1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
51 bool tdp_enabled = false;
52
53 enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
60 };
61
62 #undef MMU_DEBUG
63
64 #ifdef MMU_DEBUG
65
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69 #else
70
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73
74 #endif
75
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
89 #endif
90
91 #define PTE_PREFETCH_NUM 8
92
93 #define PT_FIRST_AVAIL_BITS_SHIFT 10
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
96 #define PT64_LEVEL_BITS 9
97
98 #define PT64_LEVEL_SHIFT(level) \
99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100
101 #define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105 #define PT32_LEVEL_BITS 10
106
107 #define PT32_LEVEL_SHIFT(level) \
108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109
110 #define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
113
114 #define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
134
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
137
138 #define ACC_EXEC_MASK 1
139 #define ACC_WRITE_MASK PT_WRITABLE_MASK
140 #define ACC_USER_MASK PT_USER_MASK
141 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
143 #include <trace/events/kvm.h>
144
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
147
148 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
150
151 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
153 /* make pte_list_desc fit well in cache line */
154 #define PTE_LIST_EXT 3
155
156 struct pte_list_desc {
157 u64 *sptes[PTE_LIST_EXT];
158 struct pte_list_desc *more;
159 };
160
161 struct kvm_shadow_walk_iterator {
162 u64 addr;
163 hpa_t shadow_addr;
164 u64 *sptep;
165 int level;
166 unsigned index;
167 };
168
169 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
173
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
179
180 static struct kmem_cache *pte_list_desc_cache;
181 static struct kmem_cache *mmu_page_header_cache;
182 static struct percpu_counter kvm_total_used_mmu_pages;
183
184 static u64 __read_mostly shadow_nx_mask;
185 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186 static u64 __read_mostly shadow_user_mask;
187 static u64 __read_mostly shadow_accessed_mask;
188 static u64 __read_mostly shadow_dirty_mask;
189 static u64 __read_mostly shadow_mmio_mask;
190
191 static void mmu_spte_set(u64 *sptep, u64 spte);
192 static void mmu_free_roots(struct kvm_vcpu *vcpu);
193
kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)194 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195 {
196 shadow_mmio_mask = mmio_mask;
197 }
198 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
mark_mmio_spte(u64 * sptep,u64 gfn,unsigned access)200 static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
201 {
202 struct kvm_mmu_page *sp = page_header(__pa(sptep));
203
204 access &= ACC_WRITE_MASK | ACC_USER_MASK;
205
206 sp->mmio_cached = true;
207 trace_mark_mmio_spte(sptep, gfn, access);
208 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
209 }
210
is_mmio_spte(u64 spte)211 static bool is_mmio_spte(u64 spte)
212 {
213 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
214 }
215
get_mmio_spte_gfn(u64 spte)216 static gfn_t get_mmio_spte_gfn(u64 spte)
217 {
218 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
219 }
220
get_mmio_spte_access(u64 spte)221 static unsigned get_mmio_spte_access(u64 spte)
222 {
223 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
224 }
225
set_mmio_spte(u64 * sptep,gfn_t gfn,pfn_t pfn,unsigned access)226 static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
227 {
228 if (unlikely(is_noslot_pfn(pfn))) {
229 mark_mmio_spte(sptep, gfn, access);
230 return true;
231 }
232
233 return false;
234 }
235
rsvd_bits(int s,int e)236 static inline u64 rsvd_bits(int s, int e)
237 {
238 return ((1ULL << (e - s + 1)) - 1) << s;
239 }
240
kvm_mmu_set_mask_ptes(u64 user_mask,u64 accessed_mask,u64 dirty_mask,u64 nx_mask,u64 x_mask)241 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
242 u64 dirty_mask, u64 nx_mask, u64 x_mask)
243 {
244 shadow_user_mask = user_mask;
245 shadow_accessed_mask = accessed_mask;
246 shadow_dirty_mask = dirty_mask;
247 shadow_nx_mask = nx_mask;
248 shadow_x_mask = x_mask;
249 }
250 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
251
is_cpuid_PSE36(void)252 static int is_cpuid_PSE36(void)
253 {
254 return 1;
255 }
256
is_nx(struct kvm_vcpu * vcpu)257 static int is_nx(struct kvm_vcpu *vcpu)
258 {
259 return vcpu->arch.efer & EFER_NX;
260 }
261
is_shadow_present_pte(u64 pte)262 static int is_shadow_present_pte(u64 pte)
263 {
264 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
265 }
266
is_large_pte(u64 pte)267 static int is_large_pte(u64 pte)
268 {
269 return pte & PT_PAGE_SIZE_MASK;
270 }
271
is_dirty_gpte(unsigned long pte)272 static int is_dirty_gpte(unsigned long pte)
273 {
274 return pte & PT_DIRTY_MASK;
275 }
276
is_rmap_spte(u64 pte)277 static int is_rmap_spte(u64 pte)
278 {
279 return is_shadow_present_pte(pte);
280 }
281
is_last_spte(u64 pte,int level)282 static int is_last_spte(u64 pte, int level)
283 {
284 if (level == PT_PAGE_TABLE_LEVEL)
285 return 1;
286 if (is_large_pte(pte))
287 return 1;
288 return 0;
289 }
290
spte_to_pfn(u64 pte)291 static pfn_t spte_to_pfn(u64 pte)
292 {
293 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
294 }
295
pse36_gfn_delta(u32 gpte)296 static gfn_t pse36_gfn_delta(u32 gpte)
297 {
298 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
299
300 return (gpte & PT32_DIR_PSE36_MASK) << shift;
301 }
302
303 #ifdef CONFIG_X86_64
__set_spte(u64 * sptep,u64 spte)304 static void __set_spte(u64 *sptep, u64 spte)
305 {
306 *sptep = spte;
307 }
308
__update_clear_spte_fast(u64 * sptep,u64 spte)309 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
310 {
311 *sptep = spte;
312 }
313
__update_clear_spte_slow(u64 * sptep,u64 spte)314 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
315 {
316 return xchg(sptep, spte);
317 }
318
__get_spte_lockless(u64 * sptep)319 static u64 __get_spte_lockless(u64 *sptep)
320 {
321 return ACCESS_ONCE(*sptep);
322 }
323
__check_direct_spte_mmio_pf(u64 spte)324 static bool __check_direct_spte_mmio_pf(u64 spte)
325 {
326 /* It is valid if the spte is zapped. */
327 return spte == 0ull;
328 }
329 #else
330 union split_spte {
331 struct {
332 u32 spte_low;
333 u32 spte_high;
334 };
335 u64 spte;
336 };
337
count_spte_clear(u64 * sptep,u64 spte)338 static void count_spte_clear(u64 *sptep, u64 spte)
339 {
340 struct kvm_mmu_page *sp = page_header(__pa(sptep));
341
342 if (is_shadow_present_pte(spte))
343 return;
344
345 /* Ensure the spte is completely set before we increase the count */
346 smp_wmb();
347 sp->clear_spte_count++;
348 }
349
__set_spte(u64 * sptep,u64 spte)350 static void __set_spte(u64 *sptep, u64 spte)
351 {
352 union split_spte *ssptep, sspte;
353
354 ssptep = (union split_spte *)sptep;
355 sspte = (union split_spte)spte;
356
357 ssptep->spte_high = sspte.spte_high;
358
359 /*
360 * If we map the spte from nonpresent to present, We should store
361 * the high bits firstly, then set present bit, so cpu can not
362 * fetch this spte while we are setting the spte.
363 */
364 smp_wmb();
365
366 ssptep->spte_low = sspte.spte_low;
367 }
368
__update_clear_spte_fast(u64 * sptep,u64 spte)369 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
370 {
371 union split_spte *ssptep, sspte;
372
373 ssptep = (union split_spte *)sptep;
374 sspte = (union split_spte)spte;
375
376 ssptep->spte_low = sspte.spte_low;
377
378 /*
379 * If we map the spte from present to nonpresent, we should clear
380 * present bit firstly to avoid vcpu fetch the old high bits.
381 */
382 smp_wmb();
383
384 ssptep->spte_high = sspte.spte_high;
385 count_spte_clear(sptep, spte);
386 }
387
__update_clear_spte_slow(u64 * sptep,u64 spte)388 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
389 {
390 union split_spte *ssptep, sspte, orig;
391
392 ssptep = (union split_spte *)sptep;
393 sspte = (union split_spte)spte;
394
395 /* xchg acts as a barrier before the setting of the high bits */
396 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
397 orig.spte_high = ssptep->spte_high;
398 ssptep->spte_high = sspte.spte_high;
399 count_spte_clear(sptep, spte);
400
401 return orig.spte;
402 }
403
404 /*
405 * The idea using the light way get the spte on x86_32 guest is from
406 * gup_get_pte(arch/x86/mm/gup.c).
407 * The difference is we can not catch the spte tlb flush if we leave
408 * guest mode, so we emulate it by increase clear_spte_count when spte
409 * is cleared.
410 */
__get_spte_lockless(u64 * sptep)411 static u64 __get_spte_lockless(u64 *sptep)
412 {
413 struct kvm_mmu_page *sp = page_header(__pa(sptep));
414 union split_spte spte, *orig = (union split_spte *)sptep;
415 int count;
416
417 retry:
418 count = sp->clear_spte_count;
419 smp_rmb();
420
421 spte.spte_low = orig->spte_low;
422 smp_rmb();
423
424 spte.spte_high = orig->spte_high;
425 smp_rmb();
426
427 if (unlikely(spte.spte_low != orig->spte_low ||
428 count != sp->clear_spte_count))
429 goto retry;
430
431 return spte.spte;
432 }
433
__check_direct_spte_mmio_pf(u64 spte)434 static bool __check_direct_spte_mmio_pf(u64 spte)
435 {
436 union split_spte sspte = (union split_spte)spte;
437 u32 high_mmio_mask = shadow_mmio_mask >> 32;
438
439 /* It is valid if the spte is zapped. */
440 if (spte == 0ull)
441 return true;
442
443 /* It is valid if the spte is being zapped. */
444 if (sspte.spte_low == 0ull &&
445 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
446 return true;
447
448 return false;
449 }
450 #endif
451
spte_is_locklessly_modifiable(u64 spte)452 static bool spte_is_locklessly_modifiable(u64 spte)
453 {
454 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
455 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
456 }
457
spte_has_volatile_bits(u64 spte)458 static bool spte_has_volatile_bits(u64 spte)
459 {
460 /*
461 * Always atomicly update spte if it can be updated
462 * out of mmu-lock, it can ensure dirty bit is not lost,
463 * also, it can help us to get a stable is_writable_pte()
464 * to ensure tlb flush is not missed.
465 */
466 if (spte_is_locklessly_modifiable(spte))
467 return true;
468
469 if (!shadow_accessed_mask)
470 return false;
471
472 if (!is_shadow_present_pte(spte))
473 return false;
474
475 if ((spte & shadow_accessed_mask) &&
476 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
477 return false;
478
479 return true;
480 }
481
spte_is_bit_cleared(u64 old_spte,u64 new_spte,u64 bit_mask)482 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
483 {
484 return (old_spte & bit_mask) && !(new_spte & bit_mask);
485 }
486
487 /* Rules for using mmu_spte_set:
488 * Set the sptep from nonpresent to present.
489 * Note: the sptep being assigned *must* be either not present
490 * or in a state where the hardware will not attempt to update
491 * the spte.
492 */
mmu_spte_set(u64 * sptep,u64 new_spte)493 static void mmu_spte_set(u64 *sptep, u64 new_spte)
494 {
495 WARN_ON(is_shadow_present_pte(*sptep));
496 __set_spte(sptep, new_spte);
497 }
498
499 /* Rules for using mmu_spte_update:
500 * Update the state bits, it means the mapped pfn is not changged.
501 *
502 * Whenever we overwrite a writable spte with a read-only one we
503 * should flush remote TLBs. Otherwise rmap_write_protect
504 * will find a read-only spte, even though the writable spte
505 * might be cached on a CPU's TLB, the return value indicates this
506 * case.
507 */
mmu_spte_update(u64 * sptep,u64 new_spte)508 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
509 {
510 u64 old_spte = *sptep;
511 bool ret = false;
512
513 WARN_ON(!is_rmap_spte(new_spte));
514
515 if (!is_shadow_present_pte(old_spte)) {
516 mmu_spte_set(sptep, new_spte);
517 return ret;
518 }
519
520 if (!spte_has_volatile_bits(old_spte))
521 __update_clear_spte_fast(sptep, new_spte);
522 else
523 old_spte = __update_clear_spte_slow(sptep, new_spte);
524
525 /*
526 * For the spte updated out of mmu-lock is safe, since
527 * we always atomicly update it, see the comments in
528 * spte_has_volatile_bits().
529 */
530 if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
531 ret = true;
532
533 if (!shadow_accessed_mask)
534 return ret;
535
536 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
537 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
538 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
539 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
540
541 return ret;
542 }
543
544 /*
545 * Rules for using mmu_spte_clear_track_bits:
546 * It sets the sptep from present to nonpresent, and track the
547 * state bits, it is used to clear the last level sptep.
548 */
mmu_spte_clear_track_bits(u64 * sptep)549 static int mmu_spte_clear_track_bits(u64 *sptep)
550 {
551 pfn_t pfn;
552 u64 old_spte = *sptep;
553
554 if (!spte_has_volatile_bits(old_spte))
555 __update_clear_spte_fast(sptep, 0ull);
556 else
557 old_spte = __update_clear_spte_slow(sptep, 0ull);
558
559 if (!is_rmap_spte(old_spte))
560 return 0;
561
562 pfn = spte_to_pfn(old_spte);
563
564 /*
565 * KVM does not hold the refcount of the page used by
566 * kvm mmu, before reclaiming the page, we should
567 * unmap it from mmu first.
568 */
569 WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
570
571 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
572 kvm_set_pfn_accessed(pfn);
573 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
574 kvm_set_pfn_dirty(pfn);
575 return 1;
576 }
577
578 /*
579 * Rules for using mmu_spte_clear_no_track:
580 * Directly clear spte without caring the state bits of sptep,
581 * it is used to set the upper level spte.
582 */
mmu_spte_clear_no_track(u64 * sptep)583 static void mmu_spte_clear_no_track(u64 *sptep)
584 {
585 __update_clear_spte_fast(sptep, 0ull);
586 }
587
mmu_spte_get_lockless(u64 * sptep)588 static u64 mmu_spte_get_lockless(u64 *sptep)
589 {
590 return __get_spte_lockless(sptep);
591 }
592
walk_shadow_page_lockless_begin(struct kvm_vcpu * vcpu)593 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
594 {
595 /*
596 * Prevent page table teardown by making any free-er wait during
597 * kvm_flush_remote_tlbs() IPI to all active vcpus.
598 */
599 local_irq_disable();
600 vcpu->mode = READING_SHADOW_PAGE_TABLES;
601 /*
602 * Make sure a following spte read is not reordered ahead of the write
603 * to vcpu->mode.
604 */
605 smp_mb();
606 }
607
walk_shadow_page_lockless_end(struct kvm_vcpu * vcpu)608 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
609 {
610 /*
611 * Make sure the write to vcpu->mode is not reordered in front of
612 * reads to sptes. If it does, kvm_commit_zap_page() can see us
613 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
614 */
615 smp_mb();
616 vcpu->mode = OUTSIDE_GUEST_MODE;
617 local_irq_enable();
618 }
619
mmu_topup_memory_cache(struct kvm_mmu_memory_cache * cache,struct kmem_cache * base_cache,int min)620 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
621 struct kmem_cache *base_cache, int min)
622 {
623 void *obj;
624
625 if (cache->nobjs >= min)
626 return 0;
627 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
628 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
629 if (!obj)
630 return -ENOMEM;
631 cache->objects[cache->nobjs++] = obj;
632 }
633 return 0;
634 }
635
mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache * cache)636 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
637 {
638 return cache->nobjs;
639 }
640
mmu_free_memory_cache(struct kvm_mmu_memory_cache * mc,struct kmem_cache * cache)641 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
642 struct kmem_cache *cache)
643 {
644 while (mc->nobjs)
645 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
646 }
647
mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache * cache,int min)648 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
649 int min)
650 {
651 void *page;
652
653 if (cache->nobjs >= min)
654 return 0;
655 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
656 page = (void *)__get_free_page(GFP_KERNEL);
657 if (!page)
658 return -ENOMEM;
659 cache->objects[cache->nobjs++] = page;
660 }
661 return 0;
662 }
663
mmu_free_memory_cache_page(struct kvm_mmu_memory_cache * mc)664 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
665 {
666 while (mc->nobjs)
667 free_page((unsigned long)mc->objects[--mc->nobjs]);
668 }
669
mmu_topup_memory_caches(struct kvm_vcpu * vcpu)670 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
671 {
672 int r;
673
674 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
675 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
676 if (r)
677 goto out;
678 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
679 if (r)
680 goto out;
681 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
682 mmu_page_header_cache, 4);
683 out:
684 return r;
685 }
686
mmu_free_memory_caches(struct kvm_vcpu * vcpu)687 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
688 {
689 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
690 pte_list_desc_cache);
691 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
692 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
693 mmu_page_header_cache);
694 }
695
mmu_memory_cache_alloc(struct kvm_mmu_memory_cache * mc)696 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
697 {
698 void *p;
699
700 BUG_ON(!mc->nobjs);
701 p = mc->objects[--mc->nobjs];
702 return p;
703 }
704
mmu_alloc_pte_list_desc(struct kvm_vcpu * vcpu)705 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
706 {
707 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
708 }
709
mmu_free_pte_list_desc(struct pte_list_desc * pte_list_desc)710 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
711 {
712 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
713 }
714
kvm_mmu_page_get_gfn(struct kvm_mmu_page * sp,int index)715 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
716 {
717 if (!sp->role.direct)
718 return sp->gfns[index];
719
720 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
721 }
722
kvm_mmu_page_set_gfn(struct kvm_mmu_page * sp,int index,gfn_t gfn)723 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
724 {
725 if (sp->role.direct)
726 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
727 else
728 sp->gfns[index] = gfn;
729 }
730
731 /*
732 * Return the pointer to the large page information for a given gfn,
733 * handling slots that are not large page aligned.
734 */
lpage_info_slot(gfn_t gfn,struct kvm_memory_slot * slot,int level)735 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
736 struct kvm_memory_slot *slot,
737 int level)
738 {
739 unsigned long idx;
740
741 idx = gfn_to_index(gfn, slot->base_gfn, level);
742 return &slot->arch.lpage_info[level - 2][idx];
743 }
744
account_shadowed(struct kvm * kvm,gfn_t gfn)745 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
746 {
747 struct kvm_memory_slot *slot;
748 struct kvm_lpage_info *linfo;
749 int i;
750
751 slot = gfn_to_memslot(kvm, gfn);
752 for (i = PT_DIRECTORY_LEVEL;
753 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
754 linfo = lpage_info_slot(gfn, slot, i);
755 linfo->write_count += 1;
756 }
757 kvm->arch.indirect_shadow_pages++;
758 }
759
unaccount_shadowed(struct kvm * kvm,gfn_t gfn)760 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
761 {
762 struct kvm_memory_slot *slot;
763 struct kvm_lpage_info *linfo;
764 int i;
765
766 slot = gfn_to_memslot(kvm, gfn);
767 for (i = PT_DIRECTORY_LEVEL;
768 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
769 linfo = lpage_info_slot(gfn, slot, i);
770 linfo->write_count -= 1;
771 WARN_ON(linfo->write_count < 0);
772 }
773 kvm->arch.indirect_shadow_pages--;
774 }
775
has_wrprotected_page(struct kvm * kvm,gfn_t gfn,int level)776 static int has_wrprotected_page(struct kvm *kvm,
777 gfn_t gfn,
778 int level)
779 {
780 struct kvm_memory_slot *slot;
781 struct kvm_lpage_info *linfo;
782
783 slot = gfn_to_memslot(kvm, gfn);
784 if (slot) {
785 linfo = lpage_info_slot(gfn, slot, level);
786 return linfo->write_count;
787 }
788
789 return 1;
790 }
791
host_mapping_level(struct kvm * kvm,gfn_t gfn)792 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
793 {
794 unsigned long page_size;
795 int i, ret = 0;
796
797 page_size = kvm_host_page_size(kvm, gfn);
798
799 for (i = PT_PAGE_TABLE_LEVEL;
800 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
801 if (page_size >= KVM_HPAGE_SIZE(i))
802 ret = i;
803 else
804 break;
805 }
806
807 return ret;
808 }
809
810 static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)811 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
812 bool no_dirty_log)
813 {
814 struct kvm_memory_slot *slot;
815
816 slot = gfn_to_memslot(vcpu->kvm, gfn);
817 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
818 (no_dirty_log && slot->dirty_bitmap))
819 slot = NULL;
820
821 return slot;
822 }
823
mapping_level_dirty_bitmap(struct kvm_vcpu * vcpu,gfn_t large_gfn)824 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
825 {
826 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
827 }
828
mapping_level(struct kvm_vcpu * vcpu,gfn_t large_gfn)829 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
830 {
831 int host_level, level, max_level;
832
833 host_level = host_mapping_level(vcpu->kvm, large_gfn);
834
835 if (host_level == PT_PAGE_TABLE_LEVEL)
836 return host_level;
837
838 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
839
840 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
841 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
842 break;
843
844 return level - 1;
845 }
846
847 /*
848 * Pte mapping structures:
849 *
850 * If pte_list bit zero is zero, then pte_list point to the spte.
851 *
852 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
853 * pte_list_desc containing more mappings.
854 *
855 * Returns the number of pte entries before the spte was added or zero if
856 * the spte was not added.
857 *
858 */
pte_list_add(struct kvm_vcpu * vcpu,u64 * spte,unsigned long * pte_list)859 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
860 unsigned long *pte_list)
861 {
862 struct pte_list_desc *desc;
863 int i, count = 0;
864
865 if (!*pte_list) {
866 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
867 *pte_list = (unsigned long)spte;
868 } else if (!(*pte_list & 1)) {
869 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
870 desc = mmu_alloc_pte_list_desc(vcpu);
871 desc->sptes[0] = (u64 *)*pte_list;
872 desc->sptes[1] = spte;
873 *pte_list = (unsigned long)desc | 1;
874 ++count;
875 } else {
876 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
877 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
878 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
879 desc = desc->more;
880 count += PTE_LIST_EXT;
881 }
882 if (desc->sptes[PTE_LIST_EXT-1]) {
883 desc->more = mmu_alloc_pte_list_desc(vcpu);
884 desc = desc->more;
885 }
886 for (i = 0; desc->sptes[i]; ++i)
887 ++count;
888 desc->sptes[i] = spte;
889 }
890 return count;
891 }
892
893 static void
pte_list_desc_remove_entry(unsigned long * pte_list,struct pte_list_desc * desc,int i,struct pte_list_desc * prev_desc)894 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
895 int i, struct pte_list_desc *prev_desc)
896 {
897 int j;
898
899 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
900 ;
901 desc->sptes[i] = desc->sptes[j];
902 desc->sptes[j] = NULL;
903 if (j != 0)
904 return;
905 if (!prev_desc && !desc->more)
906 *pte_list = (unsigned long)desc->sptes[0];
907 else
908 if (prev_desc)
909 prev_desc->more = desc->more;
910 else
911 *pte_list = (unsigned long)desc->more | 1;
912 mmu_free_pte_list_desc(desc);
913 }
914
pte_list_remove(u64 * spte,unsigned long * pte_list)915 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
916 {
917 struct pte_list_desc *desc;
918 struct pte_list_desc *prev_desc;
919 int i;
920
921 if (!*pte_list) {
922 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
923 BUG();
924 } else if (!(*pte_list & 1)) {
925 rmap_printk("pte_list_remove: %p 1->0\n", spte);
926 if ((u64 *)*pte_list != spte) {
927 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
928 BUG();
929 }
930 *pte_list = 0;
931 } else {
932 rmap_printk("pte_list_remove: %p many->many\n", spte);
933 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
934 prev_desc = NULL;
935 while (desc) {
936 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
937 if (desc->sptes[i] == spte) {
938 pte_list_desc_remove_entry(pte_list,
939 desc, i,
940 prev_desc);
941 return;
942 }
943 prev_desc = desc;
944 desc = desc->more;
945 }
946 pr_err("pte_list_remove: %p many->many\n", spte);
947 BUG();
948 }
949 }
950
951 typedef void (*pte_list_walk_fn) (u64 *spte);
pte_list_walk(unsigned long * pte_list,pte_list_walk_fn fn)952 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
953 {
954 struct pte_list_desc *desc;
955 int i;
956
957 if (!*pte_list)
958 return;
959
960 if (!(*pte_list & 1))
961 return fn((u64 *)*pte_list);
962
963 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
964 while (desc) {
965 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
966 fn(desc->sptes[i]);
967 desc = desc->more;
968 }
969 }
970
__gfn_to_rmap(gfn_t gfn,int level,struct kvm_memory_slot * slot)971 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
972 struct kvm_memory_slot *slot)
973 {
974 unsigned long idx;
975
976 idx = gfn_to_index(gfn, slot->base_gfn, level);
977 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
978 }
979
980 /*
981 * Take gfn and return the reverse mapping to it.
982 */
gfn_to_rmap(struct kvm * kvm,gfn_t gfn,int level)983 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
984 {
985 struct kvm_memory_slot *slot;
986
987 slot = gfn_to_memslot(kvm, gfn);
988 return __gfn_to_rmap(gfn, level, slot);
989 }
990
rmap_can_add(struct kvm_vcpu * vcpu)991 static bool rmap_can_add(struct kvm_vcpu *vcpu)
992 {
993 struct kvm_mmu_memory_cache *cache;
994
995 cache = &vcpu->arch.mmu_pte_list_desc_cache;
996 return mmu_memory_cache_free_objects(cache);
997 }
998
rmap_add(struct kvm_vcpu * vcpu,u64 * spte,gfn_t gfn)999 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1000 {
1001 struct kvm_mmu_page *sp;
1002 unsigned long *rmapp;
1003
1004 sp = page_header(__pa(spte));
1005 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1006 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1007 return pte_list_add(vcpu, spte, rmapp);
1008 }
1009
rmap_remove(struct kvm * kvm,u64 * spte)1010 static void rmap_remove(struct kvm *kvm, u64 *spte)
1011 {
1012 struct kvm_mmu_page *sp;
1013 gfn_t gfn;
1014 unsigned long *rmapp;
1015
1016 sp = page_header(__pa(spte));
1017 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1018 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1019 pte_list_remove(spte, rmapp);
1020 }
1021
1022 /*
1023 * Used by the following functions to iterate through the sptes linked by a
1024 * rmap. All fields are private and not assumed to be used outside.
1025 */
1026 struct rmap_iterator {
1027 /* private fields */
1028 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1029 int pos; /* index of the sptep */
1030 };
1031
1032 /*
1033 * Iteration must be started by this function. This should also be used after
1034 * removing/dropping sptes from the rmap link because in such cases the
1035 * information in the itererator may not be valid.
1036 *
1037 * Returns sptep if found, NULL otherwise.
1038 */
rmap_get_first(unsigned long rmap,struct rmap_iterator * iter)1039 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1040 {
1041 if (!rmap)
1042 return NULL;
1043
1044 if (!(rmap & 1)) {
1045 iter->desc = NULL;
1046 return (u64 *)rmap;
1047 }
1048
1049 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1050 iter->pos = 0;
1051 return iter->desc->sptes[iter->pos];
1052 }
1053
1054 /*
1055 * Must be used with a valid iterator: e.g. after rmap_get_first().
1056 *
1057 * Returns sptep if found, NULL otherwise.
1058 */
rmap_get_next(struct rmap_iterator * iter)1059 static u64 *rmap_get_next(struct rmap_iterator *iter)
1060 {
1061 if (iter->desc) {
1062 if (iter->pos < PTE_LIST_EXT - 1) {
1063 u64 *sptep;
1064
1065 ++iter->pos;
1066 sptep = iter->desc->sptes[iter->pos];
1067 if (sptep)
1068 return sptep;
1069 }
1070
1071 iter->desc = iter->desc->more;
1072
1073 if (iter->desc) {
1074 iter->pos = 0;
1075 /* desc->sptes[0] cannot be NULL */
1076 return iter->desc->sptes[iter->pos];
1077 }
1078 }
1079
1080 return NULL;
1081 }
1082
drop_spte(struct kvm * kvm,u64 * sptep)1083 static void drop_spte(struct kvm *kvm, u64 *sptep)
1084 {
1085 if (mmu_spte_clear_track_bits(sptep))
1086 rmap_remove(kvm, sptep);
1087 }
1088
1089
__drop_large_spte(struct kvm * kvm,u64 * sptep)1090 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1091 {
1092 if (is_large_pte(*sptep)) {
1093 WARN_ON(page_header(__pa(sptep))->role.level ==
1094 PT_PAGE_TABLE_LEVEL);
1095 drop_spte(kvm, sptep);
1096 --kvm->stat.lpages;
1097 return true;
1098 }
1099
1100 return false;
1101 }
1102
drop_large_spte(struct kvm_vcpu * vcpu,u64 * sptep)1103 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1104 {
1105 if (__drop_large_spte(vcpu->kvm, sptep))
1106 kvm_flush_remote_tlbs(vcpu->kvm);
1107 }
1108
1109 /*
1110 * Write-protect on the specified @sptep, @pt_protect indicates whether
1111 * spte writ-protection is caused by protecting shadow page table.
1112 * @flush indicates whether tlb need be flushed.
1113 *
1114 * Note: write protection is difference between drity logging and spte
1115 * protection:
1116 * - for dirty logging, the spte can be set to writable at anytime if
1117 * its dirty bitmap is properly set.
1118 * - for spte protection, the spte can be writable only after unsync-ing
1119 * shadow page.
1120 *
1121 * Return true if the spte is dropped.
1122 */
1123 static bool
spte_write_protect(struct kvm * kvm,u64 * sptep,bool * flush,bool pt_protect)1124 spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
1125 {
1126 u64 spte = *sptep;
1127
1128 if (!is_writable_pte(spte) &&
1129 !(pt_protect && spte_is_locklessly_modifiable(spte)))
1130 return false;
1131
1132 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1133
1134 if (__drop_large_spte(kvm, sptep)) {
1135 *flush |= true;
1136 return true;
1137 }
1138
1139 if (pt_protect)
1140 spte &= ~SPTE_MMU_WRITEABLE;
1141 spte = spte & ~PT_WRITABLE_MASK;
1142
1143 *flush |= mmu_spte_update(sptep, spte);
1144 return false;
1145 }
1146
__rmap_write_protect(struct kvm * kvm,unsigned long * rmapp,bool pt_protect)1147 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1148 bool pt_protect)
1149 {
1150 u64 *sptep;
1151 struct rmap_iterator iter;
1152 bool flush = false;
1153
1154 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1155 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1156 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1157 sptep = rmap_get_first(*rmapp, &iter);
1158 continue;
1159 }
1160
1161 sptep = rmap_get_next(&iter);
1162 }
1163
1164 return flush;
1165 }
1166
1167 /**
1168 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1169 * @kvm: kvm instance
1170 * @slot: slot to protect
1171 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1172 * @mask: indicates which pages we should protect
1173 *
1174 * Used when we do not need to care about huge page mappings: e.g. during dirty
1175 * logging we do not have any such mappings.
1176 */
kvm_mmu_write_protect_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1177 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1178 struct kvm_memory_slot *slot,
1179 gfn_t gfn_offset, unsigned long mask)
1180 {
1181 unsigned long *rmapp;
1182
1183 while (mask) {
1184 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1185 PT_PAGE_TABLE_LEVEL, slot);
1186 __rmap_write_protect(kvm, rmapp, false);
1187
1188 /* clear the first set bit */
1189 mask &= mask - 1;
1190 }
1191 }
1192
rmap_write_protect(struct kvm * kvm,u64 gfn)1193 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1194 {
1195 struct kvm_memory_slot *slot;
1196 unsigned long *rmapp;
1197 int i;
1198 bool write_protected = false;
1199
1200 slot = gfn_to_memslot(kvm, gfn);
1201
1202 for (i = PT_PAGE_TABLE_LEVEL;
1203 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1204 rmapp = __gfn_to_rmap(gfn, i, slot);
1205 write_protected |= __rmap_write_protect(kvm, rmapp, true);
1206 }
1207
1208 return write_protected;
1209 }
1210
kvm_unmap_rmapp(struct kvm * kvm,unsigned long * rmapp,struct kvm_memory_slot * slot,unsigned long data)1211 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1212 struct kvm_memory_slot *slot, unsigned long data)
1213 {
1214 u64 *sptep;
1215 struct rmap_iterator iter;
1216 int need_tlb_flush = 0;
1217
1218 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1219 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1220 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1221
1222 drop_spte(kvm, sptep);
1223 need_tlb_flush = 1;
1224 }
1225
1226 return need_tlb_flush;
1227 }
1228
kvm_set_pte_rmapp(struct kvm * kvm,unsigned long * rmapp,struct kvm_memory_slot * slot,unsigned long data)1229 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1230 struct kvm_memory_slot *slot, unsigned long data)
1231 {
1232 u64 *sptep;
1233 struct rmap_iterator iter;
1234 int need_flush = 0;
1235 u64 new_spte;
1236 pte_t *ptep = (pte_t *)data;
1237 pfn_t new_pfn;
1238
1239 WARN_ON(pte_huge(*ptep));
1240 new_pfn = pte_pfn(*ptep);
1241
1242 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1243 BUG_ON(!is_shadow_present_pte(*sptep));
1244 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1245
1246 need_flush = 1;
1247
1248 if (pte_write(*ptep)) {
1249 drop_spte(kvm, sptep);
1250 sptep = rmap_get_first(*rmapp, &iter);
1251 } else {
1252 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1253 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1254
1255 new_spte &= ~PT_WRITABLE_MASK;
1256 new_spte &= ~SPTE_HOST_WRITEABLE;
1257 new_spte &= ~shadow_accessed_mask;
1258
1259 mmu_spte_clear_track_bits(sptep);
1260 mmu_spte_set(sptep, new_spte);
1261 sptep = rmap_get_next(&iter);
1262 }
1263 }
1264
1265 if (need_flush)
1266 kvm_flush_remote_tlbs(kvm);
1267
1268 return 0;
1269 }
1270
kvm_handle_hva_range(struct kvm * kvm,unsigned long start,unsigned long end,unsigned long data,int (* handler)(struct kvm * kvm,unsigned long * rmapp,struct kvm_memory_slot * slot,unsigned long data))1271 static int kvm_handle_hva_range(struct kvm *kvm,
1272 unsigned long start,
1273 unsigned long end,
1274 unsigned long data,
1275 int (*handler)(struct kvm *kvm,
1276 unsigned long *rmapp,
1277 struct kvm_memory_slot *slot,
1278 unsigned long data))
1279 {
1280 int j;
1281 int ret = 0;
1282 struct kvm_memslots *slots;
1283 struct kvm_memory_slot *memslot;
1284
1285 slots = kvm_memslots(kvm);
1286
1287 kvm_for_each_memslot(memslot, slots) {
1288 unsigned long hva_start, hva_end;
1289 gfn_t gfn_start, gfn_end;
1290
1291 hva_start = max(start, memslot->userspace_addr);
1292 hva_end = min(end, memslot->userspace_addr +
1293 (memslot->npages << PAGE_SHIFT));
1294 if (hva_start >= hva_end)
1295 continue;
1296 /*
1297 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1298 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1299 */
1300 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1301 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1302
1303 for (j = PT_PAGE_TABLE_LEVEL;
1304 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1305 unsigned long idx, idx_end;
1306 unsigned long *rmapp;
1307
1308 /*
1309 * {idx(page_j) | page_j intersects with
1310 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1311 */
1312 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1313 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1314
1315 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1316
1317 for (; idx <= idx_end; ++idx)
1318 ret |= handler(kvm, rmapp++, memslot, data);
1319 }
1320 }
1321
1322 return ret;
1323 }
1324
kvm_handle_hva(struct kvm * kvm,unsigned long hva,unsigned long data,int (* handler)(struct kvm * kvm,unsigned long * rmapp,struct kvm_memory_slot * slot,unsigned long data))1325 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1326 unsigned long data,
1327 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1328 struct kvm_memory_slot *slot,
1329 unsigned long data))
1330 {
1331 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1332 }
1333
kvm_unmap_hva(struct kvm * kvm,unsigned long hva)1334 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1335 {
1336 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1337 }
1338
kvm_unmap_hva_range(struct kvm * kvm,unsigned long start,unsigned long end)1339 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1340 {
1341 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1342 }
1343
kvm_set_spte_hva(struct kvm * kvm,unsigned long hva,pte_t pte)1344 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1345 {
1346 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1347 }
1348
kvm_age_rmapp(struct kvm * kvm,unsigned long * rmapp,struct kvm_memory_slot * slot,unsigned long data)1349 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1350 struct kvm_memory_slot *slot, unsigned long data)
1351 {
1352 u64 *sptep;
1353 struct rmap_iterator uninitialized_var(iter);
1354 int young = 0;
1355
1356 /*
1357 * In case of absence of EPT Access and Dirty Bits supports,
1358 * emulate the accessed bit for EPT, by checking if this page has
1359 * an EPT mapping, and clearing it if it does. On the next access,
1360 * a new EPT mapping will be established.
1361 * This has some overhead, but not as much as the cost of swapping
1362 * out actively used pages or breaking up actively used hugepages.
1363 */
1364 if (!shadow_accessed_mask) {
1365 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1366 goto out;
1367 }
1368
1369 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1370 sptep = rmap_get_next(&iter)) {
1371 BUG_ON(!is_shadow_present_pte(*sptep));
1372
1373 if (*sptep & shadow_accessed_mask) {
1374 young = 1;
1375 clear_bit((ffs(shadow_accessed_mask) - 1),
1376 (unsigned long *)sptep);
1377 }
1378 }
1379 out:
1380 /* @data has hva passed to kvm_age_hva(). */
1381 trace_kvm_age_page(data, slot, young);
1382 return young;
1383 }
1384
kvm_test_age_rmapp(struct kvm * kvm,unsigned long * rmapp,struct kvm_memory_slot * slot,unsigned long data)1385 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1386 struct kvm_memory_slot *slot, unsigned long data)
1387 {
1388 u64 *sptep;
1389 struct rmap_iterator iter;
1390 int young = 0;
1391
1392 /*
1393 * If there's no access bit in the secondary pte set by the
1394 * hardware it's up to gup-fast/gup to set the access bit in
1395 * the primary pte or in the page structure.
1396 */
1397 if (!shadow_accessed_mask)
1398 goto out;
1399
1400 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1401 sptep = rmap_get_next(&iter)) {
1402 BUG_ON(!is_shadow_present_pte(*sptep));
1403
1404 if (*sptep & shadow_accessed_mask) {
1405 young = 1;
1406 break;
1407 }
1408 }
1409 out:
1410 return young;
1411 }
1412
1413 #define RMAP_RECYCLE_THRESHOLD 1000
1414
rmap_recycle(struct kvm_vcpu * vcpu,u64 * spte,gfn_t gfn)1415 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1416 {
1417 unsigned long *rmapp;
1418 struct kvm_mmu_page *sp;
1419
1420 sp = page_header(__pa(spte));
1421
1422 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1423
1424 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1425 kvm_flush_remote_tlbs(vcpu->kvm);
1426 }
1427
kvm_age_hva(struct kvm * kvm,unsigned long hva)1428 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1429 {
1430 return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1431 }
1432
kvm_test_age_hva(struct kvm * kvm,unsigned long hva)1433 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1434 {
1435 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1436 }
1437
1438 #ifdef MMU_DEBUG
is_empty_shadow_page(u64 * spt)1439 static int is_empty_shadow_page(u64 *spt)
1440 {
1441 u64 *pos;
1442 u64 *end;
1443
1444 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1445 if (is_shadow_present_pte(*pos)) {
1446 printk(KERN_ERR "%s: %p %llx\n", __func__,
1447 pos, *pos);
1448 return 0;
1449 }
1450 return 1;
1451 }
1452 #endif
1453
1454 /*
1455 * This value is the sum of all of the kvm instances's
1456 * kvm->arch.n_used_mmu_pages values. We need a global,
1457 * aggregate version in order to make the slab shrinker
1458 * faster
1459 */
kvm_mod_used_mmu_pages(struct kvm * kvm,int nr)1460 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1461 {
1462 kvm->arch.n_used_mmu_pages += nr;
1463 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1464 }
1465
kvm_mmu_free_page(struct kvm_mmu_page * sp)1466 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1467 {
1468 ASSERT(is_empty_shadow_page(sp->spt));
1469 hlist_del(&sp->hash_link);
1470 list_del(&sp->link);
1471 free_page((unsigned long)sp->spt);
1472 if (!sp->role.direct)
1473 free_page((unsigned long)sp->gfns);
1474 kmem_cache_free(mmu_page_header_cache, sp);
1475 }
1476
kvm_page_table_hashfn(gfn_t gfn)1477 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1478 {
1479 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1480 }
1481
mmu_page_add_parent_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * parent_pte)1482 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1483 struct kvm_mmu_page *sp, u64 *parent_pte)
1484 {
1485 if (!parent_pte)
1486 return;
1487
1488 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1489 }
1490
mmu_page_remove_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)1491 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1492 u64 *parent_pte)
1493 {
1494 pte_list_remove(parent_pte, &sp->parent_ptes);
1495 }
1496
drop_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)1497 static void drop_parent_pte(struct kvm_mmu_page *sp,
1498 u64 *parent_pte)
1499 {
1500 mmu_page_remove_parent_pte(sp, parent_pte);
1501 mmu_spte_clear_no_track(parent_pte);
1502 }
1503
kvm_mmu_alloc_page(struct kvm_vcpu * vcpu,u64 * parent_pte,int direct)1504 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1505 u64 *parent_pte, int direct)
1506 {
1507 struct kvm_mmu_page *sp;
1508
1509 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1510 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1511 if (!direct)
1512 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1513 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1514 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1515 sp->parent_ptes = 0;
1516 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1517 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1518 return sp;
1519 }
1520
1521 static void mark_unsync(u64 *spte);
kvm_mmu_mark_parents_unsync(struct kvm_mmu_page * sp)1522 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1523 {
1524 pte_list_walk(&sp->parent_ptes, mark_unsync);
1525 }
1526
mark_unsync(u64 * spte)1527 static void mark_unsync(u64 *spte)
1528 {
1529 struct kvm_mmu_page *sp;
1530 unsigned int index;
1531
1532 sp = page_header(__pa(spte));
1533 index = spte - sp->spt;
1534 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1535 return;
1536 if (sp->unsync_children++)
1537 return;
1538 kvm_mmu_mark_parents_unsync(sp);
1539 }
1540
nonpaging_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)1541 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1542 struct kvm_mmu_page *sp)
1543 {
1544 return 1;
1545 }
1546
nonpaging_invlpg(struct kvm_vcpu * vcpu,gva_t gva)1547 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1548 {
1549 }
1550
nonpaging_update_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * spte,const void * pte)1551 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1552 struct kvm_mmu_page *sp, u64 *spte,
1553 const void *pte)
1554 {
1555 WARN_ON(1);
1556 }
1557
1558 #define KVM_PAGE_ARRAY_NR 16
1559
1560 struct kvm_mmu_pages {
1561 struct mmu_page_and_offset {
1562 struct kvm_mmu_page *sp;
1563 unsigned int idx;
1564 } page[KVM_PAGE_ARRAY_NR];
1565 unsigned int nr;
1566 };
1567
mmu_pages_add(struct kvm_mmu_pages * pvec,struct kvm_mmu_page * sp,int idx)1568 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1569 int idx)
1570 {
1571 int i;
1572
1573 if (sp->unsync)
1574 for (i=0; i < pvec->nr; i++)
1575 if (pvec->page[i].sp == sp)
1576 return 0;
1577
1578 pvec->page[pvec->nr].sp = sp;
1579 pvec->page[pvec->nr].idx = idx;
1580 pvec->nr++;
1581 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1582 }
1583
__mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1584 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1585 struct kvm_mmu_pages *pvec)
1586 {
1587 int i, ret, nr_unsync_leaf = 0;
1588
1589 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1590 struct kvm_mmu_page *child;
1591 u64 ent = sp->spt[i];
1592
1593 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1594 goto clear_child_bitmap;
1595
1596 child = page_header(ent & PT64_BASE_ADDR_MASK);
1597
1598 if (child->unsync_children) {
1599 if (mmu_pages_add(pvec, child, i))
1600 return -ENOSPC;
1601
1602 ret = __mmu_unsync_walk(child, pvec);
1603 if (!ret)
1604 goto clear_child_bitmap;
1605 else if (ret > 0)
1606 nr_unsync_leaf += ret;
1607 else
1608 return ret;
1609 } else if (child->unsync) {
1610 nr_unsync_leaf++;
1611 if (mmu_pages_add(pvec, child, i))
1612 return -ENOSPC;
1613 } else
1614 goto clear_child_bitmap;
1615
1616 continue;
1617
1618 clear_child_bitmap:
1619 __clear_bit(i, sp->unsync_child_bitmap);
1620 sp->unsync_children--;
1621 WARN_ON((int)sp->unsync_children < 0);
1622 }
1623
1624
1625 return nr_unsync_leaf;
1626 }
1627
mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1628 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1629 struct kvm_mmu_pages *pvec)
1630 {
1631 if (!sp->unsync_children)
1632 return 0;
1633
1634 mmu_pages_add(pvec, sp, 0);
1635 return __mmu_unsync_walk(sp, pvec);
1636 }
1637
kvm_unlink_unsync_page(struct kvm * kvm,struct kvm_mmu_page * sp)1638 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1639 {
1640 WARN_ON(!sp->unsync);
1641 trace_kvm_mmu_sync_page(sp);
1642 sp->unsync = 0;
1643 --kvm->stat.mmu_unsync;
1644 }
1645
1646 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1647 struct list_head *invalid_list);
1648 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1649 struct list_head *invalid_list);
1650
1651 #define for_each_gfn_sp(_kvm, _sp, _gfn) \
1652 hlist_for_each_entry(_sp, \
1653 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1654 if ((_sp)->gfn != (_gfn)) {} else
1655
1656 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1657 for_each_gfn_sp(_kvm, _sp, _gfn) \
1658 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1659
1660 /* @sp->gfn should be write-protected at the call site */
__kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,struct list_head * invalid_list,bool clear_unsync)1661 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1662 struct list_head *invalid_list, bool clear_unsync)
1663 {
1664 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1665 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1666 return 1;
1667 }
1668
1669 if (clear_unsync)
1670 kvm_unlink_unsync_page(vcpu->kvm, sp);
1671
1672 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1673 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1674 return 1;
1675 }
1676
1677 kvm_mmu_flush_tlb(vcpu);
1678 return 0;
1679 }
1680
kvm_sync_page_transient(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)1681 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1682 struct kvm_mmu_page *sp)
1683 {
1684 LIST_HEAD(invalid_list);
1685 int ret;
1686
1687 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1688 if (ret)
1689 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1690
1691 return ret;
1692 }
1693
1694 #ifdef CONFIG_KVM_MMU_AUDIT
1695 #include "mmu_audit.c"
1696 #else
kvm_mmu_audit(struct kvm_vcpu * vcpu,int point)1697 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
mmu_audit_disable(void)1698 static void mmu_audit_disable(void) { }
1699 #endif
1700
kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,struct list_head * invalid_list)1701 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1702 struct list_head *invalid_list)
1703 {
1704 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1705 }
1706
1707 /* @gfn should be write-protected at the call site */
kvm_sync_pages(struct kvm_vcpu * vcpu,gfn_t gfn)1708 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1709 {
1710 struct kvm_mmu_page *s;
1711 LIST_HEAD(invalid_list);
1712 bool flush = false;
1713
1714 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1715 if (!s->unsync)
1716 continue;
1717
1718 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1719 kvm_unlink_unsync_page(vcpu->kvm, s);
1720 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1721 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1722 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1723 continue;
1724 }
1725 flush = true;
1726 }
1727
1728 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1729 if (flush)
1730 kvm_mmu_flush_tlb(vcpu);
1731 }
1732
1733 struct mmu_page_path {
1734 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1735 unsigned int idx[PT64_ROOT_LEVEL-1];
1736 };
1737
1738 #define for_each_sp(pvec, sp, parents, i) \
1739 for (i = mmu_pages_next(&pvec, &parents, -1), \
1740 sp = pvec.page[i].sp; \
1741 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1742 i = mmu_pages_next(&pvec, &parents, i))
1743
mmu_pages_next(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents,int i)1744 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1745 struct mmu_page_path *parents,
1746 int i)
1747 {
1748 int n;
1749
1750 for (n = i+1; n < pvec->nr; n++) {
1751 struct kvm_mmu_page *sp = pvec->page[n].sp;
1752
1753 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1754 parents->idx[0] = pvec->page[n].idx;
1755 return n;
1756 }
1757
1758 parents->parent[sp->role.level-2] = sp;
1759 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1760 }
1761
1762 return n;
1763 }
1764
mmu_pages_clear_parents(struct mmu_page_path * parents)1765 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1766 {
1767 struct kvm_mmu_page *sp;
1768 unsigned int level = 0;
1769
1770 do {
1771 unsigned int idx = parents->idx[level];
1772
1773 sp = parents->parent[level];
1774 if (!sp)
1775 return;
1776
1777 --sp->unsync_children;
1778 WARN_ON((int)sp->unsync_children < 0);
1779 __clear_bit(idx, sp->unsync_child_bitmap);
1780 level++;
1781 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1782 }
1783
kvm_mmu_pages_init(struct kvm_mmu_page * parent,struct mmu_page_path * parents,struct kvm_mmu_pages * pvec)1784 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1785 struct mmu_page_path *parents,
1786 struct kvm_mmu_pages *pvec)
1787 {
1788 parents->parent[parent->role.level-1] = NULL;
1789 pvec->nr = 0;
1790 }
1791
mmu_sync_children(struct kvm_vcpu * vcpu,struct kvm_mmu_page * parent)1792 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1793 struct kvm_mmu_page *parent)
1794 {
1795 int i;
1796 struct kvm_mmu_page *sp;
1797 struct mmu_page_path parents;
1798 struct kvm_mmu_pages pages;
1799 LIST_HEAD(invalid_list);
1800
1801 kvm_mmu_pages_init(parent, &parents, &pages);
1802 while (mmu_unsync_walk(parent, &pages)) {
1803 bool protected = false;
1804
1805 for_each_sp(pages, sp, parents, i)
1806 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1807
1808 if (protected)
1809 kvm_flush_remote_tlbs(vcpu->kvm);
1810
1811 for_each_sp(pages, sp, parents, i) {
1812 kvm_sync_page(vcpu, sp, &invalid_list);
1813 mmu_pages_clear_parents(&parents);
1814 }
1815 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1816 cond_resched_lock(&vcpu->kvm->mmu_lock);
1817 kvm_mmu_pages_init(parent, &parents, &pages);
1818 }
1819 }
1820
init_shadow_page_table(struct kvm_mmu_page * sp)1821 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1822 {
1823 int i;
1824
1825 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1826 sp->spt[i] = 0ull;
1827 }
1828
__clear_sp_write_flooding_count(struct kvm_mmu_page * sp)1829 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1830 {
1831 sp->write_flooding_count = 0;
1832 }
1833
clear_sp_write_flooding_count(u64 * spte)1834 static void clear_sp_write_flooding_count(u64 *spte)
1835 {
1836 struct kvm_mmu_page *sp = page_header(__pa(spte));
1837
1838 __clear_sp_write_flooding_count(sp);
1839 }
1840
kvm_mmu_get_page(struct kvm_vcpu * vcpu,gfn_t gfn,gva_t gaddr,unsigned level,int direct,unsigned access,u64 * parent_pte)1841 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1842 gfn_t gfn,
1843 gva_t gaddr,
1844 unsigned level,
1845 int direct,
1846 unsigned access,
1847 u64 *parent_pte)
1848 {
1849 union kvm_mmu_page_role role;
1850 unsigned quadrant;
1851 struct kvm_mmu_page *sp;
1852 bool need_sync = false;
1853
1854 role = vcpu->arch.mmu.base_role;
1855 role.level = level;
1856 role.direct = direct;
1857 if (role.direct)
1858 role.cr4_pae = 0;
1859 role.access = access;
1860 if (!vcpu->arch.mmu.direct_map
1861 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1862 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1863 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1864 role.quadrant = quadrant;
1865 }
1866 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1867 if (!need_sync && sp->unsync)
1868 need_sync = true;
1869
1870 if (sp->role.word != role.word)
1871 continue;
1872
1873 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1874 break;
1875
1876 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1877 if (sp->unsync_children) {
1878 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1879 kvm_mmu_mark_parents_unsync(sp);
1880 } else if (sp->unsync)
1881 kvm_mmu_mark_parents_unsync(sp);
1882
1883 __clear_sp_write_flooding_count(sp);
1884 trace_kvm_mmu_get_page(sp, false);
1885 return sp;
1886 }
1887 ++vcpu->kvm->stat.mmu_cache_miss;
1888 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1889 if (!sp)
1890 return sp;
1891 sp->gfn = gfn;
1892 sp->role = role;
1893 hlist_add_head(&sp->hash_link,
1894 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1895 if (!direct) {
1896 if (rmap_write_protect(vcpu->kvm, gfn))
1897 kvm_flush_remote_tlbs(vcpu->kvm);
1898 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1899 kvm_sync_pages(vcpu, gfn);
1900
1901 account_shadowed(vcpu->kvm, gfn);
1902 }
1903 init_shadow_page_table(sp);
1904 trace_kvm_mmu_get_page(sp, true);
1905 return sp;
1906 }
1907
shadow_walk_init(struct kvm_shadow_walk_iterator * iterator,struct kvm_vcpu * vcpu,u64 addr)1908 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1909 struct kvm_vcpu *vcpu, u64 addr)
1910 {
1911 iterator->addr = addr;
1912 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1913 iterator->level = vcpu->arch.mmu.shadow_root_level;
1914
1915 if (iterator->level == PT64_ROOT_LEVEL &&
1916 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1917 !vcpu->arch.mmu.direct_map)
1918 --iterator->level;
1919
1920 if (iterator->level == PT32E_ROOT_LEVEL) {
1921 iterator->shadow_addr
1922 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1923 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1924 --iterator->level;
1925 if (!iterator->shadow_addr)
1926 iterator->level = 0;
1927 }
1928 }
1929
shadow_walk_okay(struct kvm_shadow_walk_iterator * iterator)1930 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1931 {
1932 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1933 return false;
1934
1935 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1936 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1937 return true;
1938 }
1939
__shadow_walk_next(struct kvm_shadow_walk_iterator * iterator,u64 spte)1940 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1941 u64 spte)
1942 {
1943 if (is_last_spte(spte, iterator->level)) {
1944 iterator->level = 0;
1945 return;
1946 }
1947
1948 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1949 --iterator->level;
1950 }
1951
shadow_walk_next(struct kvm_shadow_walk_iterator * iterator)1952 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1953 {
1954 return __shadow_walk_next(iterator, *iterator->sptep);
1955 }
1956
link_shadow_page(u64 * sptep,struct kvm_mmu_page * sp)1957 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1958 {
1959 u64 spte;
1960
1961 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
1962 shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
1963
1964 mmu_spte_set(sptep, spte);
1965 }
1966
validate_direct_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned direct_access)1967 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1968 unsigned direct_access)
1969 {
1970 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1971 struct kvm_mmu_page *child;
1972
1973 /*
1974 * For the direct sp, if the guest pte's dirty bit
1975 * changed form clean to dirty, it will corrupt the
1976 * sp's access: allow writable in the read-only sp,
1977 * so we should update the spte at this point to get
1978 * a new sp with the correct access.
1979 */
1980 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1981 if (child->role.access == direct_access)
1982 return;
1983
1984 drop_parent_pte(child, sptep);
1985 kvm_flush_remote_tlbs(vcpu->kvm);
1986 }
1987 }
1988
mmu_page_zap_pte(struct kvm * kvm,struct kvm_mmu_page * sp,u64 * spte)1989 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1990 u64 *spte)
1991 {
1992 u64 pte;
1993 struct kvm_mmu_page *child;
1994
1995 pte = *spte;
1996 if (is_shadow_present_pte(pte)) {
1997 if (is_last_spte(pte, sp->role.level)) {
1998 drop_spte(kvm, spte);
1999 if (is_large_pte(pte))
2000 --kvm->stat.lpages;
2001 } else {
2002 child = page_header(pte & PT64_BASE_ADDR_MASK);
2003 drop_parent_pte(child, spte);
2004 }
2005 return true;
2006 }
2007
2008 if (is_mmio_spte(pte))
2009 mmu_spte_clear_no_track(spte);
2010
2011 return false;
2012 }
2013
kvm_mmu_page_unlink_children(struct kvm * kvm,struct kvm_mmu_page * sp)2014 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2015 struct kvm_mmu_page *sp)
2016 {
2017 unsigned i;
2018
2019 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2020 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2021 }
2022
kvm_mmu_put_page(struct kvm_mmu_page * sp,u64 * parent_pte)2023 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2024 {
2025 mmu_page_remove_parent_pte(sp, parent_pte);
2026 }
2027
kvm_mmu_unlink_parents(struct kvm * kvm,struct kvm_mmu_page * sp)2028 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2029 {
2030 u64 *sptep;
2031 struct rmap_iterator iter;
2032
2033 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2034 drop_parent_pte(sp, sptep);
2035 }
2036
mmu_zap_unsync_children(struct kvm * kvm,struct kvm_mmu_page * parent,struct list_head * invalid_list)2037 static int mmu_zap_unsync_children(struct kvm *kvm,
2038 struct kvm_mmu_page *parent,
2039 struct list_head *invalid_list)
2040 {
2041 int i, zapped = 0;
2042 struct mmu_page_path parents;
2043 struct kvm_mmu_pages pages;
2044
2045 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2046 return 0;
2047
2048 kvm_mmu_pages_init(parent, &parents, &pages);
2049 while (mmu_unsync_walk(parent, &pages)) {
2050 struct kvm_mmu_page *sp;
2051
2052 for_each_sp(pages, sp, parents, i) {
2053 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2054 mmu_pages_clear_parents(&parents);
2055 zapped++;
2056 }
2057 kvm_mmu_pages_init(parent, &parents, &pages);
2058 }
2059
2060 return zapped;
2061 }
2062
kvm_mmu_prepare_zap_page(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list)2063 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2064 struct list_head *invalid_list)
2065 {
2066 int ret;
2067
2068 trace_kvm_mmu_prepare_zap_page(sp);
2069 ++kvm->stat.mmu_shadow_zapped;
2070 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2071 kvm_mmu_page_unlink_children(kvm, sp);
2072 kvm_mmu_unlink_parents(kvm, sp);
2073 if (!sp->role.invalid && !sp->role.direct)
2074 unaccount_shadowed(kvm, sp->gfn);
2075 if (sp->unsync)
2076 kvm_unlink_unsync_page(kvm, sp);
2077 if (!sp->root_count) {
2078 /* Count self */
2079 ret++;
2080 list_move(&sp->link, invalid_list);
2081 kvm_mod_used_mmu_pages(kvm, -1);
2082 } else {
2083 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2084 kvm_reload_remote_mmus(kvm);
2085 }
2086
2087 sp->role.invalid = 1;
2088 return ret;
2089 }
2090
kvm_mmu_commit_zap_page(struct kvm * kvm,struct list_head * invalid_list)2091 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2092 struct list_head *invalid_list)
2093 {
2094 struct kvm_mmu_page *sp, *nsp;
2095
2096 if (list_empty(invalid_list))
2097 return;
2098
2099 /*
2100 * wmb: make sure everyone sees our modifications to the page tables
2101 * rmb: make sure we see changes to vcpu->mode
2102 */
2103 smp_mb();
2104
2105 /*
2106 * Wait for all vcpus to exit guest mode and/or lockless shadow
2107 * page table walks.
2108 */
2109 kvm_flush_remote_tlbs(kvm);
2110
2111 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2112 WARN_ON(!sp->role.invalid || sp->root_count);
2113 kvm_mmu_free_page(sp);
2114 }
2115 }
2116
prepare_zap_oldest_mmu_page(struct kvm * kvm,struct list_head * invalid_list)2117 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2118 struct list_head *invalid_list)
2119 {
2120 struct kvm_mmu_page *sp;
2121
2122 if (list_empty(&kvm->arch.active_mmu_pages))
2123 return false;
2124
2125 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2126 struct kvm_mmu_page, link);
2127 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2128
2129 return true;
2130 }
2131
2132 /*
2133 * Changing the number of mmu pages allocated to the vm
2134 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2135 */
kvm_mmu_change_mmu_pages(struct kvm * kvm,unsigned int goal_nr_mmu_pages)2136 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2137 {
2138 LIST_HEAD(invalid_list);
2139
2140 spin_lock(&kvm->mmu_lock);
2141
2142 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2143 /* Need to free some mmu pages to achieve the goal. */
2144 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2145 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2146 break;
2147
2148 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2149 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2150 }
2151
2152 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2153
2154 spin_unlock(&kvm->mmu_lock);
2155 }
2156
kvm_mmu_unprotect_page(struct kvm * kvm,gfn_t gfn)2157 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2158 {
2159 struct kvm_mmu_page *sp;
2160 LIST_HEAD(invalid_list);
2161 int r;
2162
2163 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2164 r = 0;
2165 spin_lock(&kvm->mmu_lock);
2166 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2167 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2168 sp->role.word);
2169 r = 1;
2170 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2171 }
2172 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2173 spin_unlock(&kvm->mmu_lock);
2174
2175 return r;
2176 }
2177 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2178
2179 /*
2180 * The function is based on mtrr_type_lookup() in
2181 * arch/x86/kernel/cpu/mtrr/generic.c
2182 */
get_mtrr_type(struct mtrr_state_type * mtrr_state,u64 start,u64 end)2183 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2184 u64 start, u64 end)
2185 {
2186 int i;
2187 u64 base, mask;
2188 u8 prev_match, curr_match;
2189 int num_var_ranges = KVM_NR_VAR_MTRR;
2190
2191 if (!mtrr_state->enabled)
2192 return 0xFF;
2193
2194 /* Make end inclusive end, instead of exclusive */
2195 end--;
2196
2197 /* Look in fixed ranges. Just return the type as per start */
2198 if (mtrr_state->have_fixed && (start < 0x100000)) {
2199 int idx;
2200
2201 if (start < 0x80000) {
2202 idx = 0;
2203 idx += (start >> 16);
2204 return mtrr_state->fixed_ranges[idx];
2205 } else if (start < 0xC0000) {
2206 idx = 1 * 8;
2207 idx += ((start - 0x80000) >> 14);
2208 return mtrr_state->fixed_ranges[idx];
2209 } else if (start < 0x1000000) {
2210 idx = 3 * 8;
2211 idx += ((start - 0xC0000) >> 12);
2212 return mtrr_state->fixed_ranges[idx];
2213 }
2214 }
2215
2216 /*
2217 * Look in variable ranges
2218 * Look of multiple ranges matching this address and pick type
2219 * as per MTRR precedence
2220 */
2221 if (!(mtrr_state->enabled & 2))
2222 return mtrr_state->def_type;
2223
2224 prev_match = 0xFF;
2225 for (i = 0; i < num_var_ranges; ++i) {
2226 unsigned short start_state, end_state;
2227
2228 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2229 continue;
2230
2231 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2232 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2233 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2234 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2235
2236 start_state = ((start & mask) == (base & mask));
2237 end_state = ((end & mask) == (base & mask));
2238 if (start_state != end_state)
2239 return 0xFE;
2240
2241 if ((start & mask) != (base & mask))
2242 continue;
2243
2244 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2245 if (prev_match == 0xFF) {
2246 prev_match = curr_match;
2247 continue;
2248 }
2249
2250 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2251 curr_match == MTRR_TYPE_UNCACHABLE)
2252 return MTRR_TYPE_UNCACHABLE;
2253
2254 if ((prev_match == MTRR_TYPE_WRBACK &&
2255 curr_match == MTRR_TYPE_WRTHROUGH) ||
2256 (prev_match == MTRR_TYPE_WRTHROUGH &&
2257 curr_match == MTRR_TYPE_WRBACK)) {
2258 prev_match = MTRR_TYPE_WRTHROUGH;
2259 curr_match = MTRR_TYPE_WRTHROUGH;
2260 }
2261
2262 if (prev_match != curr_match)
2263 return MTRR_TYPE_UNCACHABLE;
2264 }
2265
2266 if (prev_match != 0xFF)
2267 return prev_match;
2268
2269 return mtrr_state->def_type;
2270 }
2271
kvm_get_guest_memory_type(struct kvm_vcpu * vcpu,gfn_t gfn)2272 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2273 {
2274 u8 mtrr;
2275
2276 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2277 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2278 if (mtrr == 0xfe || mtrr == 0xff)
2279 mtrr = MTRR_TYPE_WRBACK;
2280 return mtrr;
2281 }
2282 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2283
__kvm_unsync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)2284 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2285 {
2286 trace_kvm_mmu_unsync_page(sp);
2287 ++vcpu->kvm->stat.mmu_unsync;
2288 sp->unsync = 1;
2289
2290 kvm_mmu_mark_parents_unsync(sp);
2291 }
2292
kvm_unsync_pages(struct kvm_vcpu * vcpu,gfn_t gfn)2293 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
2294 {
2295 struct kvm_mmu_page *s;
2296
2297 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2298 if (s->unsync)
2299 continue;
2300 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2301 __kvm_unsync_page(vcpu, s);
2302 }
2303 }
2304
mmu_need_write_protect(struct kvm_vcpu * vcpu,gfn_t gfn,bool can_unsync)2305 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2306 bool can_unsync)
2307 {
2308 struct kvm_mmu_page *s;
2309 bool need_unsync = false;
2310
2311 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2312 if (!can_unsync)
2313 return 1;
2314
2315 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2316 return 1;
2317
2318 if (!s->unsync)
2319 need_unsync = true;
2320 }
2321 if (need_unsync)
2322 kvm_unsync_pages(vcpu, gfn);
2323 return 0;
2324 }
2325
set_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned pte_access,int level,gfn_t gfn,pfn_t pfn,bool speculative,bool can_unsync,bool host_writable)2326 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2327 unsigned pte_access, int level,
2328 gfn_t gfn, pfn_t pfn, bool speculative,
2329 bool can_unsync, bool host_writable)
2330 {
2331 u64 spte;
2332 int ret = 0;
2333
2334 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2335 return 0;
2336
2337 spte = PT_PRESENT_MASK;
2338 if (!speculative)
2339 spte |= shadow_accessed_mask;
2340
2341 if (pte_access & ACC_EXEC_MASK)
2342 spte |= shadow_x_mask;
2343 else
2344 spte |= shadow_nx_mask;
2345
2346 if (pte_access & ACC_USER_MASK)
2347 spte |= shadow_user_mask;
2348
2349 if (level > PT_PAGE_TABLE_LEVEL)
2350 spte |= PT_PAGE_SIZE_MASK;
2351 if (tdp_enabled)
2352 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2353 kvm_is_mmio_pfn(pfn));
2354
2355 if (host_writable)
2356 spte |= SPTE_HOST_WRITEABLE;
2357 else
2358 pte_access &= ~ACC_WRITE_MASK;
2359
2360 spte |= (u64)pfn << PAGE_SHIFT;
2361
2362 if (pte_access & ACC_WRITE_MASK) {
2363
2364 /*
2365 * Other vcpu creates new sp in the window between
2366 * mapping_level() and acquiring mmu-lock. We can
2367 * allow guest to retry the access, the mapping can
2368 * be fixed if guest refault.
2369 */
2370 if (level > PT_PAGE_TABLE_LEVEL &&
2371 has_wrprotected_page(vcpu->kvm, gfn, level))
2372 goto done;
2373
2374 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2375
2376 /*
2377 * Optimization: for pte sync, if spte was writable the hash
2378 * lookup is unnecessary (and expensive). Write protection
2379 * is responsibility of mmu_get_page / kvm_sync_page.
2380 * Same reasoning can be applied to dirty page accounting.
2381 */
2382 if (!can_unsync && is_writable_pte(*sptep))
2383 goto set_pte;
2384
2385 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2386 pgprintk("%s: found shadow page for %llx, marking ro\n",
2387 __func__, gfn);
2388 ret = 1;
2389 pte_access &= ~ACC_WRITE_MASK;
2390 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2391 }
2392 }
2393
2394 if (pte_access & ACC_WRITE_MASK)
2395 mark_page_dirty(vcpu->kvm, gfn);
2396
2397 set_pte:
2398 if (mmu_spte_update(sptep, spte))
2399 kvm_flush_remote_tlbs(vcpu->kvm);
2400 done:
2401 return ret;
2402 }
2403
mmu_set_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned pte_access,int write_fault,int * emulate,int level,gfn_t gfn,pfn_t pfn,bool speculative,bool host_writable)2404 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2405 unsigned pte_access, int write_fault, int *emulate,
2406 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2407 bool host_writable)
2408 {
2409 int was_rmapped = 0;
2410 int rmap_count;
2411
2412 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2413 *sptep, write_fault, gfn);
2414
2415 if (is_rmap_spte(*sptep)) {
2416 /*
2417 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2418 * the parent of the now unreachable PTE.
2419 */
2420 if (level > PT_PAGE_TABLE_LEVEL &&
2421 !is_large_pte(*sptep)) {
2422 struct kvm_mmu_page *child;
2423 u64 pte = *sptep;
2424
2425 child = page_header(pte & PT64_BASE_ADDR_MASK);
2426 drop_parent_pte(child, sptep);
2427 kvm_flush_remote_tlbs(vcpu->kvm);
2428 } else if (pfn != spte_to_pfn(*sptep)) {
2429 pgprintk("hfn old %llx new %llx\n",
2430 spte_to_pfn(*sptep), pfn);
2431 drop_spte(vcpu->kvm, sptep);
2432 kvm_flush_remote_tlbs(vcpu->kvm);
2433 } else
2434 was_rmapped = 1;
2435 }
2436
2437 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2438 true, host_writable)) {
2439 if (write_fault)
2440 *emulate = 1;
2441 kvm_mmu_flush_tlb(vcpu);
2442 }
2443
2444 if (unlikely(is_mmio_spte(*sptep) && emulate))
2445 *emulate = 1;
2446
2447 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2448 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2449 is_large_pte(*sptep)? "2MB" : "4kB",
2450 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2451 *sptep, sptep);
2452 if (!was_rmapped && is_large_pte(*sptep))
2453 ++vcpu->kvm->stat.lpages;
2454
2455 if (is_shadow_present_pte(*sptep)) {
2456 if (!was_rmapped) {
2457 rmap_count = rmap_add(vcpu, sptep, gfn);
2458 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2459 rmap_recycle(vcpu, sptep, gfn);
2460 }
2461 }
2462
2463 kvm_release_pfn_clean(pfn);
2464 }
2465
nonpaging_new_cr3(struct kvm_vcpu * vcpu)2466 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2467 {
2468 mmu_free_roots(vcpu);
2469 }
2470
is_rsvd_bits_set(struct kvm_mmu * mmu,u64 gpte,int level)2471 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2472 {
2473 int bit7;
2474
2475 bit7 = (gpte >> 7) & 1;
2476 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2477 }
2478
pte_prefetch_gfn_to_pfn(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)2479 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2480 bool no_dirty_log)
2481 {
2482 struct kvm_memory_slot *slot;
2483
2484 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2485 if (!slot)
2486 return KVM_PFN_ERR_FAULT;
2487
2488 return gfn_to_pfn_memslot_atomic(slot, gfn);
2489 }
2490
prefetch_invalid_gpte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * spte,u64 gpte)2491 static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
2492 struct kvm_mmu_page *sp, u64 *spte,
2493 u64 gpte)
2494 {
2495 if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
2496 goto no_present;
2497
2498 if (!is_present_gpte(gpte))
2499 goto no_present;
2500
2501 if (!(gpte & PT_ACCESSED_MASK))
2502 goto no_present;
2503
2504 return false;
2505
2506 no_present:
2507 drop_spte(vcpu->kvm, spte);
2508 return true;
2509 }
2510
direct_pte_prefetch_many(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * start,u64 * end)2511 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2512 struct kvm_mmu_page *sp,
2513 u64 *start, u64 *end)
2514 {
2515 struct page *pages[PTE_PREFETCH_NUM];
2516 unsigned access = sp->role.access;
2517 int i, ret;
2518 gfn_t gfn;
2519
2520 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2521 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2522 return -1;
2523
2524 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2525 if (ret <= 0)
2526 return -1;
2527
2528 for (i = 0; i < ret; i++, gfn++, start++)
2529 mmu_set_spte(vcpu, start, access, 0, NULL,
2530 sp->role.level, gfn, page_to_pfn(pages[i]),
2531 true, true);
2532
2533 return 0;
2534 }
2535
__direct_pte_prefetch(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * sptep)2536 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2537 struct kvm_mmu_page *sp, u64 *sptep)
2538 {
2539 u64 *spte, *start = NULL;
2540 int i;
2541
2542 WARN_ON(!sp->role.direct);
2543
2544 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2545 spte = sp->spt + i;
2546
2547 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2548 if (is_shadow_present_pte(*spte) || spte == sptep) {
2549 if (!start)
2550 continue;
2551 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2552 break;
2553 start = NULL;
2554 } else if (!start)
2555 start = spte;
2556 }
2557 }
2558
direct_pte_prefetch(struct kvm_vcpu * vcpu,u64 * sptep)2559 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2560 {
2561 struct kvm_mmu_page *sp;
2562
2563 /*
2564 * Since it's no accessed bit on EPT, it's no way to
2565 * distinguish between actually accessed translations
2566 * and prefetched, so disable pte prefetch if EPT is
2567 * enabled.
2568 */
2569 if (!shadow_accessed_mask)
2570 return;
2571
2572 sp = page_header(__pa(sptep));
2573 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2574 return;
2575
2576 __direct_pte_prefetch(vcpu, sp, sptep);
2577 }
2578
__direct_map(struct kvm_vcpu * vcpu,gpa_t v,int write,int map_writable,int level,gfn_t gfn,pfn_t pfn,bool prefault)2579 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2580 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2581 bool prefault)
2582 {
2583 struct kvm_shadow_walk_iterator iterator;
2584 struct kvm_mmu_page *sp;
2585 int emulate = 0;
2586 gfn_t pseudo_gfn;
2587
2588 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2589 if (iterator.level == level) {
2590 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2591 write, &emulate, level, gfn, pfn,
2592 prefault, map_writable);
2593 direct_pte_prefetch(vcpu, iterator.sptep);
2594 ++vcpu->stat.pf_fixed;
2595 break;
2596 }
2597
2598 if (!is_shadow_present_pte(*iterator.sptep)) {
2599 u64 base_addr = iterator.addr;
2600
2601 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2602 pseudo_gfn = base_addr >> PAGE_SHIFT;
2603 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2604 iterator.level - 1,
2605 1, ACC_ALL, iterator.sptep);
2606
2607 link_shadow_page(iterator.sptep, sp);
2608 }
2609 }
2610 return emulate;
2611 }
2612
kvm_send_hwpoison_signal(unsigned long address,struct task_struct * tsk)2613 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2614 {
2615 siginfo_t info;
2616
2617 info.si_signo = SIGBUS;
2618 info.si_errno = 0;
2619 info.si_code = BUS_MCEERR_AR;
2620 info.si_addr = (void __user *)address;
2621 info.si_addr_lsb = PAGE_SHIFT;
2622
2623 send_sig_info(SIGBUS, &info, tsk);
2624 }
2625
kvm_handle_bad_page(struct kvm_vcpu * vcpu,gfn_t gfn,pfn_t pfn)2626 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2627 {
2628 /*
2629 * Do not cache the mmio info caused by writing the readonly gfn
2630 * into the spte otherwise read access on readonly gfn also can
2631 * caused mmio page fault and treat it as mmio access.
2632 * Return 1 to tell kvm to emulate it.
2633 */
2634 if (pfn == KVM_PFN_ERR_RO_FAULT)
2635 return 1;
2636
2637 if (pfn == KVM_PFN_ERR_HWPOISON) {
2638 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2639 return 0;
2640 }
2641
2642 return -EFAULT;
2643 }
2644
transparent_hugepage_adjust(struct kvm_vcpu * vcpu,gfn_t * gfnp,pfn_t * pfnp,int * levelp)2645 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2646 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2647 {
2648 pfn_t pfn = *pfnp;
2649 gfn_t gfn = *gfnp;
2650 int level = *levelp;
2651
2652 /*
2653 * Check if it's a transparent hugepage. If this would be an
2654 * hugetlbfs page, level wouldn't be set to
2655 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2656 * here.
2657 */
2658 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2659 level == PT_PAGE_TABLE_LEVEL &&
2660 PageTransCompound(pfn_to_page(pfn)) &&
2661 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2662 unsigned long mask;
2663 /*
2664 * mmu_notifier_retry was successful and we hold the
2665 * mmu_lock here, so the pmd can't become splitting
2666 * from under us, and in turn
2667 * __split_huge_page_refcount() can't run from under
2668 * us and we can safely transfer the refcount from
2669 * PG_tail to PG_head as we switch the pfn to tail to
2670 * head.
2671 */
2672 *levelp = level = PT_DIRECTORY_LEVEL;
2673 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2674 VM_BUG_ON((gfn & mask) != (pfn & mask));
2675 if (pfn & mask) {
2676 gfn &= ~mask;
2677 *gfnp = gfn;
2678 kvm_release_pfn_clean(pfn);
2679 pfn &= ~mask;
2680 kvm_get_pfn(pfn);
2681 *pfnp = pfn;
2682 }
2683 }
2684 }
2685
handle_abnormal_pfn(struct kvm_vcpu * vcpu,gva_t gva,gfn_t gfn,pfn_t pfn,unsigned access,int * ret_val)2686 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2687 pfn_t pfn, unsigned access, int *ret_val)
2688 {
2689 bool ret = true;
2690
2691 /* The pfn is invalid, report the error! */
2692 if (unlikely(is_error_pfn(pfn))) {
2693 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2694 goto exit;
2695 }
2696
2697 if (unlikely(is_noslot_pfn(pfn)))
2698 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2699
2700 ret = false;
2701 exit:
2702 return ret;
2703 }
2704
page_fault_can_be_fast(struct kvm_vcpu * vcpu,u32 error_code)2705 static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2706 {
2707 /*
2708 * #PF can be fast only if the shadow page table is present and it
2709 * is caused by write-protect, that means we just need change the
2710 * W bit of the spte which can be done out of mmu-lock.
2711 */
2712 if (!(error_code & PFERR_PRESENT_MASK) ||
2713 !(error_code & PFERR_WRITE_MASK))
2714 return false;
2715
2716 return true;
2717 }
2718
2719 static bool
fast_pf_fix_direct_spte(struct kvm_vcpu * vcpu,u64 * sptep,u64 spte)2720 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2721 {
2722 struct kvm_mmu_page *sp = page_header(__pa(sptep));
2723 gfn_t gfn;
2724
2725 WARN_ON(!sp->role.direct);
2726
2727 /*
2728 * The gfn of direct spte is stable since it is calculated
2729 * by sp->gfn.
2730 */
2731 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2732
2733 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2734 mark_page_dirty(vcpu->kvm, gfn);
2735
2736 return true;
2737 }
2738
2739 /*
2740 * Return value:
2741 * - true: let the vcpu to access on the same address again.
2742 * - false: let the real page fault path to fix it.
2743 */
fast_page_fault(struct kvm_vcpu * vcpu,gva_t gva,int level,u32 error_code)2744 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2745 u32 error_code)
2746 {
2747 struct kvm_shadow_walk_iterator iterator;
2748 bool ret = false;
2749 u64 spte = 0ull;
2750
2751 if (!page_fault_can_be_fast(vcpu, error_code))
2752 return false;
2753
2754 walk_shadow_page_lockless_begin(vcpu);
2755 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2756 if (!is_shadow_present_pte(spte) || iterator.level < level)
2757 break;
2758
2759 /*
2760 * If the mapping has been changed, let the vcpu fault on the
2761 * same address again.
2762 */
2763 if (!is_rmap_spte(spte)) {
2764 ret = true;
2765 goto exit;
2766 }
2767
2768 if (!is_last_spte(spte, level))
2769 goto exit;
2770
2771 /*
2772 * Check if it is a spurious fault caused by TLB lazily flushed.
2773 *
2774 * Need not check the access of upper level table entries since
2775 * they are always ACC_ALL.
2776 */
2777 if (is_writable_pte(spte)) {
2778 ret = true;
2779 goto exit;
2780 }
2781
2782 /*
2783 * Currently, to simplify the code, only the spte write-protected
2784 * by dirty-log can be fast fixed.
2785 */
2786 if (!spte_is_locklessly_modifiable(spte))
2787 goto exit;
2788
2789 /*
2790 * Currently, fast page fault only works for direct mapping since
2791 * the gfn is not stable for indirect shadow page.
2792 * See Documentation/virtual/kvm/locking.txt to get more detail.
2793 */
2794 ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2795 exit:
2796 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2797 spte, ret);
2798 walk_shadow_page_lockless_end(vcpu);
2799
2800 return ret;
2801 }
2802
2803 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2804 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2805 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2806
nonpaging_map(struct kvm_vcpu * vcpu,gva_t v,u32 error_code,gfn_t gfn,bool prefault)2807 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2808 gfn_t gfn, bool prefault)
2809 {
2810 int r;
2811 int level;
2812 int force_pt_level;
2813 pfn_t pfn;
2814 unsigned long mmu_seq;
2815 bool map_writable, write = error_code & PFERR_WRITE_MASK;
2816
2817 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2818 if (likely(!force_pt_level)) {
2819 level = mapping_level(vcpu, gfn);
2820 /*
2821 * This path builds a PAE pagetable - so we can map
2822 * 2mb pages at maximum. Therefore check if the level
2823 * is larger than that.
2824 */
2825 if (level > PT_DIRECTORY_LEVEL)
2826 level = PT_DIRECTORY_LEVEL;
2827
2828 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2829 } else
2830 level = PT_PAGE_TABLE_LEVEL;
2831
2832 if (fast_page_fault(vcpu, v, level, error_code))
2833 return 0;
2834
2835 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2836 smp_rmb();
2837
2838 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2839 return 0;
2840
2841 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2842 return r;
2843
2844 spin_lock(&vcpu->kvm->mmu_lock);
2845 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2846 goto out_unlock;
2847 make_mmu_pages_available(vcpu);
2848 if (likely(!force_pt_level))
2849 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2850 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2851 prefault);
2852 spin_unlock(&vcpu->kvm->mmu_lock);
2853
2854
2855 return r;
2856
2857 out_unlock:
2858 spin_unlock(&vcpu->kvm->mmu_lock);
2859 kvm_release_pfn_clean(pfn);
2860 return 0;
2861 }
2862
2863
mmu_free_roots(struct kvm_vcpu * vcpu)2864 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2865 {
2866 int i;
2867 struct kvm_mmu_page *sp;
2868 LIST_HEAD(invalid_list);
2869
2870 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2871 return;
2872 spin_lock(&vcpu->kvm->mmu_lock);
2873 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2874 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2875 vcpu->arch.mmu.direct_map)) {
2876 hpa_t root = vcpu->arch.mmu.root_hpa;
2877
2878 sp = page_header(root);
2879 --sp->root_count;
2880 if (!sp->root_count && sp->role.invalid) {
2881 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2882 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2883 }
2884 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2885 spin_unlock(&vcpu->kvm->mmu_lock);
2886 return;
2887 }
2888 for (i = 0; i < 4; ++i) {
2889 hpa_t root = vcpu->arch.mmu.pae_root[i];
2890
2891 if (root) {
2892 root &= PT64_BASE_ADDR_MASK;
2893 sp = page_header(root);
2894 --sp->root_count;
2895 if (!sp->root_count && sp->role.invalid)
2896 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2897 &invalid_list);
2898 }
2899 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2900 }
2901 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2902 spin_unlock(&vcpu->kvm->mmu_lock);
2903 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2904 }
2905
mmu_check_root(struct kvm_vcpu * vcpu,gfn_t root_gfn)2906 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2907 {
2908 int ret = 0;
2909
2910 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2911 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2912 ret = 1;
2913 }
2914
2915 return ret;
2916 }
2917
mmu_alloc_direct_roots(struct kvm_vcpu * vcpu)2918 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2919 {
2920 struct kvm_mmu_page *sp;
2921 unsigned i;
2922
2923 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2924 spin_lock(&vcpu->kvm->mmu_lock);
2925 make_mmu_pages_available(vcpu);
2926 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2927 1, ACC_ALL, NULL);
2928 ++sp->root_count;
2929 spin_unlock(&vcpu->kvm->mmu_lock);
2930 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2931 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2932 for (i = 0; i < 4; ++i) {
2933 hpa_t root = vcpu->arch.mmu.pae_root[i];
2934
2935 ASSERT(!VALID_PAGE(root));
2936 spin_lock(&vcpu->kvm->mmu_lock);
2937 make_mmu_pages_available(vcpu);
2938 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2939 i << 30,
2940 PT32_ROOT_LEVEL, 1, ACC_ALL,
2941 NULL);
2942 root = __pa(sp->spt);
2943 ++sp->root_count;
2944 spin_unlock(&vcpu->kvm->mmu_lock);
2945 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2946 }
2947 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2948 } else
2949 BUG();
2950
2951 return 0;
2952 }
2953
mmu_alloc_shadow_roots(struct kvm_vcpu * vcpu)2954 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2955 {
2956 struct kvm_mmu_page *sp;
2957 u64 pdptr, pm_mask;
2958 gfn_t root_gfn;
2959 int i;
2960
2961 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2962
2963 if (mmu_check_root(vcpu, root_gfn))
2964 return 1;
2965
2966 /*
2967 * Do we shadow a long mode page table? If so we need to
2968 * write-protect the guests page table root.
2969 */
2970 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2971 hpa_t root = vcpu->arch.mmu.root_hpa;
2972
2973 ASSERT(!VALID_PAGE(root));
2974
2975 spin_lock(&vcpu->kvm->mmu_lock);
2976 make_mmu_pages_available(vcpu);
2977 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2978 0, ACC_ALL, NULL);
2979 root = __pa(sp->spt);
2980 ++sp->root_count;
2981 spin_unlock(&vcpu->kvm->mmu_lock);
2982 vcpu->arch.mmu.root_hpa = root;
2983 return 0;
2984 }
2985
2986 /*
2987 * We shadow a 32 bit page table. This may be a legacy 2-level
2988 * or a PAE 3-level page table. In either case we need to be aware that
2989 * the shadow page table may be a PAE or a long mode page table.
2990 */
2991 pm_mask = PT_PRESENT_MASK;
2992 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2993 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2994
2995 for (i = 0; i < 4; ++i) {
2996 hpa_t root = vcpu->arch.mmu.pae_root[i];
2997
2998 ASSERT(!VALID_PAGE(root));
2999 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3000 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3001 if (!is_present_gpte(pdptr)) {
3002 vcpu->arch.mmu.pae_root[i] = 0;
3003 continue;
3004 }
3005 root_gfn = pdptr >> PAGE_SHIFT;
3006 if (mmu_check_root(vcpu, root_gfn))
3007 return 1;
3008 }
3009 spin_lock(&vcpu->kvm->mmu_lock);
3010 make_mmu_pages_available(vcpu);
3011 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3012 PT32_ROOT_LEVEL, 0,
3013 ACC_ALL, NULL);
3014 root = __pa(sp->spt);
3015 ++sp->root_count;
3016 spin_unlock(&vcpu->kvm->mmu_lock);
3017
3018 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3019 }
3020 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3021
3022 /*
3023 * If we shadow a 32 bit page table with a long mode page
3024 * table we enter this path.
3025 */
3026 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3027 if (vcpu->arch.mmu.lm_root == NULL) {
3028 /*
3029 * The additional page necessary for this is only
3030 * allocated on demand.
3031 */
3032
3033 u64 *lm_root;
3034
3035 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3036 if (lm_root == NULL)
3037 return 1;
3038
3039 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3040
3041 vcpu->arch.mmu.lm_root = lm_root;
3042 }
3043
3044 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3045 }
3046
3047 return 0;
3048 }
3049
mmu_alloc_roots(struct kvm_vcpu * vcpu)3050 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3051 {
3052 if (vcpu->arch.mmu.direct_map)
3053 return mmu_alloc_direct_roots(vcpu);
3054 else
3055 return mmu_alloc_shadow_roots(vcpu);
3056 }
3057
mmu_sync_roots(struct kvm_vcpu * vcpu)3058 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3059 {
3060 int i;
3061 struct kvm_mmu_page *sp;
3062
3063 if (vcpu->arch.mmu.direct_map)
3064 return;
3065
3066 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3067 return;
3068
3069 vcpu_clear_mmio_info(vcpu, ~0ul);
3070 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3071 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3072 hpa_t root = vcpu->arch.mmu.root_hpa;
3073 sp = page_header(root);
3074 mmu_sync_children(vcpu, sp);
3075 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3076 return;
3077 }
3078 for (i = 0; i < 4; ++i) {
3079 hpa_t root = vcpu->arch.mmu.pae_root[i];
3080
3081 if (root && VALID_PAGE(root)) {
3082 root &= PT64_BASE_ADDR_MASK;
3083 sp = page_header(root);
3084 mmu_sync_children(vcpu, sp);
3085 }
3086 }
3087 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3088 }
3089
kvm_mmu_sync_roots(struct kvm_vcpu * vcpu)3090 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3091 {
3092 spin_lock(&vcpu->kvm->mmu_lock);
3093 mmu_sync_roots(vcpu);
3094 spin_unlock(&vcpu->kvm->mmu_lock);
3095 }
3096
nonpaging_gva_to_gpa(struct kvm_vcpu * vcpu,gva_t vaddr,u32 access,struct x86_exception * exception)3097 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3098 u32 access, struct x86_exception *exception)
3099 {
3100 if (exception)
3101 exception->error_code = 0;
3102 return vaddr;
3103 }
3104
nonpaging_gva_to_gpa_nested(struct kvm_vcpu * vcpu,gva_t vaddr,u32 access,struct x86_exception * exception)3105 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3106 u32 access,
3107 struct x86_exception *exception)
3108 {
3109 if (exception)
3110 exception->error_code = 0;
3111 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3112 }
3113
quickly_check_mmio_pf(struct kvm_vcpu * vcpu,u64 addr,bool direct)3114 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3115 {
3116 if (direct)
3117 return vcpu_match_mmio_gpa(vcpu, addr);
3118
3119 return vcpu_match_mmio_gva(vcpu, addr);
3120 }
3121
3122
3123 /*
3124 * On direct hosts, the last spte is only allows two states
3125 * for mmio page fault:
3126 * - It is the mmio spte
3127 * - It is zapped or it is being zapped.
3128 *
3129 * This function completely checks the spte when the last spte
3130 * is not the mmio spte.
3131 */
check_direct_spte_mmio_pf(u64 spte)3132 static bool check_direct_spte_mmio_pf(u64 spte)
3133 {
3134 return __check_direct_spte_mmio_pf(spte);
3135 }
3136
walk_shadow_page_get_mmio_spte(struct kvm_vcpu * vcpu,u64 addr)3137 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3138 {
3139 struct kvm_shadow_walk_iterator iterator;
3140 u64 spte = 0ull;
3141
3142 walk_shadow_page_lockless_begin(vcpu);
3143 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3144 if (!is_shadow_present_pte(spte))
3145 break;
3146 walk_shadow_page_lockless_end(vcpu);
3147
3148 return spte;
3149 }
3150
3151 /*
3152 * If it is a real mmio page fault, return 1 and emulat the instruction
3153 * directly, return 0 to let CPU fault again on the address, -1 is
3154 * returned if bug is detected.
3155 */
handle_mmio_page_fault_common(struct kvm_vcpu * vcpu,u64 addr,bool direct)3156 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3157 {
3158 u64 spte;
3159
3160 if (quickly_check_mmio_pf(vcpu, addr, direct))
3161 return 1;
3162
3163 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3164
3165 if (is_mmio_spte(spte)) {
3166 gfn_t gfn = get_mmio_spte_gfn(spte);
3167 unsigned access = get_mmio_spte_access(spte);
3168
3169 if (direct)
3170 addr = 0;
3171
3172 trace_handle_mmio_page_fault(addr, gfn, access);
3173 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3174 return 1;
3175 }
3176
3177 /*
3178 * It's ok if the gva is remapped by other cpus on shadow guest,
3179 * it's a BUG if the gfn is not a mmio page.
3180 */
3181 if (direct && !check_direct_spte_mmio_pf(spte))
3182 return -1;
3183
3184 /*
3185 * If the page table is zapped by other cpus, let CPU fault again on
3186 * the address.
3187 */
3188 return 0;
3189 }
3190 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3191
handle_mmio_page_fault(struct kvm_vcpu * vcpu,u64 addr,u32 error_code,bool direct)3192 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3193 u32 error_code, bool direct)
3194 {
3195 int ret;
3196
3197 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3198 WARN_ON(ret < 0);
3199 return ret;
3200 }
3201
nonpaging_page_fault(struct kvm_vcpu * vcpu,gva_t gva,u32 error_code,bool prefault)3202 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3203 u32 error_code, bool prefault)
3204 {
3205 gfn_t gfn;
3206 int r;
3207
3208 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3209
3210 if (unlikely(error_code & PFERR_RSVD_MASK))
3211 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3212
3213 r = mmu_topup_memory_caches(vcpu);
3214 if (r)
3215 return r;
3216
3217 ASSERT(vcpu);
3218 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3219
3220 gfn = gva >> PAGE_SHIFT;
3221
3222 return nonpaging_map(vcpu, gva & PAGE_MASK,
3223 error_code, gfn, prefault);
3224 }
3225
kvm_arch_setup_async_pf(struct kvm_vcpu * vcpu,gva_t gva,gfn_t gfn)3226 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3227 {
3228 struct kvm_arch_async_pf arch;
3229
3230 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3231 arch.gfn = gfn;
3232 arch.direct_map = vcpu->arch.mmu.direct_map;
3233 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3234
3235 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3236 }
3237
can_do_async_pf(struct kvm_vcpu * vcpu)3238 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3239 {
3240 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3241 kvm_event_needs_reinjection(vcpu)))
3242 return false;
3243
3244 return kvm_x86_ops->interrupt_allowed(vcpu);
3245 }
3246
try_async_pf(struct kvm_vcpu * vcpu,bool prefault,gfn_t gfn,gva_t gva,pfn_t * pfn,bool write,bool * writable)3247 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3248 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3249 {
3250 bool async;
3251
3252 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3253
3254 if (!async)
3255 return false; /* *pfn has correct page already */
3256
3257 if (!prefault && can_do_async_pf(vcpu)) {
3258 trace_kvm_try_async_get_page(gva, gfn);
3259 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3260 trace_kvm_async_pf_doublefault(gva, gfn);
3261 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3262 return true;
3263 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3264 return true;
3265 }
3266
3267 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3268
3269 return false;
3270 }
3271
tdp_page_fault(struct kvm_vcpu * vcpu,gva_t gpa,u32 error_code,bool prefault)3272 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3273 bool prefault)
3274 {
3275 pfn_t pfn;
3276 int r;
3277 int level;
3278 int force_pt_level;
3279 gfn_t gfn = gpa >> PAGE_SHIFT;
3280 unsigned long mmu_seq;
3281 int write = error_code & PFERR_WRITE_MASK;
3282 bool map_writable;
3283
3284 ASSERT(vcpu);
3285 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3286
3287 if (unlikely(error_code & PFERR_RSVD_MASK))
3288 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3289
3290 r = mmu_topup_memory_caches(vcpu);
3291 if (r)
3292 return r;
3293
3294 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3295 if (likely(!force_pt_level)) {
3296 level = mapping_level(vcpu, gfn);
3297 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3298 } else
3299 level = PT_PAGE_TABLE_LEVEL;
3300
3301 if (fast_page_fault(vcpu, gpa, level, error_code))
3302 return 0;
3303
3304 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3305 smp_rmb();
3306
3307 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3308 return 0;
3309
3310 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3311 return r;
3312
3313 spin_lock(&vcpu->kvm->mmu_lock);
3314 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3315 goto out_unlock;
3316 make_mmu_pages_available(vcpu);
3317 if (likely(!force_pt_level))
3318 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3319 r = __direct_map(vcpu, gpa, write, map_writable,
3320 level, gfn, pfn, prefault);
3321 spin_unlock(&vcpu->kvm->mmu_lock);
3322
3323 return r;
3324
3325 out_unlock:
3326 spin_unlock(&vcpu->kvm->mmu_lock);
3327 kvm_release_pfn_clean(pfn);
3328 return 0;
3329 }
3330
nonpaging_free(struct kvm_vcpu * vcpu)3331 static void nonpaging_free(struct kvm_vcpu *vcpu)
3332 {
3333 mmu_free_roots(vcpu);
3334 }
3335
nonpaging_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3336 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3337 struct kvm_mmu *context)
3338 {
3339 context->new_cr3 = nonpaging_new_cr3;
3340 context->page_fault = nonpaging_page_fault;
3341 context->gva_to_gpa = nonpaging_gva_to_gpa;
3342 context->free = nonpaging_free;
3343 context->sync_page = nonpaging_sync_page;
3344 context->invlpg = nonpaging_invlpg;
3345 context->update_pte = nonpaging_update_pte;
3346 context->root_level = 0;
3347 context->shadow_root_level = PT32E_ROOT_LEVEL;
3348 context->root_hpa = INVALID_PAGE;
3349 context->direct_map = true;
3350 context->nx = false;
3351 return 0;
3352 }
3353
kvm_mmu_flush_tlb(struct kvm_vcpu * vcpu)3354 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3355 {
3356 ++vcpu->stat.tlb_flush;
3357 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3358 }
3359
paging_new_cr3(struct kvm_vcpu * vcpu)3360 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3361 {
3362 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3363 mmu_free_roots(vcpu);
3364 }
3365
get_cr3(struct kvm_vcpu * vcpu)3366 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3367 {
3368 return kvm_read_cr3(vcpu);
3369 }
3370
inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)3371 static void inject_page_fault(struct kvm_vcpu *vcpu,
3372 struct x86_exception *fault)
3373 {
3374 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3375 }
3376
paging_free(struct kvm_vcpu * vcpu)3377 static void paging_free(struct kvm_vcpu *vcpu)
3378 {
3379 nonpaging_free(vcpu);
3380 }
3381
protect_clean_gpte(unsigned * access,unsigned gpte)3382 static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
3383 {
3384 unsigned mask;
3385
3386 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
3387
3388 mask = (unsigned)~ACC_WRITE_MASK;
3389 /* Allow write access to dirty gptes */
3390 mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
3391 *access &= mask;
3392 }
3393
sync_mmio_spte(u64 * sptep,gfn_t gfn,unsigned access,int * nr_present)3394 static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3395 int *nr_present)
3396 {
3397 if (unlikely(is_mmio_spte(*sptep))) {
3398 if (gfn != get_mmio_spte_gfn(*sptep)) {
3399 mmu_spte_clear_no_track(sptep);
3400 return true;
3401 }
3402
3403 (*nr_present)++;
3404 mark_mmio_spte(sptep, gfn, access);
3405 return true;
3406 }
3407
3408 return false;
3409 }
3410
gpte_access(struct kvm_vcpu * vcpu,u64 gpte)3411 static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
3412 {
3413 unsigned access;
3414
3415 access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
3416 access &= ~(gpte >> PT64_NX_SHIFT);
3417
3418 return access;
3419 }
3420
is_last_gpte(struct kvm_mmu * mmu,unsigned level,unsigned gpte)3421 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3422 {
3423 unsigned index;
3424
3425 index = level - 1;
3426 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3427 return mmu->last_pte_bitmap & (1 << index);
3428 }
3429
3430 #define PTTYPE 64
3431 #include "paging_tmpl.h"
3432 #undef PTTYPE
3433
3434 #define PTTYPE 32
3435 #include "paging_tmpl.h"
3436 #undef PTTYPE
3437
reset_rsvds_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3438 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3439 struct kvm_mmu *context)
3440 {
3441 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3442 u64 exb_bit_rsvd = 0;
3443
3444 if (!context->nx)
3445 exb_bit_rsvd = rsvd_bits(63, 63);
3446 switch (context->root_level) {
3447 case PT32_ROOT_LEVEL:
3448 /* no rsvd bits for 2 level 4K page table entries */
3449 context->rsvd_bits_mask[0][1] = 0;
3450 context->rsvd_bits_mask[0][0] = 0;
3451 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3452
3453 if (!is_pse(vcpu)) {
3454 context->rsvd_bits_mask[1][1] = 0;
3455 break;
3456 }
3457
3458 if (is_cpuid_PSE36())
3459 /* 36bits PSE 4MB page */
3460 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3461 else
3462 /* 32 bits PSE 4MB page */
3463 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3464 break;
3465 case PT32E_ROOT_LEVEL:
3466 context->rsvd_bits_mask[0][2] =
3467 rsvd_bits(maxphyaddr, 63) |
3468 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
3469 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3470 rsvd_bits(maxphyaddr, 62); /* PDE */
3471 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3472 rsvd_bits(maxphyaddr, 62); /* PTE */
3473 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3474 rsvd_bits(maxphyaddr, 62) |
3475 rsvd_bits(13, 20); /* large page */
3476 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3477 break;
3478 case PT64_ROOT_LEVEL:
3479 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3480 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3481 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3482 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3483 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3484 rsvd_bits(maxphyaddr, 51);
3485 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3486 rsvd_bits(maxphyaddr, 51);
3487 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3488 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3489 rsvd_bits(maxphyaddr, 51) |
3490 rsvd_bits(13, 29);
3491 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3492 rsvd_bits(maxphyaddr, 51) |
3493 rsvd_bits(13, 20); /* large page */
3494 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3495 break;
3496 }
3497 }
3498
update_permission_bitmask(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)3499 static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3500 {
3501 unsigned bit, byte, pfec;
3502 u8 map;
3503 bool fault, x, w, u, wf, uf, ff, smep;
3504
3505 smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3506 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3507 pfec = byte << 1;
3508 map = 0;
3509 wf = pfec & PFERR_WRITE_MASK;
3510 uf = pfec & PFERR_USER_MASK;
3511 ff = pfec & PFERR_FETCH_MASK;
3512 for (bit = 0; bit < 8; ++bit) {
3513 x = bit & ACC_EXEC_MASK;
3514 w = bit & ACC_WRITE_MASK;
3515 u = bit & ACC_USER_MASK;
3516
3517 /* Not really needed: !nx will cause pte.nx to fault */
3518 x |= !mmu->nx;
3519 /* Allow supervisor writes if !cr0.wp */
3520 w |= !is_write_protection(vcpu) && !uf;
3521 /* Disallow supervisor fetches of user code if cr4.smep */
3522 x &= !(smep && u && !uf);
3523
3524 fault = (ff && !x) || (uf && !u) || (wf && !w);
3525 map |= fault << bit;
3526 }
3527 mmu->permissions[byte] = map;
3528 }
3529 }
3530
update_last_pte_bitmap(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)3531 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3532 {
3533 u8 map;
3534 unsigned level, root_level = mmu->root_level;
3535 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3536
3537 if (root_level == PT32E_ROOT_LEVEL)
3538 --root_level;
3539 /* PT_PAGE_TABLE_LEVEL always terminates */
3540 map = 1 | (1 << ps_set_index);
3541 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3542 if (level <= PT_PDPE_LEVEL
3543 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3544 map |= 1 << (ps_set_index | (level - 1));
3545 }
3546 mmu->last_pte_bitmap = map;
3547 }
3548
paging64_init_context_common(struct kvm_vcpu * vcpu,struct kvm_mmu * context,int level)3549 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3550 struct kvm_mmu *context,
3551 int level)
3552 {
3553 context->nx = is_nx(vcpu);
3554 context->root_level = level;
3555
3556 reset_rsvds_bits_mask(vcpu, context);
3557 update_permission_bitmask(vcpu, context);
3558 update_last_pte_bitmap(vcpu, context);
3559
3560 ASSERT(is_pae(vcpu));
3561 context->new_cr3 = paging_new_cr3;
3562 context->page_fault = paging64_page_fault;
3563 context->gva_to_gpa = paging64_gva_to_gpa;
3564 context->sync_page = paging64_sync_page;
3565 context->invlpg = paging64_invlpg;
3566 context->update_pte = paging64_update_pte;
3567 context->free = paging_free;
3568 context->shadow_root_level = level;
3569 context->root_hpa = INVALID_PAGE;
3570 context->direct_map = false;
3571 return 0;
3572 }
3573
paging64_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3574 static int paging64_init_context(struct kvm_vcpu *vcpu,
3575 struct kvm_mmu *context)
3576 {
3577 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3578 }
3579
paging32_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3580 static int paging32_init_context(struct kvm_vcpu *vcpu,
3581 struct kvm_mmu *context)
3582 {
3583 context->nx = false;
3584 context->root_level = PT32_ROOT_LEVEL;
3585
3586 reset_rsvds_bits_mask(vcpu, context);
3587 update_permission_bitmask(vcpu, context);
3588 update_last_pte_bitmap(vcpu, context);
3589
3590 context->new_cr3 = paging_new_cr3;
3591 context->page_fault = paging32_page_fault;
3592 context->gva_to_gpa = paging32_gva_to_gpa;
3593 context->free = paging_free;
3594 context->sync_page = paging32_sync_page;
3595 context->invlpg = paging32_invlpg;
3596 context->update_pte = paging32_update_pte;
3597 context->shadow_root_level = PT32E_ROOT_LEVEL;
3598 context->root_hpa = INVALID_PAGE;
3599 context->direct_map = false;
3600 return 0;
3601 }
3602
paging32E_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3603 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3604 struct kvm_mmu *context)
3605 {
3606 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3607 }
3608
init_kvm_tdp_mmu(struct kvm_vcpu * vcpu)3609 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3610 {
3611 struct kvm_mmu *context = vcpu->arch.walk_mmu;
3612
3613 context->base_role.word = 0;
3614 context->new_cr3 = nonpaging_new_cr3;
3615 context->page_fault = tdp_page_fault;
3616 context->free = nonpaging_free;
3617 context->sync_page = nonpaging_sync_page;
3618 context->invlpg = nonpaging_invlpg;
3619 context->update_pte = nonpaging_update_pte;
3620 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3621 context->root_hpa = INVALID_PAGE;
3622 context->direct_map = true;
3623 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3624 context->get_cr3 = get_cr3;
3625 context->get_pdptr = kvm_pdptr_read;
3626 context->inject_page_fault = kvm_inject_page_fault;
3627
3628 if (!is_paging(vcpu)) {
3629 context->nx = false;
3630 context->gva_to_gpa = nonpaging_gva_to_gpa;
3631 context->root_level = 0;
3632 } else if (is_long_mode(vcpu)) {
3633 context->nx = is_nx(vcpu);
3634 context->root_level = PT64_ROOT_LEVEL;
3635 reset_rsvds_bits_mask(vcpu, context);
3636 context->gva_to_gpa = paging64_gva_to_gpa;
3637 } else if (is_pae(vcpu)) {
3638 context->nx = is_nx(vcpu);
3639 context->root_level = PT32E_ROOT_LEVEL;
3640 reset_rsvds_bits_mask(vcpu, context);
3641 context->gva_to_gpa = paging64_gva_to_gpa;
3642 } else {
3643 context->nx = false;
3644 context->root_level = PT32_ROOT_LEVEL;
3645 reset_rsvds_bits_mask(vcpu, context);
3646 context->gva_to_gpa = paging32_gva_to_gpa;
3647 }
3648
3649 update_permission_bitmask(vcpu, context);
3650 update_last_pte_bitmap(vcpu, context);
3651
3652 return 0;
3653 }
3654
kvm_init_shadow_mmu(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3655 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3656 {
3657 int r;
3658 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3659 ASSERT(vcpu);
3660 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3661
3662 if (!is_paging(vcpu))
3663 r = nonpaging_init_context(vcpu, context);
3664 else if (is_long_mode(vcpu))
3665 r = paging64_init_context(vcpu, context);
3666 else if (is_pae(vcpu))
3667 r = paging32E_init_context(vcpu, context);
3668 else
3669 r = paging32_init_context(vcpu, context);
3670
3671 vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3672 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3673 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
3674 vcpu->arch.mmu.base_role.smep_andnot_wp
3675 = smep && !is_write_protection(vcpu);
3676
3677 return r;
3678 }
3679 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3680
init_kvm_softmmu(struct kvm_vcpu * vcpu)3681 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3682 {
3683 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3684
3685 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3686 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
3687 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
3688 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3689
3690 return r;
3691 }
3692
init_kvm_nested_mmu(struct kvm_vcpu * vcpu)3693 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3694 {
3695 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3696
3697 g_context->get_cr3 = get_cr3;
3698 g_context->get_pdptr = kvm_pdptr_read;
3699 g_context->inject_page_fault = kvm_inject_page_fault;
3700
3701 /*
3702 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3703 * translation of l2_gpa to l1_gpa addresses is done using the
3704 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3705 * functions between mmu and nested_mmu are swapped.
3706 */
3707 if (!is_paging(vcpu)) {
3708 g_context->nx = false;
3709 g_context->root_level = 0;
3710 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3711 } else if (is_long_mode(vcpu)) {
3712 g_context->nx = is_nx(vcpu);
3713 g_context->root_level = PT64_ROOT_LEVEL;
3714 reset_rsvds_bits_mask(vcpu, g_context);
3715 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3716 } else if (is_pae(vcpu)) {
3717 g_context->nx = is_nx(vcpu);
3718 g_context->root_level = PT32E_ROOT_LEVEL;
3719 reset_rsvds_bits_mask(vcpu, g_context);
3720 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3721 } else {
3722 g_context->nx = false;
3723 g_context->root_level = PT32_ROOT_LEVEL;
3724 reset_rsvds_bits_mask(vcpu, g_context);
3725 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3726 }
3727
3728 update_permission_bitmask(vcpu, g_context);
3729 update_last_pte_bitmap(vcpu, g_context);
3730
3731 return 0;
3732 }
3733
init_kvm_mmu(struct kvm_vcpu * vcpu)3734 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3735 {
3736 if (mmu_is_nested(vcpu))
3737 return init_kvm_nested_mmu(vcpu);
3738 else if (tdp_enabled)
3739 return init_kvm_tdp_mmu(vcpu);
3740 else
3741 return init_kvm_softmmu(vcpu);
3742 }
3743
destroy_kvm_mmu(struct kvm_vcpu * vcpu)3744 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3745 {
3746 ASSERT(vcpu);
3747 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3748 /* mmu.free() should set root_hpa = INVALID_PAGE */
3749 vcpu->arch.mmu.free(vcpu);
3750 }
3751
kvm_mmu_reset_context(struct kvm_vcpu * vcpu)3752 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3753 {
3754 destroy_kvm_mmu(vcpu);
3755 return init_kvm_mmu(vcpu);
3756 }
3757 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3758
kvm_mmu_load(struct kvm_vcpu * vcpu)3759 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3760 {
3761 int r;
3762
3763 r = mmu_topup_memory_caches(vcpu);
3764 if (r)
3765 goto out;
3766 r = mmu_alloc_roots(vcpu);
3767 spin_lock(&vcpu->kvm->mmu_lock);
3768 mmu_sync_roots(vcpu);
3769 spin_unlock(&vcpu->kvm->mmu_lock);
3770 if (r)
3771 goto out;
3772 /* set_cr3() should ensure TLB has been flushed */
3773 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3774 out:
3775 return r;
3776 }
3777 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3778
kvm_mmu_unload(struct kvm_vcpu * vcpu)3779 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3780 {
3781 mmu_free_roots(vcpu);
3782 }
3783 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3784
mmu_pte_write_new_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * spte,const void * new)3785 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3786 struct kvm_mmu_page *sp, u64 *spte,
3787 const void *new)
3788 {
3789 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3790 ++vcpu->kvm->stat.mmu_pde_zapped;
3791 return;
3792 }
3793
3794 ++vcpu->kvm->stat.mmu_pte_updated;
3795 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3796 }
3797
need_remote_flush(u64 old,u64 new)3798 static bool need_remote_flush(u64 old, u64 new)
3799 {
3800 if (!is_shadow_present_pte(old))
3801 return false;
3802 if (!is_shadow_present_pte(new))
3803 return true;
3804 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3805 return true;
3806 old ^= PT64_NX_MASK;
3807 new ^= PT64_NX_MASK;
3808 return (old & ~new & PT64_PERM_MASK) != 0;
3809 }
3810
mmu_pte_write_flush_tlb(struct kvm_vcpu * vcpu,bool zap_page,bool remote_flush,bool local_flush)3811 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3812 bool remote_flush, bool local_flush)
3813 {
3814 if (zap_page)
3815 return;
3816
3817 if (remote_flush)
3818 kvm_flush_remote_tlbs(vcpu->kvm);
3819 else if (local_flush)
3820 kvm_mmu_flush_tlb(vcpu);
3821 }
3822
mmu_pte_write_fetch_gpte(struct kvm_vcpu * vcpu,gpa_t * gpa,const u8 * new,int * bytes)3823 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3824 const u8 *new, int *bytes)
3825 {
3826 u64 gentry;
3827 int r;
3828
3829 /*
3830 * Assume that the pte write on a page table of the same type
3831 * as the current vcpu paging mode since we update the sptes only
3832 * when they have the same mode.
3833 */
3834 if (is_pae(vcpu) && *bytes == 4) {
3835 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3836 *gpa &= ~(gpa_t)7;
3837 *bytes = 8;
3838 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3839 if (r)
3840 gentry = 0;
3841 new = (const u8 *)&gentry;
3842 }
3843
3844 switch (*bytes) {
3845 case 4:
3846 gentry = *(const u32 *)new;
3847 break;
3848 case 8:
3849 gentry = *(const u64 *)new;
3850 break;
3851 default:
3852 gentry = 0;
3853 break;
3854 }
3855
3856 return gentry;
3857 }
3858
3859 /*
3860 * If we're seeing too many writes to a page, it may no longer be a page table,
3861 * or we may be forking, in which case it is better to unmap the page.
3862 */
detect_write_flooding(struct kvm_mmu_page * sp)3863 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3864 {
3865 /*
3866 * Skip write-flooding detected for the sp whose level is 1, because
3867 * it can become unsync, then the guest page is not write-protected.
3868 */
3869 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3870 return false;
3871
3872 return ++sp->write_flooding_count >= 3;
3873 }
3874
3875 /*
3876 * Misaligned accesses are too much trouble to fix up; also, they usually
3877 * indicate a page is not used as a page table.
3878 */
detect_write_misaligned(struct kvm_mmu_page * sp,gpa_t gpa,int bytes)3879 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3880 int bytes)
3881 {
3882 unsigned offset, pte_size, misaligned;
3883
3884 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3885 gpa, bytes, sp->role.word);
3886
3887 offset = offset_in_page(gpa);
3888 pte_size = sp->role.cr4_pae ? 8 : 4;
3889
3890 /*
3891 * Sometimes, the OS only writes the last one bytes to update status
3892 * bits, for example, in linux, andb instruction is used in clear_bit().
3893 */
3894 if (!(offset & (pte_size - 1)) && bytes == 1)
3895 return false;
3896
3897 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3898 misaligned |= bytes < 4;
3899
3900 return misaligned;
3901 }
3902
get_written_sptes(struct kvm_mmu_page * sp,gpa_t gpa,int * nspte)3903 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3904 {
3905 unsigned page_offset, quadrant;
3906 u64 *spte;
3907 int level;
3908
3909 page_offset = offset_in_page(gpa);
3910 level = sp->role.level;
3911 *nspte = 1;
3912 if (!sp->role.cr4_pae) {
3913 page_offset <<= 1; /* 32->64 */
3914 /*
3915 * A 32-bit pde maps 4MB while the shadow pdes map
3916 * only 2MB. So we need to double the offset again
3917 * and zap two pdes instead of one.
3918 */
3919 if (level == PT32_ROOT_LEVEL) {
3920 page_offset &= ~7; /* kill rounding error */
3921 page_offset <<= 1;
3922 *nspte = 2;
3923 }
3924 quadrant = page_offset >> PAGE_SHIFT;
3925 page_offset &= ~PAGE_MASK;
3926 if (quadrant != sp->role.quadrant)
3927 return NULL;
3928 }
3929
3930 spte = &sp->spt[page_offset / sizeof(*spte)];
3931 return spte;
3932 }
3933
kvm_mmu_pte_write(struct kvm_vcpu * vcpu,gpa_t gpa,const u8 * new,int bytes)3934 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3935 const u8 *new, int bytes)
3936 {
3937 gfn_t gfn = gpa >> PAGE_SHIFT;
3938 union kvm_mmu_page_role mask = { .word = 0 };
3939 struct kvm_mmu_page *sp;
3940 LIST_HEAD(invalid_list);
3941 u64 entry, gentry, *spte;
3942 int npte;
3943 bool remote_flush, local_flush, zap_page;
3944
3945 /*
3946 * If we don't have indirect shadow pages, it means no page is
3947 * write-protected, so we can exit simply.
3948 */
3949 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3950 return;
3951
3952 zap_page = remote_flush = local_flush = false;
3953
3954 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3955
3956 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3957
3958 /*
3959 * No need to care whether allocation memory is successful
3960 * or not since pte prefetch is skiped if it does not have
3961 * enough objects in the cache.
3962 */
3963 mmu_topup_memory_caches(vcpu);
3964
3965 spin_lock(&vcpu->kvm->mmu_lock);
3966 ++vcpu->kvm->stat.mmu_pte_write;
3967 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3968
3969 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3970 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
3971 if (detect_write_misaligned(sp, gpa, bytes) ||
3972 detect_write_flooding(sp)) {
3973 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3974 &invalid_list);
3975 ++vcpu->kvm->stat.mmu_flooded;
3976 continue;
3977 }
3978
3979 spte = get_written_sptes(sp, gpa, &npte);
3980 if (!spte)
3981 continue;
3982
3983 local_flush = true;
3984 while (npte--) {
3985 entry = *spte;
3986 mmu_page_zap_pte(vcpu->kvm, sp, spte);
3987 if (gentry &&
3988 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3989 & mask.word) && rmap_can_add(vcpu))
3990 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3991 if (need_remote_flush(entry, *spte))
3992 remote_flush = true;
3993 ++spte;
3994 }
3995 }
3996 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3997 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3998 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3999 spin_unlock(&vcpu->kvm->mmu_lock);
4000 }
4001
kvm_mmu_unprotect_page_virt(struct kvm_vcpu * vcpu,gva_t gva)4002 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4003 {
4004 gpa_t gpa;
4005 int r;
4006
4007 if (vcpu->arch.mmu.direct_map)
4008 return 0;
4009
4010 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4011
4012 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4013
4014 return r;
4015 }
4016 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4017
make_mmu_pages_available(struct kvm_vcpu * vcpu)4018 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4019 {
4020 LIST_HEAD(invalid_list);
4021
4022 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4023 return;
4024
4025 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4026 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4027 break;
4028
4029 ++vcpu->kvm->stat.mmu_recycled;
4030 }
4031 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4032 }
4033
is_mmio_page_fault(struct kvm_vcpu * vcpu,gva_t addr)4034 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4035 {
4036 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4037 return vcpu_match_mmio_gpa(vcpu, addr);
4038
4039 return vcpu_match_mmio_gva(vcpu, addr);
4040 }
4041
kvm_mmu_page_fault(struct kvm_vcpu * vcpu,gva_t cr2,u32 error_code,void * insn,int insn_len)4042 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4043 void *insn, int insn_len)
4044 {
4045 int r, emulation_type = EMULTYPE_RETRY;
4046 enum emulation_result er;
4047
4048 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4049 if (r < 0)
4050 goto out;
4051
4052 if (!r) {
4053 r = 1;
4054 goto out;
4055 }
4056
4057 if (is_mmio_page_fault(vcpu, cr2))
4058 emulation_type = 0;
4059
4060 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4061
4062 switch (er) {
4063 case EMULATE_DONE:
4064 return 1;
4065 case EMULATE_DO_MMIO:
4066 ++vcpu->stat.mmio_exits;
4067 /* fall through */
4068 case EMULATE_FAIL:
4069 return 0;
4070 default:
4071 BUG();
4072 }
4073 out:
4074 return r;
4075 }
4076 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4077
kvm_mmu_invlpg(struct kvm_vcpu * vcpu,gva_t gva)4078 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4079 {
4080 vcpu->arch.mmu.invlpg(vcpu, gva);
4081 kvm_mmu_flush_tlb(vcpu);
4082 ++vcpu->stat.invlpg;
4083 }
4084 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4085
kvm_enable_tdp(void)4086 void kvm_enable_tdp(void)
4087 {
4088 tdp_enabled = true;
4089 }
4090 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4091
kvm_disable_tdp(void)4092 void kvm_disable_tdp(void)
4093 {
4094 tdp_enabled = false;
4095 }
4096 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4097
free_mmu_pages(struct kvm_vcpu * vcpu)4098 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4099 {
4100 free_page((unsigned long)vcpu->arch.mmu.pae_root);
4101 if (vcpu->arch.mmu.lm_root != NULL)
4102 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4103 }
4104
alloc_mmu_pages(struct kvm_vcpu * vcpu)4105 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4106 {
4107 struct page *page;
4108 int i;
4109
4110 ASSERT(vcpu);
4111
4112 /*
4113 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4114 * Therefore we need to allocate shadow page tables in the first
4115 * 4GB of memory, which happens to fit the DMA32 zone.
4116 */
4117 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4118 if (!page)
4119 return -ENOMEM;
4120
4121 vcpu->arch.mmu.pae_root = page_address(page);
4122 for (i = 0; i < 4; ++i)
4123 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4124
4125 return 0;
4126 }
4127
kvm_mmu_create(struct kvm_vcpu * vcpu)4128 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4129 {
4130 ASSERT(vcpu);
4131
4132 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4133 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4134 vcpu->arch.mmu.translate_gpa = translate_gpa;
4135 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4136
4137 return alloc_mmu_pages(vcpu);
4138 }
4139
kvm_mmu_setup(struct kvm_vcpu * vcpu)4140 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4141 {
4142 ASSERT(vcpu);
4143 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4144
4145 return init_kvm_mmu(vcpu);
4146 }
4147
kvm_mmu_slot_remove_write_access(struct kvm * kvm,int slot)4148 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4149 {
4150 struct kvm_memory_slot *memslot;
4151 gfn_t last_gfn;
4152 int i;
4153
4154 memslot = id_to_memslot(kvm->memslots, slot);
4155 last_gfn = memslot->base_gfn + memslot->npages - 1;
4156
4157 spin_lock(&kvm->mmu_lock);
4158
4159 for (i = PT_PAGE_TABLE_LEVEL;
4160 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4161 unsigned long *rmapp;
4162 unsigned long last_index, index;
4163
4164 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4165 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4166
4167 for (index = 0; index <= last_index; ++index, ++rmapp) {
4168 if (*rmapp)
4169 __rmap_write_protect(kvm, rmapp, false);
4170
4171 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4172 kvm_flush_remote_tlbs(kvm);
4173 cond_resched_lock(&kvm->mmu_lock);
4174 }
4175 }
4176 }
4177
4178 kvm_flush_remote_tlbs(kvm);
4179 spin_unlock(&kvm->mmu_lock);
4180 }
4181
kvm_mmu_zap_all(struct kvm * kvm)4182 void kvm_mmu_zap_all(struct kvm *kvm)
4183 {
4184 struct kvm_mmu_page *sp, *node;
4185 LIST_HEAD(invalid_list);
4186
4187 spin_lock(&kvm->mmu_lock);
4188 restart:
4189 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
4190 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4191 goto restart;
4192
4193 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4194 spin_unlock(&kvm->mmu_lock);
4195 }
4196
kvm_mmu_zap_mmio_sptes(struct kvm * kvm)4197 void kvm_mmu_zap_mmio_sptes(struct kvm *kvm)
4198 {
4199 struct kvm_mmu_page *sp, *node;
4200 LIST_HEAD(invalid_list);
4201
4202 spin_lock(&kvm->mmu_lock);
4203 restart:
4204 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
4205 if (!sp->mmio_cached)
4206 continue;
4207 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4208 goto restart;
4209 }
4210
4211 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4212 spin_unlock(&kvm->mmu_lock);
4213 }
4214
mmu_shrink(struct shrinker * shrink,struct shrink_control * sc)4215 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
4216 {
4217 struct kvm *kvm;
4218 int nr_to_scan = sc->nr_to_scan;
4219
4220 if (nr_to_scan == 0)
4221 goto out;
4222
4223 raw_spin_lock(&kvm_lock);
4224
4225 list_for_each_entry(kvm, &vm_list, vm_list) {
4226 int idx;
4227 LIST_HEAD(invalid_list);
4228
4229 /*
4230 * Never scan more than sc->nr_to_scan VM instances.
4231 * Will not hit this condition practically since we do not try
4232 * to shrink more than one VM and it is very unlikely to see
4233 * !n_used_mmu_pages so many times.
4234 */
4235 if (!nr_to_scan--)
4236 break;
4237 /*
4238 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4239 * here. We may skip a VM instance errorneosly, but we do not
4240 * want to shrink a VM that only started to populate its MMU
4241 * anyway.
4242 */
4243 if (!kvm->arch.n_used_mmu_pages)
4244 continue;
4245
4246 idx = srcu_read_lock(&kvm->srcu);
4247 spin_lock(&kvm->mmu_lock);
4248
4249 prepare_zap_oldest_mmu_page(kvm, &invalid_list);
4250 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4251
4252 spin_unlock(&kvm->mmu_lock);
4253 srcu_read_unlock(&kvm->srcu, idx);
4254
4255 list_move_tail(&kvm->vm_list, &vm_list);
4256 break;
4257 }
4258
4259 raw_spin_unlock(&kvm_lock);
4260
4261 out:
4262 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4263 }
4264
4265 static struct shrinker mmu_shrinker = {
4266 .shrink = mmu_shrink,
4267 .seeks = DEFAULT_SEEKS * 10,
4268 };
4269
mmu_destroy_caches(void)4270 static void mmu_destroy_caches(void)
4271 {
4272 if (pte_list_desc_cache)
4273 kmem_cache_destroy(pte_list_desc_cache);
4274 if (mmu_page_header_cache)
4275 kmem_cache_destroy(mmu_page_header_cache);
4276 }
4277
kvm_mmu_module_init(void)4278 int kvm_mmu_module_init(void)
4279 {
4280 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4281 sizeof(struct pte_list_desc),
4282 0, 0, NULL);
4283 if (!pte_list_desc_cache)
4284 goto nomem;
4285
4286 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4287 sizeof(struct kvm_mmu_page),
4288 0, 0, NULL);
4289 if (!mmu_page_header_cache)
4290 goto nomem;
4291
4292 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4293 goto nomem;
4294
4295 register_shrinker(&mmu_shrinker);
4296
4297 return 0;
4298
4299 nomem:
4300 mmu_destroy_caches();
4301 return -ENOMEM;
4302 }
4303
4304 /*
4305 * Caculate mmu pages needed for kvm.
4306 */
kvm_mmu_calculate_mmu_pages(struct kvm * kvm)4307 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4308 {
4309 unsigned int nr_mmu_pages;
4310 unsigned int nr_pages = 0;
4311 struct kvm_memslots *slots;
4312 struct kvm_memory_slot *memslot;
4313
4314 slots = kvm_memslots(kvm);
4315
4316 kvm_for_each_memslot(memslot, slots)
4317 nr_pages += memslot->npages;
4318
4319 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4320 nr_mmu_pages = max(nr_mmu_pages,
4321 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4322
4323 return nr_mmu_pages;
4324 }
4325
kvm_mmu_get_spte_hierarchy(struct kvm_vcpu * vcpu,u64 addr,u64 sptes[4])4326 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4327 {
4328 struct kvm_shadow_walk_iterator iterator;
4329 u64 spte;
4330 int nr_sptes = 0;
4331
4332 walk_shadow_page_lockless_begin(vcpu);
4333 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4334 sptes[iterator.level-1] = spte;
4335 nr_sptes++;
4336 if (!is_shadow_present_pte(spte))
4337 break;
4338 }
4339 walk_shadow_page_lockless_end(vcpu);
4340
4341 return nr_sptes;
4342 }
4343 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4344
kvm_mmu_destroy(struct kvm_vcpu * vcpu)4345 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4346 {
4347 ASSERT(vcpu);
4348
4349 destroy_kvm_mmu(vcpu);
4350 free_mmu_pages(vcpu);
4351 mmu_free_memory_caches(vcpu);
4352 }
4353
kvm_mmu_module_exit(void)4354 void kvm_mmu_module_exit(void)
4355 {
4356 mmu_destroy_caches();
4357 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4358 unregister_shrinker(&mmu_shrinker);
4359 mmu_audit_disable();
4360 }
4361