• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3  *   {mikejc|engebret}@us.ibm.com
4  *
5  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
6  *
7  * SMP scalability work:
8  *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
9  *
10  *    Module name: htab.c
11  *
12  *    Description:
13  *      PowerPC Hashed Page Table functions
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  */
20 
21 #undef DEBUG
22 #undef DEBUG_LOW
23 
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/export.h>
31 #include <linux/ctype.h>
32 #include <linux/cache.h>
33 #include <linux/init.h>
34 #include <linux/signal.h>
35 #include <linux/memblock.h>
36 #include <linux/context_tracking.h>
37 
38 #include <asm/processor.h>
39 #include <asm/pgtable.h>
40 #include <asm/mmu.h>
41 #include <asm/mmu_context.h>
42 #include <asm/page.h>
43 #include <asm/types.h>
44 #include <asm/uaccess.h>
45 #include <asm/machdep.h>
46 #include <asm/prom.h>
47 #include <asm/tlbflush.h>
48 #include <asm/io.h>
49 #include <asm/eeh.h>
50 #include <asm/tlb.h>
51 #include <asm/cacheflush.h>
52 #include <asm/cputable.h>
53 #include <asm/sections.h>
54 #include <asm/spu.h>
55 #include <asm/udbg.h>
56 #include <asm/code-patching.h>
57 #include <asm/fadump.h>
58 #include <asm/firmware.h>
59 #include <asm/tm.h>
60 
61 #ifdef DEBUG
62 #define DBG(fmt...) udbg_printf(fmt)
63 #else
64 #define DBG(fmt...)
65 #endif
66 
67 #ifdef DEBUG_LOW
68 #define DBG_LOW(fmt...) udbg_printf(fmt)
69 #else
70 #define DBG_LOW(fmt...)
71 #endif
72 
73 #define KB (1024)
74 #define MB (1024*KB)
75 #define GB (1024L*MB)
76 
77 /*
78  * Note:  pte   --> Linux PTE
79  *        HPTE  --> PowerPC Hashed Page Table Entry
80  *
81  * Execution context:
82  *   htab_initialize is called with the MMU off (of course), but
83  *   the kernel has been copied down to zero so it can directly
84  *   reference global data.  At this point it is very difficult
85  *   to print debug info.
86  *
87  */
88 
89 #ifdef CONFIG_U3_DART
90 extern unsigned long dart_tablebase;
91 #endif /* CONFIG_U3_DART */
92 
93 static unsigned long _SDR1;
94 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
95 
96 struct hash_pte *htab_address;
97 unsigned long htab_size_bytes;
98 unsigned long htab_hash_mask;
99 EXPORT_SYMBOL_GPL(htab_hash_mask);
100 int mmu_linear_psize = MMU_PAGE_4K;
101 int mmu_virtual_psize = MMU_PAGE_4K;
102 int mmu_vmalloc_psize = MMU_PAGE_4K;
103 #ifdef CONFIG_SPARSEMEM_VMEMMAP
104 int mmu_vmemmap_psize = MMU_PAGE_4K;
105 #endif
106 int mmu_io_psize = MMU_PAGE_4K;
107 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
108 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
109 u16 mmu_slb_size = 64;
110 EXPORT_SYMBOL_GPL(mmu_slb_size);
111 #ifdef CONFIG_PPC_64K_PAGES
112 int mmu_ci_restrictions;
113 #endif
114 #ifdef CONFIG_DEBUG_PAGEALLOC
115 static u8 *linear_map_hash_slots;
116 static unsigned long linear_map_hash_count;
117 static DEFINE_SPINLOCK(linear_map_hash_lock);
118 #endif /* CONFIG_DEBUG_PAGEALLOC */
119 
120 /* There are definitions of page sizes arrays to be used when none
121  * is provided by the firmware.
122  */
123 
124 /* Pre-POWER4 CPUs (4k pages only)
125  */
126 static struct mmu_psize_def mmu_psize_defaults_old[] = {
127 	[MMU_PAGE_4K] = {
128 		.shift	= 12,
129 		.sllp	= 0,
130 		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
131 		.avpnm	= 0,
132 		.tlbiel = 0,
133 	},
134 };
135 
136 /* POWER4, GPUL, POWER5
137  *
138  * Support for 16Mb large pages
139  */
140 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
141 	[MMU_PAGE_4K] = {
142 		.shift	= 12,
143 		.sllp	= 0,
144 		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
145 		.avpnm	= 0,
146 		.tlbiel = 1,
147 	},
148 	[MMU_PAGE_16M] = {
149 		.shift	= 24,
150 		.sllp	= SLB_VSID_L,
151 		.penc   = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
152 			    [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
153 		.avpnm	= 0x1UL,
154 		.tlbiel = 0,
155 	},
156 };
157 
htab_convert_pte_flags(unsigned long pteflags)158 static unsigned long htab_convert_pte_flags(unsigned long pteflags)
159 {
160 	unsigned long rflags = pteflags & 0x1fa;
161 
162 	/* _PAGE_EXEC -> NOEXEC */
163 	if ((pteflags & _PAGE_EXEC) == 0)
164 		rflags |= HPTE_R_N;
165 
166 	/* PP bits. PAGE_USER is already PP bit 0x2, so we only
167 	 * need to add in 0x1 if it's a read-only user page
168 	 */
169 	if ((pteflags & _PAGE_USER) && !((pteflags & _PAGE_RW) &&
170 					 (pteflags & _PAGE_DIRTY)))
171 		rflags |= 1;
172 
173 	/* Always add C */
174 	return rflags | HPTE_R_C;
175 }
176 
htab_bolt_mapping(unsigned long vstart,unsigned long vend,unsigned long pstart,unsigned long prot,int psize,int ssize)177 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
178 		      unsigned long pstart, unsigned long prot,
179 		      int psize, int ssize)
180 {
181 	unsigned long vaddr, paddr;
182 	unsigned int step, shift;
183 	int ret = 0;
184 
185 	shift = mmu_psize_defs[psize].shift;
186 	step = 1 << shift;
187 
188 	prot = htab_convert_pte_flags(prot);
189 
190 	DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
191 	    vstart, vend, pstart, prot, psize, ssize);
192 
193 	for (vaddr = vstart, paddr = pstart; vaddr < vend;
194 	     vaddr += step, paddr += step) {
195 		unsigned long hash, hpteg;
196 		unsigned long vsid = get_kernel_vsid(vaddr, ssize);
197 		unsigned long vpn  = hpt_vpn(vaddr, vsid, ssize);
198 		unsigned long tprot = prot;
199 
200 		/*
201 		 * If we hit a bad address return error.
202 		 */
203 		if (!vsid)
204 			return -1;
205 		/* Make kernel text executable */
206 		if (overlaps_kernel_text(vaddr, vaddr + step))
207 			tprot &= ~HPTE_R_N;
208 
209 		hash = hpt_hash(vpn, shift, ssize);
210 		hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
211 
212 		BUG_ON(!ppc_md.hpte_insert);
213 		ret = ppc_md.hpte_insert(hpteg, vpn, paddr, tprot,
214 					 HPTE_V_BOLTED, psize, psize, ssize);
215 
216 		if (ret < 0)
217 			break;
218 #ifdef CONFIG_DEBUG_PAGEALLOC
219 		if ((paddr >> PAGE_SHIFT) < linear_map_hash_count)
220 			linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
221 #endif /* CONFIG_DEBUG_PAGEALLOC */
222 	}
223 	return ret < 0 ? ret : 0;
224 }
225 
226 #ifdef CONFIG_MEMORY_HOTPLUG
htab_remove_mapping(unsigned long vstart,unsigned long vend,int psize,int ssize)227 static int htab_remove_mapping(unsigned long vstart, unsigned long vend,
228 		      int psize, int ssize)
229 {
230 	unsigned long vaddr;
231 	unsigned int step, shift;
232 
233 	shift = mmu_psize_defs[psize].shift;
234 	step = 1 << shift;
235 
236 	if (!ppc_md.hpte_removebolted) {
237 		printk(KERN_WARNING "Platform doesn't implement "
238 				"hpte_removebolted\n");
239 		return -EINVAL;
240 	}
241 
242 	for (vaddr = vstart; vaddr < vend; vaddr += step)
243 		ppc_md.hpte_removebolted(vaddr, psize, ssize);
244 
245 	return 0;
246 }
247 #endif /* CONFIG_MEMORY_HOTPLUG */
248 
htab_dt_scan_seg_sizes(unsigned long node,const char * uname,int depth,void * data)249 static int __init htab_dt_scan_seg_sizes(unsigned long node,
250 					 const char *uname, int depth,
251 					 void *data)
252 {
253 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
254 	u32 *prop;
255 	unsigned long size = 0;
256 
257 	/* We are scanning "cpu" nodes only */
258 	if (type == NULL || strcmp(type, "cpu") != 0)
259 		return 0;
260 
261 	prop = (u32 *)of_get_flat_dt_prop(node, "ibm,processor-segment-sizes",
262 					  &size);
263 	if (prop == NULL)
264 		return 0;
265 	for (; size >= 4; size -= 4, ++prop) {
266 		if (prop[0] == 40) {
267 			DBG("1T segment support detected\n");
268 			cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
269 			return 1;
270 		}
271 	}
272 	cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
273 	return 0;
274 }
275 
htab_init_seg_sizes(void)276 static void __init htab_init_seg_sizes(void)
277 {
278 	of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
279 }
280 
get_idx_from_shift(unsigned int shift)281 static int __init get_idx_from_shift(unsigned int shift)
282 {
283 	int idx = -1;
284 
285 	switch (shift) {
286 	case 0xc:
287 		idx = MMU_PAGE_4K;
288 		break;
289 	case 0x10:
290 		idx = MMU_PAGE_64K;
291 		break;
292 	case 0x14:
293 		idx = MMU_PAGE_1M;
294 		break;
295 	case 0x18:
296 		idx = MMU_PAGE_16M;
297 		break;
298 	case 0x22:
299 		idx = MMU_PAGE_16G;
300 		break;
301 	}
302 	return idx;
303 }
304 
htab_dt_scan_page_sizes(unsigned long node,const char * uname,int depth,void * data)305 static int __init htab_dt_scan_page_sizes(unsigned long node,
306 					  const char *uname, int depth,
307 					  void *data)
308 {
309 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
310 	u32 *prop;
311 	unsigned long size = 0;
312 
313 	/* We are scanning "cpu" nodes only */
314 	if (type == NULL || strcmp(type, "cpu") != 0)
315 		return 0;
316 
317 	prop = (u32 *)of_get_flat_dt_prop(node,
318 					  "ibm,segment-page-sizes", &size);
319 	if (prop != NULL) {
320 		pr_info("Page sizes from device-tree:\n");
321 		size /= 4;
322 		cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
323 		while(size > 0) {
324 			unsigned int base_shift = prop[0];
325 			unsigned int slbenc = prop[1];
326 			unsigned int lpnum = prop[2];
327 			struct mmu_psize_def *def;
328 			int idx, base_idx;
329 
330 			size -= 3; prop += 3;
331 			base_idx = get_idx_from_shift(base_shift);
332 			if (base_idx < 0) {
333 				/*
334 				 * skip the pte encoding also
335 				 */
336 				prop += lpnum * 2; size -= lpnum * 2;
337 				continue;
338 			}
339 			def = &mmu_psize_defs[base_idx];
340 			if (base_idx == MMU_PAGE_16M)
341 				cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
342 
343 			def->shift = base_shift;
344 			if (base_shift <= 23)
345 				def->avpnm = 0;
346 			else
347 				def->avpnm = (1 << (base_shift - 23)) - 1;
348 			def->sllp = slbenc;
349 			/*
350 			 * We don't know for sure what's up with tlbiel, so
351 			 * for now we only set it for 4K and 64K pages
352 			 */
353 			if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
354 				def->tlbiel = 1;
355 			else
356 				def->tlbiel = 0;
357 
358 			while (size > 0 && lpnum) {
359 				unsigned int shift = prop[0];
360 				int penc  = prop[1];
361 
362 				prop += 2; size -= 2;
363 				lpnum--;
364 
365 				idx = get_idx_from_shift(shift);
366 				if (idx < 0)
367 					continue;
368 
369 				if (penc == -1)
370 					pr_err("Invalid penc for base_shift=%d "
371 					       "shift=%d\n", base_shift, shift);
372 
373 				def->penc[idx] = penc;
374 				pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
375 					" avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
376 					base_shift, shift, def->sllp,
377 					def->avpnm, def->tlbiel, def->penc[idx]);
378 			}
379 		}
380 		return 1;
381 	}
382 	return 0;
383 }
384 
385 #ifdef CONFIG_HUGETLB_PAGE
386 /* Scan for 16G memory blocks that have been set aside for huge pages
387  * and reserve those blocks for 16G huge pages.
388  */
htab_dt_scan_hugepage_blocks(unsigned long node,const char * uname,int depth,void * data)389 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
390 					const char *uname, int depth,
391 					void *data) {
392 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
393 	unsigned long *addr_prop;
394 	u32 *page_count_prop;
395 	unsigned int expected_pages;
396 	long unsigned int phys_addr;
397 	long unsigned int block_size;
398 
399 	/* We are scanning "memory" nodes only */
400 	if (type == NULL || strcmp(type, "memory") != 0)
401 		return 0;
402 
403 	/* This property is the log base 2 of the number of virtual pages that
404 	 * will represent this memory block. */
405 	page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
406 	if (page_count_prop == NULL)
407 		return 0;
408 	expected_pages = (1 << page_count_prop[0]);
409 	addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
410 	if (addr_prop == NULL)
411 		return 0;
412 	phys_addr = addr_prop[0];
413 	block_size = addr_prop[1];
414 	if (block_size != (16 * GB))
415 		return 0;
416 	printk(KERN_INFO "Huge page(16GB) memory: "
417 			"addr = 0x%lX size = 0x%lX pages = %d\n",
418 			phys_addr, block_size, expected_pages);
419 	if (phys_addr + (16 * GB) <= memblock_end_of_DRAM()) {
420 		memblock_reserve(phys_addr, block_size * expected_pages);
421 		add_gpage(phys_addr, block_size, expected_pages);
422 	}
423 	return 0;
424 }
425 #endif /* CONFIG_HUGETLB_PAGE */
426 
mmu_psize_set_default_penc(void)427 static void mmu_psize_set_default_penc(void)
428 {
429 	int bpsize, apsize;
430 	for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
431 		for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
432 			mmu_psize_defs[bpsize].penc[apsize] = -1;
433 }
434 
htab_init_page_sizes(void)435 static void __init htab_init_page_sizes(void)
436 {
437 	int rc;
438 
439 	/* se the invalid penc to -1 */
440 	mmu_psize_set_default_penc();
441 
442 	/* Default to 4K pages only */
443 	memcpy(mmu_psize_defs, mmu_psize_defaults_old,
444 	       sizeof(mmu_psize_defaults_old));
445 
446 	/*
447 	 * Try to find the available page sizes in the device-tree
448 	 */
449 	rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
450 	if (rc != 0)  /* Found */
451 		goto found;
452 
453 	/*
454 	 * Not in the device-tree, let's fallback on known size
455 	 * list for 16M capable GP & GR
456 	 */
457 	if (mmu_has_feature(MMU_FTR_16M_PAGE))
458 		memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
459 		       sizeof(mmu_psize_defaults_gp));
460  found:
461 #ifndef CONFIG_DEBUG_PAGEALLOC
462 	/*
463 	 * Pick a size for the linear mapping. Currently, we only support
464 	 * 16M, 1M and 4K which is the default
465 	 */
466 	if (mmu_psize_defs[MMU_PAGE_16M].shift)
467 		mmu_linear_psize = MMU_PAGE_16M;
468 	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
469 		mmu_linear_psize = MMU_PAGE_1M;
470 #endif /* CONFIG_DEBUG_PAGEALLOC */
471 
472 #ifdef CONFIG_PPC_64K_PAGES
473 	/*
474 	 * Pick a size for the ordinary pages. Default is 4K, we support
475 	 * 64K for user mappings and vmalloc if supported by the processor.
476 	 * We only use 64k for ioremap if the processor
477 	 * (and firmware) support cache-inhibited large pages.
478 	 * If not, we use 4k and set mmu_ci_restrictions so that
479 	 * hash_page knows to switch processes that use cache-inhibited
480 	 * mappings to 4k pages.
481 	 */
482 	if (mmu_psize_defs[MMU_PAGE_64K].shift) {
483 		mmu_virtual_psize = MMU_PAGE_64K;
484 		mmu_vmalloc_psize = MMU_PAGE_64K;
485 		if (mmu_linear_psize == MMU_PAGE_4K)
486 			mmu_linear_psize = MMU_PAGE_64K;
487 		if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
488 			/*
489 			 * Don't use 64k pages for ioremap on pSeries, since
490 			 * that would stop us accessing the HEA ethernet.
491 			 */
492 			if (!machine_is(pseries))
493 				mmu_io_psize = MMU_PAGE_64K;
494 		} else
495 			mmu_ci_restrictions = 1;
496 	}
497 #endif /* CONFIG_PPC_64K_PAGES */
498 
499 #ifdef CONFIG_SPARSEMEM_VMEMMAP
500 	/* We try to use 16M pages for vmemmap if that is supported
501 	 * and we have at least 1G of RAM at boot
502 	 */
503 	if (mmu_psize_defs[MMU_PAGE_16M].shift &&
504 	    memblock_phys_mem_size() >= 0x40000000)
505 		mmu_vmemmap_psize = MMU_PAGE_16M;
506 	else if (mmu_psize_defs[MMU_PAGE_64K].shift)
507 		mmu_vmemmap_psize = MMU_PAGE_64K;
508 	else
509 		mmu_vmemmap_psize = MMU_PAGE_4K;
510 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
511 
512 	printk(KERN_DEBUG "Page orders: linear mapping = %d, "
513 	       "virtual = %d, io = %d"
514 #ifdef CONFIG_SPARSEMEM_VMEMMAP
515 	       ", vmemmap = %d"
516 #endif
517 	       "\n",
518 	       mmu_psize_defs[mmu_linear_psize].shift,
519 	       mmu_psize_defs[mmu_virtual_psize].shift,
520 	       mmu_psize_defs[mmu_io_psize].shift
521 #ifdef CONFIG_SPARSEMEM_VMEMMAP
522 	       ,mmu_psize_defs[mmu_vmemmap_psize].shift
523 #endif
524 	       );
525 
526 #ifdef CONFIG_HUGETLB_PAGE
527 	/* Reserve 16G huge page memory sections for huge pages */
528 	of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
529 #endif /* CONFIG_HUGETLB_PAGE */
530 }
531 
htab_dt_scan_pftsize(unsigned long node,const char * uname,int depth,void * data)532 static int __init htab_dt_scan_pftsize(unsigned long node,
533 				       const char *uname, int depth,
534 				       void *data)
535 {
536 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
537 	u32 *prop;
538 
539 	/* We are scanning "cpu" nodes only */
540 	if (type == NULL || strcmp(type, "cpu") != 0)
541 		return 0;
542 
543 	prop = (u32 *)of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
544 	if (prop != NULL) {
545 		/* pft_size[0] is the NUMA CEC cookie */
546 		ppc64_pft_size = prop[1];
547 		return 1;
548 	}
549 	return 0;
550 }
551 
htab_get_table_size(void)552 static unsigned long __init htab_get_table_size(void)
553 {
554 	unsigned long mem_size, rnd_mem_size, pteg_count, psize;
555 
556 	/* If hash size isn't already provided by the platform, we try to
557 	 * retrieve it from the device-tree. If it's not there neither, we
558 	 * calculate it now based on the total RAM size
559 	 */
560 	if (ppc64_pft_size == 0)
561 		of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
562 	if (ppc64_pft_size)
563 		return 1UL << ppc64_pft_size;
564 
565 	/* round mem_size up to next power of 2 */
566 	mem_size = memblock_phys_mem_size();
567 	rnd_mem_size = 1UL << __ilog2(mem_size);
568 	if (rnd_mem_size < mem_size)
569 		rnd_mem_size <<= 1;
570 
571 	/* # pages / 2 */
572 	psize = mmu_psize_defs[mmu_virtual_psize].shift;
573 	pteg_count = max(rnd_mem_size >> (psize + 1), 1UL << 11);
574 
575 	return pteg_count << 7;
576 }
577 
578 #ifdef CONFIG_MEMORY_HOTPLUG
create_section_mapping(unsigned long start,unsigned long end)579 int create_section_mapping(unsigned long start, unsigned long end)
580 {
581 	return htab_bolt_mapping(start, end, __pa(start),
582 				 pgprot_val(PAGE_KERNEL), mmu_linear_psize,
583 				 mmu_kernel_ssize);
584 }
585 
remove_section_mapping(unsigned long start,unsigned long end)586 int remove_section_mapping(unsigned long start, unsigned long end)
587 {
588 	return htab_remove_mapping(start, end, mmu_linear_psize,
589 			mmu_kernel_ssize);
590 }
591 #endif /* CONFIG_MEMORY_HOTPLUG */
592 
593 #define FUNCTION_TEXT(A)	((*(unsigned long *)(A)))
594 
htab_finish_init(void)595 static void __init htab_finish_init(void)
596 {
597 	extern unsigned int *htab_call_hpte_insert1;
598 	extern unsigned int *htab_call_hpte_insert2;
599 	extern unsigned int *htab_call_hpte_remove;
600 	extern unsigned int *htab_call_hpte_updatepp;
601 
602 #ifdef CONFIG_PPC_HAS_HASH_64K
603 	extern unsigned int *ht64_call_hpte_insert1;
604 	extern unsigned int *ht64_call_hpte_insert2;
605 	extern unsigned int *ht64_call_hpte_remove;
606 	extern unsigned int *ht64_call_hpte_updatepp;
607 
608 	patch_branch(ht64_call_hpte_insert1,
609 		FUNCTION_TEXT(ppc_md.hpte_insert),
610 		BRANCH_SET_LINK);
611 	patch_branch(ht64_call_hpte_insert2,
612 		FUNCTION_TEXT(ppc_md.hpte_insert),
613 		BRANCH_SET_LINK);
614 	patch_branch(ht64_call_hpte_remove,
615 		FUNCTION_TEXT(ppc_md.hpte_remove),
616 		BRANCH_SET_LINK);
617 	patch_branch(ht64_call_hpte_updatepp,
618 		FUNCTION_TEXT(ppc_md.hpte_updatepp),
619 		BRANCH_SET_LINK);
620 
621 #endif /* CONFIG_PPC_HAS_HASH_64K */
622 
623 	patch_branch(htab_call_hpte_insert1,
624 		FUNCTION_TEXT(ppc_md.hpte_insert),
625 		BRANCH_SET_LINK);
626 	patch_branch(htab_call_hpte_insert2,
627 		FUNCTION_TEXT(ppc_md.hpte_insert),
628 		BRANCH_SET_LINK);
629 	patch_branch(htab_call_hpte_remove,
630 		FUNCTION_TEXT(ppc_md.hpte_remove),
631 		BRANCH_SET_LINK);
632 	patch_branch(htab_call_hpte_updatepp,
633 		FUNCTION_TEXT(ppc_md.hpte_updatepp),
634 		BRANCH_SET_LINK);
635 }
636 
htab_initialize(void)637 static void __init htab_initialize(void)
638 {
639 	unsigned long table;
640 	unsigned long pteg_count;
641 	unsigned long prot;
642 	unsigned long base = 0, size = 0, limit;
643 	struct memblock_region *reg;
644 
645 	DBG(" -> htab_initialize()\n");
646 
647 	/* Initialize segment sizes */
648 	htab_init_seg_sizes();
649 
650 	/* Initialize page sizes */
651 	htab_init_page_sizes();
652 
653 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
654 		mmu_kernel_ssize = MMU_SEGSIZE_1T;
655 		mmu_highuser_ssize = MMU_SEGSIZE_1T;
656 		printk(KERN_INFO "Using 1TB segments\n");
657 	}
658 
659 	/*
660 	 * Calculate the required size of the htab.  We want the number of
661 	 * PTEGs to equal one half the number of real pages.
662 	 */
663 	htab_size_bytes = htab_get_table_size();
664 	pteg_count = htab_size_bytes >> 7;
665 
666 	htab_hash_mask = pteg_count - 1;
667 
668 	if (firmware_has_feature(FW_FEATURE_LPAR)) {
669 		/* Using a hypervisor which owns the htab */
670 		htab_address = NULL;
671 		_SDR1 = 0;
672 #ifdef CONFIG_FA_DUMP
673 		/*
674 		 * If firmware assisted dump is active firmware preserves
675 		 * the contents of htab along with entire partition memory.
676 		 * Clear the htab if firmware assisted dump is active so
677 		 * that we dont end up using old mappings.
678 		 */
679 		if (is_fadump_active() && ppc_md.hpte_clear_all)
680 			ppc_md.hpte_clear_all();
681 #endif
682 	} else {
683 		/* Find storage for the HPT.  Must be contiguous in
684 		 * the absolute address space. On cell we want it to be
685 		 * in the first 2 Gig so we can use it for IOMMU hacks.
686 		 */
687 		if (machine_is(cell))
688 			limit = 0x80000000;
689 		else
690 			limit = MEMBLOCK_ALLOC_ANYWHERE;
691 
692 		table = memblock_alloc_base(htab_size_bytes, htab_size_bytes, limit);
693 
694 		DBG("Hash table allocated at %lx, size: %lx\n", table,
695 		    htab_size_bytes);
696 
697 		htab_address = __va(table);
698 
699 		/* htab absolute addr + encoded htabsize */
700 		_SDR1 = table + __ilog2(pteg_count) - 11;
701 
702 		/* Initialize the HPT with no entries */
703 		memset((void *)table, 0, htab_size_bytes);
704 
705 		/* Set SDR1 */
706 		mtspr(SPRN_SDR1, _SDR1);
707 	}
708 
709 	prot = pgprot_val(PAGE_KERNEL);
710 
711 #ifdef CONFIG_DEBUG_PAGEALLOC
712 	linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
713 	linear_map_hash_slots = __va(memblock_alloc_base(linear_map_hash_count,
714 						    1, ppc64_rma_size));
715 	memset(linear_map_hash_slots, 0, linear_map_hash_count);
716 #endif /* CONFIG_DEBUG_PAGEALLOC */
717 
718 	/* On U3 based machines, we need to reserve the DART area and
719 	 * _NOT_ map it to avoid cache paradoxes as it's remapped non
720 	 * cacheable later on
721 	 */
722 
723 	/* create bolted the linear mapping in the hash table */
724 	for_each_memblock(memory, reg) {
725 		base = (unsigned long)__va(reg->base);
726 		size = reg->size;
727 
728 		DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
729 		    base, size, prot);
730 
731 #ifdef CONFIG_U3_DART
732 		/* Do not map the DART space. Fortunately, it will be aligned
733 		 * in such a way that it will not cross two memblock regions and
734 		 * will fit within a single 16Mb page.
735 		 * The DART space is assumed to be a full 16Mb region even if
736 		 * we only use 2Mb of that space. We will use more of it later
737 		 * for AGP GART. We have to use a full 16Mb large page.
738 		 */
739 		DBG("DART base: %lx\n", dart_tablebase);
740 
741 		if (dart_tablebase != 0 && dart_tablebase >= base
742 		    && dart_tablebase < (base + size)) {
743 			unsigned long dart_table_end = dart_tablebase + 16 * MB;
744 			if (base != dart_tablebase)
745 				BUG_ON(htab_bolt_mapping(base, dart_tablebase,
746 							__pa(base), prot,
747 							mmu_linear_psize,
748 							mmu_kernel_ssize));
749 			if ((base + size) > dart_table_end)
750 				BUG_ON(htab_bolt_mapping(dart_tablebase+16*MB,
751 							base + size,
752 							__pa(dart_table_end),
753 							 prot,
754 							 mmu_linear_psize,
755 							 mmu_kernel_ssize));
756 			continue;
757 		}
758 #endif /* CONFIG_U3_DART */
759 		BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
760 				prot, mmu_linear_psize, mmu_kernel_ssize));
761 	}
762 	memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
763 
764 	/*
765 	 * If we have a memory_limit and we've allocated TCEs then we need to
766 	 * explicitly map the TCE area at the top of RAM. We also cope with the
767 	 * case that the TCEs start below memory_limit.
768 	 * tce_alloc_start/end are 16MB aligned so the mapping should work
769 	 * for either 4K or 16MB pages.
770 	 */
771 	if (tce_alloc_start) {
772 		tce_alloc_start = (unsigned long)__va(tce_alloc_start);
773 		tce_alloc_end = (unsigned long)__va(tce_alloc_end);
774 
775 		if (base + size >= tce_alloc_start)
776 			tce_alloc_start = base + size + 1;
777 
778 		BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
779 					 __pa(tce_alloc_start), prot,
780 					 mmu_linear_psize, mmu_kernel_ssize));
781 	}
782 
783 	htab_finish_init();
784 
785 	DBG(" <- htab_initialize()\n");
786 }
787 #undef KB
788 #undef MB
789 
early_init_mmu(void)790 void __init early_init_mmu(void)
791 {
792 	/* Setup initial STAB address in the PACA */
793 	get_paca()->stab_real = __pa((u64)&initial_stab);
794 	get_paca()->stab_addr = (u64)&initial_stab;
795 
796 	/* Initialize the MMU Hash table and create the linear mapping
797 	 * of memory. Has to be done before stab/slb initialization as
798 	 * this is currently where the page size encoding is obtained
799 	 */
800 	htab_initialize();
801 
802 	/* Initialize stab / SLB management */
803 	if (mmu_has_feature(MMU_FTR_SLB))
804 		slb_initialize();
805 	else
806 		stab_initialize(get_paca()->stab_real);
807 }
808 
809 #ifdef CONFIG_SMP
early_init_mmu_secondary(void)810 void __cpuinit early_init_mmu_secondary(void)
811 {
812 	/* Initialize hash table for that CPU */
813 	if (!firmware_has_feature(FW_FEATURE_LPAR))
814 		mtspr(SPRN_SDR1, _SDR1);
815 
816 	/* Initialize STAB/SLB. We use a virtual address as it works
817 	 * in real mode on pSeries.
818 	 */
819 	if (mmu_has_feature(MMU_FTR_SLB))
820 		slb_initialize();
821 	else
822 		stab_initialize(get_paca()->stab_addr);
823 }
824 #endif /* CONFIG_SMP */
825 
826 /*
827  * Called by asm hashtable.S for doing lazy icache flush
828  */
hash_page_do_lazy_icache(unsigned int pp,pte_t pte,int trap)829 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
830 {
831 	struct page *page;
832 
833 	if (!pfn_valid(pte_pfn(pte)))
834 		return pp;
835 
836 	page = pte_page(pte);
837 
838 	/* page is dirty */
839 	if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
840 		if (trap == 0x400) {
841 			flush_dcache_icache_page(page);
842 			set_bit(PG_arch_1, &page->flags);
843 		} else
844 			pp |= HPTE_R_N;
845 	}
846 	return pp;
847 }
848 
849 #ifdef CONFIG_PPC_MM_SLICES
get_paca_psize(unsigned long addr)850 unsigned int get_paca_psize(unsigned long addr)
851 {
852 	u64 lpsizes;
853 	unsigned char *hpsizes;
854 	unsigned long index, mask_index;
855 
856 	if (addr < SLICE_LOW_TOP) {
857 		lpsizes = get_paca()->context.low_slices_psize;
858 		index = GET_LOW_SLICE_INDEX(addr);
859 		return (lpsizes >> (index * 4)) & 0xF;
860 	}
861 	hpsizes = get_paca()->context.high_slices_psize;
862 	index = GET_HIGH_SLICE_INDEX(addr);
863 	mask_index = index & 0x1;
864 	return (hpsizes[index >> 1] >> (mask_index * 4)) & 0xF;
865 }
866 
867 #else
get_paca_psize(unsigned long addr)868 unsigned int get_paca_psize(unsigned long addr)
869 {
870 	return get_paca()->context.user_psize;
871 }
872 #endif
873 
874 /*
875  * Demote a segment to using 4k pages.
876  * For now this makes the whole process use 4k pages.
877  */
878 #ifdef CONFIG_PPC_64K_PAGES
demote_segment_4k(struct mm_struct * mm,unsigned long addr)879 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
880 {
881 	if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
882 		return;
883 	slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
884 #ifdef CONFIG_SPU_BASE
885 	spu_flush_all_slbs(mm);
886 #endif
887 	if (get_paca_psize(addr) != MMU_PAGE_4K) {
888 		get_paca()->context = mm->context;
889 		slb_flush_and_rebolt();
890 	}
891 }
892 #endif /* CONFIG_PPC_64K_PAGES */
893 
894 #ifdef CONFIG_PPC_SUBPAGE_PROT
895 /*
896  * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
897  * Userspace sets the subpage permissions using the subpage_prot system call.
898  *
899  * Result is 0: full permissions, _PAGE_RW: read-only,
900  * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access.
901  */
subpage_protection(struct mm_struct * mm,unsigned long ea)902 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
903 {
904 	struct subpage_prot_table *spt = &mm->context.spt;
905 	u32 spp = 0;
906 	u32 **sbpm, *sbpp;
907 
908 	if (ea >= spt->maxaddr)
909 		return 0;
910 	if (ea < 0x100000000) {
911 		/* addresses below 4GB use spt->low_prot */
912 		sbpm = spt->low_prot;
913 	} else {
914 		sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
915 		if (!sbpm)
916 			return 0;
917 	}
918 	sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
919 	if (!sbpp)
920 		return 0;
921 	spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
922 
923 	/* extract 2-bit bitfield for this 4k subpage */
924 	spp >>= 30 - 2 * ((ea >> 12) & 0xf);
925 
926 	/* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */
927 	spp = ((spp & 2) ? _PAGE_USER : 0) | ((spp & 1) ? _PAGE_RW : 0);
928 	return spp;
929 }
930 
931 #else /* CONFIG_PPC_SUBPAGE_PROT */
subpage_protection(struct mm_struct * mm,unsigned long ea)932 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
933 {
934 	return 0;
935 }
936 #endif
937 
hash_failure_debug(unsigned long ea,unsigned long access,unsigned long vsid,unsigned long trap,int ssize,int psize,int lpsize,unsigned long pte)938 void hash_failure_debug(unsigned long ea, unsigned long access,
939 			unsigned long vsid, unsigned long trap,
940 			int ssize, int psize, int lpsize, unsigned long pte)
941 {
942 	if (!printk_ratelimit())
943 		return;
944 	pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
945 		ea, access, current->comm);
946 	pr_info("    trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
947 		trap, vsid, ssize, psize, lpsize, pte);
948 }
949 
950 /* Result code is:
951  *  0 - handled
952  *  1 - normal page fault
953  * -1 - critical hash insertion error
954  * -2 - access not permitted by subpage protection mechanism
955  */
hash_page(unsigned long ea,unsigned long access,unsigned long trap)956 int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
957 {
958 	enum ctx_state prev_state = exception_enter();
959 	pgd_t *pgdir;
960 	unsigned long vsid;
961 	struct mm_struct *mm;
962 	pte_t *ptep;
963 	unsigned hugeshift;
964 	const struct cpumask *tmp;
965 	int rc, user_region = 0, local = 0;
966 	int psize, ssize;
967 
968 	DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
969 		ea, access, trap);
970 
971 	/* Get region & vsid */
972  	switch (REGION_ID(ea)) {
973 	case USER_REGION_ID:
974 		user_region = 1;
975 		mm = current->mm;
976 		if (! mm) {
977 			DBG_LOW(" user region with no mm !\n");
978 			rc = 1;
979 			goto bail;
980 		}
981 		psize = get_slice_psize(mm, ea);
982 		ssize = user_segment_size(ea);
983 		vsid = get_vsid(mm->context.id, ea, ssize);
984 		break;
985 	case VMALLOC_REGION_ID:
986 		mm = &init_mm;
987 		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
988 		if (ea < VMALLOC_END)
989 			psize = mmu_vmalloc_psize;
990 		else
991 			psize = mmu_io_psize;
992 		ssize = mmu_kernel_ssize;
993 		break;
994 	default:
995 		/* Not a valid range
996 		 * Send the problem up to do_page_fault
997 		 */
998 		rc = 1;
999 		goto bail;
1000 	}
1001 	DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1002 
1003 	/* Bad address. */
1004 	if (!vsid) {
1005 		DBG_LOW("Bad address!\n");
1006 		rc = 1;
1007 		goto bail;
1008 	}
1009 	/* Get pgdir */
1010 	pgdir = mm->pgd;
1011 	if (pgdir == NULL) {
1012 		rc = 1;
1013 		goto bail;
1014 	}
1015 
1016 	/* Check CPU locality */
1017 	tmp = cpumask_of(smp_processor_id());
1018 	if (user_region && cpumask_equal(mm_cpumask(mm), tmp))
1019 		local = 1;
1020 
1021 #ifndef CONFIG_PPC_64K_PAGES
1022 	/* If we use 4K pages and our psize is not 4K, then we might
1023 	 * be hitting a special driver mapping, and need to align the
1024 	 * address before we fetch the PTE.
1025 	 *
1026 	 * It could also be a hugepage mapping, in which case this is
1027 	 * not necessary, but it's not harmful, either.
1028 	 */
1029 	if (psize != MMU_PAGE_4K)
1030 		ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1031 #endif /* CONFIG_PPC_64K_PAGES */
1032 
1033 	/* Get PTE and page size from page tables */
1034 	ptep = find_linux_pte_or_hugepte(pgdir, ea, &hugeshift);
1035 	if (ptep == NULL || !pte_present(*ptep)) {
1036 		DBG_LOW(" no PTE !\n");
1037 		rc = 1;
1038 		goto bail;
1039 	}
1040 
1041 	/* Add _PAGE_PRESENT to the required access perm */
1042 	access |= _PAGE_PRESENT;
1043 
1044 	/* Pre-check access permissions (will be re-checked atomically
1045 	 * in __hash_page_XX but this pre-check is a fast path
1046 	 */
1047 	if (access & ~pte_val(*ptep)) {
1048 		DBG_LOW(" no access !\n");
1049 		rc = 1;
1050 		goto bail;
1051 	}
1052 
1053 #ifdef CONFIG_HUGETLB_PAGE
1054 	if (hugeshift) {
1055 		rc = __hash_page_huge(ea, access, vsid, ptep, trap, local,
1056 					ssize, hugeshift, psize);
1057 		goto bail;
1058 	}
1059 #endif /* CONFIG_HUGETLB_PAGE */
1060 
1061 #ifndef CONFIG_PPC_64K_PAGES
1062 	DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1063 #else
1064 	DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1065 		pte_val(*(ptep + PTRS_PER_PTE)));
1066 #endif
1067 	/* Do actual hashing */
1068 #ifdef CONFIG_PPC_64K_PAGES
1069 	/* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
1070 	if ((pte_val(*ptep) & _PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1071 		demote_segment_4k(mm, ea);
1072 		psize = MMU_PAGE_4K;
1073 	}
1074 
1075 	/* If this PTE is non-cacheable and we have restrictions on
1076 	 * using non cacheable large pages, then we switch to 4k
1077 	 */
1078 	if (mmu_ci_restrictions && psize == MMU_PAGE_64K &&
1079 	    (pte_val(*ptep) & _PAGE_NO_CACHE)) {
1080 		if (user_region) {
1081 			demote_segment_4k(mm, ea);
1082 			psize = MMU_PAGE_4K;
1083 		} else if (ea < VMALLOC_END) {
1084 			/*
1085 			 * some driver did a non-cacheable mapping
1086 			 * in vmalloc space, so switch vmalloc
1087 			 * to 4k pages
1088 			 */
1089 			printk(KERN_ALERT "Reducing vmalloc segment "
1090 			       "to 4kB pages because of "
1091 			       "non-cacheable mapping\n");
1092 			psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1093 #ifdef CONFIG_SPU_BASE
1094 			spu_flush_all_slbs(mm);
1095 #endif
1096 		}
1097 	}
1098 	if (user_region) {
1099 		if (psize != get_paca_psize(ea)) {
1100 			get_paca()->context = mm->context;
1101 			slb_flush_and_rebolt();
1102 		}
1103 	} else if (get_paca()->vmalloc_sllp !=
1104 		   mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1105 		get_paca()->vmalloc_sllp =
1106 			mmu_psize_defs[mmu_vmalloc_psize].sllp;
1107 		slb_vmalloc_update();
1108 	}
1109 #endif /* CONFIG_PPC_64K_PAGES */
1110 
1111 #ifdef CONFIG_PPC_HAS_HASH_64K
1112 	if (psize == MMU_PAGE_64K)
1113 		rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1114 	else
1115 #endif /* CONFIG_PPC_HAS_HASH_64K */
1116 	{
1117 		int spp = subpage_protection(mm, ea);
1118 		if (access & spp)
1119 			rc = -2;
1120 		else
1121 			rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1122 					    local, ssize, spp);
1123 	}
1124 
1125 	/* Dump some info in case of hash insertion failure, they should
1126 	 * never happen so it is really useful to know if/when they do
1127 	 */
1128 	if (rc == -1)
1129 		hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1130 				   psize, pte_val(*ptep));
1131 #ifndef CONFIG_PPC_64K_PAGES
1132 	DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1133 #else
1134 	DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1135 		pte_val(*(ptep + PTRS_PER_PTE)));
1136 #endif
1137 	DBG_LOW(" -> rc=%d\n", rc);
1138 
1139 bail:
1140 	exception_exit(prev_state);
1141 	return rc;
1142 }
1143 EXPORT_SYMBOL_GPL(hash_page);
1144 
hash_preload(struct mm_struct * mm,unsigned long ea,unsigned long access,unsigned long trap)1145 void hash_preload(struct mm_struct *mm, unsigned long ea,
1146 		  unsigned long access, unsigned long trap)
1147 {
1148 	unsigned long vsid;
1149 	pgd_t *pgdir;
1150 	pte_t *ptep;
1151 	unsigned long flags;
1152 	int rc, ssize, local = 0;
1153 
1154 	BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1155 
1156 #ifdef CONFIG_PPC_MM_SLICES
1157 	/* We only prefault standard pages for now */
1158 	if (unlikely(get_slice_psize(mm, ea) != mm->context.user_psize))
1159 		return;
1160 #endif
1161 
1162 	DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1163 		" trap=%lx\n", mm, mm->pgd, ea, access, trap);
1164 
1165 	/* Get Linux PTE if available */
1166 	pgdir = mm->pgd;
1167 	if (pgdir == NULL)
1168 		return;
1169 	ptep = find_linux_pte(pgdir, ea);
1170 	if (!ptep)
1171 		return;
1172 
1173 #ifdef CONFIG_PPC_64K_PAGES
1174 	/* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
1175 	 * a 64K kernel), then we don't preload, hash_page() will take
1176 	 * care of it once we actually try to access the page.
1177 	 * That way we don't have to duplicate all of the logic for segment
1178 	 * page size demotion here
1179 	 */
1180 	if (pte_val(*ptep) & (_PAGE_4K_PFN | _PAGE_NO_CACHE))
1181 		return;
1182 #endif /* CONFIG_PPC_64K_PAGES */
1183 
1184 	/* Get VSID */
1185 	ssize = user_segment_size(ea);
1186 	vsid = get_vsid(mm->context.id, ea, ssize);
1187 	if (!vsid)
1188 		return;
1189 
1190 	/* Hash doesn't like irqs */
1191 	local_irq_save(flags);
1192 
1193 	/* Is that local to this CPU ? */
1194 	if (cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1195 		local = 1;
1196 
1197 	/* Hash it in */
1198 #ifdef CONFIG_PPC_HAS_HASH_64K
1199 	if (mm->context.user_psize == MMU_PAGE_64K)
1200 		rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1201 	else
1202 #endif /* CONFIG_PPC_HAS_HASH_64K */
1203 		rc = __hash_page_4K(ea, access, vsid, ptep, trap, local, ssize,
1204 				    subpage_protection(mm, ea));
1205 
1206 	/* Dump some info in case of hash insertion failure, they should
1207 	 * never happen so it is really useful to know if/when they do
1208 	 */
1209 	if (rc == -1)
1210 		hash_failure_debug(ea, access, vsid, trap, ssize,
1211 				   mm->context.user_psize,
1212 				   mm->context.user_psize,
1213 				   pte_val(*ptep));
1214 
1215 	local_irq_restore(flags);
1216 }
1217 
1218 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1219  *          do not forget to update the assembly call site !
1220  */
flush_hash_page(unsigned long vpn,real_pte_t pte,int psize,int ssize,int local)1221 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1222 		     int local)
1223 {
1224 	unsigned long hash, index, shift, hidx, slot;
1225 
1226 	DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1227 	pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1228 		hash = hpt_hash(vpn, shift, ssize);
1229 		hidx = __rpte_to_hidx(pte, index);
1230 		if (hidx & _PTEIDX_SECONDARY)
1231 			hash = ~hash;
1232 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1233 		slot += hidx & _PTEIDX_GROUP_IX;
1234 		DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index, slot, hidx);
1235 		ppc_md.hpte_invalidate(slot, vpn, psize, ssize, local);
1236 	} pte_iterate_hashed_end();
1237 
1238 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1239 	/* Transactions are not aborted by tlbiel, only tlbie.
1240 	 * Without, syncing a page back to a block device w/ PIO could pick up
1241 	 * transactional data (bad!) so we force an abort here.  Before the
1242 	 * sync the page will be made read-only, which will flush_hash_page.
1243 	 * BIG ISSUE here: if the kernel uses a page from userspace without
1244 	 * unmapping it first, it may see the speculated version.
1245 	 */
1246 	if (local && cpu_has_feature(CPU_FTR_TM) &&
1247 	    current->thread.regs &&
1248 	    MSR_TM_ACTIVE(current->thread.regs->msr)) {
1249 		tm_enable();
1250 		tm_abort(TM_CAUSE_TLBI);
1251 	}
1252 #endif
1253 }
1254 
flush_hash_range(unsigned long number,int local)1255 void flush_hash_range(unsigned long number, int local)
1256 {
1257 	if (ppc_md.flush_hash_range)
1258 		ppc_md.flush_hash_range(number, local);
1259 	else {
1260 		int i;
1261 		struct ppc64_tlb_batch *batch =
1262 			&__get_cpu_var(ppc64_tlb_batch);
1263 
1264 		for (i = 0; i < number; i++)
1265 			flush_hash_page(batch->vpn[i], batch->pte[i],
1266 					batch->psize, batch->ssize, local);
1267 	}
1268 }
1269 
1270 /*
1271  * low_hash_fault is called when we the low level hash code failed
1272  * to instert a PTE due to an hypervisor error
1273  */
low_hash_fault(struct pt_regs * regs,unsigned long address,int rc)1274 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1275 {
1276 	enum ctx_state prev_state = exception_enter();
1277 
1278 	if (user_mode(regs)) {
1279 #ifdef CONFIG_PPC_SUBPAGE_PROT
1280 		if (rc == -2)
1281 			_exception(SIGSEGV, regs, SEGV_ACCERR, address);
1282 		else
1283 #endif
1284 			_exception(SIGBUS, regs, BUS_ADRERR, address);
1285 	} else
1286 		bad_page_fault(regs, address, SIGBUS);
1287 
1288 	exception_exit(prev_state);
1289 }
1290 
hpte_insert_repeating(unsigned long hash,unsigned long vpn,unsigned long pa,unsigned long rflags,unsigned long vflags,int psize,int ssize)1291 long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
1292 			   unsigned long pa, unsigned long rflags,
1293 			   unsigned long vflags, int psize, int ssize)
1294 {
1295 	unsigned long hpte_group;
1296 	long slot;
1297 
1298 repeat:
1299 	hpte_group = ((hash & htab_hash_mask) *
1300 		       HPTES_PER_GROUP) & ~0x7UL;
1301 
1302 	/* Insert into the hash table, primary slot */
1303 	slot = ppc_md.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
1304 				  psize, psize, ssize);
1305 
1306 	/* Primary is full, try the secondary */
1307 	if (unlikely(slot == -1)) {
1308 		hpte_group = ((~hash & htab_hash_mask) *
1309 			      HPTES_PER_GROUP) & ~0x7UL;
1310 		slot = ppc_md.hpte_insert(hpte_group, vpn, pa, rflags,
1311 					  vflags | HPTE_V_SECONDARY,
1312 					  psize, psize, ssize);
1313 		if (slot == -1) {
1314 			if (mftb() & 0x1)
1315 				hpte_group = ((hash & htab_hash_mask) *
1316 					      HPTES_PER_GROUP)&~0x7UL;
1317 
1318 			ppc_md.hpte_remove(hpte_group);
1319 			goto repeat;
1320 		}
1321 	}
1322 
1323 	return slot;
1324 }
1325 
1326 #ifdef CONFIG_DEBUG_PAGEALLOC
kernel_map_linear_page(unsigned long vaddr,unsigned long lmi)1327 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1328 {
1329 	unsigned long hash;
1330 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1331 	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1332 	unsigned long mode = htab_convert_pte_flags(PAGE_KERNEL);
1333 	long ret;
1334 
1335 	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1336 
1337 	/* Don't create HPTE entries for bad address */
1338 	if (!vsid)
1339 		return;
1340 
1341 	ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
1342 				    HPTE_V_BOLTED,
1343 				    mmu_linear_psize, mmu_kernel_ssize);
1344 
1345 	BUG_ON (ret < 0);
1346 	spin_lock(&linear_map_hash_lock);
1347 	BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1348 	linear_map_hash_slots[lmi] = ret | 0x80;
1349 	spin_unlock(&linear_map_hash_lock);
1350 }
1351 
kernel_unmap_linear_page(unsigned long vaddr,unsigned long lmi)1352 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1353 {
1354 	unsigned long hash, hidx, slot;
1355 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1356 	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1357 
1358 	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1359 	spin_lock(&linear_map_hash_lock);
1360 	BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1361 	hidx = linear_map_hash_slots[lmi] & 0x7f;
1362 	linear_map_hash_slots[lmi] = 0;
1363 	spin_unlock(&linear_map_hash_lock);
1364 	if (hidx & _PTEIDX_SECONDARY)
1365 		hash = ~hash;
1366 	slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1367 	slot += hidx & _PTEIDX_GROUP_IX;
1368 	ppc_md.hpte_invalidate(slot, vpn, mmu_linear_psize, mmu_kernel_ssize, 0);
1369 }
1370 
kernel_map_pages(struct page * page,int numpages,int enable)1371 void kernel_map_pages(struct page *page, int numpages, int enable)
1372 {
1373 	unsigned long flags, vaddr, lmi;
1374 	int i;
1375 
1376 	local_irq_save(flags);
1377 	for (i = 0; i < numpages; i++, page++) {
1378 		vaddr = (unsigned long)page_address(page);
1379 		lmi = __pa(vaddr) >> PAGE_SHIFT;
1380 		if (lmi >= linear_map_hash_count)
1381 			continue;
1382 		if (enable)
1383 			kernel_map_linear_page(vaddr, lmi);
1384 		else
1385 			kernel_unmap_linear_page(vaddr, lmi);
1386 	}
1387 	local_irq_restore(flags);
1388 }
1389 #endif /* CONFIG_DEBUG_PAGEALLOC */
1390 
setup_initial_memory_limit(phys_addr_t first_memblock_base,phys_addr_t first_memblock_size)1391 void setup_initial_memory_limit(phys_addr_t first_memblock_base,
1392 				phys_addr_t first_memblock_size)
1393 {
1394 	/* We don't currently support the first MEMBLOCK not mapping 0
1395 	 * physical on those processors
1396 	 */
1397 	BUG_ON(first_memblock_base != 0);
1398 
1399 	/* On LPAR systems, the first entry is our RMA region,
1400 	 * non-LPAR 64-bit hash MMU systems don't have a limitation
1401 	 * on real mode access, but using the first entry works well
1402 	 * enough. We also clamp it to 1G to avoid some funky things
1403 	 * such as RTAS bugs etc...
1404 	 */
1405 	ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
1406 
1407 	/* Finally limit subsequent allocations */
1408 	memblock_set_current_limit(ppc64_rma_size);
1409 }
1410