that size.
1769 * Otherwise just have a stab at a good value. For modern cards it
1770 * will end up being 4MiB. Note that if the value is too small, it
1771 * can end up taking longer to erase.
1772 */
1773 if (mmc_card_sd(card) && card->ssr.au) {
1774 card->pref_erase = card->ssr.au;
1775 card->erase_shift = ffs(card->ssr.au) - 1;
1776 } else if (card->ext_csd.hc_erase_size) {
1777 card->pref_erase = card->ext_csd.hc_erase_size;
1778 } else {
1779 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1780 if (sz < 128)
1781 card->pref_erase = 512 * 1024 / 512;
1782 else if (sz < 512)
1783 card->pref_erase = 1024 * 1024 / 512;
1784 else if (sz < 1024)
1785 card->pref_erase = 2 * 1024 * 1024 / 512;
1786 else
1787 card->pref_erase = 4 * 1024 * 1024 / 512;
1788 if (card->pref_erase < card->erase_size)
1789 card->pref_erase = card->erase_size;
1790 else {
1791 sz = card->pref_erase % card->erase_size;
1792 if (sz)
1793 card->pref_erase += card->erase_size - sz;
1794 }
1795 }
1796 }
1797
mmc_mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1798 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1799 unsigned int arg, unsigned int qty)
1800 {
1801 unsigned int erase_timeout;
1802
1803 if (arg == MMC_DISCARD_ARG ||
1804 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1805 erase_timeout = card->ext_csd.trim_timeout;
1806 } else if (card->ext_csd.erase_group_def & 1) {
1807 /* High Capacity Erase Group Size uses HC timeouts */
1808 if (arg == MMC_TRIM_ARG)
1809 erase_timeout = card->ext_csd.trim_timeout;
1810 else
1811 erase_timeout = card->ext_csd.hc_erase_timeout;
1812 } else {
1813 /* CSD Erase Group Size uses write timeout */
1814 unsigned int mult = (10 << card->csd.r2w_factor);
1815 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1816 unsigned int timeout_us;
1817
1818 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1819 if (card->csd.tacc_ns < 1000000)
1820 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1821 else
1822 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1823
1824 /*
1825 * ios.clock is only a target. The real clock rate might be
1826 * less but not that much less, so fudge it by multiplying by 2.
1827 */
1828 timeout_clks <<= 1;
1829 timeout_us += (timeout_clks * 1000) /
1830 (mmc_host_clk_rate(card->host) / 1000);
1831
1832 erase_timeout = timeout_us / 1000;
1833
1834 /*
1835 * Theoretically, the calculation could underflow so round up
1836 * to 1ms in that case.
1837 */
1838 if (!erase_timeout)
1839 erase_timeout = 1;
1840 }
1841
1842 /* Multiplier for secure operations */
1843 if (arg & MMC_SECURE_ARGS) {
1844 if (arg == MMC_SECURE_ERASE_ARG)
1845 erase_timeout *= card->ext_csd.sec_erase_mult;
1846 else
1847 erase_timeout *= card->ext_csd.sec_trim_mult;
1848 }
1849
1850 erase_timeout *= qty;
1851
1852 /*
1853 * Ensure at least a 1 second timeout for SPI as per
1854 * 'mmc_set_data_timeout()'
1855 */
1856 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1857 erase_timeout = 1000;
1858
1859 return erase_timeout;
1860 }
1861
mmc_sd_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1862 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1863 unsigned int arg,
1864 unsigned int qty)
1865 {
1866 unsigned int erase_timeout;
1867
1868 if (card->ssr.erase_timeout) {
1869 /* Erase timeout specified in SD Status Register (SSR) */
1870 erase_timeout = card->ssr.erase_timeout * qty +
1871 card->ssr.erase_offset;
1872 } else {
1873 /*
1874 * Erase timeout not specified in SD Status Register (SSR) so
1875 * use 250ms per write block.
1876 */
1877 erase_timeout = 250 * qty;
1878 }
1879
1880 /* Must not be less than 1 second */
1881 if (erase_timeout < 1000)
1882 erase_timeout = 1000;
1883
1884 return erase_timeout;
1885 }
1886
mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1887 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1888 unsigned int arg,
1889 unsigned int qty)
1890 {
1891 if (mmc_card_sd(card))
1892 return mmc_sd_erase_timeout(card, arg, qty);
1893 else
1894 return mmc_mmc_erase_timeout(card, arg, qty);
1895 }
1896
mmc_do_erase(struct mmc_card * card,unsigned int from,unsigned int to,unsigned int arg)1897 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1898 unsigned int to, unsigned int arg)
1899 {
1900 struct mmc_command cmd = {0};
1901 unsigned int qty = 0;
1902 unsigned long timeout;
1903 unsigned int fr, nr;
1904 int err;
1905
1906 fr = from;
1907 nr = to - from + 1;
1908 trace_mmc_blk_erase_start(arg, fr, nr);
1909
1910 /*
1911 * qty is used to calculate the erase timeout which depends on how many
1912 * erase groups (or allocation units in SD terminology) are affected.
1913 * We count erasing part of an erase group as one erase group.
1914 * For SD, the allocation units are always a power of 2. For MMC, the
1915 * erase group size is almost certainly also power of 2, but it does not
1916 * seem to insist on that in the JEDEC standard, so we fall back to
1917 * division in that case. SD may not specify an allocation unit size,
1918 * in which case the timeout is based on the number of write blocks.
1919 *
1920 * Note that the timeout for secure trim 2 will only be correct if the
1921 * number of erase groups specified is the same as the total of all
1922 * preceding secure trim 1 commands. Since the power may have been
1923 * lost since the secure trim 1 commands occurred, it is generally
1924 * impossible to calculate the secure trim 2 timeout correctly.
1925 */
1926 if (card->erase_shift)
1927 qty += ((to >> card->erase_shift) -
1928 (from >> card->erase_shift)) + 1;
1929 else if (mmc_card_sd(card))
1930 qty += to - from + 1;
1931 else
1932 qty += ((to / card->erase_size) -
1933 (from / card->erase_size)) + 1;
1934
1935 if (!mmc_card_blockaddr(card)) {
1936 from <<= 9;
1937 to <<= 9;
1938 }
1939
1940 if (mmc_card_sd(card))
1941 cmd.opcode = SD_ERASE_WR_BLK_START;
1942 else
1943 cmd.opcode = MMC_ERASE_GROUP_START;
1944 cmd.arg = from;
1945 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1946 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1947 if (err) {
1948 pr_err("mmc_erase: group start error %d, "
1949 "status %#x\n", err, cmd.resp[0]);
1950 err = -EIO;
1951 goto out;
1952 }
1953
1954 memset(&cmd, 0, sizeof(struct mmc_command));
1955 if (mmc_card_sd(card))
1956 cmd.opcode = SD_ERASE_WR_BLK_END;
1957 else
1958 cmd.opcode = MMC_ERASE_GROUP_END;
1959 cmd.arg = to;
1960 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1961 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1962 if (err) {
1963 pr_err("mmc_erase: group end error %d, status %#x\n",
1964 err, cmd.resp[0]);
1965 err = -EIO;
1966 goto out;
1967 }
1968
1969 memset(&cmd, 0, sizeof(struct mmc_command));
1970 cmd.opcode = MMC_ERASE;
1971 cmd.arg = arg;
1972 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1973 cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1974 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1975 if (err) {
1976 pr_err("mmc_erase: erase error %d, status %#x\n",
1977 err, cmd.resp[0]);
1978 err = -EIO;
1979 goto out;
1980 }
1981
1982 if (mmc_host_is_spi(card->host))
1983 goto out;
1984
1985 timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
1986 do {
1987 memset(&cmd, 0, sizeof(struct mmc_command));
1988 cmd.opcode = MMC_SEND_STATUS;
1989 cmd.arg = card->rca << 16;
1990 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1991 /* Do not retry else we can't see errors */
1992 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1993 if (err || (cmd.resp[0] & 0xFDF92000)) {
1994 pr_err("error %d requesting status %#x\n",
1995 err, cmd.resp[0]);
1996 err = -EIO;
1997 goto out;
1998 }
1999
2000 /* Timeout if the device never becomes ready for data and
2001 * never leaves the program state.
2002 */
2003 if (time_after(jiffies, timeout)) {
2004 pr_err("%s: Card stuck in programming state! %s\n",
2005 mmc_hostname(card->host), __func__);
2006 err = -EIO;
2007 goto out;
2008 }
2009
2010 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2011 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2012 out:
2013
2014 trace_mmc_blk_erase_end(arg, fr, nr);
2015 return err;
2016 }
2017
2018 /**
2019 * mmc_erase - erase sectors.
2020 * @card: card to erase
2021 * @from: first sector to erase
2022 * @nr: number of sectors to erase
2023 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2024 *
2025 * Caller must claim host before calling this function.
2026 */
mmc_erase(struct mmc_card * card,unsigned int from,unsigned int nr,unsigned int arg)2027 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2028 unsigned int arg)
2029 {
2030 unsigned int rem, to = from + nr;
2031
2032 if (!(card->host->caps & MMC_CAP_ERASE) ||
2033 !(card->csd.cmdclass & CCC_ERASE))
2034 return -EOPNOTSUPP;
2035
2036 if (!card->erase_size)
2037 return -EOPNOTSUPP;
2038
2039 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2040 return -EOPNOTSUPP;
2041
2042 if ((arg & MMC_SECURE_ARGS) &&
2043 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2044 return -EOPNOTSUPP;
2045
2046 if ((arg & MMC_TRIM_ARGS) &&
2047 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2048 return -EOPNOTSUPP;
2049
2050 if (arg == MMC_SECURE_ERASE_ARG) {
2051 if (from % card->erase_size || nr % card->erase_size)
2052 return -EINVAL;
2053 }
2054
2055 if (arg == MMC_ERASE_ARG) {
2056 rem = from % card->erase_size;
2057 if (rem) {
2058 rem = card->erase_size - rem;
2059 from += rem;
2060 if (nr > rem)
2061 nr -= rem;
2062 else
2063 return 0;
2064 }
2065 rem = nr % card->erase_size;
2066 if (rem)
2067 nr -= rem;
2068 }
2069
2070 if (nr == 0)
2071 return 0;
2072
2073 to = from + nr;
2074
2075 if (to <= from)
2076 return -EINVAL;
2077
2078 /* 'from' and 'to' are inclusive */
2079 to -= 1;
2080
2081 return mmc_do_erase(card, from, to, arg);
2082 }
2083 EXPORT_SYMBOL(mmc_erase);
2084
mmc_can_erase(struct mmc_card * card)2085 int mmc_can_erase(struct mmc_card *card)
2086 {
2087 if ((card->host->caps & MMC_CAP_ERASE) &&
2088 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2089 return 1;
2090 return 0;
2091 }
2092 EXPORT_SYMBOL(mmc_can_erase);
2093
mmc_can_trim(struct mmc_card * card)2094 int mmc_can_trim(struct mmc_card *card)
2095 {
2096 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
2097 return 1;
2098 return 0;
2099 }
2100 EXPORT_SYMBOL(mmc_can_trim);
2101
mmc_can_discard(struct mmc_card * card)2102 int mmc_can_discard(struct mmc_card *card)
2103 {
2104 /*
2105 * As there's no way to detect the discard support bit at v4.5
2106 * use the s/w feature support filed.
2107 */
2108 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2109 return 1;
2110 return 0;
2111 }
2112 EXPORT_SYMBOL(mmc_can_discard);
2113
mmc_can_sanitize(struct mmc_card * card)2114 int mmc_can_sanitize(struct mmc_card *card)
2115 {
2116 if (!mmc_can_trim(card) && !mmc_can_erase(card))
2117 return 0;
2118 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2119 return 1;
2120 return 0;
2121 }
2122 EXPORT_SYMBOL(mmc_can_sanitize);
2123
mmc_can_secure_erase_trim(struct mmc_card * card)2124 int mmc_can_secure_erase_trim(struct mmc_card *card)
2125 {
2126 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
2127 return 1;
2128 return 0;
2129 }
2130 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2131
mmc_erase_group_aligned(struct mmc_card * card,unsigned int from,unsigned int nr)2132 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2133 unsigned int nr)
2134 {
2135 if (!card->erase_size)
2136 return 0;
2137 if (from % card->erase_size || nr % card->erase_size)
2138 return 0;
2139 return 1;
2140 }
2141 EXPORT_SYMBOL(mmc_erase_group_aligned);
2142
mmc_do_calc_max_discard(struct mmc_card * card,unsigned int arg)2143 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2144 unsigned int arg)
2145 {
2146 struct mmc_host *host = card->host;
2147 unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2148 unsigned int last_timeout = 0;
2149
2150 if (card->erase_shift)
2151 max_qty = UINT_MAX >> card->erase_shift;
2152 else if (mmc_card_sd(card))
2153 max_qty = UINT_MAX;
2154 else
2155 max_qty = UINT_MAX / card->erase_size;
2156
2157 /* Find the largest qty with an OK timeout */
2158 do {
2159 y = 0;
2160 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2161 timeout = mmc_erase_timeout(card, arg, qty + x);
2162 if (timeout > host->max_discard_to)
2163 break;
2164 if (timeout < last_timeout)
2165 break;
2166 last_timeout = timeout;
2167 y = x;
2168 }
2169 qty += y;
2170 } while (y);
2171
2172 if (!qty)
2173 return 0;
2174
2175 if (qty == 1)
2176 return 1;
2177
2178 /* Convert qty to sectors */
2179 if (card->erase_shift)
2180 max_discard = --qty << card->erase_shift;
2181 else if (mmc_card_sd(card))
2182 max_discard = qty;
2183 else
2184 max_discard = --qty * card->erase_size;
2185
2186 return max_discard;
2187 }
2188
mmc_calc_max_discard(struct mmc_card * card)2189 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2190 {
2191 struct mmc_host *host = card->host;
2192 unsigned int max_discard, max_trim;
2193
2194 if (!host->max_discard_to)
2195 return UINT_MAX;
2196
2197 /*
2198 * Without erase_group_def set, MMC erase timeout depends on clock
2199 * frequence which can change. In that case, the best choice is
2200 * just the preferred erase size.
2201 */
2202 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2203 return card->pref_erase;
2204
2205 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2206 if (mmc_can_trim(card)) {
2207 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2208 if (max_trim < max_discard)
2209 max_discard = max_trim;
2210 } else if (max_discard < card->erase_size) {
2211 max_discard = 0;
2212 }
2213 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2214 mmc_hostname(host), max_discard, host->max_discard_to);
2215 return max_discard;
2216 }
2217 EXPORT_SYMBOL(mmc_calc_max_discard);
2218
mmc_set_blocklen(struct mmc_card * card,unsigned int blocklen)2219 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2220 {
2221 struct mmc_command cmd = {0};
2222
2223 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
2224 return 0;
2225
2226 cmd.opcode = MMC_SET_BLOCKLEN;
2227 cmd.arg = blocklen;
2228 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2229 return mmc_wait_for_cmd(card->host, &cmd, 5);
2230 }
2231 EXPORT_SYMBOL(mmc_set_blocklen);
2232
mmc_set_blockcount(struct mmc_card * card,unsigned int blockcount,bool is_rel_write)2233 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2234 bool is_rel_write)
2235 {
2236 struct mmc_command cmd = {0};
2237
2238 cmd.opcode = MMC_SET_BLOCK_COUNT;
2239 cmd.arg = blockcount & 0x0000FFFF;
2240 if (is_rel_write)
2241 cmd.arg |= 1 << 31;
2242 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2243 return mmc_wait_for_cmd(card->host, &cmd, 5);
2244 }
2245 EXPORT_SYMBOL(mmc_set_blockcount);
2246
mmc_hw_reset_for_init(struct mmc_host * host)2247 static void mmc_hw_reset_for_init(struct mmc_host *host)
2248 {
2249 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2250 return;
2251 mmc_host_clk_hold(host);
2252 host->ops->hw_reset(host);
2253 mmc_host_clk_release(host);
2254 }
2255
mmc_can_reset(struct mmc_card * card)2256 int mmc_can_reset(struct mmc_card *card)
2257 {
2258 u8 rst_n_function;
2259
2260 if (!mmc_card_mmc(card))
2261 return 0;
2262 rst_n_function = card->ext_csd.rst_n_function;
2263 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2264 return 0;
2265 return 1;
2266 }
2267 EXPORT_SYMBOL(mmc_can_reset);
2268
mmc_do_hw_reset(struct mmc_host * host,int check)2269 static int mmc_do_hw_reset(struct mmc_host *host, int check)
2270 {
2271 struct mmc_card *card = host->card;
2272
2273 if (!host->bus_ops->power_restore)
2274 return -EOPNOTSUPP;
2275
2276 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2277 return -EOPNOTSUPP;
2278
2279 if (!card)
2280 return -EINVAL;
2281
2282 if (!mmc_can_reset(card))
2283 return -EOPNOTSUPP;
2284
2285 mmc_host_clk_hold(host);
2286 mmc_set_clock(host, host->f_init);
2287
2288 host->ops->hw_reset(host);
2289
2290 /* If the reset has happened, then a status command will fail */
2291 if (check) {
2292 struct mmc_command cmd = {0};
2293 int err;
2294
2295 cmd.opcode = MMC_SEND_STATUS;
2296 if (!mmc_host_is_spi(card->host))
2297 cmd.arg = card->rca << 16;
2298 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2299 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2300 if (!err) {
2301 mmc_host_clk_release(host);
2302 return -ENOSYS;
2303 }
2304 }
2305
2306 host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
2307 if (mmc_host_is_spi(host)) {
2308 host->ios.chip_select = MMC_CS_HIGH;
2309 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
2310 } else {
2311 host->ios.chip_select = MMC_CS_DONTCARE;
2312 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
2313 }
2314 host->ios.bus_width = MMC_BUS_WIDTH_1;
2315 host->ios.timing = MMC_TIMING_LEGACY;
2316 mmc_set_ios(host);
2317
2318 mmc_host_clk_release(host);
2319
2320 return host->bus_ops->power_restore(host);
2321 }
2322
mmc_hw_reset(struct mmc_host * host)2323 int mmc_hw_reset(struct mmc_host *host)
2324 {
2325 return mmc_do_hw_reset(host, 0);
2326 }
2327 EXPORT_SYMBOL(mmc_hw_reset);
2328
mmc_hw_reset_check(struct mmc_host * host)2329 int mmc_hw_reset_check(struct mmc_host *host)
2330 {
2331 return mmc_do_hw_reset(host, 1);
2332 }
2333 EXPORT_SYMBOL(mmc_hw_reset_check);
2334
mmc_rescan_try_freq(struct mmc_host * host,unsigned freq)2335 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2336 {
2337 host->f_init = freq;
2338
2339 #ifdef CONFIG_MMC_DEBUG
2340 pr_info("%s: %s: trying to init card at %u Hz\n",
2341 mmc_hostname(host), __func__, host->f_init);
2342 #endif
2343 mmc_power_up(host);
2344
2345 /*
2346 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2347 * do a hardware reset if possible.
2348 */
2349 mmc_hw_reset_for_init(host);
2350
2351 /*
2352 * sdio_reset sends CMD52 to reset card. Since we do not know
2353 * if the card is being re-initialized, just send it. CMD52
2354 * should be ignored by SD/eMMC cards.
2355 */
2356 sdio_reset(host);
2357 mmc_go_idle(host);
2358
2359 mmc_send_if_cond(host, host->ocr_avail);
2360
2361 /* Order's important: probe SDIO, then SD, then MMC */
2362 if (!mmc_attach_sdio(host))
2363 return 0;
2364 if (!mmc_attach_sd(host))
2365 return 0;
2366 if (!mmc_attach_mmc(host))
2367 return 0;
2368
2369 mmc_power_off(host);
2370 return -EIO;
2371 }
2372
_mmc_detect_card_removed(struct mmc_host * host)2373 int _mmc_detect_card_removed(struct mmc_host *host)
2374 {
2375 int ret;
2376
2377 if ((host->caps & MMC_CAP_NONREMOVABLE) || !host->bus_ops->alive)
2378 return 0;
2379
2380 if (!host->card || mmc_card_removed(host->card))
2381 return 1;
2382
2383 ret = host->bus_ops->alive(host);
2384
2385 /*
2386 * Card detect status and alive check may be out of sync if card is
2387 * removed slowly, when card detect switch changes while card/slot
2388 * pads are still contacted in hardware (refer to "SD Card Mechanical
2389 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2390 * detect work 200ms later for this case.
2391 */
2392 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2393 mmc_detect_change(host, msecs_to_jiffies(200));
2394 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2395 }
2396
2397 if (ret) {
2398 mmc_card_set_removed(host->card);
2399 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2400 }
2401
2402 return ret;
2403 }
2404
mmc_detect_card_removed(struct mmc_host * host)2405 int mmc_detect_card_removed(struct mmc_host *host)
2406 {
2407 struct mmc_card *card = host->card;
2408 int ret;
2409
2410 WARN_ON(!host->claimed);
2411
2412 if (!card)
2413 return 1;
2414
2415 ret = mmc_card_removed(card);
2416 /*
2417 * The card will be considered unchanged unless we have been asked to
2418 * detect a change or host requires polling to provide card detection.
2419 */
2420 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL) &&
2421 !(host->caps2 & MMC_CAP2_DETECT_ON_ERR))
2422 return ret;
2423
2424 host->detect_change = 0;
2425 if (!ret) {
2426 ret = _mmc_detect_card_removed(host);
2427 if (ret && (host->caps2 & MMC_CAP2_DETECT_ON_ERR)) {
2428 /*
2429 * Schedule a detect work as soon as possible to let a
2430 * rescan handle the card removal.
2431 */
2432 cancel_delayed_work(&host->detect);
2433 mmc_detect_change(host, 0);
2434 }
2435 }
2436
2437 return ret;
2438 }
2439 EXPORT_SYMBOL(mmc_detect_card_removed);
2440
mmc_rescan(struct work_struct * work)2441 void mmc_rescan(struct work_struct *work)
2442 {
2443 struct mmc_host *host =
2444 container_of(work, struct mmc_host, detect.work);
2445 int i;
2446 bool extend_wakelock = false;
2447
2448 if (host->rescan_disable)
2449 return;
2450
2451 /* If there is a non-removable card registered, only scan once */
2452 if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2453 return;
2454 host->rescan_entered = 1;
2455
2456 mmc_bus_get(host);
2457
2458 /*
2459 * if there is a _removable_ card registered, check whether it is
2460 * still present
2461 */
2462 if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
2463 && !(host->caps & MMC_CAP_NONREMOVABLE))
2464 host->bus_ops->detect(host);
2465
2466 host->detect_change = 0;
2467
2468 /* If the card was removed the bus will be marked
2469 * as dead - extend the wakelock so userspace
2470 * can respond */
2471 if (host->bus_dead)
2472 extend_wakelock = 1;
2473
2474 /*
2475 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2476 * the card is no longer present.
2477 */
2478 mmc_bus_put(host);
2479 mmc_bus_get(host);
2480
2481 /* if there still is a card present, stop here */
2482 if (host->bus_ops != NULL) {
2483 mmc_bus_put(host);
2484 goto out;
2485 }
2486
2487 /*
2488 * Only we can add a new handler, so it's safe to
2489 * release the lock here.
2490 */
2491 mmc_bus_put(host);
2492
2493 if (host->ops->get_cd && host->ops->get_cd(host) == 0) {
2494 mmc_claim_host(host);
2495 mmc_power_off(host);
2496 mmc_release_host(host);
2497 goto out;
2498 }
2499
2500 mmc_claim_host(host);
2501 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2502 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min))) {
2503 extend_wakelock = true;
2504 break;
2505 }
2506 if (freqs[i] <= host->f_min)
2507 break;
2508 }
2509 mmc_release_host(host);
2510
2511 out:
2512 if (extend_wakelock)
2513 wake_lock_timeout(&host->detect_wake_lock, HZ / 2);
2514 else
2515 wake_unlock(&host->detect_wake_lock);
2516 if (host->caps & MMC_CAP_NEEDS_POLL) {
2517 wake_lock(&host->detect_wake_lock);
2518 mmc_schedule_delayed_work(&host->detect, HZ);
2519 }
2520 }
2521
mmc_start_host(struct mmc_host * host)2522 void mmc_start_host(struct mmc_host *host)
2523 {
2524 host->f_init = max(freqs[0], host->f_min);
2525 host->rescan_disable = 0;
2526 if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2527 mmc_power_off(host);
2528 else
2529 mmc_power_up(host);
2530 mmc_detect_change(host, 0);
2531 }
2532
mmc_stop_host(struct mmc_host * host)2533 void mmc_stop_host(struct mmc_host *host)
2534 {
2535 #ifdef CONFIG_MMC_DEBUG
2536 unsigned long flags;
2537 spin_lock_irqsave(&host->lock, flags);
2538 host->removed = 1;
2539 spin_unlock_irqrestore(&host->lock, flags);
2540 #endif
2541
2542 host->rescan_disable = 1;
2543 if (cancel_delayed_work_sync(&host->detect))
2544 wake_unlock(&host->detect_wake_lock);
2545 mmc_flush_scheduled_work();
2546
2547 /* clear pm flags now and let card drivers set them as needed */
2548 host->pm_flags = 0;
2549
2550 mmc_bus_get(host);
2551 if (host->bus_ops && !host->bus_dead) {
2552 /* Calling bus_ops->remove() with a claimed host can deadlock */
2553 if (host->bus_ops->remove)
2554 host->bus_ops->remove(host);
2555
2556 mmc_claim_host(host);
2557 mmc_detach_bus(host);
2558 mmc_power_off(host);
2559 mmc_release_host(host);
2560 mmc_bus_put(host);
2561 return;
2562 }
2563 mmc_bus_put(host);
2564
2565 BUG_ON(host->card);
2566
2567 mmc_power_off(host);
2568 }
2569
mmc_power_save_host(struct mmc_host * host)2570 int mmc_power_save_host(struct mmc_host *host)
2571 {
2572 int ret = 0;
2573
2574 #ifdef CONFIG_MMC_DEBUG
2575 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2576 #endif
2577
2578 mmc_bus_get(host);
2579
2580 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2581 mmc_bus_put(host);
2582 return -EINVAL;
2583 }
2584
2585 if (host->bus_ops->power_save)
2586 ret = host->bus_ops->power_save(host);
2587
2588 mmc_bus_put(host);
2589
2590 mmc_power_off(host);
2591
2592 return ret;
2593 }
2594 EXPORT_SYMBOL(mmc_power_save_host);
2595
mmc_power_restore_host(struct mmc_host * host)2596 int mmc_power_restore_host(struct mmc_host *host)
2597 {
2598 int ret;
2599
2600 #ifdef CONFIG_MMC_DEBUG
2601 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2602 #endif
2603
2604 mmc_bus_get(host);
2605
2606 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2607 mmc_bus_put(host);
2608 return -EINVAL;
2609 }
2610
2611 mmc_power_up(host);
2612 ret = host->bus_ops->power_restore(host);
2613
2614 mmc_bus_put(host);
2615
2616 return ret;
2617 }
2618 EXPORT_SYMBOL(mmc_power_restore_host);
2619
mmc_card_awake(struct mmc_host * host)2620 int mmc_card_awake(struct mmc_host *host)
2621 {
2622 int err = -ENOSYS;
2623
2624 if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2625 return 0;
2626
2627 mmc_bus_get(host);
2628
2629 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
2630 err = host->bus_ops->awake(host);
2631
2632 mmc_bus_put(host);
2633
2634 return err;
2635 }
2636 EXPORT_SYMBOL(mmc_card_awake);
2637
mmc_card_sleep(struct mmc_host * host)2638 int mmc_card_sleep(struct mmc_host *host)
2639 {
2640 int err = -ENOSYS;
2641
2642 if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2643 return 0;
2644
2645 mmc_bus_get(host);
2646
2647 if (host->bus_ops && !host->bus_dead && host->bus_ops->sleep)
2648 err = host->bus_ops->sleep(host);
2649
2650 mmc_bus_put(host);
2651
2652 return err;
2653 }
2654 EXPORT_SYMBOL(mmc_card_sleep);
2655
mmc_card_can_sleep(struct mmc_host * host)2656 int mmc_card_can_sleep(struct mmc_host *host)
2657 {
2658 struct mmc_card *card = host->card;
2659
2660 if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
2661 return 1;
2662 return 0;
2663 }
2664 EXPORT_SYMBOL(mmc_card_can_sleep);
2665
2666 /*
2667 * Flush the cache to the non-volatile storage.
2668 */
mmc_flush_cache(struct mmc_card * card)2669 int mmc_flush_cache(struct mmc_card *card)
2670 {
2671 struct mmc_host *host = card->host;
2672 int err = 0;
2673
2674 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL))
2675 return err;
2676
2677 if (mmc_card_mmc(card) &&
2678 (card->ext_csd.cache_size > 0) &&
2679 (card->ext_csd.cache_ctrl & 1)) {
2680 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2681 EXT_CSD_FLUSH_CACHE, 1, 0);
2682 if (err)
2683 pr_err("%s: cache flush error %d\n",
2684 mmc_hostname(card->host), err);
2685 }
2686
2687 return err;
2688 }
2689 EXPORT_SYMBOL(mmc_flush_cache);
2690
2691 #ifdef CONFIG_PM
2692
2693 /**
2694 * mmc_suspend_host - suspend a host
2695 * @host: mmc host
2696 */
mmc_suspend_host(struct mmc_host * host)2697 int mmc_suspend_host(struct mmc_host *host)
2698 {
2699 int err = 0;
2700
2701 if (mmc_bus_needs_resume(host))
2702 return 0;
2703
2704 if (cancel_delayed_work(&host->detect))
2705 wake_unlock(&host->detect_wake_lock);
2706 mmc_flush_scheduled_work();
2707
2708 mmc_bus_get(host);
2709 if (host->bus_ops && !host->bus_dead) {
2710 if (host->bus_ops->suspend) {
2711 if (mmc_card_doing_bkops(host->card)) {
2712 err = mmc_stop_bkops(host->card);
2713 if (err)
2714 goto out;
2715 }
2716 err = host->bus_ops->suspend(host);
2717 }
2718
2719 if (err == -ENOSYS || !host->bus_ops->resume) {
2720 /*
2721 * We simply "remove" the card in this case.
2722 * It will be redetected on resume. (Calling
2723 * bus_ops->remove() with a claimed host can
2724 * deadlock.)
2725 */
2726 if (host->bus_ops->remove)
2727 host->bus_ops->remove(host);
2728 mmc_claim_host(host);
2729 mmc_detach_bus(host);
2730 mmc_power_off(host);
2731 mmc_release_host(host);
2732 host->pm_flags = 0;
2733 err = 0;
2734 }
2735 }
2736 mmc_bus_put(host);
2737
2738 if (!err && !mmc_card_keep_power(host))
2739 mmc_power_off(host);
2740
2741 out:
2742 return err;
2743 }
2744
2745 EXPORT_SYMBOL(mmc_suspend_host);
2746
2747 /**
2748 * mmc_resume_host - resume a previously suspended host
2749 * @host: mmc host
2750 */
mmc_resume_host(struct mmc_host * host)2751 int mmc_resume_host(struct mmc_host *host)
2752 {
2753 int err = 0;
2754
2755 mmc_bus_get(host);
2756 if (mmc_bus_manual_resume(host)) {
2757 host->bus_resume_flags |= MMC_BUSRESUME_NEEDS_RESUME;
2758 mmc_bus_put(host);
2759 return 0;
2760 }
2761
2762 if (host->bus_ops && !host->bus_dead) {
2763 if (!mmc_card_keep_power(host)) {
2764 mmc_power_up(host);
2765 mmc_select_voltage(host, host->ocr);
2766 /*
2767 * Tell runtime PM core we just powered up the card,
2768 * since it still believes the card is powered off.
2769 * Note that currently runtime PM is only enabled
2770 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
2771 */
2772 if (mmc_card_sdio(host->card) &&
2773 (host->caps & MMC_CAP_POWER_OFF_CARD)) {
2774 pm_runtime_disable(&host->card->dev);
2775 pm_runtime_set_active(&host->card->dev);
2776 pm_runtime_enable(&host->card->dev);
2777 }
2778 }
2779 BUG_ON(!host->bus_ops->resume);
2780 err = host->bus_ops->resume(host);
2781 if (err) {
2782 pr_warning("%s: error %d during resume "
2783 "(card was removed?)\n",
2784 mmc_hostname(host), err);
2785 err = 0;
2786 }
2787 }
2788 host->pm_flags &= ~MMC_PM_KEEP_POWER;
2789 mmc_bus_put(host);
2790
2791 return err;
2792 }
2793 EXPORT_SYMBOL(mmc_resume_host);
2794
2795 /* Do the card removal on suspend if card is assumed removeable
2796 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2797 to sync the card.
2798 */
mmc_pm_notify(struct notifier_block * notify_block,unsigned long mode,void * unused)2799 int mmc_pm_notify(struct notifier_block *notify_block,
2800 unsigned long mode, void *unused)
2801 {
2802 struct mmc_host *host = container_of(
2803 notify_block, struct mmc_host, pm_notify);
2804 unsigned long flags;
2805 int err = 0;
2806
2807 switch (mode) {
2808 case PM_HIBERNATION_PREPARE:
2809 case PM_SUSPEND_PREPARE:
2810 if (host->card && mmc_card_mmc(host->card) &&
2811 mmc_card_doing_bkops(host->card)) {
2812 err = mmc_stop_bkops(host->card);
2813 if (err) {
2814 pr_err("%s: didn't stop bkops\n",
2815 mmc_hostname(host));
2816 return err;
2817 }
2818 mmc_card_clr_doing_bkops(host->card);
2819 }
2820
2821 spin_lock_irqsave(&host->lock, flags);
2822 if (mmc_bus_needs_resume(host)) {
2823 spin_unlock_irqrestore(&host->lock, flags);
2824 break;
2825 }
2826 host->rescan_disable = 1;
2827 spin_unlock_irqrestore(&host->lock, flags);
2828 if (cancel_delayed_work_sync(&host->detect))
2829 wake_unlock(&host->detect_wake_lock);
2830
2831 if (!host->bus_ops || host->bus_ops->suspend)
2832 break;
2833
2834 /* Calling bus_ops->remove() with a claimed host can deadlock */
2835 if (host->bus_ops->remove)
2836 host->bus_ops->remove(host);
2837
2838 mmc_claim_host(host);
2839 mmc_detach_bus(host);
2840 mmc_power_off(host);
2841 mmc_release_host(host);
2842 host->pm_flags = 0;
2843 break;
2844
2845 case PM_POST_SUSPEND:
2846 case PM_POST_HIBERNATION:
2847 case PM_POST_RESTORE:
2848
2849 spin_lock_irqsave(&host->lock, flags);
2850 if (mmc_bus_manual_resume(host)) {
2851 spin_unlock_irqrestore(&host->lock, flags);
2852 break;
2853 }
2854 host->rescan_disable = 0;
2855 spin_unlock_irqrestore(&host->lock, flags);
2856 mmc_detect_change(host, 0);
2857
2858 }
2859
2860 return 0;
2861 }
2862 #endif
2863
2864 /**
2865 * mmc_init_context_info() - init synchronization context
2866 * @host: mmc host
2867 *
2868 * Init struct context_info needed to implement asynchronous
2869 * request mechanism, used by mmc core, host driver and mmc requests
2870 * supplier.
2871 */
mmc_init_context_info(struct mmc_host * host)2872 void mmc_init_context_info(struct mmc_host *host)
2873 {
2874 spin_lock_init(&host->context_info.lock);
2875 host->context_info.is_new_req = false;
2876 host->context_info.is_done_rcv = false;
2877 host->context_info.is_waiting_last_req = false;
2878 init_waitqueue_head(&host->context_info.wait);
2879 }
2880
2881 #ifdef CONFIG_MMC_EMBEDDED_SDIO
mmc_set_embedded_sdio_data(struct mmc_host * host,struct sdio_cis * cis,struct sdio_cccr * cccr,struct sdio_embedded_func * funcs,int num_funcs)2882 void mmc_set_embedded_sdio_data(struct mmc_host *host,
2883 struct sdio_cis *cis,
2884 struct sdio_cccr *cccr,
2885 struct sdio_embedded_func *funcs,
2886 int num_funcs)
2887 {
2888 host->embedded_sdio_data.cis = cis;
2889 host->embedded_sdio_data.cccr = cccr;
2890 host->embedded_sdio_data.funcs = funcs;
2891 host->embedded_sdio_data.num_funcs = num_funcs;
2892 }
2893
2894 EXPORT_SYMBOL(mmc_set_embedded_sdio_data);
2895 #endif
2896
mmc_init(void)2897 static int __init mmc_init(void)
2898 {
2899 int ret;
2900
2901 workqueue = alloc_ordered_workqueue("kmmcd", 0);
2902 if (!workqueue)
2903 return -ENOMEM;
2904
2905 ret = mmc_register_bus();
2906 if (ret)
2907 goto destroy_workqueue;
2908
2909 ret = mmc_register_host_class();
2910 if (ret)
2911 goto unregister_bus;
2912
2913 ret = sdio_register_bus();
2914 if (ret)
2915 goto unregister_host_class;
2916
2917 return 0;
2918
2919 unregister_host_class:
2920 mmc_unregister_host_class();
2921 unregister_bus:
2922 mmc_unregister_bus();
2923 destroy_workqueue:
2924 destroy_workqueue(workqueue);
2925
2926 return ret;
2927 }
2928
mmc_exit(void)2929 static void __exit mmc_exit(void)
2930 {
2931 sdio_unregister_bus();
2932 mmc_unregister_host_class();
2933 mmc_unregister_bus();
2934 destroy_workqueue(workqueue);
2935 }
2936
2937 /*
2938 * MMC IO latency support. We want this to be as cheap as possible, so doing
2939 * this lockless (and avoiding atomics), a few off by a few errors in this
2940 * code is not harmful, and we don't want to do anything that is
2941 * perf-impactful.
2942 * TODO : If necessary, we can make the histograms per-cpu and aggregate
2943 * them when printing them out.
2944 */
2945 static void
mmc_zero_latency_hist(struct mmc_host * host)2946 mmc_zero_latency_hist(struct mmc_host *host)
2947 {
2948 memset(host->latency_y_axis_read, 0,
2949 sizeof(host->latency_y_axis_read));
2950 memset(host->latency_y_axis_write, 0,
2951 sizeof(host->latency_y_axis_write));
2952 host->latency_reads_elems = 0;
2953 host->latency_writes_elems = 0;
2954 }
2955
2956 static ssize_t
latency_hist_show(struct device * dev,struct device_attribute * attr,char * buf)2957 latency_hist_show(struct device *dev, struct device_attribute *attr, char *buf)
2958 {
2959 int i;
2960 struct mmc_host *host = cls_dev_to_mmc_host(dev);
2961 int bytes_written = 0;
2962 u_int64_t num_elem, elem;
2963 int pct;
2964
2965 num_elem = host->latency_reads_elems;
2966 if (num_elem > 0) {
2967 bytes_written += scnprintf(buf + bytes_written,
2968 PAGE_SIZE - bytes_written,
2969 "IO svc_time Read Latency Histogram :\n");
2970 for (i = 0;
2971 i < ARRAY_SIZE(latency_x_axis_us);
2972 i++) {
2973 elem = host->latency_y_axis_read[i];
2974 pct = div64_u64(elem * 100, num_elem);
2975 bytes_written += scnprintf(buf + bytes_written,
2976 PAGE_SIZE - bytes_written,
2977 "\t< %5lluus%15llu%15d%%\n",
2978 latency_x_axis_us[i],
2979 elem, pct);
2980 }
2981 /* Last element in y-axis table is overflow */
2982 elem = host->latency_y_axis_read[i];
2983 pct = div64_u64(elem * 100, num_elem);
2984 bytes_written += scnprintf(buf + bytes_written,
2985 PAGE_SIZE - bytes_written,
2986 "\t> %5dms%15llu%15d%%\n", 10,
2987 elem, pct);
2988 }
2989 num_elem = host->latency_writes_elems;
2990 if (num_elem > 0) {
2991 bytes_written += scnprintf(buf + bytes_written,
2992 PAGE_SIZE - bytes_written,
2993 "IO svc_time Write Latency Histogram :\n");
2994 for (i = 0;
2995 i < ARRAY_SIZE(latency_x_axis_us);
2996 i++) {
2997 elem = host->latency_y_axis_write[i];
2998 pct = div64_u64(elem * 100, num_elem);
2999 bytes_written += scnprintf(buf + bytes_written,
3000 PAGE_SIZE - bytes_written,
3001 "\t< %5lluus%15llu%15d%%\n",
3002 latency_x_axis_us[i],
3003 elem, pct);
3004 }
3005 /* Last element in y-axis table is overflow */
3006 elem = host->latency_y_axis_write[i];
3007 pct = div64_u64(elem * 100, num_elem);
3008 bytes_written += scnprintf(buf + bytes_written,
3009 PAGE_SIZE - bytes_written,
3010 "\t> %5dms%15llu%15d%%\n", 10,
3011 elem, pct);
3012 }
3013 return bytes_written;
3014 }
3015 /*
3016 * Values permitted 0, 1, 2.
3017 * 0 -> Disable IO latency histograms (default)
3018 * 1 -> Enable IO latency histograms
3019 * 2 -> Zero out IO latency histograms
3020 */
3021 static ssize_t
latency_hist_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3022 latency_hist_store(struct device *dev, struct device_attribute *attr,
3023 const char *buf, size_t count)
3024 {
3025 struct mmc_host *host = cls_dev_to_mmc_host(dev);
3026 long value;
3027
3028 if (kstrtol(buf, 0, &value))
3029 return -EINVAL;
3030 if (value == MMC_IO_LAT_HIST_ZERO)
3031 mmc_zero_latency_hist(host);
3032 else if (value == MMC_IO_LAT_HIST_ENABLE ||
3033 value == MMC_IO_LAT_HIST_DISABLE)
3034 host->latency_hist_enabled = value;
3035 return count;
3036 }
3037
3038 static DEVICE_ATTR(latency_hist, S_IRUGO | S_IWUSR,
3039 latency_hist_show, latency_hist_store);
3040
3041 void
mmc_latency_hist_sysfs_init(struct mmc_host * host)3042 mmc_latency_hist_sysfs_init(struct mmc_host *host)
3043 {
3044 if (device_create_file(&host->class_dev, &dev_attr_latency_hist))
3045 dev_err(&host->class_dev,
3046 "Failed to create latency_hist sysfs entry\n");
3047 }
3048
3049 void
mmc_latency_hist_sysfs_exit(struct mmc_host * host)3050 mmc_latency_hist_sysfs_exit(struct mmc_host *host)
3051 {
3052 device_remove_file(&host->class_dev, &dev_attr_latency_hist);
3053 }
3054
3055 subsys_initcall(mmc_init);
3056 module_exit(mmc_exit);
3057
3058 MODULE_LICENSE("GPL");
3059