1 /*
2 * This is the Fusion MPT base driver providing common API layer interface
3 * for access to MPT (Message Passing Technology) firmware.
4 *
5 * This code is based on drivers/scsi/mpt2sas/mpt2_base.c
6 * Copyright (C) 2007-2012 LSI Corporation
7 * (mailto:DL-MPTFusionLinux@lsi.com)
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version 2
12 * of the License, or (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * NO WARRANTY
20 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
21 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
22 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
23 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
24 * solely responsible for determining the appropriateness of using and
25 * distributing the Program and assumes all risks associated with its
26 * exercise of rights under this Agreement, including but not limited to
27 * the risks and costs of program errors, damage to or loss of data,
28 * programs or equipment, and unavailability or interruption of operations.
29
30 * DISCLAIMER OF LIABILITY
31 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
32 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
34 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
35 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
36 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
37 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
38
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
42 * USA.
43 */
44
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/errno.h>
48 #include <linux/init.h>
49 #include <linux/slab.h>
50 #include <linux/types.h>
51 #include <linux/pci.h>
52 #include <linux/kdev_t.h>
53 #include <linux/blkdev.h>
54 #include <linux/delay.h>
55 #include <linux/interrupt.h>
56 #include <linux/dma-mapping.h>
57 #include <linux/sort.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/kthread.h>
61 #include <linux/aer.h>
62
63 #include "mpt2sas_base.h"
64
65 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS];
66
67 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
68
69 #define MAX_HBA_QUEUE_DEPTH 30000
70 #define MAX_CHAIN_DEPTH 100000
71 static int max_queue_depth = -1;
72 module_param(max_queue_depth, int, 0);
73 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
74
75 static int max_sgl_entries = -1;
76 module_param(max_sgl_entries, int, 0);
77 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
78
79 static int msix_disable = -1;
80 module_param(msix_disable, int, 0);
81 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
82
83 static int missing_delay[2] = {-1, -1};
84 module_param_array(missing_delay, int, NULL, 0);
85 MODULE_PARM_DESC(missing_delay, " device missing delay , io missing delay");
86
87 static int mpt2sas_fwfault_debug;
88 MODULE_PARM_DESC(mpt2sas_fwfault_debug, " enable detection of firmware fault "
89 "and halt firmware - (default=0)");
90
91 static int disable_discovery = -1;
92 module_param(disable_discovery, int, 0);
93 MODULE_PARM_DESC(disable_discovery, " disable discovery ");
94
95 /**
96 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
97 *
98 */
99 static int
_scsih_set_fwfault_debug(const char * val,struct kernel_param * kp)100 _scsih_set_fwfault_debug(const char *val, struct kernel_param *kp)
101 {
102 int ret = param_set_int(val, kp);
103 struct MPT2SAS_ADAPTER *ioc;
104
105 if (ret)
106 return ret;
107
108 printk(KERN_INFO "setting fwfault_debug(%d)\n", mpt2sas_fwfault_debug);
109 list_for_each_entry(ioc, &mpt2sas_ioc_list, list)
110 ioc->fwfault_debug = mpt2sas_fwfault_debug;
111 return 0;
112 }
113
114 module_param_call(mpt2sas_fwfault_debug, _scsih_set_fwfault_debug,
115 param_get_int, &mpt2sas_fwfault_debug, 0644);
116
117 /**
118 * mpt2sas_remove_dead_ioc_func - kthread context to remove dead ioc
119 * @arg: input argument, used to derive ioc
120 *
121 * Return 0 if controller is removed from pci subsystem.
122 * Return -1 for other case.
123 */
mpt2sas_remove_dead_ioc_func(void * arg)124 static int mpt2sas_remove_dead_ioc_func(void *arg)
125 {
126 struct MPT2SAS_ADAPTER *ioc = (struct MPT2SAS_ADAPTER *)arg;
127 struct pci_dev *pdev;
128
129 if ((ioc == NULL))
130 return -1;
131
132 pdev = ioc->pdev;
133 if ((pdev == NULL))
134 return -1;
135 pci_stop_and_remove_bus_device(pdev);
136 return 0;
137 }
138
139
140 /**
141 * _base_fault_reset_work - workq handling ioc fault conditions
142 * @work: input argument, used to derive ioc
143 * Context: sleep.
144 *
145 * Return nothing.
146 */
147 static void
_base_fault_reset_work(struct work_struct * work)148 _base_fault_reset_work(struct work_struct *work)
149 {
150 struct MPT2SAS_ADAPTER *ioc =
151 container_of(work, struct MPT2SAS_ADAPTER, fault_reset_work.work);
152 unsigned long flags;
153 u32 doorbell;
154 int rc;
155 struct task_struct *p;
156
157 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
158 if (ioc->shost_recovery || ioc->pci_error_recovery)
159 goto rearm_timer;
160 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
161
162 doorbell = mpt2sas_base_get_iocstate(ioc, 0);
163 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
164 printk(MPT2SAS_INFO_FMT "%s : SAS host is non-operational !!!!\n",
165 ioc->name, __func__);
166
167 /* It may be possible that EEH recovery can resolve some of
168 * pci bus failure issues rather removing the dead ioc function
169 * by considering controller is in a non-operational state. So
170 * here priority is given to the EEH recovery. If it doesn't
171 * not resolve this issue, mpt2sas driver will consider this
172 * controller to non-operational state and remove the dead ioc
173 * function.
174 */
175 if (ioc->non_operational_loop++ < 5) {
176 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
177 flags);
178 goto rearm_timer;
179 }
180
181 /*
182 * Call _scsih_flush_pending_cmds callback so that we flush all
183 * pending commands back to OS. This call is required to aovid
184 * deadlock at block layer. Dead IOC will fail to do diag reset,
185 * and this call is safe since dead ioc will never return any
186 * command back from HW.
187 */
188 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
189 /*
190 * Set remove_host flag early since kernel thread will
191 * take some time to execute.
192 */
193 ioc->remove_host = 1;
194 /*Remove the Dead Host */
195 p = kthread_run(mpt2sas_remove_dead_ioc_func, ioc,
196 "mpt2sas_dead_ioc_%d", ioc->id);
197 if (IS_ERR(p)) {
198 printk(MPT2SAS_ERR_FMT
199 "%s: Running mpt2sas_dead_ioc thread failed !!!!\n",
200 ioc->name, __func__);
201 } else {
202 printk(MPT2SAS_ERR_FMT
203 "%s: Running mpt2sas_dead_ioc thread success !!!!\n",
204 ioc->name, __func__);
205 }
206
207 return; /* don't rearm timer */
208 }
209
210 ioc->non_operational_loop = 0;
211
212 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
213 rc = mpt2sas_base_hard_reset_handler(ioc, CAN_SLEEP,
214 FORCE_BIG_HAMMER);
215 printk(MPT2SAS_WARN_FMT "%s: hard reset: %s\n", ioc->name,
216 __func__, (rc == 0) ? "success" : "failed");
217 doorbell = mpt2sas_base_get_iocstate(ioc, 0);
218 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
219 mpt2sas_base_fault_info(ioc, doorbell &
220 MPI2_DOORBELL_DATA_MASK);
221 }
222
223 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
224 rearm_timer:
225 if (ioc->fault_reset_work_q)
226 queue_delayed_work(ioc->fault_reset_work_q,
227 &ioc->fault_reset_work,
228 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
229 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
230 }
231
232 /**
233 * mpt2sas_base_start_watchdog - start the fault_reset_work_q
234 * @ioc: per adapter object
235 * Context: sleep.
236 *
237 * Return nothing.
238 */
239 void
mpt2sas_base_start_watchdog(struct MPT2SAS_ADAPTER * ioc)240 mpt2sas_base_start_watchdog(struct MPT2SAS_ADAPTER *ioc)
241 {
242 unsigned long flags;
243
244 if (ioc->fault_reset_work_q)
245 return;
246
247 /* initialize fault polling */
248 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
249 snprintf(ioc->fault_reset_work_q_name,
250 sizeof(ioc->fault_reset_work_q_name), "poll_%d_status", ioc->id);
251 ioc->fault_reset_work_q =
252 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
253 if (!ioc->fault_reset_work_q) {
254 printk(MPT2SAS_ERR_FMT "%s: failed (line=%d)\n",
255 ioc->name, __func__, __LINE__);
256 return;
257 }
258 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
259 if (ioc->fault_reset_work_q)
260 queue_delayed_work(ioc->fault_reset_work_q,
261 &ioc->fault_reset_work,
262 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
263 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
264 }
265
266 /**
267 * mpt2sas_base_stop_watchdog - stop the fault_reset_work_q
268 * @ioc: per adapter object
269 * Context: sleep.
270 *
271 * Return nothing.
272 */
273 void
mpt2sas_base_stop_watchdog(struct MPT2SAS_ADAPTER * ioc)274 mpt2sas_base_stop_watchdog(struct MPT2SAS_ADAPTER *ioc)
275 {
276 unsigned long flags;
277 struct workqueue_struct *wq;
278
279 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
280 wq = ioc->fault_reset_work_q;
281 ioc->fault_reset_work_q = NULL;
282 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
283 if (wq) {
284 if (!cancel_delayed_work(&ioc->fault_reset_work))
285 flush_workqueue(wq);
286 destroy_workqueue(wq);
287 }
288 }
289
290 /**
291 * mpt2sas_base_fault_info - verbose translation of firmware FAULT code
292 * @ioc: per adapter object
293 * @fault_code: fault code
294 *
295 * Return nothing.
296 */
297 void
mpt2sas_base_fault_info(struct MPT2SAS_ADAPTER * ioc,u16 fault_code)298 mpt2sas_base_fault_info(struct MPT2SAS_ADAPTER *ioc , u16 fault_code)
299 {
300 printk(MPT2SAS_ERR_FMT "fault_state(0x%04x)!\n",
301 ioc->name, fault_code);
302 }
303
304 /**
305 * mpt2sas_halt_firmware - halt's mpt controller firmware
306 * @ioc: per adapter object
307 *
308 * For debugging timeout related issues. Writing 0xCOFFEE00
309 * to the doorbell register will halt controller firmware. With
310 * the purpose to stop both driver and firmware, the enduser can
311 * obtain a ring buffer from controller UART.
312 */
313 void
mpt2sas_halt_firmware(struct MPT2SAS_ADAPTER * ioc)314 mpt2sas_halt_firmware(struct MPT2SAS_ADAPTER *ioc)
315 {
316 u32 doorbell;
317
318 if (!ioc->fwfault_debug)
319 return;
320
321 dump_stack();
322
323 doorbell = readl(&ioc->chip->Doorbell);
324 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
325 mpt2sas_base_fault_info(ioc , doorbell);
326 else {
327 writel(0xC0FFEE00, &ioc->chip->Doorbell);
328 printk(MPT2SAS_ERR_FMT "Firmware is halted due to command "
329 "timeout\n", ioc->name);
330 }
331
332 panic("panic in %s\n", __func__);
333 }
334
335 #ifdef CONFIG_SCSI_MPT2SAS_LOGGING
336 /**
337 * _base_sas_ioc_info - verbose translation of the ioc status
338 * @ioc: per adapter object
339 * @mpi_reply: reply mf payload returned from firmware
340 * @request_hdr: request mf
341 *
342 * Return nothing.
343 */
344 static void
_base_sas_ioc_info(struct MPT2SAS_ADAPTER * ioc,MPI2DefaultReply_t * mpi_reply,MPI2RequestHeader_t * request_hdr)345 _base_sas_ioc_info(struct MPT2SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
346 MPI2RequestHeader_t *request_hdr)
347 {
348 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
349 MPI2_IOCSTATUS_MASK;
350 char *desc = NULL;
351 u16 frame_sz;
352 char *func_str = NULL;
353
354 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
355 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
356 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
357 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
358 return;
359
360 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
361 return;
362
363 switch (ioc_status) {
364
365 /****************************************************************************
366 * Common IOCStatus values for all replies
367 ****************************************************************************/
368
369 case MPI2_IOCSTATUS_INVALID_FUNCTION:
370 desc = "invalid function";
371 break;
372 case MPI2_IOCSTATUS_BUSY:
373 desc = "busy";
374 break;
375 case MPI2_IOCSTATUS_INVALID_SGL:
376 desc = "invalid sgl";
377 break;
378 case MPI2_IOCSTATUS_INTERNAL_ERROR:
379 desc = "internal error";
380 break;
381 case MPI2_IOCSTATUS_INVALID_VPID:
382 desc = "invalid vpid";
383 break;
384 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
385 desc = "insufficient resources";
386 break;
387 case MPI2_IOCSTATUS_INVALID_FIELD:
388 desc = "invalid field";
389 break;
390 case MPI2_IOCSTATUS_INVALID_STATE:
391 desc = "invalid state";
392 break;
393 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
394 desc = "op state not supported";
395 break;
396
397 /****************************************************************************
398 * Config IOCStatus values
399 ****************************************************************************/
400
401 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
402 desc = "config invalid action";
403 break;
404 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
405 desc = "config invalid type";
406 break;
407 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
408 desc = "config invalid page";
409 break;
410 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
411 desc = "config invalid data";
412 break;
413 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
414 desc = "config no defaults";
415 break;
416 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
417 desc = "config cant commit";
418 break;
419
420 /****************************************************************************
421 * SCSI IO Reply
422 ****************************************************************************/
423
424 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
425 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
426 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
427 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
428 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
429 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
430 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
431 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
432 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
433 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
434 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
435 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
436 break;
437
438 /****************************************************************************
439 * For use by SCSI Initiator and SCSI Target end-to-end data protection
440 ****************************************************************************/
441
442 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
443 desc = "eedp guard error";
444 break;
445 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
446 desc = "eedp ref tag error";
447 break;
448 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
449 desc = "eedp app tag error";
450 break;
451
452 /****************************************************************************
453 * SCSI Target values
454 ****************************************************************************/
455
456 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
457 desc = "target invalid io index";
458 break;
459 case MPI2_IOCSTATUS_TARGET_ABORTED:
460 desc = "target aborted";
461 break;
462 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
463 desc = "target no conn retryable";
464 break;
465 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
466 desc = "target no connection";
467 break;
468 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
469 desc = "target xfer count mismatch";
470 break;
471 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
472 desc = "target data offset error";
473 break;
474 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
475 desc = "target too much write data";
476 break;
477 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
478 desc = "target iu too short";
479 break;
480 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
481 desc = "target ack nak timeout";
482 break;
483 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
484 desc = "target nak received";
485 break;
486
487 /****************************************************************************
488 * Serial Attached SCSI values
489 ****************************************************************************/
490
491 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
492 desc = "smp request failed";
493 break;
494 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
495 desc = "smp data overrun";
496 break;
497
498 /****************************************************************************
499 * Diagnostic Buffer Post / Diagnostic Release values
500 ****************************************************************************/
501
502 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
503 desc = "diagnostic released";
504 break;
505 default:
506 break;
507 }
508
509 if (!desc)
510 return;
511
512 switch (request_hdr->Function) {
513 case MPI2_FUNCTION_CONFIG:
514 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
515 func_str = "config_page";
516 break;
517 case MPI2_FUNCTION_SCSI_TASK_MGMT:
518 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
519 func_str = "task_mgmt";
520 break;
521 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
522 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
523 func_str = "sas_iounit_ctl";
524 break;
525 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
526 frame_sz = sizeof(Mpi2SepRequest_t);
527 func_str = "enclosure";
528 break;
529 case MPI2_FUNCTION_IOC_INIT:
530 frame_sz = sizeof(Mpi2IOCInitRequest_t);
531 func_str = "ioc_init";
532 break;
533 case MPI2_FUNCTION_PORT_ENABLE:
534 frame_sz = sizeof(Mpi2PortEnableRequest_t);
535 func_str = "port_enable";
536 break;
537 case MPI2_FUNCTION_SMP_PASSTHROUGH:
538 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
539 func_str = "smp_passthru";
540 break;
541 default:
542 frame_sz = 32;
543 func_str = "unknown";
544 break;
545 }
546
547 printk(MPT2SAS_WARN_FMT "ioc_status: %s(0x%04x), request(0x%p),"
548 " (%s)\n", ioc->name, desc, ioc_status, request_hdr, func_str);
549
550 _debug_dump_mf(request_hdr, frame_sz/4);
551 }
552
553 /**
554 * _base_display_event_data - verbose translation of firmware asyn events
555 * @ioc: per adapter object
556 * @mpi_reply: reply mf payload returned from firmware
557 *
558 * Return nothing.
559 */
560 static void
_base_display_event_data(struct MPT2SAS_ADAPTER * ioc,Mpi2EventNotificationReply_t * mpi_reply)561 _base_display_event_data(struct MPT2SAS_ADAPTER *ioc,
562 Mpi2EventNotificationReply_t *mpi_reply)
563 {
564 char *desc = NULL;
565 u16 event;
566
567 if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
568 return;
569
570 event = le16_to_cpu(mpi_reply->Event);
571
572 switch (event) {
573 case MPI2_EVENT_LOG_DATA:
574 desc = "Log Data";
575 break;
576 case MPI2_EVENT_STATE_CHANGE:
577 desc = "Status Change";
578 break;
579 case MPI2_EVENT_HARD_RESET_RECEIVED:
580 desc = "Hard Reset Received";
581 break;
582 case MPI2_EVENT_EVENT_CHANGE:
583 desc = "Event Change";
584 break;
585 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
586 desc = "Device Status Change";
587 break;
588 case MPI2_EVENT_IR_OPERATION_STATUS:
589 if (!ioc->hide_ir_msg)
590 desc = "IR Operation Status";
591 break;
592 case MPI2_EVENT_SAS_DISCOVERY:
593 {
594 Mpi2EventDataSasDiscovery_t *event_data =
595 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
596 printk(MPT2SAS_INFO_FMT "Discovery: (%s)", ioc->name,
597 (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
598 "start" : "stop");
599 if (event_data->DiscoveryStatus)
600 printk("discovery_status(0x%08x)",
601 le32_to_cpu(event_data->DiscoveryStatus));
602 printk("\n");
603 return;
604 }
605 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
606 desc = "SAS Broadcast Primitive";
607 break;
608 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
609 desc = "SAS Init Device Status Change";
610 break;
611 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
612 desc = "SAS Init Table Overflow";
613 break;
614 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
615 desc = "SAS Topology Change List";
616 break;
617 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
618 desc = "SAS Enclosure Device Status Change";
619 break;
620 case MPI2_EVENT_IR_VOLUME:
621 if (!ioc->hide_ir_msg)
622 desc = "IR Volume";
623 break;
624 case MPI2_EVENT_IR_PHYSICAL_DISK:
625 if (!ioc->hide_ir_msg)
626 desc = "IR Physical Disk";
627 break;
628 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
629 if (!ioc->hide_ir_msg)
630 desc = "IR Configuration Change List";
631 break;
632 case MPI2_EVENT_LOG_ENTRY_ADDED:
633 if (!ioc->hide_ir_msg)
634 desc = "Log Entry Added";
635 break;
636 }
637
638 if (!desc)
639 return;
640
641 printk(MPT2SAS_INFO_FMT "%s\n", ioc->name, desc);
642 }
643 #endif
644
645 /**
646 * _base_sas_log_info - verbose translation of firmware log info
647 * @ioc: per adapter object
648 * @log_info: log info
649 *
650 * Return nothing.
651 */
652 static void
_base_sas_log_info(struct MPT2SAS_ADAPTER * ioc,u32 log_info)653 _base_sas_log_info(struct MPT2SAS_ADAPTER *ioc , u32 log_info)
654 {
655 union loginfo_type {
656 u32 loginfo;
657 struct {
658 u32 subcode:16;
659 u32 code:8;
660 u32 originator:4;
661 u32 bus_type:4;
662 } dw;
663 };
664 union loginfo_type sas_loginfo;
665 char *originator_str = NULL;
666
667 sas_loginfo.loginfo = log_info;
668 if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
669 return;
670
671 /* each nexus loss loginfo */
672 if (log_info == 0x31170000)
673 return;
674
675 /* eat the loginfos associated with task aborts */
676 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
677 0x31140000 || log_info == 0x31130000))
678 return;
679
680 switch (sas_loginfo.dw.originator) {
681 case 0:
682 originator_str = "IOP";
683 break;
684 case 1:
685 originator_str = "PL";
686 break;
687 case 2:
688 if (!ioc->hide_ir_msg)
689 originator_str = "IR";
690 else
691 originator_str = "WarpDrive";
692 break;
693 }
694
695 printk(MPT2SAS_WARN_FMT "log_info(0x%08x): originator(%s), "
696 "code(0x%02x), sub_code(0x%04x)\n", ioc->name, log_info,
697 originator_str, sas_loginfo.dw.code,
698 sas_loginfo.dw.subcode);
699 }
700
701 /**
702 * _base_display_reply_info -
703 * @ioc: per adapter object
704 * @smid: system request message index
705 * @msix_index: MSIX table index supplied by the OS
706 * @reply: reply message frame(lower 32bit addr)
707 *
708 * Return nothing.
709 */
710 static void
_base_display_reply_info(struct MPT2SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)711 _base_display_reply_info(struct MPT2SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
712 u32 reply)
713 {
714 MPI2DefaultReply_t *mpi_reply;
715 u16 ioc_status;
716
717 mpi_reply = mpt2sas_base_get_reply_virt_addr(ioc, reply);
718 if (unlikely(!mpi_reply)) {
719 printk(MPT2SAS_ERR_FMT "mpi_reply not valid at %s:%d/%s()!\n",
720 ioc->name, __FILE__, __LINE__, __func__);
721 return;
722 }
723 ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
724 #ifdef CONFIG_SCSI_MPT2SAS_LOGGING
725 if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
726 (ioc->logging_level & MPT_DEBUG_REPLY)) {
727 _base_sas_ioc_info(ioc , mpi_reply,
728 mpt2sas_base_get_msg_frame(ioc, smid));
729 }
730 #endif
731 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE)
732 _base_sas_log_info(ioc, le32_to_cpu(mpi_reply->IOCLogInfo));
733 }
734
735 /**
736 * mpt2sas_base_done - base internal command completion routine
737 * @ioc: per adapter object
738 * @smid: system request message index
739 * @msix_index: MSIX table index supplied by the OS
740 * @reply: reply message frame(lower 32bit addr)
741 *
742 * Return 1 meaning mf should be freed from _base_interrupt
743 * 0 means the mf is freed from this function.
744 */
745 u8
mpt2sas_base_done(struct MPT2SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)746 mpt2sas_base_done(struct MPT2SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
747 u32 reply)
748 {
749 MPI2DefaultReply_t *mpi_reply;
750
751 mpi_reply = mpt2sas_base_get_reply_virt_addr(ioc, reply);
752 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
753 return 1;
754
755 if (ioc->base_cmds.status == MPT2_CMD_NOT_USED)
756 return 1;
757
758 ioc->base_cmds.status |= MPT2_CMD_COMPLETE;
759 if (mpi_reply) {
760 ioc->base_cmds.status |= MPT2_CMD_REPLY_VALID;
761 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
762 }
763 ioc->base_cmds.status &= ~MPT2_CMD_PENDING;
764
765 complete(&ioc->base_cmds.done);
766 return 1;
767 }
768
769 /**
770 * _base_async_event - main callback handler for firmware asyn events
771 * @ioc: per adapter object
772 * @msix_index: MSIX table index supplied by the OS
773 * @reply: reply message frame(lower 32bit addr)
774 *
775 * Return 1 meaning mf should be freed from _base_interrupt
776 * 0 means the mf is freed from this function.
777 */
778 static u8
_base_async_event(struct MPT2SAS_ADAPTER * ioc,u8 msix_index,u32 reply)779 _base_async_event(struct MPT2SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
780 {
781 Mpi2EventNotificationReply_t *mpi_reply;
782 Mpi2EventAckRequest_t *ack_request;
783 u16 smid;
784
785 mpi_reply = mpt2sas_base_get_reply_virt_addr(ioc, reply);
786 if (!mpi_reply)
787 return 1;
788 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
789 return 1;
790 #ifdef CONFIG_SCSI_MPT2SAS_LOGGING
791 _base_display_event_data(ioc, mpi_reply);
792 #endif
793 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
794 goto out;
795 smid = mpt2sas_base_get_smid(ioc, ioc->base_cb_idx);
796 if (!smid) {
797 printk(MPT2SAS_ERR_FMT "%s: failed obtaining a smid\n",
798 ioc->name, __func__);
799 goto out;
800 }
801
802 ack_request = mpt2sas_base_get_msg_frame(ioc, smid);
803 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
804 ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
805 ack_request->Event = mpi_reply->Event;
806 ack_request->EventContext = mpi_reply->EventContext;
807 ack_request->VF_ID = 0; /* TODO */
808 ack_request->VP_ID = 0;
809 mpt2sas_base_put_smid_default(ioc, smid);
810
811 out:
812
813 /* scsih callback handler */
814 mpt2sas_scsih_event_callback(ioc, msix_index, reply);
815
816 /* ctl callback handler */
817 mpt2sas_ctl_event_callback(ioc, msix_index, reply);
818
819 return 1;
820 }
821
822 /**
823 * _base_get_cb_idx - obtain the callback index
824 * @ioc: per adapter object
825 * @smid: system request message index
826 *
827 * Return callback index.
828 */
829 static u8
_base_get_cb_idx(struct MPT2SAS_ADAPTER * ioc,u16 smid)830 _base_get_cb_idx(struct MPT2SAS_ADAPTER *ioc, u16 smid)
831 {
832 int i;
833 u8 cb_idx;
834
835 if (smid < ioc->hi_priority_smid) {
836 i = smid - 1;
837 cb_idx = ioc->scsi_lookup[i].cb_idx;
838 } else if (smid < ioc->internal_smid) {
839 i = smid - ioc->hi_priority_smid;
840 cb_idx = ioc->hpr_lookup[i].cb_idx;
841 } else if (smid <= ioc->hba_queue_depth) {
842 i = smid - ioc->internal_smid;
843 cb_idx = ioc->internal_lookup[i].cb_idx;
844 } else
845 cb_idx = 0xFF;
846 return cb_idx;
847 }
848
849 /**
850 * _base_mask_interrupts - disable interrupts
851 * @ioc: per adapter object
852 *
853 * Disabling ResetIRQ, Reply and Doorbell Interrupts
854 *
855 * Return nothing.
856 */
857 static void
_base_mask_interrupts(struct MPT2SAS_ADAPTER * ioc)858 _base_mask_interrupts(struct MPT2SAS_ADAPTER *ioc)
859 {
860 u32 him_register;
861
862 ioc->mask_interrupts = 1;
863 him_register = readl(&ioc->chip->HostInterruptMask);
864 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
865 writel(him_register, &ioc->chip->HostInterruptMask);
866 readl(&ioc->chip->HostInterruptMask);
867 }
868
869 /**
870 * _base_unmask_interrupts - enable interrupts
871 * @ioc: per adapter object
872 *
873 * Enabling only Reply Interrupts
874 *
875 * Return nothing.
876 */
877 static void
_base_unmask_interrupts(struct MPT2SAS_ADAPTER * ioc)878 _base_unmask_interrupts(struct MPT2SAS_ADAPTER *ioc)
879 {
880 u32 him_register;
881
882 him_register = readl(&ioc->chip->HostInterruptMask);
883 him_register &= ~MPI2_HIM_RIM;
884 writel(him_register, &ioc->chip->HostInterruptMask);
885 ioc->mask_interrupts = 0;
886 }
887
888 union reply_descriptor {
889 u64 word;
890 struct {
891 u32 low;
892 u32 high;
893 } u;
894 };
895
896 /**
897 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
898 * @irq: irq number (not used)
899 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
900 * @r: pt_regs pointer (not used)
901 *
902 * Return IRQ_HANDLE if processed, else IRQ_NONE.
903 */
904 static irqreturn_t
_base_interrupt(int irq,void * bus_id)905 _base_interrupt(int irq, void *bus_id)
906 {
907 struct adapter_reply_queue *reply_q = bus_id;
908 union reply_descriptor rd;
909 u32 completed_cmds;
910 u8 request_desript_type;
911 u16 smid;
912 u8 cb_idx;
913 u32 reply;
914 u8 msix_index = reply_q->msix_index;
915 struct MPT2SAS_ADAPTER *ioc = reply_q->ioc;
916 Mpi2ReplyDescriptorsUnion_t *rpf;
917 u8 rc;
918
919 if (ioc->mask_interrupts)
920 return IRQ_NONE;
921
922 if (!atomic_add_unless(&reply_q->busy, 1, 1))
923 return IRQ_NONE;
924
925 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
926 request_desript_type = rpf->Default.ReplyFlags
927 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
928 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
929 atomic_dec(&reply_q->busy);
930 return IRQ_NONE;
931 }
932
933 completed_cmds = 0;
934 cb_idx = 0xFF;
935 do {
936 rd.word = le64_to_cpu(rpf->Words);
937 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
938 goto out;
939 reply = 0;
940 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
941 if (request_desript_type ==
942 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
943 reply = le32_to_cpu
944 (rpf->AddressReply.ReplyFrameAddress);
945 if (reply > ioc->reply_dma_max_address ||
946 reply < ioc->reply_dma_min_address)
947 reply = 0;
948 } else if (request_desript_type ==
949 MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER)
950 goto next;
951 else if (request_desript_type ==
952 MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS)
953 goto next;
954 if (smid) {
955 cb_idx = _base_get_cb_idx(ioc, smid);
956 if ((likely(cb_idx < MPT_MAX_CALLBACKS))
957 && (likely(mpt_callbacks[cb_idx] != NULL))) {
958 rc = mpt_callbacks[cb_idx](ioc, smid,
959 msix_index, reply);
960 if (reply)
961 _base_display_reply_info(ioc, smid,
962 msix_index, reply);
963 if (rc)
964 mpt2sas_base_free_smid(ioc, smid);
965 }
966 }
967 if (!smid)
968 _base_async_event(ioc, msix_index, reply);
969
970 /* reply free queue handling */
971 if (reply) {
972 ioc->reply_free_host_index =
973 (ioc->reply_free_host_index ==
974 (ioc->reply_free_queue_depth - 1)) ?
975 0 : ioc->reply_free_host_index + 1;
976 ioc->reply_free[ioc->reply_free_host_index] =
977 cpu_to_le32(reply);
978 wmb();
979 writel(ioc->reply_free_host_index,
980 &ioc->chip->ReplyFreeHostIndex);
981 }
982
983 next:
984
985 rpf->Words = cpu_to_le64(ULLONG_MAX);
986 reply_q->reply_post_host_index =
987 (reply_q->reply_post_host_index ==
988 (ioc->reply_post_queue_depth - 1)) ? 0 :
989 reply_q->reply_post_host_index + 1;
990 request_desript_type =
991 reply_q->reply_post_free[reply_q->reply_post_host_index].
992 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
993 completed_cmds++;
994 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
995 goto out;
996 if (!reply_q->reply_post_host_index)
997 rpf = reply_q->reply_post_free;
998 else
999 rpf++;
1000 } while (1);
1001
1002 out:
1003
1004 if (!completed_cmds) {
1005 atomic_dec(&reply_q->busy);
1006 return IRQ_NONE;
1007 }
1008 wmb();
1009 if (ioc->is_warpdrive) {
1010 writel(reply_q->reply_post_host_index,
1011 ioc->reply_post_host_index[msix_index]);
1012 atomic_dec(&reply_q->busy);
1013 return IRQ_HANDLED;
1014 }
1015 writel(reply_q->reply_post_host_index | (msix_index <<
1016 MPI2_RPHI_MSIX_INDEX_SHIFT), &ioc->chip->ReplyPostHostIndex);
1017 atomic_dec(&reply_q->busy);
1018 return IRQ_HANDLED;
1019 }
1020
1021 /**
1022 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1023 * @ioc: per adapter object
1024 *
1025 */
1026 static inline int
_base_is_controller_msix_enabled(struct MPT2SAS_ADAPTER * ioc)1027 _base_is_controller_msix_enabled(struct MPT2SAS_ADAPTER *ioc)
1028 {
1029 return (ioc->facts.IOCCapabilities &
1030 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1031 }
1032
1033 /**
1034 * mpt2sas_base_flush_reply_queues - flushing the MSIX reply queues
1035 * @ioc: per adapter object
1036 * Context: ISR conext
1037 *
1038 * Called when a Task Management request has completed. We want
1039 * to flush the other reply queues so all the outstanding IO has been
1040 * completed back to OS before we process the TM completetion.
1041 *
1042 * Return nothing.
1043 */
1044 void
mpt2sas_base_flush_reply_queues(struct MPT2SAS_ADAPTER * ioc)1045 mpt2sas_base_flush_reply_queues(struct MPT2SAS_ADAPTER *ioc)
1046 {
1047 struct adapter_reply_queue *reply_q;
1048
1049 /* If MSIX capability is turned off
1050 * then multi-queues are not enabled
1051 */
1052 if (!_base_is_controller_msix_enabled(ioc))
1053 return;
1054
1055 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1056 if (ioc->shost_recovery)
1057 return;
1058 /* TMs are on msix_index == 0 */
1059 if (reply_q->msix_index == 0)
1060 continue;
1061 _base_interrupt(reply_q->vector, (void *)reply_q);
1062 }
1063 }
1064
1065 /**
1066 * mpt2sas_base_release_callback_handler - clear interrupt callback handler
1067 * @cb_idx: callback index
1068 *
1069 * Return nothing.
1070 */
1071 void
mpt2sas_base_release_callback_handler(u8 cb_idx)1072 mpt2sas_base_release_callback_handler(u8 cb_idx)
1073 {
1074 mpt_callbacks[cb_idx] = NULL;
1075 }
1076
1077 /**
1078 * mpt2sas_base_register_callback_handler - obtain index for the interrupt callback handler
1079 * @cb_func: callback function
1080 *
1081 * Returns cb_func.
1082 */
1083 u8
mpt2sas_base_register_callback_handler(MPT_CALLBACK cb_func)1084 mpt2sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1085 {
1086 u8 cb_idx;
1087
1088 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1089 if (mpt_callbacks[cb_idx] == NULL)
1090 break;
1091
1092 mpt_callbacks[cb_idx] = cb_func;
1093 return cb_idx;
1094 }
1095
1096 /**
1097 * mpt2sas_base_initialize_callback_handler - initialize the interrupt callback handler
1098 *
1099 * Return nothing.
1100 */
1101 void
mpt2sas_base_initialize_callback_handler(void)1102 mpt2sas_base_initialize_callback_handler(void)
1103 {
1104 u8 cb_idx;
1105
1106 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1107 mpt2sas_base_release_callback_handler(cb_idx);
1108 }
1109
1110 /**
1111 * mpt2sas_base_build_zero_len_sge - build zero length sg entry
1112 * @ioc: per adapter object
1113 * @paddr: virtual address for SGE
1114 *
1115 * Create a zero length scatter gather entry to insure the IOCs hardware has
1116 * something to use if the target device goes brain dead and tries
1117 * to send data even when none is asked for.
1118 *
1119 * Return nothing.
1120 */
1121 void
mpt2sas_base_build_zero_len_sge(struct MPT2SAS_ADAPTER * ioc,void * paddr)1122 mpt2sas_base_build_zero_len_sge(struct MPT2SAS_ADAPTER *ioc, void *paddr)
1123 {
1124 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1125 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1126 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1127 MPI2_SGE_FLAGS_SHIFT);
1128 ioc->base_add_sg_single(paddr, flags_length, -1);
1129 }
1130
1131 /**
1132 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1133 * @paddr: virtual address for SGE
1134 * @flags_length: SGE flags and data transfer length
1135 * @dma_addr: Physical address
1136 *
1137 * Return nothing.
1138 */
1139 static void
_base_add_sg_single_32(void * paddr,u32 flags_length,dma_addr_t dma_addr)1140 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1141 {
1142 Mpi2SGESimple32_t *sgel = paddr;
1143
1144 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1145 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1146 sgel->FlagsLength = cpu_to_le32(flags_length);
1147 sgel->Address = cpu_to_le32(dma_addr);
1148 }
1149
1150
1151 /**
1152 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1153 * @paddr: virtual address for SGE
1154 * @flags_length: SGE flags and data transfer length
1155 * @dma_addr: Physical address
1156 *
1157 * Return nothing.
1158 */
1159 static void
_base_add_sg_single_64(void * paddr,u32 flags_length,dma_addr_t dma_addr)1160 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1161 {
1162 Mpi2SGESimple64_t *sgel = paddr;
1163
1164 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1165 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1166 sgel->FlagsLength = cpu_to_le32(flags_length);
1167 sgel->Address = cpu_to_le64(dma_addr);
1168 }
1169
1170 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
1171
1172 /**
1173 * _base_config_dma_addressing - set dma addressing
1174 * @ioc: per adapter object
1175 * @pdev: PCI device struct
1176 *
1177 * Returns 0 for success, non-zero for failure.
1178 */
1179 static int
_base_config_dma_addressing(struct MPT2SAS_ADAPTER * ioc,struct pci_dev * pdev)1180 _base_config_dma_addressing(struct MPT2SAS_ADAPTER *ioc, struct pci_dev *pdev)
1181 {
1182 struct sysinfo s;
1183 char *desc = NULL;
1184
1185 if (sizeof(dma_addr_t) > 4) {
1186 const uint64_t required_mask =
1187 dma_get_required_mask(&pdev->dev);
1188 if ((required_mask > DMA_BIT_MASK(32)) && !pci_set_dma_mask(pdev,
1189 DMA_BIT_MASK(64)) && !pci_set_consistent_dma_mask(pdev,
1190 DMA_BIT_MASK(64))) {
1191 ioc->base_add_sg_single = &_base_add_sg_single_64;
1192 ioc->sge_size = sizeof(Mpi2SGESimple64_t);
1193 desc = "64";
1194 goto out;
1195 }
1196 }
1197
1198 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
1199 && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
1200 ioc->base_add_sg_single = &_base_add_sg_single_32;
1201 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
1202 desc = "32";
1203 } else
1204 return -ENODEV;
1205
1206 out:
1207 si_meminfo(&s);
1208 printk(MPT2SAS_INFO_FMT "%s BIT PCI BUS DMA ADDRESSING SUPPORTED, "
1209 "total mem (%ld kB)\n", ioc->name, desc, convert_to_kb(s.totalram));
1210
1211 return 0;
1212 }
1213
1214 /**
1215 * _base_check_enable_msix - checks MSIX capabable.
1216 * @ioc: per adapter object
1217 *
1218 * Check to see if card is capable of MSIX, and set number
1219 * of available msix vectors
1220 */
1221 static int
_base_check_enable_msix(struct MPT2SAS_ADAPTER * ioc)1222 _base_check_enable_msix(struct MPT2SAS_ADAPTER *ioc)
1223 {
1224 int base;
1225 u16 message_control;
1226
1227
1228 /* Check whether controller SAS2008 B0 controller,
1229 if it is SAS2008 B0 controller use IO-APIC instead of MSIX */
1230 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
1231 ioc->pdev->revision == 0x01) {
1232 return -EINVAL;
1233 }
1234
1235 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
1236 if (!base) {
1237 dfailprintk(ioc, printk(MPT2SAS_INFO_FMT "msix not "
1238 "supported\n", ioc->name));
1239 return -EINVAL;
1240 }
1241
1242 /* get msix vector count */
1243 /* NUMA_IO not supported for older controllers */
1244 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
1245 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
1246 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
1247 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
1248 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
1249 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
1250 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
1251 ioc->msix_vector_count = 1;
1252 else {
1253 pci_read_config_word(ioc->pdev, base + 2, &message_control);
1254 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
1255 }
1256 dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "msix is supported, "
1257 "vector_count(%d)\n", ioc->name, ioc->msix_vector_count));
1258
1259 return 0;
1260 }
1261
1262 /**
1263 * _base_free_irq - free irq
1264 * @ioc: per adapter object
1265 *
1266 * Freeing respective reply_queue from the list.
1267 */
1268 static void
_base_free_irq(struct MPT2SAS_ADAPTER * ioc)1269 _base_free_irq(struct MPT2SAS_ADAPTER *ioc)
1270 {
1271 struct adapter_reply_queue *reply_q, *next;
1272
1273 if (list_empty(&ioc->reply_queue_list))
1274 return;
1275
1276 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1277 list_del(&reply_q->list);
1278 synchronize_irq(reply_q->vector);
1279 free_irq(reply_q->vector, reply_q);
1280 kfree(reply_q);
1281 }
1282 }
1283
1284 /**
1285 * _base_request_irq - request irq
1286 * @ioc: per adapter object
1287 * @index: msix index into vector table
1288 * @vector: irq vector
1289 *
1290 * Inserting respective reply_queue into the list.
1291 */
1292 static int
_base_request_irq(struct MPT2SAS_ADAPTER * ioc,u8 index,u32 vector)1293 _base_request_irq(struct MPT2SAS_ADAPTER *ioc, u8 index, u32 vector)
1294 {
1295 struct adapter_reply_queue *reply_q;
1296 int r;
1297
1298 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
1299 if (!reply_q) {
1300 printk(MPT2SAS_ERR_FMT "unable to allocate memory %d!\n",
1301 ioc->name, (int)sizeof(struct adapter_reply_queue));
1302 return -ENOMEM;
1303 }
1304 reply_q->ioc = ioc;
1305 reply_q->msix_index = index;
1306 reply_q->vector = vector;
1307 atomic_set(&reply_q->busy, 0);
1308 if (ioc->msix_enable)
1309 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
1310 MPT2SAS_DRIVER_NAME, ioc->id, index);
1311 else
1312 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
1313 MPT2SAS_DRIVER_NAME, ioc->id);
1314 r = request_irq(vector, _base_interrupt, IRQF_SHARED, reply_q->name,
1315 reply_q);
1316 if (r) {
1317 printk(MPT2SAS_ERR_FMT "unable to allocate interrupt %d!\n",
1318 reply_q->name, vector);
1319 kfree(reply_q);
1320 return -EBUSY;
1321 }
1322
1323 INIT_LIST_HEAD(&reply_q->list);
1324 list_add_tail(&reply_q->list, &ioc->reply_queue_list);
1325 return 0;
1326 }
1327
1328 /**
1329 * _base_assign_reply_queues - assigning msix index for each cpu
1330 * @ioc: per adapter object
1331 *
1332 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
1333 *
1334 * It would nice if we could call irq_set_affinity, however it is not
1335 * an exported symbol
1336 */
1337 static void
_base_assign_reply_queues(struct MPT2SAS_ADAPTER * ioc)1338 _base_assign_reply_queues(struct MPT2SAS_ADAPTER *ioc)
1339 {
1340 struct adapter_reply_queue *reply_q;
1341 int cpu_id;
1342 int cpu_grouping, loop, grouping, grouping_mod;
1343
1344 if (!_base_is_controller_msix_enabled(ioc))
1345 return;
1346
1347 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
1348 /* when there are more cpus than available msix vectors,
1349 * then group cpus togeather on same irq
1350 */
1351 if (ioc->cpu_count > ioc->msix_vector_count) {
1352 grouping = ioc->cpu_count / ioc->msix_vector_count;
1353 grouping_mod = ioc->cpu_count % ioc->msix_vector_count;
1354 if (grouping < 2 || (grouping == 2 && !grouping_mod))
1355 cpu_grouping = 2;
1356 else if (grouping < 4 || (grouping == 4 && !grouping_mod))
1357 cpu_grouping = 4;
1358 else if (grouping < 8 || (grouping == 8 && !grouping_mod))
1359 cpu_grouping = 8;
1360 else
1361 cpu_grouping = 16;
1362 } else
1363 cpu_grouping = 0;
1364
1365 loop = 0;
1366 reply_q = list_entry(ioc->reply_queue_list.next,
1367 struct adapter_reply_queue, list);
1368 for_each_online_cpu(cpu_id) {
1369 if (!cpu_grouping) {
1370 ioc->cpu_msix_table[cpu_id] = reply_q->msix_index;
1371 reply_q = list_entry(reply_q->list.next,
1372 struct adapter_reply_queue, list);
1373 } else {
1374 if (loop < cpu_grouping) {
1375 ioc->cpu_msix_table[cpu_id] =
1376 reply_q->msix_index;
1377 loop++;
1378 } else {
1379 reply_q = list_entry(reply_q->list.next,
1380 struct adapter_reply_queue, list);
1381 ioc->cpu_msix_table[cpu_id] =
1382 reply_q->msix_index;
1383 loop = 1;
1384 }
1385 }
1386 }
1387 }
1388
1389 /**
1390 * _base_disable_msix - disables msix
1391 * @ioc: per adapter object
1392 *
1393 */
1394 static void
_base_disable_msix(struct MPT2SAS_ADAPTER * ioc)1395 _base_disable_msix(struct MPT2SAS_ADAPTER *ioc)
1396 {
1397 if (ioc->msix_enable) {
1398 pci_disable_msix(ioc->pdev);
1399 ioc->msix_enable = 0;
1400 }
1401 }
1402
1403 /**
1404 * _base_enable_msix - enables msix, failback to io_apic
1405 * @ioc: per adapter object
1406 *
1407 */
1408 static int
_base_enable_msix(struct MPT2SAS_ADAPTER * ioc)1409 _base_enable_msix(struct MPT2SAS_ADAPTER *ioc)
1410 {
1411 struct msix_entry *entries, *a;
1412 int r;
1413 int i;
1414 u8 try_msix = 0;
1415
1416 INIT_LIST_HEAD(&ioc->reply_queue_list);
1417
1418 if (msix_disable == -1 || msix_disable == 0)
1419 try_msix = 1;
1420
1421 if (!try_msix)
1422 goto try_ioapic;
1423
1424 if (_base_check_enable_msix(ioc) != 0)
1425 goto try_ioapic;
1426
1427 ioc->reply_queue_count = min_t(int, ioc->cpu_count,
1428 ioc->msix_vector_count);
1429
1430 entries = kcalloc(ioc->reply_queue_count, sizeof(struct msix_entry),
1431 GFP_KERNEL);
1432 if (!entries) {
1433 dfailprintk(ioc, printk(MPT2SAS_INFO_FMT "kcalloc "
1434 "failed @ at %s:%d/%s() !!!\n", ioc->name, __FILE__,
1435 __LINE__, __func__));
1436 goto try_ioapic;
1437 }
1438
1439 for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++)
1440 a->entry = i;
1441
1442 r = pci_enable_msix(ioc->pdev, entries, ioc->reply_queue_count);
1443 if (r) {
1444 dfailprintk(ioc, printk(MPT2SAS_INFO_FMT "pci_enable_msix "
1445 "failed (r=%d) !!!\n", ioc->name, r));
1446 kfree(entries);
1447 goto try_ioapic;
1448 }
1449
1450 ioc->msix_enable = 1;
1451 for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++) {
1452 r = _base_request_irq(ioc, i, a->vector);
1453 if (r) {
1454 _base_free_irq(ioc);
1455 _base_disable_msix(ioc);
1456 kfree(entries);
1457 goto try_ioapic;
1458 }
1459 }
1460
1461 kfree(entries);
1462 return 0;
1463
1464 /* failback to io_apic interrupt routing */
1465 try_ioapic:
1466
1467 r = _base_request_irq(ioc, 0, ioc->pdev->irq);
1468
1469 return r;
1470 }
1471
1472 /**
1473 * mpt2sas_base_map_resources - map in controller resources (io/irq/memap)
1474 * @ioc: per adapter object
1475 *
1476 * Returns 0 for success, non-zero for failure.
1477 */
1478 int
mpt2sas_base_map_resources(struct MPT2SAS_ADAPTER * ioc)1479 mpt2sas_base_map_resources(struct MPT2SAS_ADAPTER *ioc)
1480 {
1481 struct pci_dev *pdev = ioc->pdev;
1482 u32 memap_sz;
1483 u32 pio_sz;
1484 int i, r = 0;
1485 u64 pio_chip = 0;
1486 u64 chip_phys = 0;
1487 struct adapter_reply_queue *reply_q;
1488
1489 dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n",
1490 ioc->name, __func__));
1491
1492 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
1493 if (pci_enable_device_mem(pdev)) {
1494 printk(MPT2SAS_WARN_FMT "pci_enable_device_mem: "
1495 "failed\n", ioc->name);
1496 return -ENODEV;
1497 }
1498
1499
1500 if (pci_request_selected_regions(pdev, ioc->bars,
1501 MPT2SAS_DRIVER_NAME)) {
1502 printk(MPT2SAS_WARN_FMT "pci_request_selected_regions: "
1503 "failed\n", ioc->name);
1504 r = -ENODEV;
1505 goto out_fail;
1506 }
1507
1508 /* AER (Advanced Error Reporting) hooks */
1509 pci_enable_pcie_error_reporting(pdev);
1510
1511 pci_set_master(pdev);
1512
1513 if (_base_config_dma_addressing(ioc, pdev) != 0) {
1514 printk(MPT2SAS_WARN_FMT "no suitable DMA mask for %s\n",
1515 ioc->name, pci_name(pdev));
1516 r = -ENODEV;
1517 goto out_fail;
1518 }
1519
1520 for (i = 0, memap_sz = 0, pio_sz = 0 ; i < DEVICE_COUNT_RESOURCE; i++) {
1521 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1522 if (pio_sz)
1523 continue;
1524 pio_chip = (u64)pci_resource_start(pdev, i);
1525 pio_sz = pci_resource_len(pdev, i);
1526 } else {
1527 if (memap_sz)
1528 continue;
1529 /* verify memory resource is valid before using */
1530 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
1531 ioc->chip_phys = pci_resource_start(pdev, i);
1532 chip_phys = (u64)ioc->chip_phys;
1533 memap_sz = pci_resource_len(pdev, i);
1534 ioc->chip = ioremap(ioc->chip_phys, memap_sz);
1535 if (ioc->chip == NULL) {
1536 printk(MPT2SAS_ERR_FMT "unable to map "
1537 "adapter memory!\n", ioc->name);
1538 r = -EINVAL;
1539 goto out_fail;
1540 }
1541 }
1542 }
1543 }
1544
1545 _base_mask_interrupts(ioc);
1546 r = _base_enable_msix(ioc);
1547 if (r)
1548 goto out_fail;
1549
1550 list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
1551 printk(MPT2SAS_INFO_FMT "%s: IRQ %d\n",
1552 reply_q->name, ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
1553 "IO-APIC enabled"), reply_q->vector);
1554
1555 printk(MPT2SAS_INFO_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
1556 ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz);
1557 printk(MPT2SAS_INFO_FMT "ioport(0x%016llx), size(%d)\n",
1558 ioc->name, (unsigned long long)pio_chip, pio_sz);
1559
1560 /* Save PCI configuration state for recovery from PCI AER/EEH errors */
1561 pci_save_state(pdev);
1562
1563 return 0;
1564
1565 out_fail:
1566 if (ioc->chip_phys)
1567 iounmap(ioc->chip);
1568 ioc->chip_phys = 0;
1569 pci_release_selected_regions(ioc->pdev, ioc->bars);
1570 pci_disable_pcie_error_reporting(pdev);
1571 pci_disable_device(pdev);
1572 return r;
1573 }
1574
1575 /**
1576 * mpt2sas_base_get_msg_frame - obtain request mf pointer
1577 * @ioc: per adapter object
1578 * @smid: system request message index(smid zero is invalid)
1579 *
1580 * Returns virt pointer to message frame.
1581 */
1582 void *
mpt2sas_base_get_msg_frame(struct MPT2SAS_ADAPTER * ioc,u16 smid)1583 mpt2sas_base_get_msg_frame(struct MPT2SAS_ADAPTER *ioc, u16 smid)
1584 {
1585 return (void *)(ioc->request + (smid * ioc->request_sz));
1586 }
1587
1588 /**
1589 * mpt2sas_base_get_sense_buffer - obtain a sense buffer assigned to a mf request
1590 * @ioc: per adapter object
1591 * @smid: system request message index
1592 *
1593 * Returns virt pointer to sense buffer.
1594 */
1595 void *
mpt2sas_base_get_sense_buffer(struct MPT2SAS_ADAPTER * ioc,u16 smid)1596 mpt2sas_base_get_sense_buffer(struct MPT2SAS_ADAPTER *ioc, u16 smid)
1597 {
1598 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
1599 }
1600
1601 /**
1602 * mpt2sas_base_get_sense_buffer_dma - obtain a sense buffer assigned to a mf request
1603 * @ioc: per adapter object
1604 * @smid: system request message index
1605 *
1606 * Returns phys pointer to the low 32bit address of the sense buffer.
1607 */
1608 __le32
mpt2sas_base_get_sense_buffer_dma(struct MPT2SAS_ADAPTER * ioc,u16 smid)1609 mpt2sas_base_get_sense_buffer_dma(struct MPT2SAS_ADAPTER *ioc, u16 smid)
1610 {
1611 return cpu_to_le32(ioc->sense_dma +
1612 ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
1613 }
1614
1615 /**
1616 * mpt2sas_base_get_reply_virt_addr - obtain reply frames virt address
1617 * @ioc: per adapter object
1618 * @phys_addr: lower 32 physical addr of the reply
1619 *
1620 * Converts 32bit lower physical addr into a virt address.
1621 */
1622 void *
mpt2sas_base_get_reply_virt_addr(struct MPT2SAS_ADAPTER * ioc,u32 phys_addr)1623 mpt2sas_base_get_reply_virt_addr(struct MPT2SAS_ADAPTER *ioc, u32 phys_addr)
1624 {
1625 if (!phys_addr)
1626 return NULL;
1627 return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
1628 }
1629
1630 /**
1631 * mpt2sas_base_get_smid - obtain a free smid from internal queue
1632 * @ioc: per adapter object
1633 * @cb_idx: callback index
1634 *
1635 * Returns smid (zero is invalid)
1636 */
1637 u16
mpt2sas_base_get_smid(struct MPT2SAS_ADAPTER * ioc,u8 cb_idx)1638 mpt2sas_base_get_smid(struct MPT2SAS_ADAPTER *ioc, u8 cb_idx)
1639 {
1640 unsigned long flags;
1641 struct request_tracker *request;
1642 u16 smid;
1643
1644 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1645 if (list_empty(&ioc->internal_free_list)) {
1646 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1647 printk(MPT2SAS_ERR_FMT "%s: smid not available\n",
1648 ioc->name, __func__);
1649 return 0;
1650 }
1651
1652 request = list_entry(ioc->internal_free_list.next,
1653 struct request_tracker, tracker_list);
1654 request->cb_idx = cb_idx;
1655 smid = request->smid;
1656 list_del(&request->tracker_list);
1657 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1658 return smid;
1659 }
1660
1661 /**
1662 * mpt2sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
1663 * @ioc: per adapter object
1664 * @cb_idx: callback index
1665 * @scmd: pointer to scsi command object
1666 *
1667 * Returns smid (zero is invalid)
1668 */
1669 u16
mpt2sas_base_get_smid_scsiio(struct MPT2SAS_ADAPTER * ioc,u8 cb_idx,struct scsi_cmnd * scmd)1670 mpt2sas_base_get_smid_scsiio(struct MPT2SAS_ADAPTER *ioc, u8 cb_idx,
1671 struct scsi_cmnd *scmd)
1672 {
1673 unsigned long flags;
1674 struct scsiio_tracker *request;
1675 u16 smid;
1676
1677 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1678 if (list_empty(&ioc->free_list)) {
1679 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1680 printk(MPT2SAS_ERR_FMT "%s: smid not available\n",
1681 ioc->name, __func__);
1682 return 0;
1683 }
1684
1685 request = list_entry(ioc->free_list.next,
1686 struct scsiio_tracker, tracker_list);
1687 request->scmd = scmd;
1688 request->cb_idx = cb_idx;
1689 smid = request->smid;
1690 list_del(&request->tracker_list);
1691 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1692 return smid;
1693 }
1694
1695 /**
1696 * mpt2sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
1697 * @ioc: per adapter object
1698 * @cb_idx: callback index
1699 *
1700 * Returns smid (zero is invalid)
1701 */
1702 u16
mpt2sas_base_get_smid_hpr(struct MPT2SAS_ADAPTER * ioc,u8 cb_idx)1703 mpt2sas_base_get_smid_hpr(struct MPT2SAS_ADAPTER *ioc, u8 cb_idx)
1704 {
1705 unsigned long flags;
1706 struct request_tracker *request;
1707 u16 smid;
1708
1709 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1710 if (list_empty(&ioc->hpr_free_list)) {
1711 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1712 return 0;
1713 }
1714
1715 request = list_entry(ioc->hpr_free_list.next,
1716 struct request_tracker, tracker_list);
1717 request->cb_idx = cb_idx;
1718 smid = request->smid;
1719 list_del(&request->tracker_list);
1720 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1721 return smid;
1722 }
1723
1724
1725 /**
1726 * mpt2sas_base_free_smid - put smid back on free_list
1727 * @ioc: per adapter object
1728 * @smid: system request message index
1729 *
1730 * Return nothing.
1731 */
1732 void
mpt2sas_base_free_smid(struct MPT2SAS_ADAPTER * ioc,u16 smid)1733 mpt2sas_base_free_smid(struct MPT2SAS_ADAPTER *ioc, u16 smid)
1734 {
1735 unsigned long flags;
1736 int i;
1737 struct chain_tracker *chain_req, *next;
1738
1739 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1740 if (smid < ioc->hi_priority_smid) {
1741 /* scsiio queue */
1742 i = smid - 1;
1743 if (!list_empty(&ioc->scsi_lookup[i].chain_list)) {
1744 list_for_each_entry_safe(chain_req, next,
1745 &ioc->scsi_lookup[i].chain_list, tracker_list) {
1746 list_del_init(&chain_req->tracker_list);
1747 list_add_tail(&chain_req->tracker_list,
1748 &ioc->free_chain_list);
1749 }
1750 }
1751 ioc->scsi_lookup[i].cb_idx = 0xFF;
1752 ioc->scsi_lookup[i].scmd = NULL;
1753 ioc->scsi_lookup[i].direct_io = 0;
1754 list_add_tail(&ioc->scsi_lookup[i].tracker_list,
1755 &ioc->free_list);
1756 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1757
1758 /*
1759 * See _wait_for_commands_to_complete() call with regards
1760 * to this code.
1761 */
1762 if (ioc->shost_recovery && ioc->pending_io_count) {
1763 if (ioc->pending_io_count == 1)
1764 wake_up(&ioc->reset_wq);
1765 ioc->pending_io_count--;
1766 }
1767 return;
1768 } else if (smid < ioc->internal_smid) {
1769 /* hi-priority */
1770 i = smid - ioc->hi_priority_smid;
1771 ioc->hpr_lookup[i].cb_idx = 0xFF;
1772 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
1773 &ioc->hpr_free_list);
1774 } else if (smid <= ioc->hba_queue_depth) {
1775 /* internal queue */
1776 i = smid - ioc->internal_smid;
1777 ioc->internal_lookup[i].cb_idx = 0xFF;
1778 list_add_tail(&ioc->internal_lookup[i].tracker_list,
1779 &ioc->internal_free_list);
1780 }
1781 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1782 }
1783
1784 /**
1785 * _base_writeq - 64 bit write to MMIO
1786 * @ioc: per adapter object
1787 * @b: data payload
1788 * @addr: address in MMIO space
1789 * @writeq_lock: spin lock
1790 *
1791 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
1792 * care of 32 bit environment where its not quarenteed to send the entire word
1793 * in one transfer.
1794 */
1795 #ifndef writeq
_base_writeq(__u64 b,volatile void __iomem * addr,spinlock_t * writeq_lock)1796 static inline void _base_writeq(__u64 b, volatile void __iomem *addr,
1797 spinlock_t *writeq_lock)
1798 {
1799 unsigned long flags;
1800 __u64 data_out = cpu_to_le64(b);
1801
1802 spin_lock_irqsave(writeq_lock, flags);
1803 writel((u32)(data_out), addr);
1804 writel((u32)(data_out >> 32), (addr + 4));
1805 spin_unlock_irqrestore(writeq_lock, flags);
1806 }
1807 #else
_base_writeq(__u64 b,volatile void __iomem * addr,spinlock_t * writeq_lock)1808 static inline void _base_writeq(__u64 b, volatile void __iomem *addr,
1809 spinlock_t *writeq_lock)
1810 {
1811 writeq(cpu_to_le64(b), addr);
1812 }
1813 #endif
1814
1815 static inline u8
_base_get_msix_index(struct MPT2SAS_ADAPTER * ioc)1816 _base_get_msix_index(struct MPT2SAS_ADAPTER *ioc)
1817 {
1818 return ioc->cpu_msix_table[raw_smp_processor_id()];
1819 }
1820
1821 /**
1822 * mpt2sas_base_put_smid_scsi_io - send SCSI_IO request to firmware
1823 * @ioc: per adapter object
1824 * @smid: system request message index
1825 * @handle: device handle
1826 *
1827 * Return nothing.
1828 */
1829 void
mpt2sas_base_put_smid_scsi_io(struct MPT2SAS_ADAPTER * ioc,u16 smid,u16 handle)1830 mpt2sas_base_put_smid_scsi_io(struct MPT2SAS_ADAPTER *ioc, u16 smid, u16 handle)
1831 {
1832 Mpi2RequestDescriptorUnion_t descriptor;
1833 u64 *request = (u64 *)&descriptor;
1834
1835
1836 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
1837 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
1838 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
1839 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
1840 descriptor.SCSIIO.LMID = 0;
1841 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
1842 &ioc->scsi_lookup_lock);
1843 }
1844
1845
1846 /**
1847 * mpt2sas_base_put_smid_hi_priority - send Task Management request to firmware
1848 * @ioc: per adapter object
1849 * @smid: system request message index
1850 *
1851 * Return nothing.
1852 */
1853 void
mpt2sas_base_put_smid_hi_priority(struct MPT2SAS_ADAPTER * ioc,u16 smid)1854 mpt2sas_base_put_smid_hi_priority(struct MPT2SAS_ADAPTER *ioc, u16 smid)
1855 {
1856 Mpi2RequestDescriptorUnion_t descriptor;
1857 u64 *request = (u64 *)&descriptor;
1858
1859 descriptor.HighPriority.RequestFlags =
1860 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
1861 descriptor.HighPriority.MSIxIndex = 0;
1862 descriptor.HighPriority.SMID = cpu_to_le16(smid);
1863 descriptor.HighPriority.LMID = 0;
1864 descriptor.HighPriority.Reserved1 = 0;
1865 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
1866 &ioc->scsi_lookup_lock);
1867 }
1868
1869 /**
1870 * mpt2sas_base_put_smid_default - Default, primarily used for config pages
1871 * @ioc: per adapter object
1872 * @smid: system request message index
1873 *
1874 * Return nothing.
1875 */
1876 void
mpt2sas_base_put_smid_default(struct MPT2SAS_ADAPTER * ioc,u16 smid)1877 mpt2sas_base_put_smid_default(struct MPT2SAS_ADAPTER *ioc, u16 smid)
1878 {
1879 Mpi2RequestDescriptorUnion_t descriptor;
1880 u64 *request = (u64 *)&descriptor;
1881
1882 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1883 descriptor.Default.MSIxIndex = _base_get_msix_index(ioc);
1884 descriptor.Default.SMID = cpu_to_le16(smid);
1885 descriptor.Default.LMID = 0;
1886 descriptor.Default.DescriptorTypeDependent = 0;
1887 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
1888 &ioc->scsi_lookup_lock);
1889 }
1890
1891 /**
1892 * mpt2sas_base_put_smid_target_assist - send Target Assist/Status to firmware
1893 * @ioc: per adapter object
1894 * @smid: system request message index
1895 * @io_index: value used to track the IO
1896 *
1897 * Return nothing.
1898 */
1899 void
mpt2sas_base_put_smid_target_assist(struct MPT2SAS_ADAPTER * ioc,u16 smid,u16 io_index)1900 mpt2sas_base_put_smid_target_assist(struct MPT2SAS_ADAPTER *ioc, u16 smid,
1901 u16 io_index)
1902 {
1903 Mpi2RequestDescriptorUnion_t descriptor;
1904 u64 *request = (u64 *)&descriptor;
1905
1906 descriptor.SCSITarget.RequestFlags =
1907 MPI2_REQ_DESCRIPT_FLAGS_SCSI_TARGET;
1908 descriptor.SCSITarget.MSIxIndex = _base_get_msix_index(ioc);
1909 descriptor.SCSITarget.SMID = cpu_to_le16(smid);
1910 descriptor.SCSITarget.LMID = 0;
1911 descriptor.SCSITarget.IoIndex = cpu_to_le16(io_index);
1912 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
1913 &ioc->scsi_lookup_lock);
1914 }
1915
1916 /**
1917 * _base_display_dell_branding - Disply branding string
1918 * @ioc: per adapter object
1919 *
1920 * Return nothing.
1921 */
1922 static void
_base_display_dell_branding(struct MPT2SAS_ADAPTER * ioc)1923 _base_display_dell_branding(struct MPT2SAS_ADAPTER *ioc)
1924 {
1925 char dell_branding[MPT2SAS_DELL_BRANDING_SIZE];
1926
1927 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_DELL)
1928 return;
1929
1930 memset(dell_branding, 0, MPT2SAS_DELL_BRANDING_SIZE);
1931 switch (ioc->pdev->subsystem_device) {
1932 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
1933 strncpy(dell_branding, MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING,
1934 MPT2SAS_DELL_BRANDING_SIZE - 1);
1935 break;
1936 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
1937 strncpy(dell_branding, MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING,
1938 MPT2SAS_DELL_BRANDING_SIZE - 1);
1939 break;
1940 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
1941 strncpy(dell_branding,
1942 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING,
1943 MPT2SAS_DELL_BRANDING_SIZE - 1);
1944 break;
1945 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
1946 strncpy(dell_branding,
1947 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING,
1948 MPT2SAS_DELL_BRANDING_SIZE - 1);
1949 break;
1950 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
1951 strncpy(dell_branding,
1952 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING,
1953 MPT2SAS_DELL_BRANDING_SIZE - 1);
1954 break;
1955 case MPT2SAS_DELL_PERC_H200_SSDID:
1956 strncpy(dell_branding, MPT2SAS_DELL_PERC_H200_BRANDING,
1957 MPT2SAS_DELL_BRANDING_SIZE - 1);
1958 break;
1959 case MPT2SAS_DELL_6GBPS_SAS_SSDID:
1960 strncpy(dell_branding, MPT2SAS_DELL_6GBPS_SAS_BRANDING,
1961 MPT2SAS_DELL_BRANDING_SIZE - 1);
1962 break;
1963 default:
1964 sprintf(dell_branding, "0x%4X", ioc->pdev->subsystem_device);
1965 break;
1966 }
1967
1968 printk(MPT2SAS_INFO_FMT "%s: Vendor(0x%04X), Device(0x%04X),"
1969 " SSVID(0x%04X), SSDID(0x%04X)\n", ioc->name, dell_branding,
1970 ioc->pdev->vendor, ioc->pdev->device, ioc->pdev->subsystem_vendor,
1971 ioc->pdev->subsystem_device);
1972 }
1973
1974 /**
1975 * _base_display_intel_branding - Display branding string
1976 * @ioc: per adapter object
1977 *
1978 * Return nothing.
1979 */
1980 static void
_base_display_intel_branding(struct MPT2SAS_ADAPTER * ioc)1981 _base_display_intel_branding(struct MPT2SAS_ADAPTER *ioc)
1982 {
1983 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
1984 return;
1985
1986 switch (ioc->pdev->device) {
1987 case MPI2_MFGPAGE_DEVID_SAS2008:
1988 switch (ioc->pdev->subsystem_device) {
1989 case MPT2SAS_INTEL_RMS2LL080_SSDID:
1990 printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
1991 MPT2SAS_INTEL_RMS2LL080_BRANDING);
1992 break;
1993 case MPT2SAS_INTEL_RMS2LL040_SSDID:
1994 printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
1995 MPT2SAS_INTEL_RMS2LL040_BRANDING);
1996 break;
1997 case MPT2SAS_INTEL_SSD910_SSDID:
1998 printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
1999 MPT2SAS_INTEL_SSD910_BRANDING);
2000 break;
2001 default:
2002 break;
2003 }
2004 case MPI2_MFGPAGE_DEVID_SAS2308_2:
2005 switch (ioc->pdev->subsystem_device) {
2006 case MPT2SAS_INTEL_RS25GB008_SSDID:
2007 printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
2008 MPT2SAS_INTEL_RS25GB008_BRANDING);
2009 break;
2010 case MPT2SAS_INTEL_RMS25JB080_SSDID:
2011 printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
2012 MPT2SAS_INTEL_RMS25JB080_BRANDING);
2013 break;
2014 case MPT2SAS_INTEL_RMS25JB040_SSDID:
2015 printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
2016 MPT2SAS_INTEL_RMS25JB040_BRANDING);
2017 break;
2018 case MPT2SAS_INTEL_RMS25KB080_SSDID:
2019 printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
2020 MPT2SAS_INTEL_RMS25KB080_BRANDING);
2021 break;
2022 case MPT2SAS_INTEL_RMS25KB040_SSDID:
2023 printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
2024 MPT2SAS_INTEL_RMS25KB040_BRANDING);
2025 break;
2026 case MPT2SAS_INTEL_RMS25LB040_SSDID:
2027 printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
2028 MPT2SAS_INTEL_RMS25LB040_BRANDING);
2029 break;
2030 case MPT2SAS_INTEL_RMS25LB080_SSDID:
2031 printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
2032 MPT2SAS_INTEL_RMS25LB080_BRANDING);
2033 break;
2034 default:
2035 break;
2036 }
2037 default:
2038 break;
2039 }
2040 }
2041
2042 /**
2043 * _base_display_hp_branding - Display branding string
2044 * @ioc: per adapter object
2045 *
2046 * Return nothing.
2047 */
2048 static void
_base_display_hp_branding(struct MPT2SAS_ADAPTER * ioc)2049 _base_display_hp_branding(struct MPT2SAS_ADAPTER *ioc)
2050 {
2051 if (ioc->pdev->subsystem_vendor != MPT2SAS_HP_3PAR_SSVID)
2052 return;
2053
2054 switch (ioc->pdev->device) {
2055 case MPI2_MFGPAGE_DEVID_SAS2004:
2056 switch (ioc->pdev->subsystem_device) {
2057 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
2058 printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
2059 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
2060 break;
2061 default:
2062 break;
2063 }
2064 case MPI2_MFGPAGE_DEVID_SAS2308_2:
2065 switch (ioc->pdev->subsystem_device) {
2066 case MPT2SAS_HP_2_4_INTERNAL_SSDID:
2067 printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
2068 MPT2SAS_HP_2_4_INTERNAL_BRANDING);
2069 break;
2070 case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
2071 printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
2072 MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
2073 break;
2074 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
2075 printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
2076 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
2077 break;
2078 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
2079 printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
2080 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
2081 break;
2082 default:
2083 break;
2084 }
2085 default:
2086 break;
2087 }
2088 }
2089
2090 /**
2091 * _base_display_ioc_capabilities - Disply IOC's capabilities.
2092 * @ioc: per adapter object
2093 *
2094 * Return nothing.
2095 */
2096 static void
_base_display_ioc_capabilities(struct MPT2SAS_ADAPTER * ioc)2097 _base_display_ioc_capabilities(struct MPT2SAS_ADAPTER *ioc)
2098 {
2099 int i = 0;
2100 char desc[16];
2101 u32 iounit_pg1_flags;
2102 u32 bios_version;
2103
2104 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
2105 strncpy(desc, ioc->manu_pg0.ChipName, 16);
2106 printk(MPT2SAS_INFO_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "
2107 "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
2108 ioc->name, desc,
2109 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
2110 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
2111 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
2112 ioc->facts.FWVersion.Word & 0x000000FF,
2113 ioc->pdev->revision,
2114 (bios_version & 0xFF000000) >> 24,
2115 (bios_version & 0x00FF0000) >> 16,
2116 (bios_version & 0x0000FF00) >> 8,
2117 bios_version & 0x000000FF);
2118
2119 _base_display_dell_branding(ioc);
2120 _base_display_intel_branding(ioc);
2121 _base_display_hp_branding(ioc);
2122
2123 printk(MPT2SAS_INFO_FMT "Protocol=(", ioc->name);
2124
2125 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
2126 printk("Initiator");
2127 i++;
2128 }
2129
2130 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
2131 printk("%sTarget", i ? "," : "");
2132 i++;
2133 }
2134
2135 i = 0;
2136 printk("), ");
2137 printk("Capabilities=(");
2138
2139 if (!ioc->hide_ir_msg) {
2140 if (ioc->facts.IOCCapabilities &
2141 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
2142 printk("Raid");
2143 i++;
2144 }
2145 }
2146
2147 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
2148 printk("%sTLR", i ? "," : "");
2149 i++;
2150 }
2151
2152 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
2153 printk("%sMulticast", i ? "," : "");
2154 i++;
2155 }
2156
2157 if (ioc->facts.IOCCapabilities &
2158 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
2159 printk("%sBIDI Target", i ? "," : "");
2160 i++;
2161 }
2162
2163 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
2164 printk("%sEEDP", i ? "," : "");
2165 i++;
2166 }
2167
2168 if (ioc->facts.IOCCapabilities &
2169 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
2170 printk("%sSnapshot Buffer", i ? "," : "");
2171 i++;
2172 }
2173
2174 if (ioc->facts.IOCCapabilities &
2175 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
2176 printk("%sDiag Trace Buffer", i ? "," : "");
2177 i++;
2178 }
2179
2180 if (ioc->facts.IOCCapabilities &
2181 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
2182 printk(KERN_INFO "%sDiag Extended Buffer", i ? "," : "");
2183 i++;
2184 }
2185
2186 if (ioc->facts.IOCCapabilities &
2187 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
2188 printk("%sTask Set Full", i ? "," : "");
2189 i++;
2190 }
2191
2192 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
2193 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
2194 printk("%sNCQ", i ? "," : "");
2195 i++;
2196 }
2197
2198 printk(")\n");
2199 }
2200
2201 /**
2202 * _base_update_missing_delay - change the missing delay timers
2203 * @ioc: per adapter object
2204 * @device_missing_delay: amount of time till device is reported missing
2205 * @io_missing_delay: interval IO is returned when there is a missing device
2206 *
2207 * Return nothing.
2208 *
2209 * Passed on the command line, this function will modify the device missing
2210 * delay, as well as the io missing delay. This should be called at driver
2211 * load time.
2212 */
2213 static void
_base_update_missing_delay(struct MPT2SAS_ADAPTER * ioc,u16 device_missing_delay,u8 io_missing_delay)2214 _base_update_missing_delay(struct MPT2SAS_ADAPTER *ioc,
2215 u16 device_missing_delay, u8 io_missing_delay)
2216 {
2217 u16 dmd, dmd_new, dmd_orignal;
2218 u8 io_missing_delay_original;
2219 u16 sz;
2220 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
2221 Mpi2ConfigReply_t mpi_reply;
2222 u8 num_phys = 0;
2223 u16 ioc_status;
2224
2225 mpt2sas_config_get_number_hba_phys(ioc, &num_phys);
2226 if (!num_phys)
2227 return;
2228
2229 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
2230 sizeof(Mpi2SasIOUnit1PhyData_t));
2231 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
2232 if (!sas_iounit_pg1) {
2233 printk(MPT2SAS_ERR_FMT "failure at %s:%d/%s()!\n",
2234 ioc->name, __FILE__, __LINE__, __func__);
2235 goto out;
2236 }
2237 if ((mpt2sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
2238 sas_iounit_pg1, sz))) {
2239 printk(MPT2SAS_ERR_FMT "failure at %s:%d/%s()!\n",
2240 ioc->name, __FILE__, __LINE__, __func__);
2241 goto out;
2242 }
2243 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
2244 MPI2_IOCSTATUS_MASK;
2245 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
2246 printk(MPT2SAS_ERR_FMT "failure at %s:%d/%s()!\n",
2247 ioc->name, __FILE__, __LINE__, __func__);
2248 goto out;
2249 }
2250
2251 /* device missing delay */
2252 dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
2253 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2254 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2255 else
2256 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2257 dmd_orignal = dmd;
2258 if (device_missing_delay > 0x7F) {
2259 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
2260 device_missing_delay;
2261 dmd = dmd / 16;
2262 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
2263 } else
2264 dmd = device_missing_delay;
2265 sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
2266
2267 /* io missing delay */
2268 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
2269 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
2270
2271 if (!mpt2sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
2272 sz)) {
2273 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2274 dmd_new = (dmd &
2275 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2276 else
2277 dmd_new =
2278 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2279 printk(MPT2SAS_INFO_FMT "device_missing_delay: old(%d), "
2280 "new(%d)\n", ioc->name, dmd_orignal, dmd_new);
2281 printk(MPT2SAS_INFO_FMT "ioc_missing_delay: old(%d), "
2282 "new(%d)\n", ioc->name, io_missing_delay_original,
2283 io_missing_delay);
2284 ioc->device_missing_delay = dmd_new;
2285 ioc->io_missing_delay = io_missing_delay;
2286 }
2287
2288 out:
2289 kfree(sas_iounit_pg1);
2290 }
2291
2292 /**
2293 * _base_static_config_pages - static start of day config pages
2294 * @ioc: per adapter object
2295 *
2296 * Return nothing.
2297 */
2298 static void
_base_static_config_pages(struct MPT2SAS_ADAPTER * ioc)2299 _base_static_config_pages(struct MPT2SAS_ADAPTER *ioc)
2300 {
2301 Mpi2ConfigReply_t mpi_reply;
2302 u32 iounit_pg1_flags;
2303
2304 mpt2sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
2305 if (ioc->ir_firmware)
2306 mpt2sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
2307 &ioc->manu_pg10);
2308 mpt2sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
2309 mpt2sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
2310 mpt2sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
2311 mpt2sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
2312 mpt2sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
2313 _base_display_ioc_capabilities(ioc);
2314
2315 /*
2316 * Enable task_set_full handling in iounit_pg1 when the
2317 * facts capabilities indicate that its supported.
2318 */
2319 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
2320 if ((ioc->facts.IOCCapabilities &
2321 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
2322 iounit_pg1_flags &=
2323 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
2324 else
2325 iounit_pg1_flags |=
2326 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
2327 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
2328 mpt2sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
2329
2330 }
2331
2332 /**
2333 * _base_release_memory_pools - release memory
2334 * @ioc: per adapter object
2335 *
2336 * Free memory allocated from _base_allocate_memory_pools.
2337 *
2338 * Return nothing.
2339 */
2340 static void
_base_release_memory_pools(struct MPT2SAS_ADAPTER * ioc)2341 _base_release_memory_pools(struct MPT2SAS_ADAPTER *ioc)
2342 {
2343 int i;
2344
2345 dexitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
2346 __func__));
2347
2348 if (ioc->request) {
2349 pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
2350 ioc->request, ioc->request_dma);
2351 dexitprintk(ioc, printk(MPT2SAS_INFO_FMT "request_pool(0x%p)"
2352 ": free\n", ioc->name, ioc->request));
2353 ioc->request = NULL;
2354 }
2355
2356 if (ioc->sense) {
2357 pci_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
2358 if (ioc->sense_dma_pool)
2359 pci_pool_destroy(ioc->sense_dma_pool);
2360 dexitprintk(ioc, printk(MPT2SAS_INFO_FMT "sense_pool(0x%p)"
2361 ": free\n", ioc->name, ioc->sense));
2362 ioc->sense = NULL;
2363 }
2364
2365 if (ioc->reply) {
2366 pci_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
2367 if (ioc->reply_dma_pool)
2368 pci_pool_destroy(ioc->reply_dma_pool);
2369 dexitprintk(ioc, printk(MPT2SAS_INFO_FMT "reply_pool(0x%p)"
2370 ": free\n", ioc->name, ioc->reply));
2371 ioc->reply = NULL;
2372 }
2373
2374 if (ioc->reply_free) {
2375 pci_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
2376 ioc->reply_free_dma);
2377 if (ioc->reply_free_dma_pool)
2378 pci_pool_destroy(ioc->reply_free_dma_pool);
2379 dexitprintk(ioc, printk(MPT2SAS_INFO_FMT "reply_free_pool"
2380 "(0x%p): free\n", ioc->name, ioc->reply_free));
2381 ioc->reply_free = NULL;
2382 }
2383
2384 if (ioc->reply_post_free) {
2385 pci_pool_free(ioc->reply_post_free_dma_pool,
2386 ioc->reply_post_free, ioc->reply_post_free_dma);
2387 if (ioc->reply_post_free_dma_pool)
2388 pci_pool_destroy(ioc->reply_post_free_dma_pool);
2389 dexitprintk(ioc, printk(MPT2SAS_INFO_FMT
2390 "reply_post_free_pool(0x%p): free\n", ioc->name,
2391 ioc->reply_post_free));
2392 ioc->reply_post_free = NULL;
2393 }
2394
2395 if (ioc->config_page) {
2396 dexitprintk(ioc, printk(MPT2SAS_INFO_FMT
2397 "config_page(0x%p): free\n", ioc->name,
2398 ioc->config_page));
2399 pci_free_consistent(ioc->pdev, ioc->config_page_sz,
2400 ioc->config_page, ioc->config_page_dma);
2401 }
2402
2403 if (ioc->scsi_lookup) {
2404 free_pages((ulong)ioc->scsi_lookup, ioc->scsi_lookup_pages);
2405 ioc->scsi_lookup = NULL;
2406 }
2407 kfree(ioc->hpr_lookup);
2408 kfree(ioc->internal_lookup);
2409 if (ioc->chain_lookup) {
2410 for (i = 0; i < ioc->chain_depth; i++) {
2411 if (ioc->chain_lookup[i].chain_buffer)
2412 pci_pool_free(ioc->chain_dma_pool,
2413 ioc->chain_lookup[i].chain_buffer,
2414 ioc->chain_lookup[i].chain_buffer_dma);
2415 }
2416 if (ioc->chain_dma_pool)
2417 pci_pool_destroy(ioc->chain_dma_pool);
2418 free_pages((ulong)ioc->chain_lookup, ioc->chain_pages);
2419 ioc->chain_lookup = NULL;
2420 }
2421 }
2422
2423
2424 /**
2425 * _base_allocate_memory_pools - allocate start of day memory pools
2426 * @ioc: per adapter object
2427 * @sleep_flag: CAN_SLEEP or NO_SLEEP
2428 *
2429 * Returns 0 success, anything else error
2430 */
2431 static int
_base_allocate_memory_pools(struct MPT2SAS_ADAPTER * ioc,int sleep_flag)2432 _base_allocate_memory_pools(struct MPT2SAS_ADAPTER *ioc, int sleep_flag)
2433 {
2434 struct mpt2sas_facts *facts;
2435 u16 max_sge_elements;
2436 u16 chains_needed_per_io;
2437 u32 sz, total_sz, reply_post_free_sz;
2438 u32 retry_sz;
2439 u16 max_request_credit;
2440 int i;
2441
2442 dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
2443 __func__));
2444
2445 retry_sz = 0;
2446 facts = &ioc->facts;
2447
2448 /* command line tunables for max sgl entries */
2449 if (max_sgl_entries != -1) {
2450 ioc->shost->sg_tablesize = (max_sgl_entries <
2451 MPT2SAS_SG_DEPTH) ? max_sgl_entries :
2452 MPT2SAS_SG_DEPTH;
2453 } else {
2454 ioc->shost->sg_tablesize = MPT2SAS_SG_DEPTH;
2455 }
2456
2457 /* command line tunables for max controller queue depth */
2458 if (max_queue_depth != -1 && max_queue_depth != 0) {
2459 max_request_credit = min_t(u16, max_queue_depth +
2460 ioc->hi_priority_depth + ioc->internal_depth,
2461 facts->RequestCredit);
2462 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
2463 max_request_credit = MAX_HBA_QUEUE_DEPTH;
2464 } else
2465 max_request_credit = min_t(u16, facts->RequestCredit,
2466 MAX_HBA_QUEUE_DEPTH);
2467
2468 ioc->hba_queue_depth = max_request_credit;
2469 ioc->hi_priority_depth = facts->HighPriorityCredit;
2470 ioc->internal_depth = ioc->hi_priority_depth + 5;
2471
2472 /* request frame size */
2473 ioc->request_sz = facts->IOCRequestFrameSize * 4;
2474
2475 /* reply frame size */
2476 ioc->reply_sz = facts->ReplyFrameSize * 4;
2477
2478 retry_allocation:
2479 total_sz = 0;
2480 /* calculate number of sg elements left over in the 1st frame */
2481 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
2482 sizeof(Mpi2SGEIOUnion_t)) + ioc->sge_size);
2483 ioc->max_sges_in_main_message = max_sge_elements/ioc->sge_size;
2484
2485 /* now do the same for a chain buffer */
2486 max_sge_elements = ioc->request_sz - ioc->sge_size;
2487 ioc->max_sges_in_chain_message = max_sge_elements/ioc->sge_size;
2488
2489 ioc->chain_offset_value_for_main_message =
2490 ((sizeof(Mpi2SCSIIORequest_t) - sizeof(Mpi2SGEIOUnion_t)) +
2491 (ioc->max_sges_in_chain_message * ioc->sge_size)) / 4;
2492
2493 /*
2494 * MPT2SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
2495 */
2496 chains_needed_per_io = ((ioc->shost->sg_tablesize -
2497 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
2498 + 1;
2499 if (chains_needed_per_io > facts->MaxChainDepth) {
2500 chains_needed_per_io = facts->MaxChainDepth;
2501 ioc->shost->sg_tablesize = min_t(u16,
2502 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
2503 * chains_needed_per_io), ioc->shost->sg_tablesize);
2504 }
2505 ioc->chains_needed_per_io = chains_needed_per_io;
2506
2507 /* reply free queue sizing - taking into account for 64 FW events */
2508 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
2509
2510 /* align the reply post queue on the next 16 count boundary */
2511 if (!ioc->reply_free_queue_depth % 16)
2512 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth + 16;
2513 else
2514 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth +
2515 32 - (ioc->reply_free_queue_depth % 16);
2516 if (ioc->reply_post_queue_depth >
2517 facts->MaxReplyDescriptorPostQueueDepth) {
2518 ioc->reply_post_queue_depth = min_t(u16,
2519 (facts->MaxReplyDescriptorPostQueueDepth -
2520 (facts->MaxReplyDescriptorPostQueueDepth % 16)),
2521 (ioc->hba_queue_depth - (ioc->hba_queue_depth % 16)));
2522 ioc->reply_free_queue_depth = ioc->reply_post_queue_depth - 16;
2523 ioc->hba_queue_depth = ioc->reply_free_queue_depth - 64;
2524 }
2525
2526
2527 dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "scatter gather: "
2528 "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
2529 "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
2530 ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
2531 ioc->chains_needed_per_io));
2532
2533 ioc->scsiio_depth = ioc->hba_queue_depth -
2534 ioc->hi_priority_depth - ioc->internal_depth;
2535
2536 /* set the scsi host can_queue depth
2537 * with some internal commands that could be outstanding
2538 */
2539 ioc->shost->can_queue = ioc->scsiio_depth;
2540 dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "scsi host: "
2541 "can_queue depth (%d)\n", ioc->name, ioc->shost->can_queue));
2542
2543 /* contiguous pool for request and chains, 16 byte align, one extra "
2544 * "frame for smid=0
2545 */
2546 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
2547 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
2548
2549 /* hi-priority queue */
2550 sz += (ioc->hi_priority_depth * ioc->request_sz);
2551
2552 /* internal queue */
2553 sz += (ioc->internal_depth * ioc->request_sz);
2554
2555 ioc->request_dma_sz = sz;
2556 ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
2557 if (!ioc->request) {
2558 printk(MPT2SAS_ERR_FMT "request pool: pci_alloc_consistent "
2559 "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
2560 "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
2561 ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
2562 if (ioc->scsiio_depth < MPT2SAS_SAS_QUEUE_DEPTH)
2563 goto out;
2564 retry_sz += 64;
2565 ioc->hba_queue_depth = max_request_credit - retry_sz;
2566 goto retry_allocation;
2567 }
2568
2569 if (retry_sz)
2570 printk(MPT2SAS_ERR_FMT "request pool: pci_alloc_consistent "
2571 "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
2572 "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
2573 ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
2574
2575
2576 /* hi-priority queue */
2577 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
2578 ioc->request_sz);
2579 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
2580 ioc->request_sz);
2581
2582 /* internal queue */
2583 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
2584 ioc->request_sz);
2585 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
2586 ioc->request_sz);
2587
2588
2589 dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "request pool(0x%p): "
2590 "depth(%d), frame_size(%d), pool_size(%d kB)\n", ioc->name,
2591 ioc->request, ioc->hba_queue_depth, ioc->request_sz,
2592 (ioc->hba_queue_depth * ioc->request_sz)/1024));
2593 dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "request pool: dma(0x%llx)\n",
2594 ioc->name, (unsigned long long) ioc->request_dma));
2595 total_sz += sz;
2596
2597 sz = ioc->scsiio_depth * sizeof(struct scsiio_tracker);
2598 ioc->scsi_lookup_pages = get_order(sz);
2599 ioc->scsi_lookup = (struct scsiio_tracker *)__get_free_pages(
2600 GFP_KERNEL, ioc->scsi_lookup_pages);
2601 if (!ioc->scsi_lookup) {
2602 printk(MPT2SAS_ERR_FMT "scsi_lookup: get_free_pages failed, "
2603 "sz(%d)\n", ioc->name, (int)sz);
2604 goto out;
2605 }
2606
2607 dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "scsiio(0x%p): "
2608 "depth(%d)\n", ioc->name, ioc->request,
2609 ioc->scsiio_depth));
2610
2611 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
2612 sz = ioc->chain_depth * sizeof(struct chain_tracker);
2613 ioc->chain_pages = get_order(sz);
2614
2615 ioc->chain_lookup = (struct chain_tracker *)__get_free_pages(
2616 GFP_KERNEL, ioc->chain_pages);
2617 if (!ioc->chain_lookup) {
2618 printk(MPT2SAS_ERR_FMT "chain_lookup: get_free_pages failed, "
2619 "sz(%d)\n", ioc->name, (int)sz);
2620 goto out;
2621 }
2622 ioc->chain_dma_pool = pci_pool_create("chain pool", ioc->pdev,
2623 ioc->request_sz, 16, 0);
2624 if (!ioc->chain_dma_pool) {
2625 printk(MPT2SAS_ERR_FMT "chain_dma_pool: pci_pool_create "
2626 "failed\n", ioc->name);
2627 goto out;
2628 }
2629 for (i = 0; i < ioc->chain_depth; i++) {
2630 ioc->chain_lookup[i].chain_buffer = pci_pool_alloc(
2631 ioc->chain_dma_pool , GFP_KERNEL,
2632 &ioc->chain_lookup[i].chain_buffer_dma);
2633 if (!ioc->chain_lookup[i].chain_buffer) {
2634 ioc->chain_depth = i;
2635 goto chain_done;
2636 }
2637 total_sz += ioc->request_sz;
2638 }
2639 chain_done:
2640 dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "chain pool depth"
2641 "(%d), frame_size(%d), pool_size(%d kB)\n", ioc->name,
2642 ioc->chain_depth, ioc->request_sz, ((ioc->chain_depth *
2643 ioc->request_sz))/1024));
2644
2645 /* initialize hi-priority queue smid's */
2646 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
2647 sizeof(struct request_tracker), GFP_KERNEL);
2648 if (!ioc->hpr_lookup) {
2649 printk(MPT2SAS_ERR_FMT "hpr_lookup: kcalloc failed\n",
2650 ioc->name);
2651 goto out;
2652 }
2653 ioc->hi_priority_smid = ioc->scsiio_depth + 1;
2654 dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "hi_priority(0x%p): "
2655 "depth(%d), start smid(%d)\n", ioc->name, ioc->hi_priority,
2656 ioc->hi_priority_depth, ioc->hi_priority_smid));
2657
2658 /* initialize internal queue smid's */
2659 ioc->internal_lookup = kcalloc(ioc->internal_depth,
2660 sizeof(struct request_tracker), GFP_KERNEL);
2661 if (!ioc->internal_lookup) {
2662 printk(MPT2SAS_ERR_FMT "internal_lookup: kcalloc failed\n",
2663 ioc->name);
2664 goto out;
2665 }
2666 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
2667 dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "internal(0x%p): "
2668 "depth(%d), start smid(%d)\n", ioc->name, ioc->internal,
2669 ioc->internal_depth, ioc->internal_smid));
2670
2671 /* sense buffers, 4 byte align */
2672 sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
2673 ioc->sense_dma_pool = pci_pool_create("sense pool", ioc->pdev, sz, 4,
2674 0);
2675 if (!ioc->sense_dma_pool) {
2676 printk(MPT2SAS_ERR_FMT "sense pool: pci_pool_create failed\n",
2677 ioc->name);
2678 goto out;
2679 }
2680 ioc->sense = pci_pool_alloc(ioc->sense_dma_pool , GFP_KERNEL,
2681 &ioc->sense_dma);
2682 if (!ioc->sense) {
2683 printk(MPT2SAS_ERR_FMT "sense pool: pci_pool_alloc failed\n",
2684 ioc->name);
2685 goto out;
2686 }
2687 dinitprintk(ioc, printk(MPT2SAS_INFO_FMT
2688 "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
2689 "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
2690 SCSI_SENSE_BUFFERSIZE, sz/1024));
2691 dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "sense_dma(0x%llx)\n",
2692 ioc->name, (unsigned long long)ioc->sense_dma));
2693 total_sz += sz;
2694
2695 /* reply pool, 4 byte align */
2696 sz = ioc->reply_free_queue_depth * ioc->reply_sz;
2697 ioc->reply_dma_pool = pci_pool_create("reply pool", ioc->pdev, sz, 4,
2698 0);
2699 if (!ioc->reply_dma_pool) {
2700 printk(MPT2SAS_ERR_FMT "reply pool: pci_pool_create failed\n",
2701 ioc->name);
2702 goto out;
2703 }
2704 ioc->reply = pci_pool_alloc(ioc->reply_dma_pool , GFP_KERNEL,
2705 &ioc->reply_dma);
2706 if (!ioc->reply) {
2707 printk(MPT2SAS_ERR_FMT "reply pool: pci_pool_alloc failed\n",
2708 ioc->name);
2709 goto out;
2710 }
2711 ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
2712 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
2713 dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "reply pool(0x%p): depth"
2714 "(%d), frame_size(%d), pool_size(%d kB)\n", ioc->name, ioc->reply,
2715 ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
2716 dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "reply_dma(0x%llx)\n",
2717 ioc->name, (unsigned long long)ioc->reply_dma));
2718 total_sz += sz;
2719
2720 /* reply free queue, 16 byte align */
2721 sz = ioc->reply_free_queue_depth * 4;
2722 ioc->reply_free_dma_pool = pci_pool_create("reply_free pool",
2723 ioc->pdev, sz, 16, 0);
2724 if (!ioc->reply_free_dma_pool) {
2725 printk(MPT2SAS_ERR_FMT "reply_free pool: pci_pool_create "
2726 "failed\n", ioc->name);
2727 goto out;
2728 }
2729 ioc->reply_free = pci_pool_alloc(ioc->reply_free_dma_pool , GFP_KERNEL,
2730 &ioc->reply_free_dma);
2731 if (!ioc->reply_free) {
2732 printk(MPT2SAS_ERR_FMT "reply_free pool: pci_pool_alloc "
2733 "failed\n", ioc->name);
2734 goto out;
2735 }
2736 memset(ioc->reply_free, 0, sz);
2737 dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "reply_free pool(0x%p): "
2738 "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
2739 ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
2740 dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "reply_free_dma"
2741 "(0x%llx)\n", ioc->name, (unsigned long long)ioc->reply_free_dma));
2742 total_sz += sz;
2743
2744 /* reply post queue, 16 byte align */
2745 reply_post_free_sz = ioc->reply_post_queue_depth *
2746 sizeof(Mpi2DefaultReplyDescriptor_t);
2747 if (_base_is_controller_msix_enabled(ioc))
2748 sz = reply_post_free_sz * ioc->reply_queue_count;
2749 else
2750 sz = reply_post_free_sz;
2751 ioc->reply_post_free_dma_pool = pci_pool_create("reply_post_free pool",
2752 ioc->pdev, sz, 16, 0);
2753 if (!ioc->reply_post_free_dma_pool) {
2754 printk(MPT2SAS_ERR_FMT "reply_post_free pool: pci_pool_create "
2755 "failed\n", ioc->name);
2756 goto out;
2757 }
2758 ioc->reply_post_free = pci_pool_alloc(ioc->reply_post_free_dma_pool ,
2759 GFP_KERNEL, &ioc->reply_post_free_dma);
2760 if (!ioc->reply_post_free) {
2761 printk(MPT2SAS_ERR_FMT "reply_post_free pool: pci_pool_alloc "
2762 "failed\n", ioc->name);
2763 goto out;
2764 }
2765 memset(ioc->reply_post_free, 0, sz);
2766 dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "reply post free pool"
2767 "(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
2768 ioc->name, ioc->reply_post_free, ioc->reply_post_queue_depth, 8,
2769 sz/1024));
2770 dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "reply_post_free_dma = "
2771 "(0x%llx)\n", ioc->name, (unsigned long long)
2772 ioc->reply_post_free_dma));
2773 total_sz += sz;
2774
2775 ioc->config_page_sz = 512;
2776 ioc->config_page = pci_alloc_consistent(ioc->pdev,
2777 ioc->config_page_sz, &ioc->config_page_dma);
2778 if (!ioc->config_page) {
2779 printk(MPT2SAS_ERR_FMT "config page: pci_pool_alloc "
2780 "failed\n", ioc->name);
2781 goto out;
2782 }
2783 dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "config page(0x%p): size"
2784 "(%d)\n", ioc->name, ioc->config_page, ioc->config_page_sz));
2785 dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "config_page_dma"
2786 "(0x%llx)\n", ioc->name, (unsigned long long)ioc->config_page_dma));
2787 total_sz += ioc->config_page_sz;
2788
2789 printk(MPT2SAS_INFO_FMT "Allocated physical memory: size(%d kB)\n",
2790 ioc->name, total_sz/1024);
2791 printk(MPT2SAS_INFO_FMT "Current Controller Queue Depth(%d), "
2792 "Max Controller Queue Depth(%d)\n",
2793 ioc->name, ioc->shost->can_queue, facts->RequestCredit);
2794 printk(MPT2SAS_INFO_FMT "Scatter Gather Elements per IO(%d)\n",
2795 ioc->name, ioc->shost->sg_tablesize);
2796 return 0;
2797
2798 out:
2799 return -ENOMEM;
2800 }
2801
2802
2803 /**
2804 * mpt2sas_base_get_iocstate - Get the current state of a MPT adapter.
2805 * @ioc: Pointer to MPT_ADAPTER structure
2806 * @cooked: Request raw or cooked IOC state
2807 *
2808 * Returns all IOC Doorbell register bits if cooked==0, else just the
2809 * Doorbell bits in MPI_IOC_STATE_MASK.
2810 */
2811 u32
mpt2sas_base_get_iocstate(struct MPT2SAS_ADAPTER * ioc,int cooked)2812 mpt2sas_base_get_iocstate(struct MPT2SAS_ADAPTER *ioc, int cooked)
2813 {
2814 u32 s, sc;
2815
2816 s = readl(&ioc->chip->Doorbell);
2817 sc = s & MPI2_IOC_STATE_MASK;
2818 return cooked ? sc : s;
2819 }
2820
2821 /**
2822 * _base_wait_on_iocstate - waiting on a particular ioc state
2823 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
2824 * @timeout: timeout in second
2825 * @sleep_flag: CAN_SLEEP or NO_SLEEP
2826 *
2827 * Returns 0 for success, non-zero for failure.
2828 */
2829 static int
_base_wait_on_iocstate(struct MPT2SAS_ADAPTER * ioc,u32 ioc_state,int timeout,int sleep_flag)2830 _base_wait_on_iocstate(struct MPT2SAS_ADAPTER *ioc, u32 ioc_state, int timeout,
2831 int sleep_flag)
2832 {
2833 u32 count, cntdn;
2834 u32 current_state;
2835
2836 count = 0;
2837 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
2838 do {
2839 current_state = mpt2sas_base_get_iocstate(ioc, 1);
2840 if (current_state == ioc_state)
2841 return 0;
2842 if (count && current_state == MPI2_IOC_STATE_FAULT)
2843 break;
2844 if (sleep_flag == CAN_SLEEP)
2845 msleep(1);
2846 else
2847 udelay(500);
2848 count++;
2849 } while (--cntdn);
2850
2851 return current_state;
2852 }
2853
2854 /**
2855 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
2856 * a write to the doorbell)
2857 * @ioc: per adapter object
2858 * @timeout: timeout in second
2859 * @sleep_flag: CAN_SLEEP or NO_SLEEP
2860 *
2861 * Returns 0 for success, non-zero for failure.
2862 *
2863 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
2864 */
2865 static int
_base_wait_for_doorbell_int(struct MPT2SAS_ADAPTER * ioc,int timeout,int sleep_flag)2866 _base_wait_for_doorbell_int(struct MPT2SAS_ADAPTER *ioc, int timeout,
2867 int sleep_flag)
2868 {
2869 u32 cntdn, count;
2870 u32 int_status;
2871
2872 count = 0;
2873 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
2874 do {
2875 int_status = readl(&ioc->chip->HostInterruptStatus);
2876 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
2877 dhsprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: "
2878 "successful count(%d), timeout(%d)\n", ioc->name,
2879 __func__, count, timeout));
2880 return 0;
2881 }
2882 if (sleep_flag == CAN_SLEEP)
2883 msleep(1);
2884 else
2885 udelay(500);
2886 count++;
2887 } while (--cntdn);
2888
2889 printk(MPT2SAS_ERR_FMT "%s: failed due to timeout count(%d), "
2890 "int_status(%x)!\n", ioc->name, __func__, count, int_status);
2891 return -EFAULT;
2892 }
2893
2894 /**
2895 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
2896 * @ioc: per adapter object
2897 * @timeout: timeout in second
2898 * @sleep_flag: CAN_SLEEP or NO_SLEEP
2899 *
2900 * Returns 0 for success, non-zero for failure.
2901 *
2902 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
2903 * doorbell.
2904 */
2905 static int
_base_wait_for_doorbell_ack(struct MPT2SAS_ADAPTER * ioc,int timeout,int sleep_flag)2906 _base_wait_for_doorbell_ack(struct MPT2SAS_ADAPTER *ioc, int timeout,
2907 int sleep_flag)
2908 {
2909 u32 cntdn, count;
2910 u32 int_status;
2911 u32 doorbell;
2912
2913 count = 0;
2914 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
2915 do {
2916 int_status = readl(&ioc->chip->HostInterruptStatus);
2917 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
2918 dhsprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: "
2919 "successful count(%d), timeout(%d)\n", ioc->name,
2920 __func__, count, timeout));
2921 return 0;
2922 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
2923 doorbell = readl(&ioc->chip->Doorbell);
2924 if ((doorbell & MPI2_IOC_STATE_MASK) ==
2925 MPI2_IOC_STATE_FAULT) {
2926 mpt2sas_base_fault_info(ioc , doorbell);
2927 return -EFAULT;
2928 }
2929 } else if (int_status == 0xFFFFFFFF)
2930 goto out;
2931
2932 if (sleep_flag == CAN_SLEEP)
2933 msleep(1);
2934 else
2935 udelay(500);
2936 count++;
2937 } while (--cntdn);
2938
2939 out:
2940 printk(MPT2SAS_ERR_FMT "%s: failed due to timeout count(%d), "
2941 "int_status(%x)!\n", ioc->name, __func__, count, int_status);
2942 return -EFAULT;
2943 }
2944
2945 /**
2946 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
2947 * @ioc: per adapter object
2948 * @timeout: timeout in second
2949 * @sleep_flag: CAN_SLEEP or NO_SLEEP
2950 *
2951 * Returns 0 for success, non-zero for failure.
2952 *
2953 */
2954 static int
_base_wait_for_doorbell_not_used(struct MPT2SAS_ADAPTER * ioc,int timeout,int sleep_flag)2955 _base_wait_for_doorbell_not_used(struct MPT2SAS_ADAPTER *ioc, int timeout,
2956 int sleep_flag)
2957 {
2958 u32 cntdn, count;
2959 u32 doorbell_reg;
2960
2961 count = 0;
2962 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
2963 do {
2964 doorbell_reg = readl(&ioc->chip->Doorbell);
2965 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
2966 dhsprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: "
2967 "successful count(%d), timeout(%d)\n", ioc->name,
2968 __func__, count, timeout));
2969 return 0;
2970 }
2971 if (sleep_flag == CAN_SLEEP)
2972 msleep(1);
2973 else
2974 udelay(500);
2975 count++;
2976 } while (--cntdn);
2977
2978 printk(MPT2SAS_ERR_FMT "%s: failed due to timeout count(%d), "
2979 "doorbell_reg(%x)!\n", ioc->name, __func__, count, doorbell_reg);
2980 return -EFAULT;
2981 }
2982
2983 /**
2984 * _base_send_ioc_reset - send doorbell reset
2985 * @ioc: per adapter object
2986 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
2987 * @timeout: timeout in second
2988 * @sleep_flag: CAN_SLEEP or NO_SLEEP
2989 *
2990 * Returns 0 for success, non-zero for failure.
2991 */
2992 static int
_base_send_ioc_reset(struct MPT2SAS_ADAPTER * ioc,u8 reset_type,int timeout,int sleep_flag)2993 _base_send_ioc_reset(struct MPT2SAS_ADAPTER *ioc, u8 reset_type, int timeout,
2994 int sleep_flag)
2995 {
2996 u32 ioc_state;
2997 int r = 0;
2998
2999 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
3000 printk(MPT2SAS_ERR_FMT "%s: unknown reset_type\n",
3001 ioc->name, __func__);
3002 return -EFAULT;
3003 }
3004
3005 if (!(ioc->facts.IOCCapabilities &
3006 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
3007 return -EFAULT;
3008
3009 printk(MPT2SAS_INFO_FMT "sending message unit reset !!\n", ioc->name);
3010
3011 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
3012 &ioc->chip->Doorbell);
3013 if ((_base_wait_for_doorbell_ack(ioc, 15, sleep_flag))) {
3014 r = -EFAULT;
3015 goto out;
3016 }
3017 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
3018 timeout, sleep_flag);
3019 if (ioc_state) {
3020 printk(MPT2SAS_ERR_FMT "%s: failed going to ready state "
3021 " (ioc_state=0x%x)\n", ioc->name, __func__, ioc_state);
3022 r = -EFAULT;
3023 goto out;
3024 }
3025 out:
3026 printk(MPT2SAS_INFO_FMT "message unit reset: %s\n",
3027 ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
3028 return r;
3029 }
3030
3031 /**
3032 * _base_handshake_req_reply_wait - send request thru doorbell interface
3033 * @ioc: per adapter object
3034 * @request_bytes: request length
3035 * @request: pointer having request payload
3036 * @reply_bytes: reply length
3037 * @reply: pointer to reply payload
3038 * @timeout: timeout in second
3039 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3040 *
3041 * Returns 0 for success, non-zero for failure.
3042 */
3043 static int
_base_handshake_req_reply_wait(struct MPT2SAS_ADAPTER * ioc,int request_bytes,u32 * request,int reply_bytes,u16 * reply,int timeout,int sleep_flag)3044 _base_handshake_req_reply_wait(struct MPT2SAS_ADAPTER *ioc, int request_bytes,
3045 u32 *request, int reply_bytes, u16 *reply, int timeout, int sleep_flag)
3046 {
3047 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
3048 int i;
3049 u8 failed;
3050 u16 dummy;
3051 __le32 *mfp;
3052
3053 /* make sure doorbell is not in use */
3054 if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
3055 printk(MPT2SAS_ERR_FMT "doorbell is in use "
3056 " (line=%d)\n", ioc->name, __LINE__);
3057 return -EFAULT;
3058 }
3059
3060 /* clear pending doorbell interrupts from previous state changes */
3061 if (readl(&ioc->chip->HostInterruptStatus) &
3062 MPI2_HIS_IOC2SYS_DB_STATUS)
3063 writel(0, &ioc->chip->HostInterruptStatus);
3064
3065 /* send message to ioc */
3066 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
3067 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
3068 &ioc->chip->Doorbell);
3069
3070 if ((_base_wait_for_doorbell_int(ioc, 5, NO_SLEEP))) {
3071 printk(MPT2SAS_ERR_FMT "doorbell handshake "
3072 "int failed (line=%d)\n", ioc->name, __LINE__);
3073 return -EFAULT;
3074 }
3075 writel(0, &ioc->chip->HostInterruptStatus);
3076
3077 if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag))) {
3078 printk(MPT2SAS_ERR_FMT "doorbell handshake "
3079 "ack failed (line=%d)\n", ioc->name, __LINE__);
3080 return -EFAULT;
3081 }
3082
3083 /* send message 32-bits at a time */
3084 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
3085 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
3086 if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag)))
3087 failed = 1;
3088 }
3089
3090 if (failed) {
3091 printk(MPT2SAS_ERR_FMT "doorbell handshake "
3092 "sending request failed (line=%d)\n", ioc->name, __LINE__);
3093 return -EFAULT;
3094 }
3095
3096 /* now wait for the reply */
3097 if ((_base_wait_for_doorbell_int(ioc, timeout, sleep_flag))) {
3098 printk(MPT2SAS_ERR_FMT "doorbell handshake "
3099 "int failed (line=%d)\n", ioc->name, __LINE__);
3100 return -EFAULT;
3101 }
3102
3103 /* read the first two 16-bits, it gives the total length of the reply */
3104 reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3105 & MPI2_DOORBELL_DATA_MASK);
3106 writel(0, &ioc->chip->HostInterruptStatus);
3107 if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3108 printk(MPT2SAS_ERR_FMT "doorbell handshake "
3109 "int failed (line=%d)\n", ioc->name, __LINE__);
3110 return -EFAULT;
3111 }
3112 reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3113 & MPI2_DOORBELL_DATA_MASK);
3114 writel(0, &ioc->chip->HostInterruptStatus);
3115
3116 for (i = 2; i < default_reply->MsgLength * 2; i++) {
3117 if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3118 printk(MPT2SAS_ERR_FMT "doorbell "
3119 "handshake int failed (line=%d)\n", ioc->name,
3120 __LINE__);
3121 return -EFAULT;
3122 }
3123 if (i >= reply_bytes/2) /* overflow case */
3124 dummy = readl(&ioc->chip->Doorbell);
3125 else
3126 reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3127 & MPI2_DOORBELL_DATA_MASK);
3128 writel(0, &ioc->chip->HostInterruptStatus);
3129 }
3130
3131 _base_wait_for_doorbell_int(ioc, 5, sleep_flag);
3132 if (_base_wait_for_doorbell_not_used(ioc, 5, sleep_flag) != 0) {
3133 dhsprintk(ioc, printk(MPT2SAS_INFO_FMT "doorbell is in use "
3134 " (line=%d)\n", ioc->name, __LINE__));
3135 }
3136 writel(0, &ioc->chip->HostInterruptStatus);
3137
3138 if (ioc->logging_level & MPT_DEBUG_INIT) {
3139 mfp = (__le32 *)reply;
3140 printk(KERN_INFO "\toffset:data\n");
3141 for (i = 0; i < reply_bytes/4; i++)
3142 printk(KERN_INFO "\t[0x%02x]:%08x\n", i*4,
3143 le32_to_cpu(mfp[i]));
3144 }
3145 return 0;
3146 }
3147
3148 /**
3149 * mpt2sas_base_sas_iounit_control - send sas iounit control to FW
3150 * @ioc: per adapter object
3151 * @mpi_reply: the reply payload from FW
3152 * @mpi_request: the request payload sent to FW
3153 *
3154 * The SAS IO Unit Control Request message allows the host to perform low-level
3155 * operations, such as resets on the PHYs of the IO Unit, also allows the host
3156 * to obtain the IOC assigned device handles for a device if it has other
3157 * identifying information about the device, in addition allows the host to
3158 * remove IOC resources associated with the device.
3159 *
3160 * Returns 0 for success, non-zero for failure.
3161 */
3162 int
mpt2sas_base_sas_iounit_control(struct MPT2SAS_ADAPTER * ioc,Mpi2SasIoUnitControlReply_t * mpi_reply,Mpi2SasIoUnitControlRequest_t * mpi_request)3163 mpt2sas_base_sas_iounit_control(struct MPT2SAS_ADAPTER *ioc,
3164 Mpi2SasIoUnitControlReply_t *mpi_reply,
3165 Mpi2SasIoUnitControlRequest_t *mpi_request)
3166 {
3167 u16 smid;
3168 u32 ioc_state;
3169 unsigned long timeleft;
3170 u8 issue_reset;
3171 int rc;
3172 void *request;
3173 u16 wait_state_count;
3174
3175 dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
3176 __func__));
3177
3178 mutex_lock(&ioc->base_cmds.mutex);
3179
3180 if (ioc->base_cmds.status != MPT2_CMD_NOT_USED) {
3181 printk(MPT2SAS_ERR_FMT "%s: base_cmd in use\n",
3182 ioc->name, __func__);
3183 rc = -EAGAIN;
3184 goto out;
3185 }
3186
3187 wait_state_count = 0;
3188 ioc_state = mpt2sas_base_get_iocstate(ioc, 1);
3189 while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
3190 if (wait_state_count++ == 10) {
3191 printk(MPT2SAS_ERR_FMT
3192 "%s: failed due to ioc not operational\n",
3193 ioc->name, __func__);
3194 rc = -EFAULT;
3195 goto out;
3196 }
3197 ssleep(1);
3198 ioc_state = mpt2sas_base_get_iocstate(ioc, 1);
3199 printk(MPT2SAS_INFO_FMT "%s: waiting for "
3200 "operational state(count=%d)\n", ioc->name,
3201 __func__, wait_state_count);
3202 }
3203
3204 smid = mpt2sas_base_get_smid(ioc, ioc->base_cb_idx);
3205 if (!smid) {
3206 printk(MPT2SAS_ERR_FMT "%s: failed obtaining a smid\n",
3207 ioc->name, __func__);
3208 rc = -EAGAIN;
3209 goto out;
3210 }
3211
3212 rc = 0;
3213 ioc->base_cmds.status = MPT2_CMD_PENDING;
3214 request = mpt2sas_base_get_msg_frame(ioc, smid);
3215 ioc->base_cmds.smid = smid;
3216 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
3217 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
3218 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
3219 ioc->ioc_link_reset_in_progress = 1;
3220 init_completion(&ioc->base_cmds.done);
3221 mpt2sas_base_put_smid_default(ioc, smid);
3222 timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
3223 msecs_to_jiffies(10000));
3224 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
3225 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
3226 ioc->ioc_link_reset_in_progress)
3227 ioc->ioc_link_reset_in_progress = 0;
3228 if (!(ioc->base_cmds.status & MPT2_CMD_COMPLETE)) {
3229 printk(MPT2SAS_ERR_FMT "%s: timeout\n",
3230 ioc->name, __func__);
3231 _debug_dump_mf(mpi_request,
3232 sizeof(Mpi2SasIoUnitControlRequest_t)/4);
3233 if (!(ioc->base_cmds.status & MPT2_CMD_RESET))
3234 issue_reset = 1;
3235 goto issue_host_reset;
3236 }
3237 if (ioc->base_cmds.status & MPT2_CMD_REPLY_VALID)
3238 memcpy(mpi_reply, ioc->base_cmds.reply,
3239 sizeof(Mpi2SasIoUnitControlReply_t));
3240 else
3241 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
3242 ioc->base_cmds.status = MPT2_CMD_NOT_USED;
3243 goto out;
3244
3245 issue_host_reset:
3246 if (issue_reset)
3247 mpt2sas_base_hard_reset_handler(ioc, CAN_SLEEP,
3248 FORCE_BIG_HAMMER);
3249 ioc->base_cmds.status = MPT2_CMD_NOT_USED;
3250 rc = -EFAULT;
3251 out:
3252 mutex_unlock(&ioc->base_cmds.mutex);
3253 return rc;
3254 }
3255
3256
3257 /**
3258 * mpt2sas_base_scsi_enclosure_processor - sending request to sep device
3259 * @ioc: per adapter object
3260 * @mpi_reply: the reply payload from FW
3261 * @mpi_request: the request payload sent to FW
3262 *
3263 * The SCSI Enclosure Processor request message causes the IOC to
3264 * communicate with SES devices to control LED status signals.
3265 *
3266 * Returns 0 for success, non-zero for failure.
3267 */
3268 int
mpt2sas_base_scsi_enclosure_processor(struct MPT2SAS_ADAPTER * ioc,Mpi2SepReply_t * mpi_reply,Mpi2SepRequest_t * mpi_request)3269 mpt2sas_base_scsi_enclosure_processor(struct MPT2SAS_ADAPTER *ioc,
3270 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
3271 {
3272 u16 smid;
3273 u32 ioc_state;
3274 unsigned long timeleft;
3275 u8 issue_reset;
3276 int rc;
3277 void *request;
3278 u16 wait_state_count;
3279
3280 dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
3281 __func__));
3282
3283 mutex_lock(&ioc->base_cmds.mutex);
3284
3285 if (ioc->base_cmds.status != MPT2_CMD_NOT_USED) {
3286 printk(MPT2SAS_ERR_FMT "%s: base_cmd in use\n",
3287 ioc->name, __func__);
3288 rc = -EAGAIN;
3289 goto out;
3290 }
3291
3292 wait_state_count = 0;
3293 ioc_state = mpt2sas_base_get_iocstate(ioc, 1);
3294 while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
3295 if (wait_state_count++ == 10) {
3296 printk(MPT2SAS_ERR_FMT
3297 "%s: failed due to ioc not operational\n",
3298 ioc->name, __func__);
3299 rc = -EFAULT;
3300 goto out;
3301 }
3302 ssleep(1);
3303 ioc_state = mpt2sas_base_get_iocstate(ioc, 1);
3304 printk(MPT2SAS_INFO_FMT "%s: waiting for "
3305 "operational state(count=%d)\n", ioc->name,
3306 __func__, wait_state_count);
3307 }
3308
3309 smid = mpt2sas_base_get_smid(ioc, ioc->base_cb_idx);
3310 if (!smid) {
3311 printk(MPT2SAS_ERR_FMT "%s: failed obtaining a smid\n",
3312 ioc->name, __func__);
3313 rc = -EAGAIN;
3314 goto out;
3315 }
3316
3317 rc = 0;
3318 ioc->base_cmds.status = MPT2_CMD_PENDING;
3319 request = mpt2sas_base_get_msg_frame(ioc, smid);
3320 ioc->base_cmds.smid = smid;
3321 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
3322 init_completion(&ioc->base_cmds.done);
3323 mpt2sas_base_put_smid_default(ioc, smid);
3324 timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
3325 msecs_to_jiffies(10000));
3326 if (!(ioc->base_cmds.status & MPT2_CMD_COMPLETE)) {
3327 printk(MPT2SAS_ERR_FMT "%s: timeout\n",
3328 ioc->name, __func__);
3329 _debug_dump_mf(mpi_request,
3330 sizeof(Mpi2SepRequest_t)/4);
3331 if (!(ioc->base_cmds.status & MPT2_CMD_RESET))
3332 issue_reset = 1;
3333 goto issue_host_reset;
3334 }
3335 if (ioc->base_cmds.status & MPT2_CMD_REPLY_VALID)
3336 memcpy(mpi_reply, ioc->base_cmds.reply,
3337 sizeof(Mpi2SepReply_t));
3338 else
3339 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
3340 ioc->base_cmds.status = MPT2_CMD_NOT_USED;
3341 goto out;
3342
3343 issue_host_reset:
3344 if (issue_reset)
3345 mpt2sas_base_hard_reset_handler(ioc, CAN_SLEEP,
3346 FORCE_BIG_HAMMER);
3347 ioc->base_cmds.status = MPT2_CMD_NOT_USED;
3348 rc = -EFAULT;
3349 out:
3350 mutex_unlock(&ioc->base_cmds.mutex);
3351 return rc;
3352 }
3353
3354 /**
3355 * _base_get_port_facts - obtain port facts reply and save in ioc
3356 * @ioc: per adapter object
3357 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3358 *
3359 * Returns 0 for success, non-zero for failure.
3360 */
3361 static int
_base_get_port_facts(struct MPT2SAS_ADAPTER * ioc,int port,int sleep_flag)3362 _base_get_port_facts(struct MPT2SAS_ADAPTER *ioc, int port, int sleep_flag)
3363 {
3364 Mpi2PortFactsRequest_t mpi_request;
3365 Mpi2PortFactsReply_t mpi_reply;
3366 struct mpt2sas_port_facts *pfacts;
3367 int mpi_reply_sz, mpi_request_sz, r;
3368
3369 dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
3370 __func__));
3371
3372 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
3373 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
3374 memset(&mpi_request, 0, mpi_request_sz);
3375 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
3376 mpi_request.PortNumber = port;
3377 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
3378 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
3379
3380 if (r != 0) {
3381 printk(MPT2SAS_ERR_FMT "%s: handshake failed (r=%d)\n",
3382 ioc->name, __func__, r);
3383 return r;
3384 }
3385
3386 pfacts = &ioc->pfacts[port];
3387 memset(pfacts, 0, sizeof(struct mpt2sas_port_facts));
3388 pfacts->PortNumber = mpi_reply.PortNumber;
3389 pfacts->VP_ID = mpi_reply.VP_ID;
3390 pfacts->VF_ID = mpi_reply.VF_ID;
3391 pfacts->MaxPostedCmdBuffers =
3392 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
3393
3394 return 0;
3395 }
3396
3397 /**
3398 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
3399 * @ioc: per adapter object
3400 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3401 *
3402 * Returns 0 for success, non-zero for failure.
3403 */
3404 static int
_base_get_ioc_facts(struct MPT2SAS_ADAPTER * ioc,int sleep_flag)3405 _base_get_ioc_facts(struct MPT2SAS_ADAPTER *ioc, int sleep_flag)
3406 {
3407 Mpi2IOCFactsRequest_t mpi_request;
3408 Mpi2IOCFactsReply_t mpi_reply;
3409 struct mpt2sas_facts *facts;
3410 int mpi_reply_sz, mpi_request_sz, r;
3411
3412 dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
3413 __func__));
3414
3415 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
3416 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
3417 memset(&mpi_request, 0, mpi_request_sz);
3418 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
3419 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
3420 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
3421
3422 if (r != 0) {
3423 printk(MPT2SAS_ERR_FMT "%s: handshake failed (r=%d)\n",
3424 ioc->name, __func__, r);
3425 return r;
3426 }
3427
3428 facts = &ioc->facts;
3429 memset(facts, 0, sizeof(struct mpt2sas_facts));
3430 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
3431 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
3432 facts->VP_ID = mpi_reply.VP_ID;
3433 facts->VF_ID = mpi_reply.VF_ID;
3434 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
3435 facts->MaxChainDepth = mpi_reply.MaxChainDepth;
3436 facts->WhoInit = mpi_reply.WhoInit;
3437 facts->NumberOfPorts = mpi_reply.NumberOfPorts;
3438 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
3439 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
3440 facts->MaxReplyDescriptorPostQueueDepth =
3441 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
3442 facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
3443 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
3444 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
3445 ioc->ir_firmware = 1;
3446 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
3447 facts->IOCRequestFrameSize =
3448 le16_to_cpu(mpi_reply.IOCRequestFrameSize);
3449 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
3450 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
3451 ioc->shost->max_id = -1;
3452 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
3453 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
3454 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
3455 facts->HighPriorityCredit =
3456 le16_to_cpu(mpi_reply.HighPriorityCredit);
3457 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
3458 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
3459
3460 dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "hba queue depth(%d), "
3461 "max chains per io(%d)\n", ioc->name, facts->RequestCredit,
3462 facts->MaxChainDepth));
3463 dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "request frame size(%d), "
3464 "reply frame size(%d)\n", ioc->name,
3465 facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
3466 return 0;
3467 }
3468
3469 /**
3470 * _base_send_ioc_init - send ioc_init to firmware
3471 * @ioc: per adapter object
3472 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3473 *
3474 * Returns 0 for success, non-zero for failure.
3475 */
3476 static int
_base_send_ioc_init(struct MPT2SAS_ADAPTER * ioc,int sleep_flag)3477 _base_send_ioc_init(struct MPT2SAS_ADAPTER *ioc, int sleep_flag)
3478 {
3479 Mpi2IOCInitRequest_t mpi_request;
3480 Mpi2IOCInitReply_t mpi_reply;
3481 int r;
3482 struct timeval current_time;
3483 u16 ioc_status;
3484
3485 dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
3486 __func__));
3487
3488 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
3489 mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
3490 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
3491 mpi_request.VF_ID = 0; /* TODO */
3492 mpi_request.VP_ID = 0;
3493 mpi_request.MsgVersion = cpu_to_le16(MPI2_VERSION);
3494 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
3495
3496 if (_base_is_controller_msix_enabled(ioc))
3497 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
3498 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
3499 mpi_request.ReplyDescriptorPostQueueDepth =
3500 cpu_to_le16(ioc->reply_post_queue_depth);
3501 mpi_request.ReplyFreeQueueDepth =
3502 cpu_to_le16(ioc->reply_free_queue_depth);
3503
3504 mpi_request.SenseBufferAddressHigh =
3505 cpu_to_le32((u64)ioc->sense_dma >> 32);
3506 mpi_request.SystemReplyAddressHigh =
3507 cpu_to_le32((u64)ioc->reply_dma >> 32);
3508 mpi_request.SystemRequestFrameBaseAddress =
3509 cpu_to_le64((u64)ioc->request_dma);
3510 mpi_request.ReplyFreeQueueAddress =
3511 cpu_to_le64((u64)ioc->reply_free_dma);
3512 mpi_request.ReplyDescriptorPostQueueAddress =
3513 cpu_to_le64((u64)ioc->reply_post_free_dma);
3514
3515
3516 /* This time stamp specifies number of milliseconds
3517 * since epoch ~ midnight January 1, 1970.
3518 */
3519 do_gettimeofday(¤t_time);
3520 mpi_request.TimeStamp = cpu_to_le64((u64)current_time.tv_sec * 1000 +
3521 (current_time.tv_usec / 1000));
3522
3523 if (ioc->logging_level & MPT_DEBUG_INIT) {
3524 __le32 *mfp;
3525 int i;
3526
3527 mfp = (__le32 *)&mpi_request;
3528 printk(KERN_INFO "\toffset:data\n");
3529 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
3530 printk(KERN_INFO "\t[0x%02x]:%08x\n", i*4,
3531 le32_to_cpu(mfp[i]));
3532 }
3533
3534 r = _base_handshake_req_reply_wait(ioc,
3535 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
3536 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10,
3537 sleep_flag);
3538
3539 if (r != 0) {
3540 printk(MPT2SAS_ERR_FMT "%s: handshake failed (r=%d)\n",
3541 ioc->name, __func__, r);
3542 return r;
3543 }
3544
3545 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
3546 if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
3547 mpi_reply.IOCLogInfo) {
3548 printk(MPT2SAS_ERR_FMT "%s: failed\n", ioc->name, __func__);
3549 r = -EIO;
3550 }
3551
3552 return 0;
3553 }
3554
3555 /**
3556 * mpt2sas_port_enable_done - command completion routine for port enable
3557 * @ioc: per adapter object
3558 * @smid: system request message index
3559 * @msix_index: MSIX table index supplied by the OS
3560 * @reply: reply message frame(lower 32bit addr)
3561 *
3562 * Return 1 meaning mf should be freed from _base_interrupt
3563 * 0 means the mf is freed from this function.
3564 */
3565 u8
mpt2sas_port_enable_done(struct MPT2SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)3566 mpt2sas_port_enable_done(struct MPT2SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
3567 u32 reply)
3568 {
3569 MPI2DefaultReply_t *mpi_reply;
3570 u16 ioc_status;
3571
3572 mpi_reply = mpt2sas_base_get_reply_virt_addr(ioc, reply);
3573 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
3574 return 1;
3575
3576 if (ioc->port_enable_cmds.status == MPT2_CMD_NOT_USED)
3577 return 1;
3578
3579 ioc->port_enable_cmds.status |= MPT2_CMD_COMPLETE;
3580 if (mpi_reply) {
3581 ioc->port_enable_cmds.status |= MPT2_CMD_REPLY_VALID;
3582 memcpy(ioc->port_enable_cmds.reply, mpi_reply,
3583 mpi_reply->MsgLength*4);
3584 }
3585 ioc->port_enable_cmds.status &= ~MPT2_CMD_PENDING;
3586
3587 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
3588
3589 if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
3590 ioc->port_enable_failed = 1;
3591
3592 if (ioc->is_driver_loading) {
3593 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
3594 mpt2sas_port_enable_complete(ioc);
3595 return 1;
3596 } else {
3597 ioc->start_scan_failed = ioc_status;
3598 ioc->start_scan = 0;
3599 return 1;
3600 }
3601 }
3602 complete(&ioc->port_enable_cmds.done);
3603 return 1;
3604 }
3605
3606
3607 /**
3608 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
3609 * @ioc: per adapter object
3610 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3611 *
3612 * Returns 0 for success, non-zero for failure.
3613 */
3614 static int
_base_send_port_enable(struct MPT2SAS_ADAPTER * ioc,int sleep_flag)3615 _base_send_port_enable(struct MPT2SAS_ADAPTER *ioc, int sleep_flag)
3616 {
3617 Mpi2PortEnableRequest_t *mpi_request;
3618 Mpi2PortEnableReply_t *mpi_reply;
3619 unsigned long timeleft;
3620 int r = 0;
3621 u16 smid;
3622 u16 ioc_status;
3623
3624 printk(MPT2SAS_INFO_FMT "sending port enable !!\n", ioc->name);
3625
3626 if (ioc->port_enable_cmds.status & MPT2_CMD_PENDING) {
3627 printk(MPT2SAS_ERR_FMT "%s: internal command already in use\n",
3628 ioc->name, __func__);
3629 return -EAGAIN;
3630 }
3631
3632 smid = mpt2sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
3633 if (!smid) {
3634 printk(MPT2SAS_ERR_FMT "%s: failed obtaining a smid\n",
3635 ioc->name, __func__);
3636 return -EAGAIN;
3637 }
3638
3639 ioc->port_enable_cmds.status = MPT2_CMD_PENDING;
3640 mpi_request = mpt2sas_base_get_msg_frame(ioc, smid);
3641 ioc->port_enable_cmds.smid = smid;
3642 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
3643 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
3644
3645 init_completion(&ioc->port_enable_cmds.done);
3646 mpt2sas_base_put_smid_default(ioc, smid);
3647 timeleft = wait_for_completion_timeout(&ioc->port_enable_cmds.done,
3648 300*HZ);
3649 if (!(ioc->port_enable_cmds.status & MPT2_CMD_COMPLETE)) {
3650 printk(MPT2SAS_ERR_FMT "%s: timeout\n",
3651 ioc->name, __func__);
3652 _debug_dump_mf(mpi_request,
3653 sizeof(Mpi2PortEnableRequest_t)/4);
3654 if (ioc->port_enable_cmds.status & MPT2_CMD_RESET)
3655 r = -EFAULT;
3656 else
3657 r = -ETIME;
3658 goto out;
3659 }
3660 mpi_reply = ioc->port_enable_cmds.reply;
3661
3662 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
3663 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
3664 printk(MPT2SAS_ERR_FMT "%s: failed with (ioc_status=0x%08x)\n",
3665 ioc->name, __func__, ioc_status);
3666 r = -EFAULT;
3667 goto out;
3668 }
3669 out:
3670 ioc->port_enable_cmds.status = MPT2_CMD_NOT_USED;
3671 printk(MPT2SAS_INFO_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
3672 "SUCCESS" : "FAILED"));
3673 return r;
3674 }
3675
3676 /**
3677 * mpt2sas_port_enable - initiate firmware discovery (don't wait for reply)
3678 * @ioc: per adapter object
3679 *
3680 * Returns 0 for success, non-zero for failure.
3681 */
3682 int
mpt2sas_port_enable(struct MPT2SAS_ADAPTER * ioc)3683 mpt2sas_port_enable(struct MPT2SAS_ADAPTER *ioc)
3684 {
3685 Mpi2PortEnableRequest_t *mpi_request;
3686 u16 smid;
3687
3688 printk(MPT2SAS_INFO_FMT "sending port enable !!\n", ioc->name);
3689
3690 if (ioc->port_enable_cmds.status & MPT2_CMD_PENDING) {
3691 printk(MPT2SAS_ERR_FMT "%s: internal command already in use\n",
3692 ioc->name, __func__);
3693 return -EAGAIN;
3694 }
3695
3696 smid = mpt2sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
3697 if (!smid) {
3698 printk(MPT2SAS_ERR_FMT "%s: failed obtaining a smid\n",
3699 ioc->name, __func__);
3700 return -EAGAIN;
3701 }
3702
3703 ioc->port_enable_cmds.status = MPT2_CMD_PENDING;
3704 mpi_request = mpt2sas_base_get_msg_frame(ioc, smid);
3705 ioc->port_enable_cmds.smid = smid;
3706 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
3707 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
3708
3709 mpt2sas_base_put_smid_default(ioc, smid);
3710 return 0;
3711 }
3712
3713 /**
3714 * _base_determine_wait_on_discovery - desposition
3715 * @ioc: per adapter object
3716 *
3717 * Decide whether to wait on discovery to complete. Used to either
3718 * locate boot device, or report volumes ahead of physical devices.
3719 *
3720 * Returns 1 for wait, 0 for don't wait
3721 */
3722 static int
_base_determine_wait_on_discovery(struct MPT2SAS_ADAPTER * ioc)3723 _base_determine_wait_on_discovery(struct MPT2SAS_ADAPTER *ioc)
3724 {
3725 /* We wait for discovery to complete if IR firmware is loaded.
3726 * The sas topology events arrive before PD events, so we need time to
3727 * turn on the bit in ioc->pd_handles to indicate PD
3728 * Also, it maybe required to report Volumes ahead of physical
3729 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
3730 */
3731 if (ioc->ir_firmware)
3732 return 1;
3733
3734 /* if no Bios, then we don't need to wait */
3735 if (!ioc->bios_pg3.BiosVersion)
3736 return 0;
3737
3738 /* Bios is present, then we drop down here.
3739 *
3740 * If there any entries in the Bios Page 2, then we wait
3741 * for discovery to complete.
3742 */
3743
3744 /* Current Boot Device */
3745 if ((ioc->bios_pg2.CurrentBootDeviceForm &
3746 MPI2_BIOSPAGE2_FORM_MASK) ==
3747 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
3748 /* Request Boot Device */
3749 (ioc->bios_pg2.ReqBootDeviceForm &
3750 MPI2_BIOSPAGE2_FORM_MASK) ==
3751 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
3752 /* Alternate Request Boot Device */
3753 (ioc->bios_pg2.ReqAltBootDeviceForm &
3754 MPI2_BIOSPAGE2_FORM_MASK) ==
3755 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
3756 return 0;
3757
3758 return 1;
3759 }
3760
3761
3762 /**
3763 * _base_unmask_events - turn on notification for this event
3764 * @ioc: per adapter object
3765 * @event: firmware event
3766 *
3767 * The mask is stored in ioc->event_masks.
3768 */
3769 static void
_base_unmask_events(struct MPT2SAS_ADAPTER * ioc,u16 event)3770 _base_unmask_events(struct MPT2SAS_ADAPTER *ioc, u16 event)
3771 {
3772 u32 desired_event;
3773
3774 if (event >= 128)
3775 return;
3776
3777 desired_event = (1 << (event % 32));
3778
3779 if (event < 32)
3780 ioc->event_masks[0] &= ~desired_event;
3781 else if (event < 64)
3782 ioc->event_masks[1] &= ~desired_event;
3783 else if (event < 96)
3784 ioc->event_masks[2] &= ~desired_event;
3785 else if (event < 128)
3786 ioc->event_masks[3] &= ~desired_event;
3787 }
3788
3789 /**
3790 * _base_event_notification - send event notification
3791 * @ioc: per adapter object
3792 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3793 *
3794 * Returns 0 for success, non-zero for failure.
3795 */
3796 static int
_base_event_notification(struct MPT2SAS_ADAPTER * ioc,int sleep_flag)3797 _base_event_notification(struct MPT2SAS_ADAPTER *ioc, int sleep_flag)
3798 {
3799 Mpi2EventNotificationRequest_t *mpi_request;
3800 unsigned long timeleft;
3801 u16 smid;
3802 int r = 0;
3803 int i;
3804
3805 dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
3806 __func__));
3807
3808 if (ioc->base_cmds.status & MPT2_CMD_PENDING) {
3809 printk(MPT2SAS_ERR_FMT "%s: internal command already in use\n",
3810 ioc->name, __func__);
3811 return -EAGAIN;
3812 }
3813
3814 smid = mpt2sas_base_get_smid(ioc, ioc->base_cb_idx);
3815 if (!smid) {
3816 printk(MPT2SAS_ERR_FMT "%s: failed obtaining a smid\n",
3817 ioc->name, __func__);
3818 return -EAGAIN;
3819 }
3820 ioc->base_cmds.status = MPT2_CMD_PENDING;
3821 mpi_request = mpt2sas_base_get_msg_frame(ioc, smid);
3822 ioc->base_cmds.smid = smid;
3823 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
3824 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
3825 mpi_request->VF_ID = 0; /* TODO */
3826 mpi_request->VP_ID = 0;
3827 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
3828 mpi_request->EventMasks[i] =
3829 cpu_to_le32(ioc->event_masks[i]);
3830 init_completion(&ioc->base_cmds.done);
3831 mpt2sas_base_put_smid_default(ioc, smid);
3832 timeleft = wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
3833 if (!(ioc->base_cmds.status & MPT2_CMD_COMPLETE)) {
3834 printk(MPT2SAS_ERR_FMT "%s: timeout\n",
3835 ioc->name, __func__);
3836 _debug_dump_mf(mpi_request,
3837 sizeof(Mpi2EventNotificationRequest_t)/4);
3838 if (ioc->base_cmds.status & MPT2_CMD_RESET)
3839 r = -EFAULT;
3840 else
3841 r = -ETIME;
3842 } else
3843 dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: complete\n",
3844 ioc->name, __func__));
3845 ioc->base_cmds.status = MPT2_CMD_NOT_USED;
3846 return r;
3847 }
3848
3849 /**
3850 * mpt2sas_base_validate_event_type - validating event types
3851 * @ioc: per adapter object
3852 * @event: firmware event
3853 *
3854 * This will turn on firmware event notification when application
3855 * ask for that event. We don't mask events that are already enabled.
3856 */
3857 void
mpt2sas_base_validate_event_type(struct MPT2SAS_ADAPTER * ioc,u32 * event_type)3858 mpt2sas_base_validate_event_type(struct MPT2SAS_ADAPTER *ioc, u32 *event_type)
3859 {
3860 int i, j;
3861 u32 event_mask, desired_event;
3862 u8 send_update_to_fw;
3863
3864 for (i = 0, send_update_to_fw = 0; i <
3865 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
3866 event_mask = ~event_type[i];
3867 desired_event = 1;
3868 for (j = 0; j < 32; j++) {
3869 if (!(event_mask & desired_event) &&
3870 (ioc->event_masks[i] & desired_event)) {
3871 ioc->event_masks[i] &= ~desired_event;
3872 send_update_to_fw = 1;
3873 }
3874 desired_event = (desired_event << 1);
3875 }
3876 }
3877
3878 if (!send_update_to_fw)
3879 return;
3880
3881 mutex_lock(&ioc->base_cmds.mutex);
3882 _base_event_notification(ioc, CAN_SLEEP);
3883 mutex_unlock(&ioc->base_cmds.mutex);
3884 }
3885
3886 /**
3887 * _base_diag_reset - the "big hammer" start of day reset
3888 * @ioc: per adapter object
3889 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3890 *
3891 * Returns 0 for success, non-zero for failure.
3892 */
3893 static int
_base_diag_reset(struct MPT2SAS_ADAPTER * ioc,int sleep_flag)3894 _base_diag_reset(struct MPT2SAS_ADAPTER *ioc, int sleep_flag)
3895 {
3896 u32 host_diagnostic;
3897 u32 ioc_state;
3898 u32 count;
3899 u32 hcb_size;
3900
3901 printk(MPT2SAS_INFO_FMT "sending diag reset !!\n", ioc->name);
3902 drsprintk(ioc, printk(MPT2SAS_INFO_FMT "clear interrupts\n",
3903 ioc->name));
3904
3905 count = 0;
3906 do {
3907 /* Write magic sequence to WriteSequence register
3908 * Loop until in diagnostic mode
3909 */
3910 drsprintk(ioc, printk(MPT2SAS_INFO_FMT "write magic "
3911 "sequence\n", ioc->name));
3912 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
3913 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
3914 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
3915 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
3916 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
3917 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
3918 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
3919
3920 /* wait 100 msec */
3921 if (sleep_flag == CAN_SLEEP)
3922 msleep(100);
3923 else
3924 mdelay(100);
3925
3926 if (count++ > 20)
3927 goto out;
3928
3929 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
3930 drsprintk(ioc, printk(MPT2SAS_INFO_FMT "wrote magic "
3931 "sequence: count(%d), host_diagnostic(0x%08x)\n",
3932 ioc->name, count, host_diagnostic));
3933
3934 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
3935
3936 hcb_size = readl(&ioc->chip->HCBSize);
3937
3938 drsprintk(ioc, printk(MPT2SAS_INFO_FMT "diag reset: issued\n",
3939 ioc->name));
3940 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
3941 &ioc->chip->HostDiagnostic);
3942
3943 /* don't access any registers for 50 milliseconds */
3944 msleep(50);
3945
3946 /* 300 second max wait */
3947 for (count = 0; count < 3000000 ; count++) {
3948
3949 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
3950
3951 if (host_diagnostic == 0xFFFFFFFF)
3952 goto out;
3953 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
3954 break;
3955
3956 /* wait 100 msec */
3957 if (sleep_flag == CAN_SLEEP)
3958 msleep(1);
3959 else
3960 mdelay(1);
3961 }
3962
3963 if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
3964
3965 drsprintk(ioc, printk(MPT2SAS_INFO_FMT "restart the adapter "
3966 "assuming the HCB Address points to good F/W\n",
3967 ioc->name));
3968 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
3969 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
3970 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
3971
3972 drsprintk(ioc, printk(MPT2SAS_INFO_FMT
3973 "re-enable the HCDW\n", ioc->name));
3974 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
3975 &ioc->chip->HCBSize);
3976 }
3977
3978 drsprintk(ioc, printk(MPT2SAS_INFO_FMT "restart the adapter\n",
3979 ioc->name));
3980 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
3981 &ioc->chip->HostDiagnostic);
3982
3983 drsprintk(ioc, printk(MPT2SAS_INFO_FMT "disable writes to the "
3984 "diagnostic register\n", ioc->name));
3985 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
3986
3987 drsprintk(ioc, printk(MPT2SAS_INFO_FMT "Wait for FW to go to the "
3988 "READY state\n", ioc->name));
3989 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20,
3990 sleep_flag);
3991 if (ioc_state) {
3992 printk(MPT2SAS_ERR_FMT "%s: failed going to ready state "
3993 " (ioc_state=0x%x)\n", ioc->name, __func__, ioc_state);
3994 goto out;
3995 }
3996
3997 printk(MPT2SAS_INFO_FMT "diag reset: SUCCESS\n", ioc->name);
3998 return 0;
3999
4000 out:
4001 printk(MPT2SAS_ERR_FMT "diag reset: FAILED\n", ioc->name);
4002 return -EFAULT;
4003 }
4004
4005 /**
4006 * _base_make_ioc_ready - put controller in READY state
4007 * @ioc: per adapter object
4008 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4009 * @type: FORCE_BIG_HAMMER or SOFT_RESET
4010 *
4011 * Returns 0 for success, non-zero for failure.
4012 */
4013 static int
_base_make_ioc_ready(struct MPT2SAS_ADAPTER * ioc,int sleep_flag,enum reset_type type)4014 _base_make_ioc_ready(struct MPT2SAS_ADAPTER *ioc, int sleep_flag,
4015 enum reset_type type)
4016 {
4017 u32 ioc_state;
4018 int rc;
4019
4020 dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
4021 __func__));
4022
4023 if (ioc->pci_error_recovery)
4024 return 0;
4025
4026 ioc_state = mpt2sas_base_get_iocstate(ioc, 0);
4027 dhsprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: ioc_state(0x%08x)\n",
4028 ioc->name, __func__, ioc_state));
4029
4030 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
4031 return 0;
4032
4033 if (ioc_state & MPI2_DOORBELL_USED) {
4034 dhsprintk(ioc, printk(MPT2SAS_INFO_FMT "unexpected doorbell "
4035 "active!\n", ioc->name));
4036 goto issue_diag_reset;
4037 }
4038
4039 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4040 mpt2sas_base_fault_info(ioc, ioc_state &
4041 MPI2_DOORBELL_DATA_MASK);
4042 goto issue_diag_reset;
4043 }
4044
4045 if (type == FORCE_BIG_HAMMER)
4046 goto issue_diag_reset;
4047
4048 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4049 if (!(_base_send_ioc_reset(ioc,
4050 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15, CAN_SLEEP))) {
4051 ioc->ioc_reset_count++;
4052 return 0;
4053 }
4054
4055 issue_diag_reset:
4056 rc = _base_diag_reset(ioc, CAN_SLEEP);
4057 ioc->ioc_reset_count++;
4058 return rc;
4059 }
4060
4061 /**
4062 * _base_make_ioc_operational - put controller in OPERATIONAL state
4063 * @ioc: per adapter object
4064 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4065 *
4066 * Returns 0 for success, non-zero for failure.
4067 */
4068 static int
_base_make_ioc_operational(struct MPT2SAS_ADAPTER * ioc,int sleep_flag)4069 _base_make_ioc_operational(struct MPT2SAS_ADAPTER *ioc, int sleep_flag)
4070 {
4071 int r, i;
4072 unsigned long flags;
4073 u32 reply_address;
4074 u16 smid;
4075 struct _tr_list *delayed_tr, *delayed_tr_next;
4076 u8 hide_flag;
4077 struct adapter_reply_queue *reply_q;
4078 long reply_post_free;
4079 u32 reply_post_free_sz;
4080
4081 dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
4082 __func__));
4083
4084 /* clean the delayed target reset list */
4085 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
4086 &ioc->delayed_tr_list, list) {
4087 list_del(&delayed_tr->list);
4088 kfree(delayed_tr);
4089 }
4090
4091 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
4092 &ioc->delayed_tr_volume_list, list) {
4093 list_del(&delayed_tr->list);
4094 kfree(delayed_tr);
4095 }
4096
4097 /* initialize the scsi lookup free list */
4098 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4099 INIT_LIST_HEAD(&ioc->free_list);
4100 smid = 1;
4101 for (i = 0; i < ioc->scsiio_depth; i++, smid++) {
4102 INIT_LIST_HEAD(&ioc->scsi_lookup[i].chain_list);
4103 ioc->scsi_lookup[i].cb_idx = 0xFF;
4104 ioc->scsi_lookup[i].smid = smid;
4105 ioc->scsi_lookup[i].scmd = NULL;
4106 ioc->scsi_lookup[i].direct_io = 0;
4107 list_add_tail(&ioc->scsi_lookup[i].tracker_list,
4108 &ioc->free_list);
4109 }
4110
4111 /* hi-priority queue */
4112 INIT_LIST_HEAD(&ioc->hpr_free_list);
4113 smid = ioc->hi_priority_smid;
4114 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
4115 ioc->hpr_lookup[i].cb_idx = 0xFF;
4116 ioc->hpr_lookup[i].smid = smid;
4117 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
4118 &ioc->hpr_free_list);
4119 }
4120
4121 /* internal queue */
4122 INIT_LIST_HEAD(&ioc->internal_free_list);
4123 smid = ioc->internal_smid;
4124 for (i = 0; i < ioc->internal_depth; i++, smid++) {
4125 ioc->internal_lookup[i].cb_idx = 0xFF;
4126 ioc->internal_lookup[i].smid = smid;
4127 list_add_tail(&ioc->internal_lookup[i].tracker_list,
4128 &ioc->internal_free_list);
4129 }
4130
4131 /* chain pool */
4132 INIT_LIST_HEAD(&ioc->free_chain_list);
4133 for (i = 0; i < ioc->chain_depth; i++)
4134 list_add_tail(&ioc->chain_lookup[i].tracker_list,
4135 &ioc->free_chain_list);
4136
4137 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4138
4139 /* initialize Reply Free Queue */
4140 for (i = 0, reply_address = (u32)ioc->reply_dma ;
4141 i < ioc->reply_free_queue_depth ; i++, reply_address +=
4142 ioc->reply_sz)
4143 ioc->reply_free[i] = cpu_to_le32(reply_address);
4144
4145 /* initialize reply queues */
4146 if (ioc->is_driver_loading)
4147 _base_assign_reply_queues(ioc);
4148
4149 /* initialize Reply Post Free Queue */
4150 reply_post_free = (long)ioc->reply_post_free;
4151 reply_post_free_sz = ioc->reply_post_queue_depth *
4152 sizeof(Mpi2DefaultReplyDescriptor_t);
4153 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
4154 reply_q->reply_post_host_index = 0;
4155 reply_q->reply_post_free = (Mpi2ReplyDescriptorsUnion_t *)
4156 reply_post_free;
4157 for (i = 0; i < ioc->reply_post_queue_depth; i++)
4158 reply_q->reply_post_free[i].Words =
4159 cpu_to_le64(ULLONG_MAX);
4160 if (!_base_is_controller_msix_enabled(ioc))
4161 goto skip_init_reply_post_free_queue;
4162 reply_post_free += reply_post_free_sz;
4163 }
4164 skip_init_reply_post_free_queue:
4165
4166 r = _base_send_ioc_init(ioc, sleep_flag);
4167 if (r)
4168 return r;
4169
4170 /* initialize reply free host index */
4171 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
4172 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
4173
4174 /* initialize reply post host index */
4175 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
4176 writel(reply_q->msix_index << MPI2_RPHI_MSIX_INDEX_SHIFT,
4177 &ioc->chip->ReplyPostHostIndex);
4178 if (!_base_is_controller_msix_enabled(ioc))
4179 goto skip_init_reply_post_host_index;
4180 }
4181
4182 skip_init_reply_post_host_index:
4183
4184 _base_unmask_interrupts(ioc);
4185
4186 r = _base_event_notification(ioc, sleep_flag);
4187 if (r)
4188 return r;
4189
4190 if (sleep_flag == CAN_SLEEP)
4191 _base_static_config_pages(ioc);
4192
4193
4194 if (ioc->is_driver_loading) {
4195 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
4196 == 0x80) {
4197 hide_flag = (u8) (
4198 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
4199 MFG_PAGE10_HIDE_SSDS_MASK);
4200 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
4201 ioc->mfg_pg10_hide_flag = hide_flag;
4202 }
4203 ioc->wait_for_discovery_to_complete =
4204 _base_determine_wait_on_discovery(ioc);
4205 return r; /* scan_start and scan_finished support */
4206 }
4207 r = _base_send_port_enable(ioc, sleep_flag);
4208 if (r)
4209 return r;
4210
4211 return r;
4212 }
4213
4214 /**
4215 * mpt2sas_base_free_resources - free resources controller resources (io/irq/memap)
4216 * @ioc: per adapter object
4217 *
4218 * Return nothing.
4219 */
4220 void
mpt2sas_base_free_resources(struct MPT2SAS_ADAPTER * ioc)4221 mpt2sas_base_free_resources(struct MPT2SAS_ADAPTER *ioc)
4222 {
4223 struct pci_dev *pdev = ioc->pdev;
4224
4225 dexitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
4226 __func__));
4227
4228 _base_mask_interrupts(ioc);
4229 ioc->shost_recovery = 1;
4230 _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
4231 ioc->shost_recovery = 0;
4232 _base_free_irq(ioc);
4233 _base_disable_msix(ioc);
4234 if (ioc->chip_phys)
4235 iounmap(ioc->chip);
4236 ioc->chip_phys = 0;
4237 pci_release_selected_regions(ioc->pdev, ioc->bars);
4238 pci_disable_pcie_error_reporting(pdev);
4239 pci_disable_device(pdev);
4240 return;
4241 }
4242
4243 /**
4244 * mpt2sas_base_attach - attach controller instance
4245 * @ioc: per adapter object
4246 *
4247 * Returns 0 for success, non-zero for failure.
4248 */
4249 int
mpt2sas_base_attach(struct MPT2SAS_ADAPTER * ioc)4250 mpt2sas_base_attach(struct MPT2SAS_ADAPTER *ioc)
4251 {
4252 int r, i;
4253 int cpu_id, last_cpu_id = 0;
4254
4255 dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
4256 __func__));
4257
4258 /* setup cpu_msix_table */
4259 ioc->cpu_count = num_online_cpus();
4260 for_each_online_cpu(cpu_id)
4261 last_cpu_id = cpu_id;
4262 ioc->cpu_msix_table_sz = last_cpu_id + 1;
4263 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
4264 ioc->reply_queue_count = 1;
4265 if (!ioc->cpu_msix_table) {
4266 dfailprintk(ioc, printk(MPT2SAS_INFO_FMT "allocation for "
4267 "cpu_msix_table failed!!!\n", ioc->name));
4268 r = -ENOMEM;
4269 goto out_free_resources;
4270 }
4271
4272 if (ioc->is_warpdrive) {
4273 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
4274 sizeof(resource_size_t *), GFP_KERNEL);
4275 if (!ioc->reply_post_host_index) {
4276 dfailprintk(ioc, printk(MPT2SAS_INFO_FMT "allocation "
4277 "for cpu_msix_table failed!!!\n", ioc->name));
4278 r = -ENOMEM;
4279 goto out_free_resources;
4280 }
4281 }
4282
4283 r = mpt2sas_base_map_resources(ioc);
4284 if (r)
4285 goto out_free_resources;
4286
4287 if (ioc->is_warpdrive) {
4288 ioc->reply_post_host_index[0] =
4289 (resource_size_t *)&ioc->chip->ReplyPostHostIndex;
4290
4291 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
4292 ioc->reply_post_host_index[i] = (resource_size_t *)
4293 ((u8 *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
4294 * 4)));
4295 }
4296
4297 pci_set_drvdata(ioc->pdev, ioc->shost);
4298 r = _base_get_ioc_facts(ioc, CAN_SLEEP);
4299 if (r)
4300 goto out_free_resources;
4301
4302 r = _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
4303 if (r)
4304 goto out_free_resources;
4305
4306 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
4307 sizeof(struct mpt2sas_port_facts), GFP_KERNEL);
4308 if (!ioc->pfacts) {
4309 r = -ENOMEM;
4310 goto out_free_resources;
4311 }
4312
4313 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
4314 r = _base_get_port_facts(ioc, i, CAN_SLEEP);
4315 if (r)
4316 goto out_free_resources;
4317 }
4318
4319 r = _base_allocate_memory_pools(ioc, CAN_SLEEP);
4320 if (r)
4321 goto out_free_resources;
4322
4323 init_waitqueue_head(&ioc->reset_wq);
4324 /* allocate memory pd handle bitmask list */
4325 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
4326 if (ioc->facts.MaxDevHandle % 8)
4327 ioc->pd_handles_sz++;
4328 ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
4329 GFP_KERNEL);
4330 if (!ioc->pd_handles) {
4331 r = -ENOMEM;
4332 goto out_free_resources;
4333 }
4334 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
4335 GFP_KERNEL);
4336 if (!ioc->blocking_handles) {
4337 r = -ENOMEM;
4338 goto out_free_resources;
4339 }
4340 ioc->fwfault_debug = mpt2sas_fwfault_debug;
4341
4342 /* base internal command bits */
4343 mutex_init(&ioc->base_cmds.mutex);
4344 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4345 ioc->base_cmds.status = MPT2_CMD_NOT_USED;
4346
4347 /* port_enable command bits */
4348 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4349 ioc->port_enable_cmds.status = MPT2_CMD_NOT_USED;
4350
4351 /* transport internal command bits */
4352 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4353 ioc->transport_cmds.status = MPT2_CMD_NOT_USED;
4354 mutex_init(&ioc->transport_cmds.mutex);
4355
4356 /* scsih internal command bits */
4357 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4358 ioc->scsih_cmds.status = MPT2_CMD_NOT_USED;
4359 mutex_init(&ioc->scsih_cmds.mutex);
4360
4361 /* task management internal command bits */
4362 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4363 ioc->tm_cmds.status = MPT2_CMD_NOT_USED;
4364 mutex_init(&ioc->tm_cmds.mutex);
4365
4366 /* config page internal command bits */
4367 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4368 ioc->config_cmds.status = MPT2_CMD_NOT_USED;
4369 mutex_init(&ioc->config_cmds.mutex);
4370
4371 /* ctl module internal command bits */
4372 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4373 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
4374 ioc->ctl_cmds.status = MPT2_CMD_NOT_USED;
4375 mutex_init(&ioc->ctl_cmds.mutex);
4376
4377 if (!ioc->base_cmds.reply || !ioc->transport_cmds.reply ||
4378 !ioc->scsih_cmds.reply || !ioc->tm_cmds.reply ||
4379 !ioc->config_cmds.reply || !ioc->ctl_cmds.reply ||
4380 !ioc->ctl_cmds.sense) {
4381 r = -ENOMEM;
4382 goto out_free_resources;
4383 }
4384
4385 if (!ioc->base_cmds.reply || !ioc->transport_cmds.reply ||
4386 !ioc->scsih_cmds.reply || !ioc->tm_cmds.reply ||
4387 !ioc->config_cmds.reply || !ioc->ctl_cmds.reply) {
4388 r = -ENOMEM;
4389 goto out_free_resources;
4390 }
4391
4392 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
4393 ioc->event_masks[i] = -1;
4394
4395 /* here we enable the events we care about */
4396 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
4397 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
4398 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
4399 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
4400 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
4401 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
4402 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
4403 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
4404 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
4405 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
4406 r = _base_make_ioc_operational(ioc, CAN_SLEEP);
4407 if (r)
4408 goto out_free_resources;
4409
4410 if (missing_delay[0] != -1 && missing_delay[1] != -1)
4411 _base_update_missing_delay(ioc, missing_delay[0],
4412 missing_delay[1]);
4413 ioc->non_operational_loop = 0;
4414
4415 return 0;
4416
4417 out_free_resources:
4418
4419 ioc->remove_host = 1;
4420 mpt2sas_base_free_resources(ioc);
4421 _base_release_memory_pools(ioc);
4422 pci_set_drvdata(ioc->pdev, NULL);
4423 kfree(ioc->cpu_msix_table);
4424 if (ioc->is_warpdrive)
4425 kfree(ioc->reply_post_host_index);
4426 kfree(ioc->pd_handles);
4427 kfree(ioc->blocking_handles);
4428 kfree(ioc->tm_cmds.reply);
4429 kfree(ioc->transport_cmds.reply);
4430 kfree(ioc->scsih_cmds.reply);
4431 kfree(ioc->config_cmds.reply);
4432 kfree(ioc->base_cmds.reply);
4433 kfree(ioc->port_enable_cmds.reply);
4434 kfree(ioc->ctl_cmds.reply);
4435 kfree(ioc->ctl_cmds.sense);
4436 kfree(ioc->pfacts);
4437 ioc->ctl_cmds.reply = NULL;
4438 ioc->base_cmds.reply = NULL;
4439 ioc->tm_cmds.reply = NULL;
4440 ioc->scsih_cmds.reply = NULL;
4441 ioc->transport_cmds.reply = NULL;
4442 ioc->config_cmds.reply = NULL;
4443 ioc->pfacts = NULL;
4444 return r;
4445 }
4446
4447
4448 /**
4449 * mpt2sas_base_detach - remove controller instance
4450 * @ioc: per adapter object
4451 *
4452 * Return nothing.
4453 */
4454 void
mpt2sas_base_detach(struct MPT2SAS_ADAPTER * ioc)4455 mpt2sas_base_detach(struct MPT2SAS_ADAPTER *ioc)
4456 {
4457
4458 dexitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
4459 __func__));
4460
4461 mpt2sas_base_stop_watchdog(ioc);
4462 mpt2sas_base_free_resources(ioc);
4463 _base_release_memory_pools(ioc);
4464 pci_set_drvdata(ioc->pdev, NULL);
4465 kfree(ioc->cpu_msix_table);
4466 if (ioc->is_warpdrive)
4467 kfree(ioc->reply_post_host_index);
4468 kfree(ioc->pd_handles);
4469 kfree(ioc->blocking_handles);
4470 kfree(ioc->pfacts);
4471 kfree(ioc->ctl_cmds.reply);
4472 kfree(ioc->ctl_cmds.sense);
4473 kfree(ioc->base_cmds.reply);
4474 kfree(ioc->port_enable_cmds.reply);
4475 kfree(ioc->tm_cmds.reply);
4476 kfree(ioc->transport_cmds.reply);
4477 kfree(ioc->scsih_cmds.reply);
4478 kfree(ioc->config_cmds.reply);
4479 }
4480
4481 /**
4482 * _base_reset_handler - reset callback handler (for base)
4483 * @ioc: per adapter object
4484 * @reset_phase: phase
4485 *
4486 * The handler for doing any required cleanup or initialization.
4487 *
4488 * The reset phase can be MPT2_IOC_PRE_RESET, MPT2_IOC_AFTER_RESET,
4489 * MPT2_IOC_DONE_RESET
4490 *
4491 * Return nothing.
4492 */
4493 static void
_base_reset_handler(struct MPT2SAS_ADAPTER * ioc,int reset_phase)4494 _base_reset_handler(struct MPT2SAS_ADAPTER *ioc, int reset_phase)
4495 {
4496 mpt2sas_scsih_reset_handler(ioc, reset_phase);
4497 mpt2sas_ctl_reset_handler(ioc, reset_phase);
4498 switch (reset_phase) {
4499 case MPT2_IOC_PRE_RESET:
4500 dtmprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: "
4501 "MPT2_IOC_PRE_RESET\n", ioc->name, __func__));
4502 break;
4503 case MPT2_IOC_AFTER_RESET:
4504 dtmprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: "
4505 "MPT2_IOC_AFTER_RESET\n", ioc->name, __func__));
4506 if (ioc->transport_cmds.status & MPT2_CMD_PENDING) {
4507 ioc->transport_cmds.status |= MPT2_CMD_RESET;
4508 mpt2sas_base_free_smid(ioc, ioc->transport_cmds.smid);
4509 complete(&ioc->transport_cmds.done);
4510 }
4511 if (ioc->base_cmds.status & MPT2_CMD_PENDING) {
4512 ioc->base_cmds.status |= MPT2_CMD_RESET;
4513 mpt2sas_base_free_smid(ioc, ioc->base_cmds.smid);
4514 complete(&ioc->base_cmds.done);
4515 }
4516 if (ioc->port_enable_cmds.status & MPT2_CMD_PENDING) {
4517 ioc->port_enable_failed = 1;
4518 ioc->port_enable_cmds.status |= MPT2_CMD_RESET;
4519 mpt2sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
4520 if (ioc->is_driver_loading) {
4521 ioc->start_scan_failed =
4522 MPI2_IOCSTATUS_INTERNAL_ERROR;
4523 ioc->start_scan = 0;
4524 ioc->port_enable_cmds.status =
4525 MPT2_CMD_NOT_USED;
4526 } else
4527 complete(&ioc->port_enable_cmds.done);
4528
4529 }
4530 if (ioc->config_cmds.status & MPT2_CMD_PENDING) {
4531 ioc->config_cmds.status |= MPT2_CMD_RESET;
4532 mpt2sas_base_free_smid(ioc, ioc->config_cmds.smid);
4533 ioc->config_cmds.smid = USHRT_MAX;
4534 complete(&ioc->config_cmds.done);
4535 }
4536 break;
4537 case MPT2_IOC_DONE_RESET:
4538 dtmprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: "
4539 "MPT2_IOC_DONE_RESET\n", ioc->name, __func__));
4540 break;
4541 }
4542 }
4543
4544 /**
4545 * _wait_for_commands_to_complete - reset controller
4546 * @ioc: Pointer to MPT_ADAPTER structure
4547 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4548 *
4549 * This function waiting(3s) for all pending commands to complete
4550 * prior to putting controller in reset.
4551 */
4552 static void
_wait_for_commands_to_complete(struct MPT2SAS_ADAPTER * ioc,int sleep_flag)4553 _wait_for_commands_to_complete(struct MPT2SAS_ADAPTER *ioc, int sleep_flag)
4554 {
4555 u32 ioc_state;
4556 unsigned long flags;
4557 u16 i;
4558
4559 ioc->pending_io_count = 0;
4560 if (sleep_flag != CAN_SLEEP)
4561 return;
4562
4563 ioc_state = mpt2sas_base_get_iocstate(ioc, 0);
4564 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
4565 return;
4566
4567 /* pending command count */
4568 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4569 for (i = 0; i < ioc->scsiio_depth; i++)
4570 if (ioc->scsi_lookup[i].cb_idx != 0xFF)
4571 ioc->pending_io_count++;
4572 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4573
4574 if (!ioc->pending_io_count)
4575 return;
4576
4577 /* wait for pending commands to complete */
4578 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
4579 }
4580
4581 /**
4582 * mpt2sas_base_hard_reset_handler - reset controller
4583 * @ioc: Pointer to MPT_ADAPTER structure
4584 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4585 * @type: FORCE_BIG_HAMMER or SOFT_RESET
4586 *
4587 * Returns 0 for success, non-zero for failure.
4588 */
4589 int
mpt2sas_base_hard_reset_handler(struct MPT2SAS_ADAPTER * ioc,int sleep_flag,enum reset_type type)4590 mpt2sas_base_hard_reset_handler(struct MPT2SAS_ADAPTER *ioc, int sleep_flag,
4591 enum reset_type type)
4592 {
4593 int r;
4594 unsigned long flags;
4595
4596 dtmprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: enter\n", ioc->name,
4597 __func__));
4598
4599 if (ioc->pci_error_recovery) {
4600 printk(MPT2SAS_ERR_FMT "%s: pci error recovery reset\n",
4601 ioc->name, __func__);
4602 r = 0;
4603 goto out_unlocked;
4604 }
4605
4606 if (mpt2sas_fwfault_debug)
4607 mpt2sas_halt_firmware(ioc);
4608
4609 /* TODO - What we really should be doing is pulling
4610 * out all the code associated with NO_SLEEP; its never used.
4611 * That is legacy code from mpt fusion driver, ported over.
4612 * I will leave this BUG_ON here for now till its been resolved.
4613 */
4614 BUG_ON(sleep_flag == NO_SLEEP);
4615
4616 /* wait for an active reset in progress to complete */
4617 if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
4618 do {
4619 ssleep(1);
4620 } while (ioc->shost_recovery == 1);
4621 dtmprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: exit\n", ioc->name,
4622 __func__));
4623 return ioc->ioc_reset_in_progress_status;
4624 }
4625
4626 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
4627 ioc->shost_recovery = 1;
4628 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
4629
4630 _base_reset_handler(ioc, MPT2_IOC_PRE_RESET);
4631 _wait_for_commands_to_complete(ioc, sleep_flag);
4632 _base_mask_interrupts(ioc);
4633 r = _base_make_ioc_ready(ioc, sleep_flag, type);
4634 if (r)
4635 goto out;
4636 _base_reset_handler(ioc, MPT2_IOC_AFTER_RESET);
4637
4638 /* If this hard reset is called while port enable is active, then
4639 * there is no reason to call make_ioc_operational
4640 */
4641 if (ioc->is_driver_loading && ioc->port_enable_failed) {
4642 ioc->remove_host = 1;
4643 r = -EFAULT;
4644 goto out;
4645 }
4646 r = _base_make_ioc_operational(ioc, sleep_flag);
4647 if (!r)
4648 _base_reset_handler(ioc, MPT2_IOC_DONE_RESET);
4649 out:
4650 dtmprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: %s\n",
4651 ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
4652
4653 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
4654 ioc->ioc_reset_in_progress_status = r;
4655 ioc->shost_recovery = 0;
4656 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
4657 mutex_unlock(&ioc->reset_in_progress_mutex);
4658
4659 out_unlocked:
4660 dtmprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: exit\n", ioc->name,
4661 __func__));
4662 return r;
4663 }
4664