• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20 
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38 
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43 
44 /*
45  * When setting this variable to true it enables Two-Dimensional-Paging
46  * where the hardware walks 2 page tables:
47  * 1. the guest-virtual to guest-physical
48  * 2. while doing 1. it walks guest-physical to host-physical
49  * If the hardware supports that we don't need to do shadow paging.
50  */
51 bool tdp_enabled = false;
52 
53 enum {
54 	AUDIT_PRE_PAGE_FAULT,
55 	AUDIT_POST_PAGE_FAULT,
56 	AUDIT_PRE_PTE_WRITE,
57 	AUDIT_POST_PTE_WRITE,
58 	AUDIT_PRE_SYNC,
59 	AUDIT_POST_SYNC
60 };
61 
62 #undef MMU_DEBUG
63 
64 #ifdef MMU_DEBUG
65 
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68 
69 #else
70 
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73 
74 #endif
75 
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80 
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x)							\
85 	if (!(x)) {							\
86 		printk(KERN_WARNING "assertion failed %s:%d: %s\n",	\
87 		       __FILE__, __LINE__, #x);				\
88 	}
89 #endif
90 
91 #define PTE_PREFETCH_NUM		8
92 
93 #define PT_FIRST_AVAIL_BITS_SHIFT 10
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95 
96 #define PT64_LEVEL_BITS 9
97 
98 #define PT64_LEVEL_SHIFT(level) \
99 		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100 
101 #define PT64_INDEX(address, level)\
102 	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103 
104 
105 #define PT32_LEVEL_BITS 10
106 
107 #define PT32_LEVEL_SHIFT(level) \
108 		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109 
110 #define PT32_LVL_OFFSET_MASK(level) \
111 	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 						* PT32_LEVEL_BITS))) - 1))
113 
114 #define PT32_INDEX(address, level)\
115 	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116 
117 
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120 	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122 	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 						* PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125 	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 						* PT64_LEVEL_BITS))) - 1))
127 
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 					    * PT32_LEVEL_BITS))) - 1))
134 
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 			| PT64_NX_MASK)
137 
138 #define ACC_EXEC_MASK    1
139 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
140 #define ACC_USER_MASK    PT_USER_MASK
141 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142 
143 #include <trace/events/kvm.h>
144 
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
147 
148 #define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149 #define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
150 
151 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152 
153 /* make pte_list_desc fit well in cache line */
154 #define PTE_LIST_EXT 3
155 
156 struct pte_list_desc {
157 	u64 *sptes[PTE_LIST_EXT];
158 	struct pte_list_desc *more;
159 };
160 
161 struct kvm_shadow_walk_iterator {
162 	u64 addr;
163 	hpa_t shadow_addr;
164 	u64 *sptep;
165 	int level;
166 	unsigned index;
167 };
168 
169 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
170 	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
171 	     shadow_walk_okay(&(_walker));			\
172 	     shadow_walk_next(&(_walker)))
173 
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
175 	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
176 	     shadow_walk_okay(&(_walker)) &&				\
177 		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
178 	     __shadow_walk_next(&(_walker), spte))
179 
180 static struct kmem_cache *pte_list_desc_cache;
181 static struct kmem_cache *mmu_page_header_cache;
182 static struct percpu_counter kvm_total_used_mmu_pages;
183 
184 static u64 __read_mostly shadow_nx_mask;
185 static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
186 static u64 __read_mostly shadow_user_mask;
187 static u64 __read_mostly shadow_accessed_mask;
188 static u64 __read_mostly shadow_dirty_mask;
189 static u64 __read_mostly shadow_mmio_mask;
190 
191 static void mmu_spte_set(u64 *sptep, u64 spte);
192 static void mmu_free_roots(struct kvm_vcpu *vcpu);
193 
kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)194 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195 {
196 	shadow_mmio_mask = mmio_mask;
197 }
198 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199 
mark_mmio_spte(u64 * sptep,u64 gfn,unsigned access)200 static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
201 {
202 	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
203 
204 	access &= ACC_WRITE_MASK | ACC_USER_MASK;
205 
206 	sp->mmio_cached = true;
207 	trace_mark_mmio_spte(sptep, gfn, access);
208 	mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
209 }
210 
is_mmio_spte(u64 spte)211 static bool is_mmio_spte(u64 spte)
212 {
213 	return (spte & shadow_mmio_mask) == shadow_mmio_mask;
214 }
215 
get_mmio_spte_gfn(u64 spte)216 static gfn_t get_mmio_spte_gfn(u64 spte)
217 {
218 	return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
219 }
220 
get_mmio_spte_access(u64 spte)221 static unsigned get_mmio_spte_access(u64 spte)
222 {
223 	return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
224 }
225 
set_mmio_spte(u64 * sptep,gfn_t gfn,pfn_t pfn,unsigned access)226 static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
227 {
228 	if (unlikely(is_noslot_pfn(pfn))) {
229 		mark_mmio_spte(sptep, gfn, access);
230 		return true;
231 	}
232 
233 	return false;
234 }
235 
rsvd_bits(int s,int e)236 static inline u64 rsvd_bits(int s, int e)
237 {
238 	return ((1ULL << (e - s + 1)) - 1) << s;
239 }
240 
kvm_mmu_set_mask_ptes(u64 user_mask,u64 accessed_mask,u64 dirty_mask,u64 nx_mask,u64 x_mask)241 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
242 		u64 dirty_mask, u64 nx_mask, u64 x_mask)
243 {
244 	shadow_user_mask = user_mask;
245 	shadow_accessed_mask = accessed_mask;
246 	shadow_dirty_mask = dirty_mask;
247 	shadow_nx_mask = nx_mask;
248 	shadow_x_mask = x_mask;
249 }
250 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
251 
is_cpuid_PSE36(void)252 static int is_cpuid_PSE36(void)
253 {
254 	return 1;
255 }
256 
is_nx(struct kvm_vcpu * vcpu)257 static int is_nx(struct kvm_vcpu *vcpu)
258 {
259 	return vcpu->arch.efer & EFER_NX;
260 }
261 
is_shadow_present_pte(u64 pte)262 static int is_shadow_present_pte(u64 pte)
263 {
264 	return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
265 }
266 
is_large_pte(u64 pte)267 static int is_large_pte(u64 pte)
268 {
269 	return pte & PT_PAGE_SIZE_MASK;
270 }
271 
is_dirty_gpte(unsigned long pte)272 static int is_dirty_gpte(unsigned long pte)
273 {
274 	return pte & PT_DIRTY_MASK;
275 }
276 
is_rmap_spte(u64 pte)277 static int is_rmap_spte(u64 pte)
278 {
279 	return is_shadow_present_pte(pte);
280 }
281 
is_last_spte(u64 pte,int level)282 static int is_last_spte(u64 pte, int level)
283 {
284 	if (level == PT_PAGE_TABLE_LEVEL)
285 		return 1;
286 	if (is_large_pte(pte))
287 		return 1;
288 	return 0;
289 }
290 
spte_to_pfn(u64 pte)291 static pfn_t spte_to_pfn(u64 pte)
292 {
293 	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
294 }
295 
pse36_gfn_delta(u32 gpte)296 static gfn_t pse36_gfn_delta(u32 gpte)
297 {
298 	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
299 
300 	return (gpte & PT32_DIR_PSE36_MASK) << shift;
301 }
302 
303 #ifdef CONFIG_X86_64
__set_spte(u64 * sptep,u64 spte)304 static void __set_spte(u64 *sptep, u64 spte)
305 {
306 	*sptep = spte;
307 }
308 
__update_clear_spte_fast(u64 * sptep,u64 spte)309 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
310 {
311 	*sptep = spte;
312 }
313 
__update_clear_spte_slow(u64 * sptep,u64 spte)314 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
315 {
316 	return xchg(sptep, spte);
317 }
318 
__get_spte_lockless(u64 * sptep)319 static u64 __get_spte_lockless(u64 *sptep)
320 {
321 	return ACCESS_ONCE(*sptep);
322 }
323 
__check_direct_spte_mmio_pf(u64 spte)324 static bool __check_direct_spte_mmio_pf(u64 spte)
325 {
326 	/* It is valid if the spte is zapped. */
327 	return spte == 0ull;
328 }
329 #else
330 union split_spte {
331 	struct {
332 		u32 spte_low;
333 		u32 spte_high;
334 	};
335 	u64 spte;
336 };
337 
count_spte_clear(u64 * sptep,u64 spte)338 static void count_spte_clear(u64 *sptep, u64 spte)
339 {
340 	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
341 
342 	if (is_shadow_present_pte(spte))
343 		return;
344 
345 	/* Ensure the spte is completely set before we increase the count */
346 	smp_wmb();
347 	sp->clear_spte_count++;
348 }
349 
__set_spte(u64 * sptep,u64 spte)350 static void __set_spte(u64 *sptep, u64 spte)
351 {
352 	union split_spte *ssptep, sspte;
353 
354 	ssptep = (union split_spte *)sptep;
355 	sspte = (union split_spte)spte;
356 
357 	ssptep->spte_high = sspte.spte_high;
358 
359 	/*
360 	 * If we map the spte from nonpresent to present, We should store
361 	 * the high bits firstly, then set present bit, so cpu can not
362 	 * fetch this spte while we are setting the spte.
363 	 */
364 	smp_wmb();
365 
366 	ssptep->spte_low = sspte.spte_low;
367 }
368 
__update_clear_spte_fast(u64 * sptep,u64 spte)369 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
370 {
371 	union split_spte *ssptep, sspte;
372 
373 	ssptep = (union split_spte *)sptep;
374 	sspte = (union split_spte)spte;
375 
376 	ssptep->spte_low = sspte.spte_low;
377 
378 	/*
379 	 * If we map the spte from present to nonpresent, we should clear
380 	 * present bit firstly to avoid vcpu fetch the old high bits.
381 	 */
382 	smp_wmb();
383 
384 	ssptep->spte_high = sspte.spte_high;
385 	count_spte_clear(sptep, spte);
386 }
387 
__update_clear_spte_slow(u64 * sptep,u64 spte)388 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
389 {
390 	union split_spte *ssptep, sspte, orig;
391 
392 	ssptep = (union split_spte *)sptep;
393 	sspte = (union split_spte)spte;
394 
395 	/* xchg acts as a barrier before the setting of the high bits */
396 	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
397 	orig.spte_high = ssptep->spte_high;
398 	ssptep->spte_high = sspte.spte_high;
399 	count_spte_clear(sptep, spte);
400 
401 	return orig.spte;
402 }
403 
404 /*
405  * The idea using the light way get the spte on x86_32 guest is from
406  * gup_get_pte(arch/x86/mm/gup.c).
407  * The difference is we can not catch the spte tlb flush if we leave
408  * guest mode, so we emulate it by increase clear_spte_count when spte
409  * is cleared.
410  */
__get_spte_lockless(u64 * sptep)411 static u64 __get_spte_lockless(u64 *sptep)
412 {
413 	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
414 	union split_spte spte, *orig = (union split_spte *)sptep;
415 	int count;
416 
417 retry:
418 	count = sp->clear_spte_count;
419 	smp_rmb();
420 
421 	spte.spte_low = orig->spte_low;
422 	smp_rmb();
423 
424 	spte.spte_high = orig->spte_high;
425 	smp_rmb();
426 
427 	if (unlikely(spte.spte_low != orig->spte_low ||
428 	      count != sp->clear_spte_count))
429 		goto retry;
430 
431 	return spte.spte;
432 }
433 
__check_direct_spte_mmio_pf(u64 spte)434 static bool __check_direct_spte_mmio_pf(u64 spte)
435 {
436 	union split_spte sspte = (union split_spte)spte;
437 	u32 high_mmio_mask = shadow_mmio_mask >> 32;
438 
439 	/* It is valid if the spte is zapped. */
440 	if (spte == 0ull)
441 		return true;
442 
443 	/* It is valid if the spte is being zapped. */
444 	if (sspte.spte_low == 0ull &&
445 	    (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
446 		return true;
447 
448 	return false;
449 }
450 #endif
451 
spte_is_locklessly_modifiable(u64 spte)452 static bool spte_is_locklessly_modifiable(u64 spte)
453 {
454 	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
455 		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
456 }
457 
spte_has_volatile_bits(u64 spte)458 static bool spte_has_volatile_bits(u64 spte)
459 {
460 	/*
461 	 * Always atomicly update spte if it can be updated
462 	 * out of mmu-lock, it can ensure dirty bit is not lost,
463 	 * also, it can help us to get a stable is_writable_pte()
464 	 * to ensure tlb flush is not missed.
465 	 */
466 	if (spte_is_locklessly_modifiable(spte))
467 		return true;
468 
469 	if (!shadow_accessed_mask)
470 		return false;
471 
472 	if (!is_shadow_present_pte(spte))
473 		return false;
474 
475 	if ((spte & shadow_accessed_mask) &&
476 	      (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
477 		return false;
478 
479 	return true;
480 }
481 
spte_is_bit_cleared(u64 old_spte,u64 new_spte,u64 bit_mask)482 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
483 {
484 	return (old_spte & bit_mask) && !(new_spte & bit_mask);
485 }
486 
487 /* Rules for using mmu_spte_set:
488  * Set the sptep from nonpresent to present.
489  * Note: the sptep being assigned *must* be either not present
490  * or in a state where the hardware will not attempt to update
491  * the spte.
492  */
mmu_spte_set(u64 * sptep,u64 new_spte)493 static void mmu_spte_set(u64 *sptep, u64 new_spte)
494 {
495 	WARN_ON(is_shadow_present_pte(*sptep));
496 	__set_spte(sptep, new_spte);
497 }
498 
499 /* Rules for using mmu_spte_update:
500  * Update the state bits, it means the mapped pfn is not changged.
501  *
502  * Whenever we overwrite a writable spte with a read-only one we
503  * should flush remote TLBs. Otherwise rmap_write_protect
504  * will find a read-only spte, even though the writable spte
505  * might be cached on a CPU's TLB, the return value indicates this
506  * case.
507  */
mmu_spte_update(u64 * sptep,u64 new_spte)508 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
509 {
510 	u64 old_spte = *sptep;
511 	bool ret = false;
512 
513 	WARN_ON(!is_rmap_spte(new_spte));
514 
515 	if (!is_shadow_present_pte(old_spte)) {
516 		mmu_spte_set(sptep, new_spte);
517 		return ret;
518 	}
519 
520 	if (!spte_has_volatile_bits(old_spte))
521 		__update_clear_spte_fast(sptep, new_spte);
522 	else
523 		old_spte = __update_clear_spte_slow(sptep, new_spte);
524 
525 	/*
526 	 * For the spte updated out of mmu-lock is safe, since
527 	 * we always atomicly update it, see the comments in
528 	 * spte_has_volatile_bits().
529 	 */
530 	if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
531 		ret = true;
532 
533 	if (!shadow_accessed_mask)
534 		return ret;
535 
536 	if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
537 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
538 	if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
539 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
540 
541 	return ret;
542 }
543 
544 /*
545  * Rules for using mmu_spte_clear_track_bits:
546  * It sets the sptep from present to nonpresent, and track the
547  * state bits, it is used to clear the last level sptep.
548  */
mmu_spte_clear_track_bits(u64 * sptep)549 static int mmu_spte_clear_track_bits(u64 *sptep)
550 {
551 	pfn_t pfn;
552 	u64 old_spte = *sptep;
553 
554 	if (!spte_has_volatile_bits(old_spte))
555 		__update_clear_spte_fast(sptep, 0ull);
556 	else
557 		old_spte = __update_clear_spte_slow(sptep, 0ull);
558 
559 	if (!is_rmap_spte(old_spte))
560 		return 0;
561 
562 	pfn = spte_to_pfn(old_spte);
563 
564 	/*
565 	 * KVM does not hold the refcount of the page used by
566 	 * kvm mmu, before reclaiming the page, we should
567 	 * unmap it from mmu first.
568 	 */
569 	WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
570 
571 	if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
572 		kvm_set_pfn_accessed(pfn);
573 	if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
574 		kvm_set_pfn_dirty(pfn);
575 	return 1;
576 }
577 
578 /*
579  * Rules for using mmu_spte_clear_no_track:
580  * Directly clear spte without caring the state bits of sptep,
581  * it is used to set the upper level spte.
582  */
mmu_spte_clear_no_track(u64 * sptep)583 static void mmu_spte_clear_no_track(u64 *sptep)
584 {
585 	__update_clear_spte_fast(sptep, 0ull);
586 }
587 
mmu_spte_get_lockless(u64 * sptep)588 static u64 mmu_spte_get_lockless(u64 *sptep)
589 {
590 	return __get_spte_lockless(sptep);
591 }
592 
walk_shadow_page_lockless_begin(struct kvm_vcpu * vcpu)593 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
594 {
595 	/*
596 	 * Prevent page table teardown by making any free-er wait during
597 	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
598 	 */
599 	local_irq_disable();
600 	vcpu->mode = READING_SHADOW_PAGE_TABLES;
601 	/*
602 	 * Make sure a following spte read is not reordered ahead of the write
603 	 * to vcpu->mode.
604 	 */
605 	smp_mb();
606 }
607 
walk_shadow_page_lockless_end(struct kvm_vcpu * vcpu)608 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
609 {
610 	/*
611 	 * Make sure the write to vcpu->mode is not reordered in front of
612 	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
613 	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
614 	 */
615 	smp_mb();
616 	vcpu->mode = OUTSIDE_GUEST_MODE;
617 	local_irq_enable();
618 }
619 
mmu_topup_memory_cache(struct kvm_mmu_memory_cache * cache,struct kmem_cache * base_cache,int min)620 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
621 				  struct kmem_cache *base_cache, int min)
622 {
623 	void *obj;
624 
625 	if (cache->nobjs >= min)
626 		return 0;
627 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
628 		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
629 		if (!obj)
630 			return -ENOMEM;
631 		cache->objects[cache->nobjs++] = obj;
632 	}
633 	return 0;
634 }
635 
mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache * cache)636 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
637 {
638 	return cache->nobjs;
639 }
640 
mmu_free_memory_cache(struct kvm_mmu_memory_cache * mc,struct kmem_cache * cache)641 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
642 				  struct kmem_cache *cache)
643 {
644 	while (mc->nobjs)
645 		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
646 }
647 
mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache * cache,int min)648 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
649 				       int min)
650 {
651 	void *page;
652 
653 	if (cache->nobjs >= min)
654 		return 0;
655 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
656 		page = (void *)__get_free_page(GFP_KERNEL);
657 		if (!page)
658 			return -ENOMEM;
659 		cache->objects[cache->nobjs++] = page;
660 	}
661 	return 0;
662 }
663 
mmu_free_memory_cache_page(struct kvm_mmu_memory_cache * mc)664 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
665 {
666 	while (mc->nobjs)
667 		free_page((unsigned long)mc->objects[--mc->nobjs]);
668 }
669 
mmu_topup_memory_caches(struct kvm_vcpu * vcpu)670 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
671 {
672 	int r;
673 
674 	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
675 				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
676 	if (r)
677 		goto out;
678 	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
679 	if (r)
680 		goto out;
681 	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
682 				   mmu_page_header_cache, 4);
683 out:
684 	return r;
685 }
686 
mmu_free_memory_caches(struct kvm_vcpu * vcpu)687 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
688 {
689 	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
690 				pte_list_desc_cache);
691 	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
692 	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
693 				mmu_page_header_cache);
694 }
695 
mmu_memory_cache_alloc(struct kvm_mmu_memory_cache * mc)696 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
697 {
698 	void *p;
699 
700 	BUG_ON(!mc->nobjs);
701 	p = mc->objects[--mc->nobjs];
702 	return p;
703 }
704 
mmu_alloc_pte_list_desc(struct kvm_vcpu * vcpu)705 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
706 {
707 	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
708 }
709 
mmu_free_pte_list_desc(struct pte_list_desc * pte_list_desc)710 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
711 {
712 	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
713 }
714 
kvm_mmu_page_get_gfn(struct kvm_mmu_page * sp,int index)715 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
716 {
717 	if (!sp->role.direct)
718 		return sp->gfns[index];
719 
720 	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
721 }
722 
kvm_mmu_page_set_gfn(struct kvm_mmu_page * sp,int index,gfn_t gfn)723 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
724 {
725 	if (sp->role.direct)
726 		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
727 	else
728 		sp->gfns[index] = gfn;
729 }
730 
731 /*
732  * Return the pointer to the large page information for a given gfn,
733  * handling slots that are not large page aligned.
734  */
lpage_info_slot(gfn_t gfn,struct kvm_memory_slot * slot,int level)735 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
736 					      struct kvm_memory_slot *slot,
737 					      int level)
738 {
739 	unsigned long idx;
740 
741 	idx = gfn_to_index(gfn, slot->base_gfn, level);
742 	return &slot->arch.lpage_info[level - 2][idx];
743 }
744 
account_shadowed(struct kvm * kvm,gfn_t gfn)745 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
746 {
747 	struct kvm_memory_slot *slot;
748 	struct kvm_lpage_info *linfo;
749 	int i;
750 
751 	slot = gfn_to_memslot(kvm, gfn);
752 	for (i = PT_DIRECTORY_LEVEL;
753 	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
754 		linfo = lpage_info_slot(gfn, slot, i);
755 		linfo->write_count += 1;
756 	}
757 	kvm->arch.indirect_shadow_pages++;
758 }
759 
unaccount_shadowed(struct kvm * kvm,gfn_t gfn)760 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
761 {
762 	struct kvm_memory_slot *slot;
763 	struct kvm_lpage_info *linfo;
764 	int i;
765 
766 	slot = gfn_to_memslot(kvm, gfn);
767 	for (i = PT_DIRECTORY_LEVEL;
768 	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
769 		linfo = lpage_info_slot(gfn, slot, i);
770 		linfo->write_count -= 1;
771 		WARN_ON(linfo->write_count < 0);
772 	}
773 	kvm->arch.indirect_shadow_pages--;
774 }
775 
has_wrprotected_page(struct kvm * kvm,gfn_t gfn,int level)776 static int has_wrprotected_page(struct kvm *kvm,
777 				gfn_t gfn,
778 				int level)
779 {
780 	struct kvm_memory_slot *slot;
781 	struct kvm_lpage_info *linfo;
782 
783 	slot = gfn_to_memslot(kvm, gfn);
784 	if (slot) {
785 		linfo = lpage_info_slot(gfn, slot, level);
786 		return linfo->write_count;
787 	}
788 
789 	return 1;
790 }
791 
host_mapping_level(struct kvm * kvm,gfn_t gfn)792 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
793 {
794 	unsigned long page_size;
795 	int i, ret = 0;
796 
797 	page_size = kvm_host_page_size(kvm, gfn);
798 
799 	for (i = PT_PAGE_TABLE_LEVEL;
800 	     i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
801 		if (page_size >= KVM_HPAGE_SIZE(i))
802 			ret = i;
803 		else
804 			break;
805 	}
806 
807 	return ret;
808 }
809 
810 static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)811 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
812 			    bool no_dirty_log)
813 {
814 	struct kvm_memory_slot *slot;
815 
816 	slot = gfn_to_memslot(vcpu->kvm, gfn);
817 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
818 	      (no_dirty_log && slot->dirty_bitmap))
819 		slot = NULL;
820 
821 	return slot;
822 }
823 
mapping_level_dirty_bitmap(struct kvm_vcpu * vcpu,gfn_t large_gfn)824 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
825 {
826 	return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
827 }
828 
mapping_level(struct kvm_vcpu * vcpu,gfn_t large_gfn)829 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
830 {
831 	int host_level, level, max_level;
832 
833 	host_level = host_mapping_level(vcpu->kvm, large_gfn);
834 
835 	if (host_level == PT_PAGE_TABLE_LEVEL)
836 		return host_level;
837 
838 	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
839 
840 	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
841 		if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
842 			break;
843 
844 	return level - 1;
845 }
846 
847 /*
848  * Pte mapping structures:
849  *
850  * If pte_list bit zero is zero, then pte_list point to the spte.
851  *
852  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
853  * pte_list_desc containing more mappings.
854  *
855  * Returns the number of pte entries before the spte was added or zero if
856  * the spte was not added.
857  *
858  */
pte_list_add(struct kvm_vcpu * vcpu,u64 * spte,unsigned long * pte_list)859 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
860 			unsigned long *pte_list)
861 {
862 	struct pte_list_desc *desc;
863 	int i, count = 0;
864 
865 	if (!*pte_list) {
866 		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
867 		*pte_list = (unsigned long)spte;
868 	} else if (!(*pte_list & 1)) {
869 		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
870 		desc = mmu_alloc_pte_list_desc(vcpu);
871 		desc->sptes[0] = (u64 *)*pte_list;
872 		desc->sptes[1] = spte;
873 		*pte_list = (unsigned long)desc | 1;
874 		++count;
875 	} else {
876 		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
877 		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
878 		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
879 			desc = desc->more;
880 			count += PTE_LIST_EXT;
881 		}
882 		if (desc->sptes[PTE_LIST_EXT-1]) {
883 			desc->more = mmu_alloc_pte_list_desc(vcpu);
884 			desc = desc->more;
885 		}
886 		for (i = 0; desc->sptes[i]; ++i)
887 			++count;
888 		desc->sptes[i] = spte;
889 	}
890 	return count;
891 }
892 
893 static void
pte_list_desc_remove_entry(unsigned long * pte_list,struct pte_list_desc * desc,int i,struct pte_list_desc * prev_desc)894 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
895 			   int i, struct pte_list_desc *prev_desc)
896 {
897 	int j;
898 
899 	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
900 		;
901 	desc->sptes[i] = desc->sptes[j];
902 	desc->sptes[j] = NULL;
903 	if (j != 0)
904 		return;
905 	if (!prev_desc && !desc->more)
906 		*pte_list = (unsigned long)desc->sptes[0];
907 	else
908 		if (prev_desc)
909 			prev_desc->more = desc->more;
910 		else
911 			*pte_list = (unsigned long)desc->more | 1;
912 	mmu_free_pte_list_desc(desc);
913 }
914 
pte_list_remove(u64 * spte,unsigned long * pte_list)915 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
916 {
917 	struct pte_list_desc *desc;
918 	struct pte_list_desc *prev_desc;
919 	int i;
920 
921 	if (!*pte_list) {
922 		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
923 		BUG();
924 	} else if (!(*pte_list & 1)) {
925 		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
926 		if ((u64 *)*pte_list != spte) {
927 			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
928 			BUG();
929 		}
930 		*pte_list = 0;
931 	} else {
932 		rmap_printk("pte_list_remove:  %p many->many\n", spte);
933 		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
934 		prev_desc = NULL;
935 		while (desc) {
936 			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
937 				if (desc->sptes[i] == spte) {
938 					pte_list_desc_remove_entry(pte_list,
939 							       desc, i,
940 							       prev_desc);
941 					return;
942 				}
943 			prev_desc = desc;
944 			desc = desc->more;
945 		}
946 		pr_err("pte_list_remove: %p many->many\n", spte);
947 		BUG();
948 	}
949 }
950 
951 typedef void (*pte_list_walk_fn) (u64 *spte);
pte_list_walk(unsigned long * pte_list,pte_list_walk_fn fn)952 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
953 {
954 	struct pte_list_desc *desc;
955 	int i;
956 
957 	if (!*pte_list)
958 		return;
959 
960 	if (!(*pte_list & 1))
961 		return fn((u64 *)*pte_list);
962 
963 	desc = (struct pte_list_desc *)(*pte_list & ~1ul);
964 	while (desc) {
965 		for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
966 			fn(desc->sptes[i]);
967 		desc = desc->more;
968 	}
969 }
970 
__gfn_to_rmap(gfn_t gfn,int level,struct kvm_memory_slot * slot)971 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
972 				    struct kvm_memory_slot *slot)
973 {
974 	unsigned long idx;
975 
976 	idx = gfn_to_index(gfn, slot->base_gfn, level);
977 	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
978 }
979 
980 /*
981  * Take gfn and return the reverse mapping to it.
982  */
gfn_to_rmap(struct kvm * kvm,gfn_t gfn,int level)983 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
984 {
985 	struct kvm_memory_slot *slot;
986 
987 	slot = gfn_to_memslot(kvm, gfn);
988 	return __gfn_to_rmap(gfn, level, slot);
989 }
990 
rmap_can_add(struct kvm_vcpu * vcpu)991 static bool rmap_can_add(struct kvm_vcpu *vcpu)
992 {
993 	struct kvm_mmu_memory_cache *cache;
994 
995 	cache = &vcpu->arch.mmu_pte_list_desc_cache;
996 	return mmu_memory_cache_free_objects(cache);
997 }
998 
rmap_add(struct kvm_vcpu * vcpu,u64 * spte,gfn_t gfn)999 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1000 {
1001 	struct kvm_mmu_page *sp;
1002 	unsigned long *rmapp;
1003 
1004 	sp = page_header(__pa(spte));
1005 	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1006 	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1007 	return pte_list_add(vcpu, spte, rmapp);
1008 }
1009 
rmap_remove(struct kvm * kvm,u64 * spte)1010 static void rmap_remove(struct kvm *kvm, u64 *spte)
1011 {
1012 	struct kvm_mmu_page *sp;
1013 	gfn_t gfn;
1014 	unsigned long *rmapp;
1015 
1016 	sp = page_header(__pa(spte));
1017 	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1018 	rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1019 	pte_list_remove(spte, rmapp);
1020 }
1021 
1022 /*
1023  * Used by the following functions to iterate through the sptes linked by a
1024  * rmap.  All fields are private and not assumed to be used outside.
1025  */
1026 struct rmap_iterator {
1027 	/* private fields */
1028 	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
1029 	int pos;			/* index of the sptep */
1030 };
1031 
1032 /*
1033  * Iteration must be started by this function.  This should also be used after
1034  * removing/dropping sptes from the rmap link because in such cases the
1035  * information in the itererator may not be valid.
1036  *
1037  * Returns sptep if found, NULL otherwise.
1038  */
rmap_get_first(unsigned long rmap,struct rmap_iterator * iter)1039 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1040 {
1041 	if (!rmap)
1042 		return NULL;
1043 
1044 	if (!(rmap & 1)) {
1045 		iter->desc = NULL;
1046 		return (u64 *)rmap;
1047 	}
1048 
1049 	iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1050 	iter->pos = 0;
1051 	return iter->desc->sptes[iter->pos];
1052 }
1053 
1054 /*
1055  * Must be used with a valid iterator: e.g. after rmap_get_first().
1056  *
1057  * Returns sptep if found, NULL otherwise.
1058  */
rmap_get_next(struct rmap_iterator * iter)1059 static u64 *rmap_get_next(struct rmap_iterator *iter)
1060 {
1061 	if (iter->desc) {
1062 		if (iter->pos < PTE_LIST_EXT - 1) {
1063 			u64 *sptep;
1064 
1065 			++iter->pos;
1066 			sptep = iter->desc->sptes[iter->pos];
1067 			if (sptep)
1068 				return sptep;
1069 		}
1070 
1071 		iter->desc = iter->desc->more;
1072 
1073 		if (iter->desc) {
1074 			iter->pos = 0;
1075 			/* desc->sptes[0] cannot be NULL */
1076 			return iter->desc->sptes[iter->pos];
1077 		}
1078 	}
1079 
1080 	return NULL;
1081 }
1082 
drop_spte(struct kvm * kvm,u64 * sptep)1083 static void drop_spte(struct kvm *kvm, u64 *sptep)
1084 {
1085 	if (mmu_spte_clear_track_bits(sptep))
1086 		rmap_remove(kvm, sptep);
1087 }
1088 
1089 
__drop_large_spte(struct kvm * kvm,u64 * sptep)1090 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1091 {
1092 	if (is_large_pte(*sptep)) {
1093 		WARN_ON(page_header(__pa(sptep))->role.level ==
1094 			PT_PAGE_TABLE_LEVEL);
1095 		drop_spte(kvm, sptep);
1096 		--kvm->stat.lpages;
1097 		return true;
1098 	}
1099 
1100 	return false;
1101 }
1102 
drop_large_spte(struct kvm_vcpu * vcpu,u64 * sptep)1103 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1104 {
1105 	if (__drop_large_spte(vcpu->kvm, sptep))
1106 		kvm_flush_remote_tlbs(vcpu->kvm);
1107 }
1108 
1109 /*
1110  * Write-protect on the specified @sptep, @pt_protect indicates whether
1111  * spte writ-protection is caused by protecting shadow page table.
1112  * @flush indicates whether tlb need be flushed.
1113  *
1114  * Note: write protection is difference between drity logging and spte
1115  * protection:
1116  * - for dirty logging, the spte can be set to writable at anytime if
1117  *   its dirty bitmap is properly set.
1118  * - for spte protection, the spte can be writable only after unsync-ing
1119  *   shadow page.
1120  *
1121  * Return true if the spte is dropped.
1122  */
1123 static bool
spte_write_protect(struct kvm * kvm,u64 * sptep,bool * flush,bool pt_protect)1124 spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
1125 {
1126 	u64 spte = *sptep;
1127 
1128 	if (!is_writable_pte(spte) &&
1129 	      !(pt_protect && spte_is_locklessly_modifiable(spte)))
1130 		return false;
1131 
1132 	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1133 
1134 	if (__drop_large_spte(kvm, sptep)) {
1135 		*flush |= true;
1136 		return true;
1137 	}
1138 
1139 	if (pt_protect)
1140 		spte &= ~SPTE_MMU_WRITEABLE;
1141 	spte = spte & ~PT_WRITABLE_MASK;
1142 
1143 	*flush |= mmu_spte_update(sptep, spte);
1144 	return false;
1145 }
1146 
__rmap_write_protect(struct kvm * kvm,unsigned long * rmapp,bool pt_protect)1147 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1148 				 bool pt_protect)
1149 {
1150 	u64 *sptep;
1151 	struct rmap_iterator iter;
1152 	bool flush = false;
1153 
1154 	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1155 		BUG_ON(!(*sptep & PT_PRESENT_MASK));
1156 		if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1157 			sptep = rmap_get_first(*rmapp, &iter);
1158 			continue;
1159 		}
1160 
1161 		sptep = rmap_get_next(&iter);
1162 	}
1163 
1164 	return flush;
1165 }
1166 
1167 /**
1168  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1169  * @kvm: kvm instance
1170  * @slot: slot to protect
1171  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1172  * @mask: indicates which pages we should protect
1173  *
1174  * Used when we do not need to care about huge page mappings: e.g. during dirty
1175  * logging we do not have any such mappings.
1176  */
kvm_mmu_write_protect_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1177 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1178 				     struct kvm_memory_slot *slot,
1179 				     gfn_t gfn_offset, unsigned long mask)
1180 {
1181 	unsigned long *rmapp;
1182 
1183 	while (mask) {
1184 		rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1185 				      PT_PAGE_TABLE_LEVEL, slot);
1186 		__rmap_write_protect(kvm, rmapp, false);
1187 
1188 		/* clear the first set bit */
1189 		mask &= mask - 1;
1190 	}
1191 }
1192 
rmap_write_protect(struct kvm * kvm,u64 gfn)1193 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1194 {
1195 	struct kvm_memory_slot *slot;
1196 	unsigned long *rmapp;
1197 	int i;
1198 	bool write_protected = false;
1199 
1200 	slot = gfn_to_memslot(kvm, gfn);
1201 
1202 	for (i = PT_PAGE_TABLE_LEVEL;
1203 	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1204 		rmapp = __gfn_to_rmap(gfn, i, slot);
1205 		write_protected |= __rmap_write_protect(kvm, rmapp, true);
1206 	}
1207 
1208 	return write_protected;
1209 }
1210 
kvm_unmap_rmapp(struct kvm * kvm,unsigned long * rmapp,struct kvm_memory_slot * slot,unsigned long data)1211 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1212 			   struct kvm_memory_slot *slot, unsigned long data)
1213 {
1214 	u64 *sptep;
1215 	struct rmap_iterator iter;
1216 	int need_tlb_flush = 0;
1217 
1218 	while ((sptep = rmap_get_first(*rmapp, &iter))) {
1219 		BUG_ON(!(*sptep & PT_PRESENT_MASK));
1220 		rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1221 
1222 		drop_spte(kvm, sptep);
1223 		need_tlb_flush = 1;
1224 	}
1225 
1226 	return need_tlb_flush;
1227 }
1228 
kvm_set_pte_rmapp(struct kvm * kvm,unsigned long * rmapp,struct kvm_memory_slot * slot,unsigned long data)1229 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1230 			     struct kvm_memory_slot *slot, unsigned long data)
1231 {
1232 	u64 *sptep;
1233 	struct rmap_iterator iter;
1234 	int need_flush = 0;
1235 	u64 new_spte;
1236 	pte_t *ptep = (pte_t *)data;
1237 	pfn_t new_pfn;
1238 
1239 	WARN_ON(pte_huge(*ptep));
1240 	new_pfn = pte_pfn(*ptep);
1241 
1242 	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1243 		BUG_ON(!is_shadow_present_pte(*sptep));
1244 		rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1245 
1246 		need_flush = 1;
1247 
1248 		if (pte_write(*ptep)) {
1249 			drop_spte(kvm, sptep);
1250 			sptep = rmap_get_first(*rmapp, &iter);
1251 		} else {
1252 			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1253 			new_spte |= (u64)new_pfn << PAGE_SHIFT;
1254 
1255 			new_spte &= ~PT_WRITABLE_MASK;
1256 			new_spte &= ~SPTE_HOST_WRITEABLE;
1257 			new_spte &= ~shadow_accessed_mask;
1258 
1259 			mmu_spte_clear_track_bits(sptep);
1260 			mmu_spte_set(sptep, new_spte);
1261 			sptep = rmap_get_next(&iter);
1262 		}
1263 	}
1264 
1265 	if (need_flush)
1266 		kvm_flush_remote_tlbs(kvm);
1267 
1268 	return 0;
1269 }
1270 
kvm_handle_hva_range(struct kvm * kvm,unsigned long start,unsigned long end,unsigned long data,int (* handler)(struct kvm * kvm,unsigned long * rmapp,struct kvm_memory_slot * slot,unsigned long data))1271 static int kvm_handle_hva_range(struct kvm *kvm,
1272 				unsigned long start,
1273 				unsigned long end,
1274 				unsigned long data,
1275 				int (*handler)(struct kvm *kvm,
1276 					       unsigned long *rmapp,
1277 					       struct kvm_memory_slot *slot,
1278 					       unsigned long data))
1279 {
1280 	int j;
1281 	int ret = 0;
1282 	struct kvm_memslots *slots;
1283 	struct kvm_memory_slot *memslot;
1284 
1285 	slots = kvm_memslots(kvm);
1286 
1287 	kvm_for_each_memslot(memslot, slots) {
1288 		unsigned long hva_start, hva_end;
1289 		gfn_t gfn_start, gfn_end;
1290 
1291 		hva_start = max(start, memslot->userspace_addr);
1292 		hva_end = min(end, memslot->userspace_addr +
1293 					(memslot->npages << PAGE_SHIFT));
1294 		if (hva_start >= hva_end)
1295 			continue;
1296 		/*
1297 		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1298 		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1299 		 */
1300 		gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1301 		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1302 
1303 		for (j = PT_PAGE_TABLE_LEVEL;
1304 		     j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1305 			unsigned long idx, idx_end;
1306 			unsigned long *rmapp;
1307 
1308 			/*
1309 			 * {idx(page_j) | page_j intersects with
1310 			 *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1311 			 */
1312 			idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1313 			idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1314 
1315 			rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1316 
1317 			for (; idx <= idx_end; ++idx)
1318 				ret |= handler(kvm, rmapp++, memslot, data);
1319 		}
1320 	}
1321 
1322 	return ret;
1323 }
1324 
kvm_handle_hva(struct kvm * kvm,unsigned long hva,unsigned long data,int (* handler)(struct kvm * kvm,unsigned long * rmapp,struct kvm_memory_slot * slot,unsigned long data))1325 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1326 			  unsigned long data,
1327 			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1328 					 struct kvm_memory_slot *slot,
1329 					 unsigned long data))
1330 {
1331 	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1332 }
1333 
kvm_unmap_hva(struct kvm * kvm,unsigned long hva)1334 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1335 {
1336 	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1337 }
1338 
kvm_unmap_hva_range(struct kvm * kvm,unsigned long start,unsigned long end)1339 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1340 {
1341 	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1342 }
1343 
kvm_set_spte_hva(struct kvm * kvm,unsigned long hva,pte_t pte)1344 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1345 {
1346 	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1347 }
1348 
kvm_age_rmapp(struct kvm * kvm,unsigned long * rmapp,struct kvm_memory_slot * slot,unsigned long data)1349 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1350 			 struct kvm_memory_slot *slot, unsigned long data)
1351 {
1352 	u64 *sptep;
1353 	struct rmap_iterator uninitialized_var(iter);
1354 	int young = 0;
1355 
1356 	/*
1357 	 * In case of absence of EPT Access and Dirty Bits supports,
1358 	 * emulate the accessed bit for EPT, by checking if this page has
1359 	 * an EPT mapping, and clearing it if it does. On the next access,
1360 	 * a new EPT mapping will be established.
1361 	 * This has some overhead, but not as much as the cost of swapping
1362 	 * out actively used pages or breaking up actively used hugepages.
1363 	 */
1364 	if (!shadow_accessed_mask) {
1365 		young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1366 		goto out;
1367 	}
1368 
1369 	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1370 	     sptep = rmap_get_next(&iter)) {
1371 		BUG_ON(!is_shadow_present_pte(*sptep));
1372 
1373 		if (*sptep & shadow_accessed_mask) {
1374 			young = 1;
1375 			clear_bit((ffs(shadow_accessed_mask) - 1),
1376 				 (unsigned long *)sptep);
1377 		}
1378 	}
1379 out:
1380 	/* @data has hva passed to kvm_age_hva(). */
1381 	trace_kvm_age_page(data, slot, young);
1382 	return young;
1383 }
1384 
kvm_test_age_rmapp(struct kvm * kvm,unsigned long * rmapp,struct kvm_memory_slot * slot,unsigned long data)1385 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1386 			      struct kvm_memory_slot *slot, unsigned long data)
1387 {
1388 	u64 *sptep;
1389 	struct rmap_iterator iter;
1390 	int young = 0;
1391 
1392 	/*
1393 	 * If there's no access bit in the secondary pte set by the
1394 	 * hardware it's up to gup-fast/gup to set the access bit in
1395 	 * the primary pte or in the page structure.
1396 	 */
1397 	if (!shadow_accessed_mask)
1398 		goto out;
1399 
1400 	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1401 	     sptep = rmap_get_next(&iter)) {
1402 		BUG_ON(!is_shadow_present_pte(*sptep));
1403 
1404 		if (*sptep & shadow_accessed_mask) {
1405 			young = 1;
1406 			break;
1407 		}
1408 	}
1409 out:
1410 	return young;
1411 }
1412 
1413 #define RMAP_RECYCLE_THRESHOLD 1000
1414 
rmap_recycle(struct kvm_vcpu * vcpu,u64 * spte,gfn_t gfn)1415 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1416 {
1417 	unsigned long *rmapp;
1418 	struct kvm_mmu_page *sp;
1419 
1420 	sp = page_header(__pa(spte));
1421 
1422 	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1423 
1424 	kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1425 	kvm_flush_remote_tlbs(vcpu->kvm);
1426 }
1427 
kvm_age_hva(struct kvm * kvm,unsigned long hva)1428 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1429 {
1430 	return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1431 }
1432 
kvm_test_age_hva(struct kvm * kvm,unsigned long hva)1433 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1434 {
1435 	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1436 }
1437 
1438 #ifdef MMU_DEBUG
is_empty_shadow_page(u64 * spt)1439 static int is_empty_shadow_page(u64 *spt)
1440 {
1441 	u64 *pos;
1442 	u64 *end;
1443 
1444 	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1445 		if (is_shadow_present_pte(*pos)) {
1446 			printk(KERN_ERR "%s: %p %llx\n", __func__,
1447 			       pos, *pos);
1448 			return 0;
1449 		}
1450 	return 1;
1451 }
1452 #endif
1453 
1454 /*
1455  * This value is the sum of all of the kvm instances's
1456  * kvm->arch.n_used_mmu_pages values.  We need a global,
1457  * aggregate version in order to make the slab shrinker
1458  * faster
1459  */
kvm_mod_used_mmu_pages(struct kvm * kvm,int nr)1460 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1461 {
1462 	kvm->arch.n_used_mmu_pages += nr;
1463 	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1464 }
1465 
kvm_mmu_free_page(struct kvm_mmu_page * sp)1466 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1467 {
1468 	ASSERT(is_empty_shadow_page(sp->spt));
1469 	hlist_del(&sp->hash_link);
1470 	list_del(&sp->link);
1471 	free_page((unsigned long)sp->spt);
1472 	if (!sp->role.direct)
1473 		free_page((unsigned long)sp->gfns);
1474 	kmem_cache_free(mmu_page_header_cache, sp);
1475 }
1476 
kvm_page_table_hashfn(gfn_t gfn)1477 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1478 {
1479 	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1480 }
1481 
mmu_page_add_parent_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * parent_pte)1482 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1483 				    struct kvm_mmu_page *sp, u64 *parent_pte)
1484 {
1485 	if (!parent_pte)
1486 		return;
1487 
1488 	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1489 }
1490 
mmu_page_remove_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)1491 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1492 				       u64 *parent_pte)
1493 {
1494 	pte_list_remove(parent_pte, &sp->parent_ptes);
1495 }
1496 
drop_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)1497 static void drop_parent_pte(struct kvm_mmu_page *sp,
1498 			    u64 *parent_pte)
1499 {
1500 	mmu_page_remove_parent_pte(sp, parent_pte);
1501 	mmu_spte_clear_no_track(parent_pte);
1502 }
1503 
kvm_mmu_alloc_page(struct kvm_vcpu * vcpu,u64 * parent_pte,int direct)1504 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1505 					       u64 *parent_pte, int direct)
1506 {
1507 	struct kvm_mmu_page *sp;
1508 
1509 	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1510 	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1511 	if (!direct)
1512 		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1513 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1514 	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1515 	sp->parent_ptes = 0;
1516 	mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1517 	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1518 	return sp;
1519 }
1520 
1521 static void mark_unsync(u64 *spte);
kvm_mmu_mark_parents_unsync(struct kvm_mmu_page * sp)1522 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1523 {
1524 	pte_list_walk(&sp->parent_ptes, mark_unsync);
1525 }
1526 
mark_unsync(u64 * spte)1527 static void mark_unsync(u64 *spte)
1528 {
1529 	struct kvm_mmu_page *sp;
1530 	unsigned int index;
1531 
1532 	sp = page_header(__pa(spte));
1533 	index = spte - sp->spt;
1534 	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1535 		return;
1536 	if (sp->unsync_children++)
1537 		return;
1538 	kvm_mmu_mark_parents_unsync(sp);
1539 }
1540 
nonpaging_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)1541 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1542 			       struct kvm_mmu_page *sp)
1543 {
1544 	return 1;
1545 }
1546 
nonpaging_invlpg(struct kvm_vcpu * vcpu,gva_t gva)1547 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1548 {
1549 }
1550 
nonpaging_update_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * spte,const void * pte)1551 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1552 				 struct kvm_mmu_page *sp, u64 *spte,
1553 				 const void *pte)
1554 {
1555 	WARN_ON(1);
1556 }
1557 
1558 #define KVM_PAGE_ARRAY_NR 16
1559 
1560 struct kvm_mmu_pages {
1561 	struct mmu_page_and_offset {
1562 		struct kvm_mmu_page *sp;
1563 		unsigned int idx;
1564 	} page[KVM_PAGE_ARRAY_NR];
1565 	unsigned int nr;
1566 };
1567 
mmu_pages_add(struct kvm_mmu_pages * pvec,struct kvm_mmu_page * sp,int idx)1568 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1569 			 int idx)
1570 {
1571 	int i;
1572 
1573 	if (sp->unsync)
1574 		for (i=0; i < pvec->nr; i++)
1575 			if (pvec->page[i].sp == sp)
1576 				return 0;
1577 
1578 	pvec->page[pvec->nr].sp = sp;
1579 	pvec->page[pvec->nr].idx = idx;
1580 	pvec->nr++;
1581 	return (pvec->nr == KVM_PAGE_ARRAY_NR);
1582 }
1583 
__mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1584 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1585 			   struct kvm_mmu_pages *pvec)
1586 {
1587 	int i, ret, nr_unsync_leaf = 0;
1588 
1589 	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1590 		struct kvm_mmu_page *child;
1591 		u64 ent = sp->spt[i];
1592 
1593 		if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1594 			goto clear_child_bitmap;
1595 
1596 		child = page_header(ent & PT64_BASE_ADDR_MASK);
1597 
1598 		if (child->unsync_children) {
1599 			if (mmu_pages_add(pvec, child, i))
1600 				return -ENOSPC;
1601 
1602 			ret = __mmu_unsync_walk(child, pvec);
1603 			if (!ret)
1604 				goto clear_child_bitmap;
1605 			else if (ret > 0)
1606 				nr_unsync_leaf += ret;
1607 			else
1608 				return ret;
1609 		} else if (child->unsync) {
1610 			nr_unsync_leaf++;
1611 			if (mmu_pages_add(pvec, child, i))
1612 				return -ENOSPC;
1613 		} else
1614 			 goto clear_child_bitmap;
1615 
1616 		continue;
1617 
1618 clear_child_bitmap:
1619 		__clear_bit(i, sp->unsync_child_bitmap);
1620 		sp->unsync_children--;
1621 		WARN_ON((int)sp->unsync_children < 0);
1622 	}
1623 
1624 
1625 	return nr_unsync_leaf;
1626 }
1627 
mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1628 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1629 			   struct kvm_mmu_pages *pvec)
1630 {
1631 	if (!sp->unsync_children)
1632 		return 0;
1633 
1634 	mmu_pages_add(pvec, sp, 0);
1635 	return __mmu_unsync_walk(sp, pvec);
1636 }
1637 
kvm_unlink_unsync_page(struct kvm * kvm,struct kvm_mmu_page * sp)1638 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1639 {
1640 	WARN_ON(!sp->unsync);
1641 	trace_kvm_mmu_sync_page(sp);
1642 	sp->unsync = 0;
1643 	--kvm->stat.mmu_unsync;
1644 }
1645 
1646 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1647 				    struct list_head *invalid_list);
1648 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1649 				    struct list_head *invalid_list);
1650 
1651 #define for_each_gfn_sp(_kvm, _sp, _gfn)				\
1652 	hlist_for_each_entry(_sp,					\
1653 	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1654 		if ((_sp)->gfn != (_gfn)) {} else
1655 
1656 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1657 	for_each_gfn_sp(_kvm, _sp, _gfn)				\
1658 		if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1659 
1660 /* @sp->gfn should be write-protected at the call site */
__kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,struct list_head * invalid_list,bool clear_unsync)1661 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1662 			   struct list_head *invalid_list, bool clear_unsync)
1663 {
1664 	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1665 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1666 		return 1;
1667 	}
1668 
1669 	if (clear_unsync)
1670 		kvm_unlink_unsync_page(vcpu->kvm, sp);
1671 
1672 	if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1673 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1674 		return 1;
1675 	}
1676 
1677 	kvm_mmu_flush_tlb(vcpu);
1678 	return 0;
1679 }
1680 
kvm_sync_page_transient(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)1681 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1682 				   struct kvm_mmu_page *sp)
1683 {
1684 	LIST_HEAD(invalid_list);
1685 	int ret;
1686 
1687 	ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1688 	if (ret)
1689 		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1690 
1691 	return ret;
1692 }
1693 
1694 #ifdef CONFIG_KVM_MMU_AUDIT
1695 #include "mmu_audit.c"
1696 #else
kvm_mmu_audit(struct kvm_vcpu * vcpu,int point)1697 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
mmu_audit_disable(void)1698 static void mmu_audit_disable(void) { }
1699 #endif
1700 
kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,struct list_head * invalid_list)1701 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1702 			 struct list_head *invalid_list)
1703 {
1704 	return __kvm_sync_page(vcpu, sp, invalid_list, true);
1705 }
1706 
1707 /* @gfn should be write-protected at the call site */
kvm_sync_pages(struct kvm_vcpu * vcpu,gfn_t gfn)1708 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1709 {
1710 	struct kvm_mmu_page *s;
1711 	LIST_HEAD(invalid_list);
1712 	bool flush = false;
1713 
1714 	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1715 		if (!s->unsync)
1716 			continue;
1717 
1718 		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1719 		kvm_unlink_unsync_page(vcpu->kvm, s);
1720 		if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1721 			(vcpu->arch.mmu.sync_page(vcpu, s))) {
1722 			kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1723 			continue;
1724 		}
1725 		flush = true;
1726 	}
1727 
1728 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1729 	if (flush)
1730 		kvm_mmu_flush_tlb(vcpu);
1731 }
1732 
1733 struct mmu_page_path {
1734 	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1735 	unsigned int idx[PT64_ROOT_LEVEL-1];
1736 };
1737 
1738 #define for_each_sp(pvec, sp, parents, i)			\
1739 		for (i = mmu_pages_next(&pvec, &parents, -1),	\
1740 			sp = pvec.page[i].sp;			\
1741 			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
1742 			i = mmu_pages_next(&pvec, &parents, i))
1743 
mmu_pages_next(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents,int i)1744 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1745 			  struct mmu_page_path *parents,
1746 			  int i)
1747 {
1748 	int n;
1749 
1750 	for (n = i+1; n < pvec->nr; n++) {
1751 		struct kvm_mmu_page *sp = pvec->page[n].sp;
1752 
1753 		if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1754 			parents->idx[0] = pvec->page[n].idx;
1755 			return n;
1756 		}
1757 
1758 		parents->parent[sp->role.level-2] = sp;
1759 		parents->idx[sp->role.level-1] = pvec->page[n].idx;
1760 	}
1761 
1762 	return n;
1763 }
1764 
mmu_pages_clear_parents(struct mmu_page_path * parents)1765 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1766 {
1767 	struct kvm_mmu_page *sp;
1768 	unsigned int level = 0;
1769 
1770 	do {
1771 		unsigned int idx = parents->idx[level];
1772 
1773 		sp = parents->parent[level];
1774 		if (!sp)
1775 			return;
1776 
1777 		--sp->unsync_children;
1778 		WARN_ON((int)sp->unsync_children < 0);
1779 		__clear_bit(idx, sp->unsync_child_bitmap);
1780 		level++;
1781 	} while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1782 }
1783 
kvm_mmu_pages_init(struct kvm_mmu_page * parent,struct mmu_page_path * parents,struct kvm_mmu_pages * pvec)1784 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1785 			       struct mmu_page_path *parents,
1786 			       struct kvm_mmu_pages *pvec)
1787 {
1788 	parents->parent[parent->role.level-1] = NULL;
1789 	pvec->nr = 0;
1790 }
1791 
mmu_sync_children(struct kvm_vcpu * vcpu,struct kvm_mmu_page * parent)1792 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1793 			      struct kvm_mmu_page *parent)
1794 {
1795 	int i;
1796 	struct kvm_mmu_page *sp;
1797 	struct mmu_page_path parents;
1798 	struct kvm_mmu_pages pages;
1799 	LIST_HEAD(invalid_list);
1800 
1801 	kvm_mmu_pages_init(parent, &parents, &pages);
1802 	while (mmu_unsync_walk(parent, &pages)) {
1803 		bool protected = false;
1804 
1805 		for_each_sp(pages, sp, parents, i)
1806 			protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1807 
1808 		if (protected)
1809 			kvm_flush_remote_tlbs(vcpu->kvm);
1810 
1811 		for_each_sp(pages, sp, parents, i) {
1812 			kvm_sync_page(vcpu, sp, &invalid_list);
1813 			mmu_pages_clear_parents(&parents);
1814 		}
1815 		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1816 		cond_resched_lock(&vcpu->kvm->mmu_lock);
1817 		kvm_mmu_pages_init(parent, &parents, &pages);
1818 	}
1819 }
1820 
init_shadow_page_table(struct kvm_mmu_page * sp)1821 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1822 {
1823 	int i;
1824 
1825 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1826 		sp->spt[i] = 0ull;
1827 }
1828 
__clear_sp_write_flooding_count(struct kvm_mmu_page * sp)1829 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1830 {
1831 	sp->write_flooding_count = 0;
1832 }
1833 
clear_sp_write_flooding_count(u64 * spte)1834 static void clear_sp_write_flooding_count(u64 *spte)
1835 {
1836 	struct kvm_mmu_page *sp =  page_header(__pa(spte));
1837 
1838 	__clear_sp_write_flooding_count(sp);
1839 }
1840 
kvm_mmu_get_page(struct kvm_vcpu * vcpu,gfn_t gfn,gva_t gaddr,unsigned level,int direct,unsigned access,u64 * parent_pte)1841 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1842 					     gfn_t gfn,
1843 					     gva_t gaddr,
1844 					     unsigned level,
1845 					     int direct,
1846 					     unsigned access,
1847 					     u64 *parent_pte)
1848 {
1849 	union kvm_mmu_page_role role;
1850 	unsigned quadrant;
1851 	struct kvm_mmu_page *sp;
1852 	bool need_sync = false;
1853 
1854 	role = vcpu->arch.mmu.base_role;
1855 	role.level = level;
1856 	role.direct = direct;
1857 	if (role.direct)
1858 		role.cr4_pae = 0;
1859 	role.access = access;
1860 	if (!vcpu->arch.mmu.direct_map
1861 	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1862 		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1863 		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1864 		role.quadrant = quadrant;
1865 	}
1866 	for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1867 		if (!need_sync && sp->unsync)
1868 			need_sync = true;
1869 
1870 		if (sp->role.word != role.word)
1871 			continue;
1872 
1873 		if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1874 			break;
1875 
1876 		mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1877 		if (sp->unsync_children) {
1878 			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1879 			kvm_mmu_mark_parents_unsync(sp);
1880 		} else if (sp->unsync)
1881 			kvm_mmu_mark_parents_unsync(sp);
1882 
1883 		__clear_sp_write_flooding_count(sp);
1884 		trace_kvm_mmu_get_page(sp, false);
1885 		return sp;
1886 	}
1887 	++vcpu->kvm->stat.mmu_cache_miss;
1888 	sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1889 	if (!sp)
1890 		return sp;
1891 	sp->gfn = gfn;
1892 	sp->role = role;
1893 	hlist_add_head(&sp->hash_link,
1894 		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1895 	if (!direct) {
1896 		if (rmap_write_protect(vcpu->kvm, gfn))
1897 			kvm_flush_remote_tlbs(vcpu->kvm);
1898 		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1899 			kvm_sync_pages(vcpu, gfn);
1900 
1901 		account_shadowed(vcpu->kvm, gfn);
1902 	}
1903 	init_shadow_page_table(sp);
1904 	trace_kvm_mmu_get_page(sp, true);
1905 	return sp;
1906 }
1907 
shadow_walk_init(struct kvm_shadow_walk_iterator * iterator,struct kvm_vcpu * vcpu,u64 addr)1908 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1909 			     struct kvm_vcpu *vcpu, u64 addr)
1910 {
1911 	iterator->addr = addr;
1912 	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1913 	iterator->level = vcpu->arch.mmu.shadow_root_level;
1914 
1915 	if (iterator->level == PT64_ROOT_LEVEL &&
1916 	    vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1917 	    !vcpu->arch.mmu.direct_map)
1918 		--iterator->level;
1919 
1920 	if (iterator->level == PT32E_ROOT_LEVEL) {
1921 		iterator->shadow_addr
1922 			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1923 		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1924 		--iterator->level;
1925 		if (!iterator->shadow_addr)
1926 			iterator->level = 0;
1927 	}
1928 }
1929 
shadow_walk_okay(struct kvm_shadow_walk_iterator * iterator)1930 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1931 {
1932 	if (iterator->level < PT_PAGE_TABLE_LEVEL)
1933 		return false;
1934 
1935 	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1936 	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1937 	return true;
1938 }
1939 
__shadow_walk_next(struct kvm_shadow_walk_iterator * iterator,u64 spte)1940 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1941 			       u64 spte)
1942 {
1943 	if (is_last_spte(spte, iterator->level)) {
1944 		iterator->level = 0;
1945 		return;
1946 	}
1947 
1948 	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1949 	--iterator->level;
1950 }
1951 
shadow_walk_next(struct kvm_shadow_walk_iterator * iterator)1952 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1953 {
1954 	return __shadow_walk_next(iterator, *iterator->sptep);
1955 }
1956 
link_shadow_page(u64 * sptep,struct kvm_mmu_page * sp)1957 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1958 {
1959 	u64 spte;
1960 
1961 	spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
1962 	       shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
1963 
1964 	mmu_spte_set(sptep, spte);
1965 }
1966 
validate_direct_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned direct_access)1967 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1968 				   unsigned direct_access)
1969 {
1970 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1971 		struct kvm_mmu_page *child;
1972 
1973 		/*
1974 		 * For the direct sp, if the guest pte's dirty bit
1975 		 * changed form clean to dirty, it will corrupt the
1976 		 * sp's access: allow writable in the read-only sp,
1977 		 * so we should update the spte at this point to get
1978 		 * a new sp with the correct access.
1979 		 */
1980 		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1981 		if (child->role.access == direct_access)
1982 			return;
1983 
1984 		drop_parent_pte(child, sptep);
1985 		kvm_flush_remote_tlbs(vcpu->kvm);
1986 	}
1987 }
1988 
mmu_page_zap_pte(struct kvm * kvm,struct kvm_mmu_page * sp,u64 * spte)1989 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1990 			     u64 *spte)
1991 {
1992 	u64 pte;
1993 	struct kvm_mmu_page *child;
1994 
1995 	pte = *spte;
1996 	if (is_shadow_present_pte(pte)) {
1997 		if (is_last_spte(pte, sp->role.level)) {
1998 			drop_spte(kvm, spte);
1999 			if (is_large_pte(pte))
2000 				--kvm->stat.lpages;
2001 		} else {
2002 			child = page_header(pte & PT64_BASE_ADDR_MASK);
2003 			drop_parent_pte(child, spte);
2004 		}
2005 		return true;
2006 	}
2007 
2008 	if (is_mmio_spte(pte))
2009 		mmu_spte_clear_no_track(spte);
2010 
2011 	return false;
2012 }
2013 
kvm_mmu_page_unlink_children(struct kvm * kvm,struct kvm_mmu_page * sp)2014 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2015 					 struct kvm_mmu_page *sp)
2016 {
2017 	unsigned i;
2018 
2019 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2020 		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2021 }
2022 
kvm_mmu_put_page(struct kvm_mmu_page * sp,u64 * parent_pte)2023 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2024 {
2025 	mmu_page_remove_parent_pte(sp, parent_pte);
2026 }
2027 
kvm_mmu_unlink_parents(struct kvm * kvm,struct kvm_mmu_page * sp)2028 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2029 {
2030 	u64 *sptep;
2031 	struct rmap_iterator iter;
2032 
2033 	while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2034 		drop_parent_pte(sp, sptep);
2035 }
2036 
mmu_zap_unsync_children(struct kvm * kvm,struct kvm_mmu_page * parent,struct list_head * invalid_list)2037 static int mmu_zap_unsync_children(struct kvm *kvm,
2038 				   struct kvm_mmu_page *parent,
2039 				   struct list_head *invalid_list)
2040 {
2041 	int i, zapped = 0;
2042 	struct mmu_page_path parents;
2043 	struct kvm_mmu_pages pages;
2044 
2045 	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2046 		return 0;
2047 
2048 	kvm_mmu_pages_init(parent, &parents, &pages);
2049 	while (mmu_unsync_walk(parent, &pages)) {
2050 		struct kvm_mmu_page *sp;
2051 
2052 		for_each_sp(pages, sp, parents, i) {
2053 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2054 			mmu_pages_clear_parents(&parents);
2055 			zapped++;
2056 		}
2057 		kvm_mmu_pages_init(parent, &parents, &pages);
2058 	}
2059 
2060 	return zapped;
2061 }
2062 
kvm_mmu_prepare_zap_page(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list)2063 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2064 				    struct list_head *invalid_list)
2065 {
2066 	int ret;
2067 
2068 	trace_kvm_mmu_prepare_zap_page(sp);
2069 	++kvm->stat.mmu_shadow_zapped;
2070 	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2071 	kvm_mmu_page_unlink_children(kvm, sp);
2072 	kvm_mmu_unlink_parents(kvm, sp);
2073 	if (!sp->role.invalid && !sp->role.direct)
2074 		unaccount_shadowed(kvm, sp->gfn);
2075 	if (sp->unsync)
2076 		kvm_unlink_unsync_page(kvm, sp);
2077 	if (!sp->root_count) {
2078 		/* Count self */
2079 		ret++;
2080 		list_move(&sp->link, invalid_list);
2081 		kvm_mod_used_mmu_pages(kvm, -1);
2082 	} else {
2083 		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2084 		kvm_reload_remote_mmus(kvm);
2085 	}
2086 
2087 	sp->role.invalid = 1;
2088 	return ret;
2089 }
2090 
kvm_mmu_commit_zap_page(struct kvm * kvm,struct list_head * invalid_list)2091 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2092 				    struct list_head *invalid_list)
2093 {
2094 	struct kvm_mmu_page *sp, *nsp;
2095 
2096 	if (list_empty(invalid_list))
2097 		return;
2098 
2099 	/*
2100 	 * wmb: make sure everyone sees our modifications to the page tables
2101 	 * rmb: make sure we see changes to vcpu->mode
2102 	 */
2103 	smp_mb();
2104 
2105 	/*
2106 	 * Wait for all vcpus to exit guest mode and/or lockless shadow
2107 	 * page table walks.
2108 	 */
2109 	kvm_flush_remote_tlbs(kvm);
2110 
2111 	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2112 		WARN_ON(!sp->role.invalid || sp->root_count);
2113 		kvm_mmu_free_page(sp);
2114 	}
2115 }
2116 
prepare_zap_oldest_mmu_page(struct kvm * kvm,struct list_head * invalid_list)2117 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2118 					struct list_head *invalid_list)
2119 {
2120 	struct kvm_mmu_page *sp;
2121 
2122 	if (list_empty(&kvm->arch.active_mmu_pages))
2123 		return false;
2124 
2125 	sp = list_entry(kvm->arch.active_mmu_pages.prev,
2126 			struct kvm_mmu_page, link);
2127 	kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2128 
2129 	return true;
2130 }
2131 
2132 /*
2133  * Changing the number of mmu pages allocated to the vm
2134  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2135  */
kvm_mmu_change_mmu_pages(struct kvm * kvm,unsigned int goal_nr_mmu_pages)2136 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2137 {
2138 	LIST_HEAD(invalid_list);
2139 
2140 	spin_lock(&kvm->mmu_lock);
2141 
2142 	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2143 		/* Need to free some mmu pages to achieve the goal. */
2144 		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2145 			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2146 				break;
2147 
2148 		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2149 		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2150 	}
2151 
2152 	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2153 
2154 	spin_unlock(&kvm->mmu_lock);
2155 }
2156 
kvm_mmu_unprotect_page(struct kvm * kvm,gfn_t gfn)2157 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2158 {
2159 	struct kvm_mmu_page *sp;
2160 	LIST_HEAD(invalid_list);
2161 	int r;
2162 
2163 	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2164 	r = 0;
2165 	spin_lock(&kvm->mmu_lock);
2166 	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2167 		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2168 			 sp->role.word);
2169 		r = 1;
2170 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2171 	}
2172 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2173 	spin_unlock(&kvm->mmu_lock);
2174 
2175 	return r;
2176 }
2177 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2178 
2179 /*
2180  * The function is based on mtrr_type_lookup() in
2181  * arch/x86/kernel/cpu/mtrr/generic.c
2182  */
get_mtrr_type(struct mtrr_state_type * mtrr_state,u64 start,u64 end)2183 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2184 			 u64 start, u64 end)
2185 {
2186 	int i;
2187 	u64 base, mask;
2188 	u8 prev_match, curr_match;
2189 	int num_var_ranges = KVM_NR_VAR_MTRR;
2190 
2191 	if (!mtrr_state->enabled)
2192 		return 0xFF;
2193 
2194 	/* Make end inclusive end, instead of exclusive */
2195 	end--;
2196 
2197 	/* Look in fixed ranges. Just return the type as per start */
2198 	if (mtrr_state->have_fixed && (start < 0x100000)) {
2199 		int idx;
2200 
2201 		if (start < 0x80000) {
2202 			idx = 0;
2203 			idx += (start >> 16);
2204 			return mtrr_state->fixed_ranges[idx];
2205 		} else if (start < 0xC0000) {
2206 			idx = 1 * 8;
2207 			idx += ((start - 0x80000) >> 14);
2208 			return mtrr_state->fixed_ranges[idx];
2209 		} else if (start < 0x1000000) {
2210 			idx = 3 * 8;
2211 			idx += ((start - 0xC0000) >> 12);
2212 			return mtrr_state->fixed_ranges[idx];
2213 		}
2214 	}
2215 
2216 	/*
2217 	 * Look in variable ranges
2218 	 * Look of multiple ranges matching this address and pick type
2219 	 * as per MTRR precedence
2220 	 */
2221 	if (!(mtrr_state->enabled & 2))
2222 		return mtrr_state->def_type;
2223 
2224 	prev_match = 0xFF;
2225 	for (i = 0; i < num_var_ranges; ++i) {
2226 		unsigned short start_state, end_state;
2227 
2228 		if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2229 			continue;
2230 
2231 		base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2232 		       (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2233 		mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2234 		       (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2235 
2236 		start_state = ((start & mask) == (base & mask));
2237 		end_state = ((end & mask) == (base & mask));
2238 		if (start_state != end_state)
2239 			return 0xFE;
2240 
2241 		if ((start & mask) != (base & mask))
2242 			continue;
2243 
2244 		curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2245 		if (prev_match == 0xFF) {
2246 			prev_match = curr_match;
2247 			continue;
2248 		}
2249 
2250 		if (prev_match == MTRR_TYPE_UNCACHABLE ||
2251 		    curr_match == MTRR_TYPE_UNCACHABLE)
2252 			return MTRR_TYPE_UNCACHABLE;
2253 
2254 		if ((prev_match == MTRR_TYPE_WRBACK &&
2255 		     curr_match == MTRR_TYPE_WRTHROUGH) ||
2256 		    (prev_match == MTRR_TYPE_WRTHROUGH &&
2257 		     curr_match == MTRR_TYPE_WRBACK)) {
2258 			prev_match = MTRR_TYPE_WRTHROUGH;
2259 			curr_match = MTRR_TYPE_WRTHROUGH;
2260 		}
2261 
2262 		if (prev_match != curr_match)
2263 			return MTRR_TYPE_UNCACHABLE;
2264 	}
2265 
2266 	if (prev_match != 0xFF)
2267 		return prev_match;
2268 
2269 	return mtrr_state->def_type;
2270 }
2271 
kvm_get_guest_memory_type(struct kvm_vcpu * vcpu,gfn_t gfn)2272 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2273 {
2274 	u8 mtrr;
2275 
2276 	mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2277 			     (gfn << PAGE_SHIFT) + PAGE_SIZE);
2278 	if (mtrr == 0xfe || mtrr == 0xff)
2279 		mtrr = MTRR_TYPE_WRBACK;
2280 	return mtrr;
2281 }
2282 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2283 
__kvm_unsync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)2284 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2285 {
2286 	trace_kvm_mmu_unsync_page(sp);
2287 	++vcpu->kvm->stat.mmu_unsync;
2288 	sp->unsync = 1;
2289 
2290 	kvm_mmu_mark_parents_unsync(sp);
2291 }
2292 
kvm_unsync_pages(struct kvm_vcpu * vcpu,gfn_t gfn)2293 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2294 {
2295 	struct kvm_mmu_page *s;
2296 
2297 	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2298 		if (s->unsync)
2299 			continue;
2300 		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2301 		__kvm_unsync_page(vcpu, s);
2302 	}
2303 }
2304 
mmu_need_write_protect(struct kvm_vcpu * vcpu,gfn_t gfn,bool can_unsync)2305 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2306 				  bool can_unsync)
2307 {
2308 	struct kvm_mmu_page *s;
2309 	bool need_unsync = false;
2310 
2311 	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2312 		if (!can_unsync)
2313 			return 1;
2314 
2315 		if (s->role.level != PT_PAGE_TABLE_LEVEL)
2316 			return 1;
2317 
2318 		if (!s->unsync)
2319 			need_unsync = true;
2320 	}
2321 	if (need_unsync)
2322 		kvm_unsync_pages(vcpu, gfn);
2323 	return 0;
2324 }
2325 
set_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned pte_access,int level,gfn_t gfn,pfn_t pfn,bool speculative,bool can_unsync,bool host_writable)2326 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2327 		    unsigned pte_access, int level,
2328 		    gfn_t gfn, pfn_t pfn, bool speculative,
2329 		    bool can_unsync, bool host_writable)
2330 {
2331 	u64 spte;
2332 	int ret = 0;
2333 
2334 	if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2335 		return 0;
2336 
2337 	spte = PT_PRESENT_MASK;
2338 	if (!speculative)
2339 		spte |= shadow_accessed_mask;
2340 
2341 	if (pte_access & ACC_EXEC_MASK)
2342 		spte |= shadow_x_mask;
2343 	else
2344 		spte |= shadow_nx_mask;
2345 
2346 	if (pte_access & ACC_USER_MASK)
2347 		spte |= shadow_user_mask;
2348 
2349 	if (level > PT_PAGE_TABLE_LEVEL)
2350 		spte |= PT_PAGE_SIZE_MASK;
2351 	if (tdp_enabled)
2352 		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2353 			kvm_is_mmio_pfn(pfn));
2354 
2355 	if (host_writable)
2356 		spte |= SPTE_HOST_WRITEABLE;
2357 	else
2358 		pte_access &= ~ACC_WRITE_MASK;
2359 
2360 	spte |= (u64)pfn << PAGE_SHIFT;
2361 
2362 	if (pte_access & ACC_WRITE_MASK) {
2363 
2364 		/*
2365 		 * Other vcpu creates new sp in the window between
2366 		 * mapping_level() and acquiring mmu-lock. We can
2367 		 * allow guest to retry the access, the mapping can
2368 		 * be fixed if guest refault.
2369 		 */
2370 		if (level > PT_PAGE_TABLE_LEVEL &&
2371 		    has_wrprotected_page(vcpu->kvm, gfn, level))
2372 			goto done;
2373 
2374 		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2375 
2376 		/*
2377 		 * Optimization: for pte sync, if spte was writable the hash
2378 		 * lookup is unnecessary (and expensive). Write protection
2379 		 * is responsibility of mmu_get_page / kvm_sync_page.
2380 		 * Same reasoning can be applied to dirty page accounting.
2381 		 */
2382 		if (!can_unsync && is_writable_pte(*sptep))
2383 			goto set_pte;
2384 
2385 		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2386 			pgprintk("%s: found shadow page for %llx, marking ro\n",
2387 				 __func__, gfn);
2388 			ret = 1;
2389 			pte_access &= ~ACC_WRITE_MASK;
2390 			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2391 		}
2392 	}
2393 
2394 	if (pte_access & ACC_WRITE_MASK)
2395 		mark_page_dirty(vcpu->kvm, gfn);
2396 
2397 set_pte:
2398 	if (mmu_spte_update(sptep, spte))
2399 		kvm_flush_remote_tlbs(vcpu->kvm);
2400 done:
2401 	return ret;
2402 }
2403 
mmu_set_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned pte_access,int write_fault,int * emulate,int level,gfn_t gfn,pfn_t pfn,bool speculative,bool host_writable)2404 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2405 			 unsigned pte_access, int write_fault, int *emulate,
2406 			 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2407 			 bool host_writable)
2408 {
2409 	int was_rmapped = 0;
2410 	int rmap_count;
2411 
2412 	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2413 		 *sptep, write_fault, gfn);
2414 
2415 	if (is_rmap_spte(*sptep)) {
2416 		/*
2417 		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2418 		 * the parent of the now unreachable PTE.
2419 		 */
2420 		if (level > PT_PAGE_TABLE_LEVEL &&
2421 		    !is_large_pte(*sptep)) {
2422 			struct kvm_mmu_page *child;
2423 			u64 pte = *sptep;
2424 
2425 			child = page_header(pte & PT64_BASE_ADDR_MASK);
2426 			drop_parent_pte(child, sptep);
2427 			kvm_flush_remote_tlbs(vcpu->kvm);
2428 		} else if (pfn != spte_to_pfn(*sptep)) {
2429 			pgprintk("hfn old %llx new %llx\n",
2430 				 spte_to_pfn(*sptep), pfn);
2431 			drop_spte(vcpu->kvm, sptep);
2432 			kvm_flush_remote_tlbs(vcpu->kvm);
2433 		} else
2434 			was_rmapped = 1;
2435 	}
2436 
2437 	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2438 	      true, host_writable)) {
2439 		if (write_fault)
2440 			*emulate = 1;
2441 		kvm_mmu_flush_tlb(vcpu);
2442 	}
2443 
2444 	if (unlikely(is_mmio_spte(*sptep) && emulate))
2445 		*emulate = 1;
2446 
2447 	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2448 	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2449 		 is_large_pte(*sptep)? "2MB" : "4kB",
2450 		 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2451 		 *sptep, sptep);
2452 	if (!was_rmapped && is_large_pte(*sptep))
2453 		++vcpu->kvm->stat.lpages;
2454 
2455 	if (is_shadow_present_pte(*sptep)) {
2456 		if (!was_rmapped) {
2457 			rmap_count = rmap_add(vcpu, sptep, gfn);
2458 			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2459 				rmap_recycle(vcpu, sptep, gfn);
2460 		}
2461 	}
2462 
2463 	kvm_release_pfn_clean(pfn);
2464 }
2465 
nonpaging_new_cr3(struct kvm_vcpu * vcpu)2466 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2467 {
2468 	mmu_free_roots(vcpu);
2469 }
2470 
is_rsvd_bits_set(struct kvm_mmu * mmu,u64 gpte,int level)2471 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2472 {
2473 	int bit7;
2474 
2475 	bit7 = (gpte >> 7) & 1;
2476 	return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2477 }
2478 
pte_prefetch_gfn_to_pfn(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)2479 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2480 				     bool no_dirty_log)
2481 {
2482 	struct kvm_memory_slot *slot;
2483 
2484 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2485 	if (!slot)
2486 		return KVM_PFN_ERR_FAULT;
2487 
2488 	return gfn_to_pfn_memslot_atomic(slot, gfn);
2489 }
2490 
prefetch_invalid_gpte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * spte,u64 gpte)2491 static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
2492 				  struct kvm_mmu_page *sp, u64 *spte,
2493 				  u64 gpte)
2494 {
2495 	if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
2496 		goto no_present;
2497 
2498 	if (!is_present_gpte(gpte))
2499 		goto no_present;
2500 
2501 	if (!(gpte & PT_ACCESSED_MASK))
2502 		goto no_present;
2503 
2504 	return false;
2505 
2506 no_present:
2507 	drop_spte(vcpu->kvm, spte);
2508 	return true;
2509 }
2510 
direct_pte_prefetch_many(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * start,u64 * end)2511 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2512 				    struct kvm_mmu_page *sp,
2513 				    u64 *start, u64 *end)
2514 {
2515 	struct page *pages[PTE_PREFETCH_NUM];
2516 	unsigned access = sp->role.access;
2517 	int i, ret;
2518 	gfn_t gfn;
2519 
2520 	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2521 	if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2522 		return -1;
2523 
2524 	ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2525 	if (ret <= 0)
2526 		return -1;
2527 
2528 	for (i = 0; i < ret; i++, gfn++, start++)
2529 		mmu_set_spte(vcpu, start, access, 0, NULL,
2530 			     sp->role.level, gfn, page_to_pfn(pages[i]),
2531 			     true, true);
2532 
2533 	return 0;
2534 }
2535 
__direct_pte_prefetch(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * sptep)2536 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2537 				  struct kvm_mmu_page *sp, u64 *sptep)
2538 {
2539 	u64 *spte, *start = NULL;
2540 	int i;
2541 
2542 	WARN_ON(!sp->role.direct);
2543 
2544 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2545 	spte = sp->spt + i;
2546 
2547 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2548 		if (is_shadow_present_pte(*spte) || spte == sptep) {
2549 			if (!start)
2550 				continue;
2551 			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2552 				break;
2553 			start = NULL;
2554 		} else if (!start)
2555 			start = spte;
2556 	}
2557 }
2558 
direct_pte_prefetch(struct kvm_vcpu * vcpu,u64 * sptep)2559 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2560 {
2561 	struct kvm_mmu_page *sp;
2562 
2563 	/*
2564 	 * Since it's no accessed bit on EPT, it's no way to
2565 	 * distinguish between actually accessed translations
2566 	 * and prefetched, so disable pte prefetch if EPT is
2567 	 * enabled.
2568 	 */
2569 	if (!shadow_accessed_mask)
2570 		return;
2571 
2572 	sp = page_header(__pa(sptep));
2573 	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2574 		return;
2575 
2576 	__direct_pte_prefetch(vcpu, sp, sptep);
2577 }
2578 
__direct_map(struct kvm_vcpu * vcpu,gpa_t v,int write,int map_writable,int level,gfn_t gfn,pfn_t pfn,bool prefault)2579 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2580 			int map_writable, int level, gfn_t gfn, pfn_t pfn,
2581 			bool prefault)
2582 {
2583 	struct kvm_shadow_walk_iterator iterator;
2584 	struct kvm_mmu_page *sp;
2585 	int emulate = 0;
2586 	gfn_t pseudo_gfn;
2587 
2588 	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2589 		if (iterator.level == level) {
2590 			mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2591 				     write, &emulate, level, gfn, pfn,
2592 				     prefault, map_writable);
2593 			direct_pte_prefetch(vcpu, iterator.sptep);
2594 			++vcpu->stat.pf_fixed;
2595 			break;
2596 		}
2597 
2598 		if (!is_shadow_present_pte(*iterator.sptep)) {
2599 			u64 base_addr = iterator.addr;
2600 
2601 			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2602 			pseudo_gfn = base_addr >> PAGE_SHIFT;
2603 			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2604 					      iterator.level - 1,
2605 					      1, ACC_ALL, iterator.sptep);
2606 
2607 			link_shadow_page(iterator.sptep, sp);
2608 		}
2609 	}
2610 	return emulate;
2611 }
2612 
kvm_send_hwpoison_signal(unsigned long address,struct task_struct * tsk)2613 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2614 {
2615 	siginfo_t info;
2616 
2617 	info.si_signo	= SIGBUS;
2618 	info.si_errno	= 0;
2619 	info.si_code	= BUS_MCEERR_AR;
2620 	info.si_addr	= (void __user *)address;
2621 	info.si_addr_lsb = PAGE_SHIFT;
2622 
2623 	send_sig_info(SIGBUS, &info, tsk);
2624 }
2625 
kvm_handle_bad_page(struct kvm_vcpu * vcpu,gfn_t gfn,pfn_t pfn)2626 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2627 {
2628 	/*
2629 	 * Do not cache the mmio info caused by writing the readonly gfn
2630 	 * into the spte otherwise read access on readonly gfn also can
2631 	 * caused mmio page fault and treat it as mmio access.
2632 	 * Return 1 to tell kvm to emulate it.
2633 	 */
2634 	if (pfn == KVM_PFN_ERR_RO_FAULT)
2635 		return 1;
2636 
2637 	if (pfn == KVM_PFN_ERR_HWPOISON) {
2638 		kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2639 		return 0;
2640 	}
2641 
2642 	return -EFAULT;
2643 }
2644 
transparent_hugepage_adjust(struct kvm_vcpu * vcpu,gfn_t * gfnp,pfn_t * pfnp,int * levelp)2645 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2646 					gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2647 {
2648 	pfn_t pfn = *pfnp;
2649 	gfn_t gfn = *gfnp;
2650 	int level = *levelp;
2651 
2652 	/*
2653 	 * Check if it's a transparent hugepage. If this would be an
2654 	 * hugetlbfs page, level wouldn't be set to
2655 	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2656 	 * here.
2657 	 */
2658 	if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2659 	    level == PT_PAGE_TABLE_LEVEL &&
2660 	    PageTransCompound(pfn_to_page(pfn)) &&
2661 	    !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2662 		unsigned long mask;
2663 		/*
2664 		 * mmu_notifier_retry was successful and we hold the
2665 		 * mmu_lock here, so the pmd can't become splitting
2666 		 * from under us, and in turn
2667 		 * __split_huge_page_refcount() can't run from under
2668 		 * us and we can safely transfer the refcount from
2669 		 * PG_tail to PG_head as we switch the pfn to tail to
2670 		 * head.
2671 		 */
2672 		*levelp = level = PT_DIRECTORY_LEVEL;
2673 		mask = KVM_PAGES_PER_HPAGE(level) - 1;
2674 		VM_BUG_ON((gfn & mask) != (pfn & mask));
2675 		if (pfn & mask) {
2676 			gfn &= ~mask;
2677 			*gfnp = gfn;
2678 			kvm_release_pfn_clean(pfn);
2679 			pfn &= ~mask;
2680 			kvm_get_pfn(pfn);
2681 			*pfnp = pfn;
2682 		}
2683 	}
2684 }
2685 
handle_abnormal_pfn(struct kvm_vcpu * vcpu,gva_t gva,gfn_t gfn,pfn_t pfn,unsigned access,int * ret_val)2686 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2687 				pfn_t pfn, unsigned access, int *ret_val)
2688 {
2689 	bool ret = true;
2690 
2691 	/* The pfn is invalid, report the error! */
2692 	if (unlikely(is_error_pfn(pfn))) {
2693 		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2694 		goto exit;
2695 	}
2696 
2697 	if (unlikely(is_noslot_pfn(pfn)))
2698 		vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2699 
2700 	ret = false;
2701 exit:
2702 	return ret;
2703 }
2704 
page_fault_can_be_fast(struct kvm_vcpu * vcpu,u32 error_code)2705 static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2706 {
2707 	/*
2708 	 * #PF can be fast only if the shadow page table is present and it
2709 	 * is caused by write-protect, that means we just need change the
2710 	 * W bit of the spte which can be done out of mmu-lock.
2711 	 */
2712 	if (!(error_code & PFERR_PRESENT_MASK) ||
2713 	      !(error_code & PFERR_WRITE_MASK))
2714 		return false;
2715 
2716 	return true;
2717 }
2718 
2719 static bool
fast_pf_fix_direct_spte(struct kvm_vcpu * vcpu,u64 * sptep,u64 spte)2720 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2721 {
2722 	struct kvm_mmu_page *sp = page_header(__pa(sptep));
2723 	gfn_t gfn;
2724 
2725 	WARN_ON(!sp->role.direct);
2726 
2727 	/*
2728 	 * The gfn of direct spte is stable since it is calculated
2729 	 * by sp->gfn.
2730 	 */
2731 	gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2732 
2733 	if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2734 		mark_page_dirty(vcpu->kvm, gfn);
2735 
2736 	return true;
2737 }
2738 
2739 /*
2740  * Return value:
2741  * - true: let the vcpu to access on the same address again.
2742  * - false: let the real page fault path to fix it.
2743  */
fast_page_fault(struct kvm_vcpu * vcpu,gva_t gva,int level,u32 error_code)2744 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2745 			    u32 error_code)
2746 {
2747 	struct kvm_shadow_walk_iterator iterator;
2748 	bool ret = false;
2749 	u64 spte = 0ull;
2750 
2751 	if (!page_fault_can_be_fast(vcpu, error_code))
2752 		return false;
2753 
2754 	walk_shadow_page_lockless_begin(vcpu);
2755 	for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2756 		if (!is_shadow_present_pte(spte) || iterator.level < level)
2757 			break;
2758 
2759 	/*
2760 	 * If the mapping has been changed, let the vcpu fault on the
2761 	 * same address again.
2762 	 */
2763 	if (!is_rmap_spte(spte)) {
2764 		ret = true;
2765 		goto exit;
2766 	}
2767 
2768 	if (!is_last_spte(spte, level))
2769 		goto exit;
2770 
2771 	/*
2772 	 * Check if it is a spurious fault caused by TLB lazily flushed.
2773 	 *
2774 	 * Need not check the access of upper level table entries since
2775 	 * they are always ACC_ALL.
2776 	 */
2777 	 if (is_writable_pte(spte)) {
2778 		ret = true;
2779 		goto exit;
2780 	}
2781 
2782 	/*
2783 	 * Currently, to simplify the code, only the spte write-protected
2784 	 * by dirty-log can be fast fixed.
2785 	 */
2786 	if (!spte_is_locklessly_modifiable(spte))
2787 		goto exit;
2788 
2789 	/*
2790 	 * Currently, fast page fault only works for direct mapping since
2791 	 * the gfn is not stable for indirect shadow page.
2792 	 * See Documentation/virtual/kvm/locking.txt to get more detail.
2793 	 */
2794 	ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2795 exit:
2796 	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2797 			      spte, ret);
2798 	walk_shadow_page_lockless_end(vcpu);
2799 
2800 	return ret;
2801 }
2802 
2803 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2804 			 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2805 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2806 
nonpaging_map(struct kvm_vcpu * vcpu,gva_t v,u32 error_code,gfn_t gfn,bool prefault)2807 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2808 			 gfn_t gfn, bool prefault)
2809 {
2810 	int r;
2811 	int level;
2812 	int force_pt_level;
2813 	pfn_t pfn;
2814 	unsigned long mmu_seq;
2815 	bool map_writable, write = error_code & PFERR_WRITE_MASK;
2816 
2817 	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2818 	if (likely(!force_pt_level)) {
2819 		level = mapping_level(vcpu, gfn);
2820 		/*
2821 		 * This path builds a PAE pagetable - so we can map
2822 		 * 2mb pages at maximum. Therefore check if the level
2823 		 * is larger than that.
2824 		 */
2825 		if (level > PT_DIRECTORY_LEVEL)
2826 			level = PT_DIRECTORY_LEVEL;
2827 
2828 		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2829 	} else
2830 		level = PT_PAGE_TABLE_LEVEL;
2831 
2832 	if (fast_page_fault(vcpu, v, level, error_code))
2833 		return 0;
2834 
2835 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
2836 	smp_rmb();
2837 
2838 	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2839 		return 0;
2840 
2841 	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2842 		return r;
2843 
2844 	spin_lock(&vcpu->kvm->mmu_lock);
2845 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2846 		goto out_unlock;
2847 	make_mmu_pages_available(vcpu);
2848 	if (likely(!force_pt_level))
2849 		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2850 	r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2851 			 prefault);
2852 	spin_unlock(&vcpu->kvm->mmu_lock);
2853 
2854 
2855 	return r;
2856 
2857 out_unlock:
2858 	spin_unlock(&vcpu->kvm->mmu_lock);
2859 	kvm_release_pfn_clean(pfn);
2860 	return 0;
2861 }
2862 
2863 
mmu_free_roots(struct kvm_vcpu * vcpu)2864 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2865 {
2866 	int i;
2867 	struct kvm_mmu_page *sp;
2868 	LIST_HEAD(invalid_list);
2869 
2870 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2871 		return;
2872 	spin_lock(&vcpu->kvm->mmu_lock);
2873 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2874 	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2875 	     vcpu->arch.mmu.direct_map)) {
2876 		hpa_t root = vcpu->arch.mmu.root_hpa;
2877 
2878 		sp = page_header(root);
2879 		--sp->root_count;
2880 		if (!sp->root_count && sp->role.invalid) {
2881 			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2882 			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2883 		}
2884 		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2885 		spin_unlock(&vcpu->kvm->mmu_lock);
2886 		return;
2887 	}
2888 	for (i = 0; i < 4; ++i) {
2889 		hpa_t root = vcpu->arch.mmu.pae_root[i];
2890 
2891 		if (root) {
2892 			root &= PT64_BASE_ADDR_MASK;
2893 			sp = page_header(root);
2894 			--sp->root_count;
2895 			if (!sp->root_count && sp->role.invalid)
2896 				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2897 							 &invalid_list);
2898 		}
2899 		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2900 	}
2901 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2902 	spin_unlock(&vcpu->kvm->mmu_lock);
2903 	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2904 }
2905 
mmu_check_root(struct kvm_vcpu * vcpu,gfn_t root_gfn)2906 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2907 {
2908 	int ret = 0;
2909 
2910 	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2911 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2912 		ret = 1;
2913 	}
2914 
2915 	return ret;
2916 }
2917 
mmu_alloc_direct_roots(struct kvm_vcpu * vcpu)2918 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2919 {
2920 	struct kvm_mmu_page *sp;
2921 	unsigned i;
2922 
2923 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2924 		spin_lock(&vcpu->kvm->mmu_lock);
2925 		make_mmu_pages_available(vcpu);
2926 		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2927 				      1, ACC_ALL, NULL);
2928 		++sp->root_count;
2929 		spin_unlock(&vcpu->kvm->mmu_lock);
2930 		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2931 	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2932 		for (i = 0; i < 4; ++i) {
2933 			hpa_t root = vcpu->arch.mmu.pae_root[i];
2934 
2935 			ASSERT(!VALID_PAGE(root));
2936 			spin_lock(&vcpu->kvm->mmu_lock);
2937 			make_mmu_pages_available(vcpu);
2938 			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2939 					      i << 30,
2940 					      PT32_ROOT_LEVEL, 1, ACC_ALL,
2941 					      NULL);
2942 			root = __pa(sp->spt);
2943 			++sp->root_count;
2944 			spin_unlock(&vcpu->kvm->mmu_lock);
2945 			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2946 		}
2947 		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2948 	} else
2949 		BUG();
2950 
2951 	return 0;
2952 }
2953 
mmu_alloc_shadow_roots(struct kvm_vcpu * vcpu)2954 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2955 {
2956 	struct kvm_mmu_page *sp;
2957 	u64 pdptr, pm_mask;
2958 	gfn_t root_gfn;
2959 	int i;
2960 
2961 	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2962 
2963 	if (mmu_check_root(vcpu, root_gfn))
2964 		return 1;
2965 
2966 	/*
2967 	 * Do we shadow a long mode page table? If so we need to
2968 	 * write-protect the guests page table root.
2969 	 */
2970 	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2971 		hpa_t root = vcpu->arch.mmu.root_hpa;
2972 
2973 		ASSERT(!VALID_PAGE(root));
2974 
2975 		spin_lock(&vcpu->kvm->mmu_lock);
2976 		make_mmu_pages_available(vcpu);
2977 		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2978 				      0, ACC_ALL, NULL);
2979 		root = __pa(sp->spt);
2980 		++sp->root_count;
2981 		spin_unlock(&vcpu->kvm->mmu_lock);
2982 		vcpu->arch.mmu.root_hpa = root;
2983 		return 0;
2984 	}
2985 
2986 	/*
2987 	 * We shadow a 32 bit page table. This may be a legacy 2-level
2988 	 * or a PAE 3-level page table. In either case we need to be aware that
2989 	 * the shadow page table may be a PAE or a long mode page table.
2990 	 */
2991 	pm_mask = PT_PRESENT_MASK;
2992 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2993 		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2994 
2995 	for (i = 0; i < 4; ++i) {
2996 		hpa_t root = vcpu->arch.mmu.pae_root[i];
2997 
2998 		ASSERT(!VALID_PAGE(root));
2999 		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3000 			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3001 			if (!is_present_gpte(pdptr)) {
3002 				vcpu->arch.mmu.pae_root[i] = 0;
3003 				continue;
3004 			}
3005 			root_gfn = pdptr >> PAGE_SHIFT;
3006 			if (mmu_check_root(vcpu, root_gfn))
3007 				return 1;
3008 		}
3009 		spin_lock(&vcpu->kvm->mmu_lock);
3010 		make_mmu_pages_available(vcpu);
3011 		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3012 				      PT32_ROOT_LEVEL, 0,
3013 				      ACC_ALL, NULL);
3014 		root = __pa(sp->spt);
3015 		++sp->root_count;
3016 		spin_unlock(&vcpu->kvm->mmu_lock);
3017 
3018 		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3019 	}
3020 	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3021 
3022 	/*
3023 	 * If we shadow a 32 bit page table with a long mode page
3024 	 * table we enter this path.
3025 	 */
3026 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3027 		if (vcpu->arch.mmu.lm_root == NULL) {
3028 			/*
3029 			 * The additional page necessary for this is only
3030 			 * allocated on demand.
3031 			 */
3032 
3033 			u64 *lm_root;
3034 
3035 			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3036 			if (lm_root == NULL)
3037 				return 1;
3038 
3039 			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3040 
3041 			vcpu->arch.mmu.lm_root = lm_root;
3042 		}
3043 
3044 		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3045 	}
3046 
3047 	return 0;
3048 }
3049 
mmu_alloc_roots(struct kvm_vcpu * vcpu)3050 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3051 {
3052 	if (vcpu->arch.mmu.direct_map)
3053 		return mmu_alloc_direct_roots(vcpu);
3054 	else
3055 		return mmu_alloc_shadow_roots(vcpu);
3056 }
3057 
mmu_sync_roots(struct kvm_vcpu * vcpu)3058 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3059 {
3060 	int i;
3061 	struct kvm_mmu_page *sp;
3062 
3063 	if (vcpu->arch.mmu.direct_map)
3064 		return;
3065 
3066 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3067 		return;
3068 
3069 	vcpu_clear_mmio_info(vcpu, ~0ul);
3070 	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3071 	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3072 		hpa_t root = vcpu->arch.mmu.root_hpa;
3073 		sp = page_header(root);
3074 		mmu_sync_children(vcpu, sp);
3075 		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3076 		return;
3077 	}
3078 	for (i = 0; i < 4; ++i) {
3079 		hpa_t root = vcpu->arch.mmu.pae_root[i];
3080 
3081 		if (root && VALID_PAGE(root)) {
3082 			root &= PT64_BASE_ADDR_MASK;
3083 			sp = page_header(root);
3084 			mmu_sync_children(vcpu, sp);
3085 		}
3086 	}
3087 	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3088 }
3089 
kvm_mmu_sync_roots(struct kvm_vcpu * vcpu)3090 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3091 {
3092 	spin_lock(&vcpu->kvm->mmu_lock);
3093 	mmu_sync_roots(vcpu);
3094 	spin_unlock(&vcpu->kvm->mmu_lock);
3095 }
3096 
nonpaging_gva_to_gpa(struct kvm_vcpu * vcpu,gva_t vaddr,u32 access,struct x86_exception * exception)3097 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3098 				  u32 access, struct x86_exception *exception)
3099 {
3100 	if (exception)
3101 		exception->error_code = 0;
3102 	return vaddr;
3103 }
3104 
nonpaging_gva_to_gpa_nested(struct kvm_vcpu * vcpu,gva_t vaddr,u32 access,struct x86_exception * exception)3105 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3106 					 u32 access,
3107 					 struct x86_exception *exception)
3108 {
3109 	if (exception)
3110 		exception->error_code = 0;
3111 	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3112 }
3113 
quickly_check_mmio_pf(struct kvm_vcpu * vcpu,u64 addr,bool direct)3114 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3115 {
3116 	if (direct)
3117 		return vcpu_match_mmio_gpa(vcpu, addr);
3118 
3119 	return vcpu_match_mmio_gva(vcpu, addr);
3120 }
3121 
3122 
3123 /*
3124  * On direct hosts, the last spte is only allows two states
3125  * for mmio page fault:
3126  *   - It is the mmio spte
3127  *   - It is zapped or it is being zapped.
3128  *
3129  * This function completely checks the spte when the last spte
3130  * is not the mmio spte.
3131  */
check_direct_spte_mmio_pf(u64 spte)3132 static bool check_direct_spte_mmio_pf(u64 spte)
3133 {
3134 	return __check_direct_spte_mmio_pf(spte);
3135 }
3136 
walk_shadow_page_get_mmio_spte(struct kvm_vcpu * vcpu,u64 addr)3137 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3138 {
3139 	struct kvm_shadow_walk_iterator iterator;
3140 	u64 spte = 0ull;
3141 
3142 	walk_shadow_page_lockless_begin(vcpu);
3143 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3144 		if (!is_shadow_present_pte(spte))
3145 			break;
3146 	walk_shadow_page_lockless_end(vcpu);
3147 
3148 	return spte;
3149 }
3150 
3151 /*
3152  * If it is a real mmio page fault, return 1 and emulat the instruction
3153  * directly, return 0 to let CPU fault again on the address, -1 is
3154  * returned if bug is detected.
3155  */
handle_mmio_page_fault_common(struct kvm_vcpu * vcpu,u64 addr,bool direct)3156 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3157 {
3158 	u64 spte;
3159 
3160 	if (quickly_check_mmio_pf(vcpu, addr, direct))
3161 		return 1;
3162 
3163 	spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3164 
3165 	if (is_mmio_spte(spte)) {
3166 		gfn_t gfn = get_mmio_spte_gfn(spte);
3167 		unsigned access = get_mmio_spte_access(spte);
3168 
3169 		if (direct)
3170 			addr = 0;
3171 
3172 		trace_handle_mmio_page_fault(addr, gfn, access);
3173 		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3174 		return 1;
3175 	}
3176 
3177 	/*
3178 	 * It's ok if the gva is remapped by other cpus on shadow guest,
3179 	 * it's a BUG if the gfn is not a mmio page.
3180 	 */
3181 	if (direct && !check_direct_spte_mmio_pf(spte))
3182 		return -1;
3183 
3184 	/*
3185 	 * If the page table is zapped by other cpus, let CPU fault again on
3186 	 * the address.
3187 	 */
3188 	return 0;
3189 }
3190 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3191 
handle_mmio_page_fault(struct kvm_vcpu * vcpu,u64 addr,u32 error_code,bool direct)3192 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3193 				  u32 error_code, bool direct)
3194 {
3195 	int ret;
3196 
3197 	ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3198 	WARN_ON(ret < 0);
3199 	return ret;
3200 }
3201 
nonpaging_page_fault(struct kvm_vcpu * vcpu,gva_t gva,u32 error_code,bool prefault)3202 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3203 				u32 error_code, bool prefault)
3204 {
3205 	gfn_t gfn;
3206 	int r;
3207 
3208 	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3209 
3210 	if (unlikely(error_code & PFERR_RSVD_MASK))
3211 		return handle_mmio_page_fault(vcpu, gva, error_code, true);
3212 
3213 	r = mmu_topup_memory_caches(vcpu);
3214 	if (r)
3215 		return r;
3216 
3217 	ASSERT(vcpu);
3218 	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3219 
3220 	gfn = gva >> PAGE_SHIFT;
3221 
3222 	return nonpaging_map(vcpu, gva & PAGE_MASK,
3223 			     error_code, gfn, prefault);
3224 }
3225 
kvm_arch_setup_async_pf(struct kvm_vcpu * vcpu,gva_t gva,gfn_t gfn)3226 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3227 {
3228 	struct kvm_arch_async_pf arch;
3229 
3230 	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3231 	arch.gfn = gfn;
3232 	arch.direct_map = vcpu->arch.mmu.direct_map;
3233 	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3234 
3235 	return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3236 }
3237 
can_do_async_pf(struct kvm_vcpu * vcpu)3238 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3239 {
3240 	if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3241 		     kvm_event_needs_reinjection(vcpu)))
3242 		return false;
3243 
3244 	return kvm_x86_ops->interrupt_allowed(vcpu);
3245 }
3246 
try_async_pf(struct kvm_vcpu * vcpu,bool prefault,gfn_t gfn,gva_t gva,pfn_t * pfn,bool write,bool * writable)3247 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3248 			 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3249 {
3250 	bool async;
3251 
3252 	*pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3253 
3254 	if (!async)
3255 		return false; /* *pfn has correct page already */
3256 
3257 	if (!prefault && can_do_async_pf(vcpu)) {
3258 		trace_kvm_try_async_get_page(gva, gfn);
3259 		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3260 			trace_kvm_async_pf_doublefault(gva, gfn);
3261 			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3262 			return true;
3263 		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3264 			return true;
3265 	}
3266 
3267 	*pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3268 
3269 	return false;
3270 }
3271 
tdp_page_fault(struct kvm_vcpu * vcpu,gva_t gpa,u32 error_code,bool prefault)3272 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3273 			  bool prefault)
3274 {
3275 	pfn_t pfn;
3276 	int r;
3277 	int level;
3278 	int force_pt_level;
3279 	gfn_t gfn = gpa >> PAGE_SHIFT;
3280 	unsigned long mmu_seq;
3281 	int write = error_code & PFERR_WRITE_MASK;
3282 	bool map_writable;
3283 
3284 	ASSERT(vcpu);
3285 	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3286 
3287 	if (unlikely(error_code & PFERR_RSVD_MASK))
3288 		return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3289 
3290 	r = mmu_topup_memory_caches(vcpu);
3291 	if (r)
3292 		return r;
3293 
3294 	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3295 	if (likely(!force_pt_level)) {
3296 		level = mapping_level(vcpu, gfn);
3297 		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3298 	} else
3299 		level = PT_PAGE_TABLE_LEVEL;
3300 
3301 	if (fast_page_fault(vcpu, gpa, level, error_code))
3302 		return 0;
3303 
3304 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3305 	smp_rmb();
3306 
3307 	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3308 		return 0;
3309 
3310 	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3311 		return r;
3312 
3313 	spin_lock(&vcpu->kvm->mmu_lock);
3314 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3315 		goto out_unlock;
3316 	make_mmu_pages_available(vcpu);
3317 	if (likely(!force_pt_level))
3318 		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3319 	r = __direct_map(vcpu, gpa, write, map_writable,
3320 			 level, gfn, pfn, prefault);
3321 	spin_unlock(&vcpu->kvm->mmu_lock);
3322 
3323 	return r;
3324 
3325 out_unlock:
3326 	spin_unlock(&vcpu->kvm->mmu_lock);
3327 	kvm_release_pfn_clean(pfn);
3328 	return 0;
3329 }
3330 
nonpaging_free(struct kvm_vcpu * vcpu)3331 static void nonpaging_free(struct kvm_vcpu *vcpu)
3332 {
3333 	mmu_free_roots(vcpu);
3334 }
3335 
nonpaging_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3336 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3337 				  struct kvm_mmu *context)
3338 {
3339 	context->new_cr3 = nonpaging_new_cr3;
3340 	context->page_fault = nonpaging_page_fault;
3341 	context->gva_to_gpa = nonpaging_gva_to_gpa;
3342 	context->free = nonpaging_free;
3343 	context->sync_page = nonpaging_sync_page;
3344 	context->invlpg = nonpaging_invlpg;
3345 	context->update_pte = nonpaging_update_pte;
3346 	context->root_level = 0;
3347 	context->shadow_root_level = PT32E_ROOT_LEVEL;
3348 	context->root_hpa = INVALID_PAGE;
3349 	context->direct_map = true;
3350 	context->nx = false;
3351 	return 0;
3352 }
3353 
kvm_mmu_flush_tlb(struct kvm_vcpu * vcpu)3354 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3355 {
3356 	++vcpu->stat.tlb_flush;
3357 	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3358 }
3359 
paging_new_cr3(struct kvm_vcpu * vcpu)3360 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3361 {
3362 	pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3363 	mmu_free_roots(vcpu);
3364 }
3365 
get_cr3(struct kvm_vcpu * vcpu)3366 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3367 {
3368 	return kvm_read_cr3(vcpu);
3369 }
3370 
inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)3371 static void inject_page_fault(struct kvm_vcpu *vcpu,
3372 			      struct x86_exception *fault)
3373 {
3374 	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3375 }
3376 
paging_free(struct kvm_vcpu * vcpu)3377 static void paging_free(struct kvm_vcpu *vcpu)
3378 {
3379 	nonpaging_free(vcpu);
3380 }
3381 
protect_clean_gpte(unsigned * access,unsigned gpte)3382 static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
3383 {
3384 	unsigned mask;
3385 
3386 	BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
3387 
3388 	mask = (unsigned)~ACC_WRITE_MASK;
3389 	/* Allow write access to dirty gptes */
3390 	mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
3391 	*access &= mask;
3392 }
3393 
sync_mmio_spte(u64 * sptep,gfn_t gfn,unsigned access,int * nr_present)3394 static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3395 			   int *nr_present)
3396 {
3397 	if (unlikely(is_mmio_spte(*sptep))) {
3398 		if (gfn != get_mmio_spte_gfn(*sptep)) {
3399 			mmu_spte_clear_no_track(sptep);
3400 			return true;
3401 		}
3402 
3403 		(*nr_present)++;
3404 		mark_mmio_spte(sptep, gfn, access);
3405 		return true;
3406 	}
3407 
3408 	return false;
3409 }
3410 
gpte_access(struct kvm_vcpu * vcpu,u64 gpte)3411 static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
3412 {
3413 	unsigned access;
3414 
3415 	access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
3416 	access &= ~(gpte >> PT64_NX_SHIFT);
3417 
3418 	return access;
3419 }
3420 
is_last_gpte(struct kvm_mmu * mmu,unsigned level,unsigned gpte)3421 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3422 {
3423 	unsigned index;
3424 
3425 	index = level - 1;
3426 	index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3427 	return mmu->last_pte_bitmap & (1 << index);
3428 }
3429 
3430 #define PTTYPE 64
3431 #include "paging_tmpl.h"
3432 #undef PTTYPE
3433 
3434 #define PTTYPE 32
3435 #include "paging_tmpl.h"
3436 #undef PTTYPE
3437 
reset_rsvds_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3438 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3439 				  struct kvm_mmu *context)
3440 {
3441 	int maxphyaddr = cpuid_maxphyaddr(vcpu);
3442 	u64 exb_bit_rsvd = 0;
3443 
3444 	if (!context->nx)
3445 		exb_bit_rsvd = rsvd_bits(63, 63);
3446 	switch (context->root_level) {
3447 	case PT32_ROOT_LEVEL:
3448 		/* no rsvd bits for 2 level 4K page table entries */
3449 		context->rsvd_bits_mask[0][1] = 0;
3450 		context->rsvd_bits_mask[0][0] = 0;
3451 		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3452 
3453 		if (!is_pse(vcpu)) {
3454 			context->rsvd_bits_mask[1][1] = 0;
3455 			break;
3456 		}
3457 
3458 		if (is_cpuid_PSE36())
3459 			/* 36bits PSE 4MB page */
3460 			context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3461 		else
3462 			/* 32 bits PSE 4MB page */
3463 			context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3464 		break;
3465 	case PT32E_ROOT_LEVEL:
3466 		context->rsvd_bits_mask[0][2] =
3467 			rsvd_bits(maxphyaddr, 63) |
3468 			rsvd_bits(7, 8) | rsvd_bits(1, 2);	/* PDPTE */
3469 		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3470 			rsvd_bits(maxphyaddr, 62);	/* PDE */
3471 		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3472 			rsvd_bits(maxphyaddr, 62); 	/* PTE */
3473 		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3474 			rsvd_bits(maxphyaddr, 62) |
3475 			rsvd_bits(13, 20);		/* large page */
3476 		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3477 		break;
3478 	case PT64_ROOT_LEVEL:
3479 		context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3480 			rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3481 		context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3482 			rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3483 		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3484 			rsvd_bits(maxphyaddr, 51);
3485 		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3486 			rsvd_bits(maxphyaddr, 51);
3487 		context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3488 		context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3489 			rsvd_bits(maxphyaddr, 51) |
3490 			rsvd_bits(13, 29);
3491 		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3492 			rsvd_bits(maxphyaddr, 51) |
3493 			rsvd_bits(13, 20);		/* large page */
3494 		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3495 		break;
3496 	}
3497 }
3498 
update_permission_bitmask(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)3499 static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3500 {
3501 	unsigned bit, byte, pfec;
3502 	u8 map;
3503 	bool fault, x, w, u, wf, uf, ff, smep;
3504 
3505 	smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3506 	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3507 		pfec = byte << 1;
3508 		map = 0;
3509 		wf = pfec & PFERR_WRITE_MASK;
3510 		uf = pfec & PFERR_USER_MASK;
3511 		ff = pfec & PFERR_FETCH_MASK;
3512 		for (bit = 0; bit < 8; ++bit) {
3513 			x = bit & ACC_EXEC_MASK;
3514 			w = bit & ACC_WRITE_MASK;
3515 			u = bit & ACC_USER_MASK;
3516 
3517 			/* Not really needed: !nx will cause pte.nx to fault */
3518 			x |= !mmu->nx;
3519 			/* Allow supervisor writes if !cr0.wp */
3520 			w |= !is_write_protection(vcpu) && !uf;
3521 			/* Disallow supervisor fetches of user code if cr4.smep */
3522 			x &= !(smep && u && !uf);
3523 
3524 			fault = (ff && !x) || (uf && !u) || (wf && !w);
3525 			map |= fault << bit;
3526 		}
3527 		mmu->permissions[byte] = map;
3528 	}
3529 }
3530 
update_last_pte_bitmap(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)3531 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3532 {
3533 	u8 map;
3534 	unsigned level, root_level = mmu->root_level;
3535 	const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */
3536 
3537 	if (root_level == PT32E_ROOT_LEVEL)
3538 		--root_level;
3539 	/* PT_PAGE_TABLE_LEVEL always terminates */
3540 	map = 1 | (1 << ps_set_index);
3541 	for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3542 		if (level <= PT_PDPE_LEVEL
3543 		    && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3544 			map |= 1 << (ps_set_index | (level - 1));
3545 	}
3546 	mmu->last_pte_bitmap = map;
3547 }
3548 
paging64_init_context_common(struct kvm_vcpu * vcpu,struct kvm_mmu * context,int level)3549 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3550 					struct kvm_mmu *context,
3551 					int level)
3552 {
3553 	context->nx = is_nx(vcpu);
3554 	context->root_level = level;
3555 
3556 	reset_rsvds_bits_mask(vcpu, context);
3557 	update_permission_bitmask(vcpu, context);
3558 	update_last_pte_bitmap(vcpu, context);
3559 
3560 	ASSERT(is_pae(vcpu));
3561 	context->new_cr3 = paging_new_cr3;
3562 	context->page_fault = paging64_page_fault;
3563 	context->gva_to_gpa = paging64_gva_to_gpa;
3564 	context->sync_page = paging64_sync_page;
3565 	context->invlpg = paging64_invlpg;
3566 	context->update_pte = paging64_update_pte;
3567 	context->free = paging_free;
3568 	context->shadow_root_level = level;
3569 	context->root_hpa = INVALID_PAGE;
3570 	context->direct_map = false;
3571 	return 0;
3572 }
3573 
paging64_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3574 static int paging64_init_context(struct kvm_vcpu *vcpu,
3575 				 struct kvm_mmu *context)
3576 {
3577 	return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3578 }
3579 
paging32_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3580 static int paging32_init_context(struct kvm_vcpu *vcpu,
3581 				 struct kvm_mmu *context)
3582 {
3583 	context->nx = false;
3584 	context->root_level = PT32_ROOT_LEVEL;
3585 
3586 	reset_rsvds_bits_mask(vcpu, context);
3587 	update_permission_bitmask(vcpu, context);
3588 	update_last_pte_bitmap(vcpu, context);
3589 
3590 	context->new_cr3 = paging_new_cr3;
3591 	context->page_fault = paging32_page_fault;
3592 	context->gva_to_gpa = paging32_gva_to_gpa;
3593 	context->free = paging_free;
3594 	context->sync_page = paging32_sync_page;
3595 	context->invlpg = paging32_invlpg;
3596 	context->update_pte = paging32_update_pte;
3597 	context->shadow_root_level = PT32E_ROOT_LEVEL;
3598 	context->root_hpa = INVALID_PAGE;
3599 	context->direct_map = false;
3600 	return 0;
3601 }
3602 
paging32E_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3603 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3604 				  struct kvm_mmu *context)
3605 {
3606 	return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3607 }
3608 
init_kvm_tdp_mmu(struct kvm_vcpu * vcpu)3609 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3610 {
3611 	struct kvm_mmu *context = vcpu->arch.walk_mmu;
3612 
3613 	context->base_role.word = 0;
3614 	context->new_cr3 = nonpaging_new_cr3;
3615 	context->page_fault = tdp_page_fault;
3616 	context->free = nonpaging_free;
3617 	context->sync_page = nonpaging_sync_page;
3618 	context->invlpg = nonpaging_invlpg;
3619 	context->update_pte = nonpaging_update_pte;
3620 	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3621 	context->root_hpa = INVALID_PAGE;
3622 	context->direct_map = true;
3623 	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3624 	context->get_cr3 = get_cr3;
3625 	context->get_pdptr = kvm_pdptr_read;
3626 	context->inject_page_fault = kvm_inject_page_fault;
3627 
3628 	if (!is_paging(vcpu)) {
3629 		context->nx = false;
3630 		context->gva_to_gpa = nonpaging_gva_to_gpa;
3631 		context->root_level = 0;
3632 	} else if (is_long_mode(vcpu)) {
3633 		context->nx = is_nx(vcpu);
3634 		context->root_level = PT64_ROOT_LEVEL;
3635 		reset_rsvds_bits_mask(vcpu, context);
3636 		context->gva_to_gpa = paging64_gva_to_gpa;
3637 	} else if (is_pae(vcpu)) {
3638 		context->nx = is_nx(vcpu);
3639 		context->root_level = PT32E_ROOT_LEVEL;
3640 		reset_rsvds_bits_mask(vcpu, context);
3641 		context->gva_to_gpa = paging64_gva_to_gpa;
3642 	} else {
3643 		context->nx = false;
3644 		context->root_level = PT32_ROOT_LEVEL;
3645 		reset_rsvds_bits_mask(vcpu, context);
3646 		context->gva_to_gpa = paging32_gva_to_gpa;
3647 	}
3648 
3649 	update_permission_bitmask(vcpu, context);
3650 	update_last_pte_bitmap(vcpu, context);
3651 
3652 	return 0;
3653 }
3654 
kvm_init_shadow_mmu(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3655 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3656 {
3657 	int r;
3658 	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3659 	ASSERT(vcpu);
3660 	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3661 
3662 	if (!is_paging(vcpu))
3663 		r = nonpaging_init_context(vcpu, context);
3664 	else if (is_long_mode(vcpu))
3665 		r = paging64_init_context(vcpu, context);
3666 	else if (is_pae(vcpu))
3667 		r = paging32E_init_context(vcpu, context);
3668 	else
3669 		r = paging32_init_context(vcpu, context);
3670 
3671 	vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3672 	vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3673 	vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3674 	vcpu->arch.mmu.base_role.smep_andnot_wp
3675 		= smep && !is_write_protection(vcpu);
3676 
3677 	return r;
3678 }
3679 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3680 
init_kvm_softmmu(struct kvm_vcpu * vcpu)3681 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3682 {
3683 	int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3684 
3685 	vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
3686 	vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3687 	vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3688 	vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3689 
3690 	return r;
3691 }
3692 
init_kvm_nested_mmu(struct kvm_vcpu * vcpu)3693 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3694 {
3695 	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3696 
3697 	g_context->get_cr3           = get_cr3;
3698 	g_context->get_pdptr         = kvm_pdptr_read;
3699 	g_context->inject_page_fault = kvm_inject_page_fault;
3700 
3701 	/*
3702 	 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3703 	 * translation of l2_gpa to l1_gpa addresses is done using the
3704 	 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3705 	 * functions between mmu and nested_mmu are swapped.
3706 	 */
3707 	if (!is_paging(vcpu)) {
3708 		g_context->nx = false;
3709 		g_context->root_level = 0;
3710 		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3711 	} else if (is_long_mode(vcpu)) {
3712 		g_context->nx = is_nx(vcpu);
3713 		g_context->root_level = PT64_ROOT_LEVEL;
3714 		reset_rsvds_bits_mask(vcpu, g_context);
3715 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3716 	} else if (is_pae(vcpu)) {
3717 		g_context->nx = is_nx(vcpu);
3718 		g_context->root_level = PT32E_ROOT_LEVEL;
3719 		reset_rsvds_bits_mask(vcpu, g_context);
3720 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3721 	} else {
3722 		g_context->nx = false;
3723 		g_context->root_level = PT32_ROOT_LEVEL;
3724 		reset_rsvds_bits_mask(vcpu, g_context);
3725 		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3726 	}
3727 
3728 	update_permission_bitmask(vcpu, g_context);
3729 	update_last_pte_bitmap(vcpu, g_context);
3730 
3731 	return 0;
3732 }
3733 
init_kvm_mmu(struct kvm_vcpu * vcpu)3734 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3735 {
3736 	if (mmu_is_nested(vcpu))
3737 		return init_kvm_nested_mmu(vcpu);
3738 	else if (tdp_enabled)
3739 		return init_kvm_tdp_mmu(vcpu);
3740 	else
3741 		return init_kvm_softmmu(vcpu);
3742 }
3743 
destroy_kvm_mmu(struct kvm_vcpu * vcpu)3744 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3745 {
3746 	ASSERT(vcpu);
3747 	if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3748 		/* mmu.free() should set root_hpa = INVALID_PAGE */
3749 		vcpu->arch.mmu.free(vcpu);
3750 }
3751 
kvm_mmu_reset_context(struct kvm_vcpu * vcpu)3752 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3753 {
3754 	destroy_kvm_mmu(vcpu);
3755 	return init_kvm_mmu(vcpu);
3756 }
3757 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3758 
kvm_mmu_load(struct kvm_vcpu * vcpu)3759 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3760 {
3761 	int r;
3762 
3763 	r = mmu_topup_memory_caches(vcpu);
3764 	if (r)
3765 		goto out;
3766 	r = mmu_alloc_roots(vcpu);
3767 	spin_lock(&vcpu->kvm->mmu_lock);
3768 	mmu_sync_roots(vcpu);
3769 	spin_unlock(&vcpu->kvm->mmu_lock);
3770 	if (r)
3771 		goto out;
3772 	/* set_cr3() should ensure TLB has been flushed */
3773 	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3774 out:
3775 	return r;
3776 }
3777 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3778 
kvm_mmu_unload(struct kvm_vcpu * vcpu)3779 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3780 {
3781 	mmu_free_roots(vcpu);
3782 }
3783 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3784 
mmu_pte_write_new_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * spte,const void * new)3785 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3786 				  struct kvm_mmu_page *sp, u64 *spte,
3787 				  const void *new)
3788 {
3789 	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3790 		++vcpu->kvm->stat.mmu_pde_zapped;
3791 		return;
3792         }
3793 
3794 	++vcpu->kvm->stat.mmu_pte_updated;
3795 	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3796 }
3797 
need_remote_flush(u64 old,u64 new)3798 static bool need_remote_flush(u64 old, u64 new)
3799 {
3800 	if (!is_shadow_present_pte(old))
3801 		return false;
3802 	if (!is_shadow_present_pte(new))
3803 		return true;
3804 	if ((old ^ new) & PT64_BASE_ADDR_MASK)
3805 		return true;
3806 	old ^= PT64_NX_MASK;
3807 	new ^= PT64_NX_MASK;
3808 	return (old & ~new & PT64_PERM_MASK) != 0;
3809 }
3810 
mmu_pte_write_flush_tlb(struct kvm_vcpu * vcpu,bool zap_page,bool remote_flush,bool local_flush)3811 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3812 				    bool remote_flush, bool local_flush)
3813 {
3814 	if (zap_page)
3815 		return;
3816 
3817 	if (remote_flush)
3818 		kvm_flush_remote_tlbs(vcpu->kvm);
3819 	else if (local_flush)
3820 		kvm_mmu_flush_tlb(vcpu);
3821 }
3822 
mmu_pte_write_fetch_gpte(struct kvm_vcpu * vcpu,gpa_t * gpa,const u8 * new,int * bytes)3823 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3824 				    const u8 *new, int *bytes)
3825 {
3826 	u64 gentry;
3827 	int r;
3828 
3829 	/*
3830 	 * Assume that the pte write on a page table of the same type
3831 	 * as the current vcpu paging mode since we update the sptes only
3832 	 * when they have the same mode.
3833 	 */
3834 	if (is_pae(vcpu) && *bytes == 4) {
3835 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3836 		*gpa &= ~(gpa_t)7;
3837 		*bytes = 8;
3838 		r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3839 		if (r)
3840 			gentry = 0;
3841 		new = (const u8 *)&gentry;
3842 	}
3843 
3844 	switch (*bytes) {
3845 	case 4:
3846 		gentry = *(const u32 *)new;
3847 		break;
3848 	case 8:
3849 		gentry = *(const u64 *)new;
3850 		break;
3851 	default:
3852 		gentry = 0;
3853 		break;
3854 	}
3855 
3856 	return gentry;
3857 }
3858 
3859 /*
3860  * If we're seeing too many writes to a page, it may no longer be a page table,
3861  * or we may be forking, in which case it is better to unmap the page.
3862  */
detect_write_flooding(struct kvm_mmu_page * sp)3863 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3864 {
3865 	/*
3866 	 * Skip write-flooding detected for the sp whose level is 1, because
3867 	 * it can become unsync, then the guest page is not write-protected.
3868 	 */
3869 	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3870 		return false;
3871 
3872 	return ++sp->write_flooding_count >= 3;
3873 }
3874 
3875 /*
3876  * Misaligned accesses are too much trouble to fix up; also, they usually
3877  * indicate a page is not used as a page table.
3878  */
detect_write_misaligned(struct kvm_mmu_page * sp,gpa_t gpa,int bytes)3879 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3880 				    int bytes)
3881 {
3882 	unsigned offset, pte_size, misaligned;
3883 
3884 	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3885 		 gpa, bytes, sp->role.word);
3886 
3887 	offset = offset_in_page(gpa);
3888 	pte_size = sp->role.cr4_pae ? 8 : 4;
3889 
3890 	/*
3891 	 * Sometimes, the OS only writes the last one bytes to update status
3892 	 * bits, for example, in linux, andb instruction is used in clear_bit().
3893 	 */
3894 	if (!(offset & (pte_size - 1)) && bytes == 1)
3895 		return false;
3896 
3897 	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3898 	misaligned |= bytes < 4;
3899 
3900 	return misaligned;
3901 }
3902 
get_written_sptes(struct kvm_mmu_page * sp,gpa_t gpa,int * nspte)3903 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3904 {
3905 	unsigned page_offset, quadrant;
3906 	u64 *spte;
3907 	int level;
3908 
3909 	page_offset = offset_in_page(gpa);
3910 	level = sp->role.level;
3911 	*nspte = 1;
3912 	if (!sp->role.cr4_pae) {
3913 		page_offset <<= 1;	/* 32->64 */
3914 		/*
3915 		 * A 32-bit pde maps 4MB while the shadow pdes map
3916 		 * only 2MB.  So we need to double the offset again
3917 		 * and zap two pdes instead of one.
3918 		 */
3919 		if (level == PT32_ROOT_LEVEL) {
3920 			page_offset &= ~7; /* kill rounding error */
3921 			page_offset <<= 1;
3922 			*nspte = 2;
3923 		}
3924 		quadrant = page_offset >> PAGE_SHIFT;
3925 		page_offset &= ~PAGE_MASK;
3926 		if (quadrant != sp->role.quadrant)
3927 			return NULL;
3928 	}
3929 
3930 	spte = &sp->spt[page_offset / sizeof(*spte)];
3931 	return spte;
3932 }
3933 
kvm_mmu_pte_write(struct kvm_vcpu * vcpu,gpa_t gpa,const u8 * new,int bytes)3934 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3935 		       const u8 *new, int bytes)
3936 {
3937 	gfn_t gfn = gpa >> PAGE_SHIFT;
3938 	union kvm_mmu_page_role mask = { .word = 0 };
3939 	struct kvm_mmu_page *sp;
3940 	LIST_HEAD(invalid_list);
3941 	u64 entry, gentry, *spte;
3942 	int npte;
3943 	bool remote_flush, local_flush, zap_page;
3944 
3945 	/*
3946 	 * If we don't have indirect shadow pages, it means no page is
3947 	 * write-protected, so we can exit simply.
3948 	 */
3949 	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3950 		return;
3951 
3952 	zap_page = remote_flush = local_flush = false;
3953 
3954 	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3955 
3956 	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3957 
3958 	/*
3959 	 * No need to care whether allocation memory is successful
3960 	 * or not since pte prefetch is skiped if it does not have
3961 	 * enough objects in the cache.
3962 	 */
3963 	mmu_topup_memory_caches(vcpu);
3964 
3965 	spin_lock(&vcpu->kvm->mmu_lock);
3966 	++vcpu->kvm->stat.mmu_pte_write;
3967 	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3968 
3969 	mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3970 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
3971 		if (detect_write_misaligned(sp, gpa, bytes) ||
3972 		      detect_write_flooding(sp)) {
3973 			zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3974 						     &invalid_list);
3975 			++vcpu->kvm->stat.mmu_flooded;
3976 			continue;
3977 		}
3978 
3979 		spte = get_written_sptes(sp, gpa, &npte);
3980 		if (!spte)
3981 			continue;
3982 
3983 		local_flush = true;
3984 		while (npte--) {
3985 			entry = *spte;
3986 			mmu_page_zap_pte(vcpu->kvm, sp, spte);
3987 			if (gentry &&
3988 			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3989 			      & mask.word) && rmap_can_add(vcpu))
3990 				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3991 			if (need_remote_flush(entry, *spte))
3992 				remote_flush = true;
3993 			++spte;
3994 		}
3995 	}
3996 	mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3997 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3998 	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3999 	spin_unlock(&vcpu->kvm->mmu_lock);
4000 }
4001 
kvm_mmu_unprotect_page_virt(struct kvm_vcpu * vcpu,gva_t gva)4002 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4003 {
4004 	gpa_t gpa;
4005 	int r;
4006 
4007 	if (vcpu->arch.mmu.direct_map)
4008 		return 0;
4009 
4010 	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4011 
4012 	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4013 
4014 	return r;
4015 }
4016 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4017 
make_mmu_pages_available(struct kvm_vcpu * vcpu)4018 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4019 {
4020 	LIST_HEAD(invalid_list);
4021 
4022 	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4023 		return;
4024 
4025 	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4026 		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4027 			break;
4028 
4029 		++vcpu->kvm->stat.mmu_recycled;
4030 	}
4031 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4032 }
4033 
is_mmio_page_fault(struct kvm_vcpu * vcpu,gva_t addr)4034 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4035 {
4036 	if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4037 		return vcpu_match_mmio_gpa(vcpu, addr);
4038 
4039 	return vcpu_match_mmio_gva(vcpu, addr);
4040 }
4041 
kvm_mmu_page_fault(struct kvm_vcpu * vcpu,gva_t cr2,u32 error_code,void * insn,int insn_len)4042 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4043 		       void *insn, int insn_len)
4044 {
4045 	int r, emulation_type = EMULTYPE_RETRY;
4046 	enum emulation_result er;
4047 
4048 	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4049 	if (r < 0)
4050 		goto out;
4051 
4052 	if (!r) {
4053 		r = 1;
4054 		goto out;
4055 	}
4056 
4057 	if (is_mmio_page_fault(vcpu, cr2))
4058 		emulation_type = 0;
4059 
4060 	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4061 
4062 	switch (er) {
4063 	case EMULATE_DONE:
4064 		return 1;
4065 	case EMULATE_DO_MMIO:
4066 		++vcpu->stat.mmio_exits;
4067 		/* fall through */
4068 	case EMULATE_FAIL:
4069 		return 0;
4070 	default:
4071 		BUG();
4072 	}
4073 out:
4074 	return r;
4075 }
4076 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4077 
kvm_mmu_invlpg(struct kvm_vcpu * vcpu,gva_t gva)4078 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4079 {
4080 	vcpu->arch.mmu.invlpg(vcpu, gva);
4081 	kvm_mmu_flush_tlb(vcpu);
4082 	++vcpu->stat.invlpg;
4083 }
4084 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4085 
kvm_enable_tdp(void)4086 void kvm_enable_tdp(void)
4087 {
4088 	tdp_enabled = true;
4089 }
4090 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4091 
kvm_disable_tdp(void)4092 void kvm_disable_tdp(void)
4093 {
4094 	tdp_enabled = false;
4095 }
4096 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4097 
free_mmu_pages(struct kvm_vcpu * vcpu)4098 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4099 {
4100 	free_page((unsigned long)vcpu->arch.mmu.pae_root);
4101 	if (vcpu->arch.mmu.lm_root != NULL)
4102 		free_page((unsigned long)vcpu->arch.mmu.lm_root);
4103 }
4104 
alloc_mmu_pages(struct kvm_vcpu * vcpu)4105 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4106 {
4107 	struct page *page;
4108 	int i;
4109 
4110 	ASSERT(vcpu);
4111 
4112 	/*
4113 	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4114 	 * Therefore we need to allocate shadow page tables in the first
4115 	 * 4GB of memory, which happens to fit the DMA32 zone.
4116 	 */
4117 	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4118 	if (!page)
4119 		return -ENOMEM;
4120 
4121 	vcpu->arch.mmu.pae_root = page_address(page);
4122 	for (i = 0; i < 4; ++i)
4123 		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4124 
4125 	return 0;
4126 }
4127 
kvm_mmu_create(struct kvm_vcpu * vcpu)4128 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4129 {
4130 	ASSERT(vcpu);
4131 
4132 	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4133 	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4134 	vcpu->arch.mmu.translate_gpa = translate_gpa;
4135 	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4136 
4137 	return alloc_mmu_pages(vcpu);
4138 }
4139 
kvm_mmu_setup(struct kvm_vcpu * vcpu)4140 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4141 {
4142 	ASSERT(vcpu);
4143 	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4144 
4145 	return init_kvm_mmu(vcpu);
4146 }
4147 
kvm_mmu_slot_remove_write_access(struct kvm * kvm,int slot)4148 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4149 {
4150 	struct kvm_memory_slot *memslot;
4151 	gfn_t last_gfn;
4152 	int i;
4153 
4154 	memslot = id_to_memslot(kvm->memslots, slot);
4155 	last_gfn = memslot->base_gfn + memslot->npages - 1;
4156 
4157 	spin_lock(&kvm->mmu_lock);
4158 
4159 	for (i = PT_PAGE_TABLE_LEVEL;
4160 	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4161 		unsigned long *rmapp;
4162 		unsigned long last_index, index;
4163 
4164 		rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4165 		last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4166 
4167 		for (index = 0; index <= last_index; ++index, ++rmapp) {
4168 			if (*rmapp)
4169 				__rmap_write_protect(kvm, rmapp, false);
4170 
4171 			if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4172 				kvm_flush_remote_tlbs(kvm);
4173 				cond_resched_lock(&kvm->mmu_lock);
4174 			}
4175 		}
4176 	}
4177 
4178 	kvm_flush_remote_tlbs(kvm);
4179 	spin_unlock(&kvm->mmu_lock);
4180 }
4181 
kvm_mmu_zap_all(struct kvm * kvm)4182 void kvm_mmu_zap_all(struct kvm *kvm)
4183 {
4184 	struct kvm_mmu_page *sp, *node;
4185 	LIST_HEAD(invalid_list);
4186 
4187 	spin_lock(&kvm->mmu_lock);
4188 restart:
4189 	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
4190 		if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4191 			goto restart;
4192 
4193 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
4194 	spin_unlock(&kvm->mmu_lock);
4195 }
4196 
kvm_mmu_zap_mmio_sptes(struct kvm * kvm)4197 void kvm_mmu_zap_mmio_sptes(struct kvm *kvm)
4198 {
4199 	struct kvm_mmu_page *sp, *node;
4200 	LIST_HEAD(invalid_list);
4201 
4202 	spin_lock(&kvm->mmu_lock);
4203 restart:
4204 	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
4205 		if (!sp->mmio_cached)
4206 			continue;
4207 		if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4208 			goto restart;
4209 	}
4210 
4211 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
4212 	spin_unlock(&kvm->mmu_lock);
4213 }
4214 
mmu_shrink(struct shrinker * shrink,struct shrink_control * sc)4215 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
4216 {
4217 	struct kvm *kvm;
4218 	int nr_to_scan = sc->nr_to_scan;
4219 
4220 	if (nr_to_scan == 0)
4221 		goto out;
4222 
4223 	raw_spin_lock(&kvm_lock);
4224 
4225 	list_for_each_entry(kvm, &vm_list, vm_list) {
4226 		int idx;
4227 		LIST_HEAD(invalid_list);
4228 
4229 		/*
4230 		 * Never scan more than sc->nr_to_scan VM instances.
4231 		 * Will not hit this condition practically since we do not try
4232 		 * to shrink more than one VM and it is very unlikely to see
4233 		 * !n_used_mmu_pages so many times.
4234 		 */
4235 		if (!nr_to_scan--)
4236 			break;
4237 		/*
4238 		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4239 		 * here. We may skip a VM instance errorneosly, but we do not
4240 		 * want to shrink a VM that only started to populate its MMU
4241 		 * anyway.
4242 		 */
4243 		if (!kvm->arch.n_used_mmu_pages)
4244 			continue;
4245 
4246 		idx = srcu_read_lock(&kvm->srcu);
4247 		spin_lock(&kvm->mmu_lock);
4248 
4249 		prepare_zap_oldest_mmu_page(kvm, &invalid_list);
4250 		kvm_mmu_commit_zap_page(kvm, &invalid_list);
4251 
4252 		spin_unlock(&kvm->mmu_lock);
4253 		srcu_read_unlock(&kvm->srcu, idx);
4254 
4255 		list_move_tail(&kvm->vm_list, &vm_list);
4256 		break;
4257 	}
4258 
4259 	raw_spin_unlock(&kvm_lock);
4260 
4261 out:
4262 	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4263 }
4264 
4265 static struct shrinker mmu_shrinker = {
4266 	.shrink = mmu_shrink,
4267 	.seeks = DEFAULT_SEEKS * 10,
4268 };
4269 
mmu_destroy_caches(void)4270 static void mmu_destroy_caches(void)
4271 {
4272 	if (pte_list_desc_cache)
4273 		kmem_cache_destroy(pte_list_desc_cache);
4274 	if (mmu_page_header_cache)
4275 		kmem_cache_destroy(mmu_page_header_cache);
4276 }
4277 
kvm_mmu_module_init(void)4278 int kvm_mmu_module_init(void)
4279 {
4280 	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4281 					    sizeof(struct pte_list_desc),
4282 					    0, 0, NULL);
4283 	if (!pte_list_desc_cache)
4284 		goto nomem;
4285 
4286 	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4287 						  sizeof(struct kvm_mmu_page),
4288 						  0, 0, NULL);
4289 	if (!mmu_page_header_cache)
4290 		goto nomem;
4291 
4292 	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4293 		goto nomem;
4294 
4295 	register_shrinker(&mmu_shrinker);
4296 
4297 	return 0;
4298 
4299 nomem:
4300 	mmu_destroy_caches();
4301 	return -ENOMEM;
4302 }
4303 
4304 /*
4305  * Caculate mmu pages needed for kvm.
4306  */
kvm_mmu_calculate_mmu_pages(struct kvm * kvm)4307 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4308 {
4309 	unsigned int nr_mmu_pages;
4310 	unsigned int  nr_pages = 0;
4311 	struct kvm_memslots *slots;
4312 	struct kvm_memory_slot *memslot;
4313 
4314 	slots = kvm_memslots(kvm);
4315 
4316 	kvm_for_each_memslot(memslot, slots)
4317 		nr_pages += memslot->npages;
4318 
4319 	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4320 	nr_mmu_pages = max(nr_mmu_pages,
4321 			(unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4322 
4323 	return nr_mmu_pages;
4324 }
4325 
kvm_mmu_get_spte_hierarchy(struct kvm_vcpu * vcpu,u64 addr,u64 sptes[4])4326 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4327 {
4328 	struct kvm_shadow_walk_iterator iterator;
4329 	u64 spte;
4330 	int nr_sptes = 0;
4331 
4332 	walk_shadow_page_lockless_begin(vcpu);
4333 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4334 		sptes[iterator.level-1] = spte;
4335 		nr_sptes++;
4336 		if (!is_shadow_present_pte(spte))
4337 			break;
4338 	}
4339 	walk_shadow_page_lockless_end(vcpu);
4340 
4341 	return nr_sptes;
4342 }
4343 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4344 
kvm_mmu_destroy(struct kvm_vcpu * vcpu)4345 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4346 {
4347 	ASSERT(vcpu);
4348 
4349 	destroy_kvm_mmu(vcpu);
4350 	free_mmu_pages(vcpu);
4351 	mmu_free_memory_caches(vcpu);
4352 }
4353 
kvm_mmu_module_exit(void)4354 void kvm_mmu_module_exit(void)
4355 {
4356 	mmu_destroy_caches();
4357 	percpu_counter_destroy(&kvm_total_used_mmu_pages);
4358 	unregister_shrinker(&mmu_shrinker);
4359 	mmu_audit_disable();
4360 }
4361