1 /*
2 * This is the Fusion MPT base driver providing common API layer interface
3 * for access to MPT (Message Passing Technology) firmware.
4 *
5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6 * Copyright (C) 2012 LSI Corporation
7 * (mailto:DL-MPTFusionLinux@lsi.com)
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version 2
12 * of the License, or (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * NO WARRANTY
20 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
21 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
22 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
23 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
24 * solely responsible for determining the appropriateness of using and
25 * distributing the Program and assumes all risks associated with its
26 * exercise of rights under this Agreement, including but not limited to
27 * the risks and costs of program errors, damage to or loss of data,
28 * programs or equipment, and unavailability or interruption of operations.
29
30 * DISCLAIMER OF LIABILITY
31 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
32 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
34 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
35 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
36 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
37 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
38
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
42 * USA.
43 */
44
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/errno.h>
48 #include <linux/init.h>
49 #include <linux/slab.h>
50 #include <linux/types.h>
51 #include <linux/pci.h>
52 #include <linux/kdev_t.h>
53 #include <linux/blkdev.h>
54 #include <linux/delay.h>
55 #include <linux/interrupt.h>
56 #include <linux/dma-mapping.h>
57 #include <linux/io.h>
58 #include <linux/time.h>
59 #include <linux/kthread.h>
60 #include <linux/aer.h>
61
62
63 #include "mpt3sas_base.h"
64
65 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS];
66
67
68 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
69
70 /* maximum controller queue depth */
71 #define MAX_HBA_QUEUE_DEPTH 30000
72 #define MAX_CHAIN_DEPTH 100000
73 static int max_queue_depth = -1;
74 module_param(max_queue_depth, int, 0);
75 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
76
77 static int max_sgl_entries = -1;
78 module_param(max_sgl_entries, int, 0);
79 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
80
81 static int msix_disable = -1;
82 module_param(msix_disable, int, 0);
83 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
84
85
86 static int mpt3sas_fwfault_debug;
87 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
88 " enable detection of firmware fault and halt firmware - (default=0)");
89
90
91 /**
92 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
93 *
94 */
95 static int
_scsih_set_fwfault_debug(const char * val,struct kernel_param * kp)96 _scsih_set_fwfault_debug(const char *val, struct kernel_param *kp)
97 {
98 int ret = param_set_int(val, kp);
99 struct MPT3SAS_ADAPTER *ioc;
100
101 if (ret)
102 return ret;
103
104 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
105 list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
106 ioc->fwfault_debug = mpt3sas_fwfault_debug;
107 return 0;
108 }
109 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
110 param_get_int, &mpt3sas_fwfault_debug, 0644);
111
112 /**
113 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
114 * @arg: input argument, used to derive ioc
115 *
116 * Return 0 if controller is removed from pci subsystem.
117 * Return -1 for other case.
118 */
mpt3sas_remove_dead_ioc_func(void * arg)119 static int mpt3sas_remove_dead_ioc_func(void *arg)
120 {
121 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
122 struct pci_dev *pdev;
123
124 if ((ioc == NULL))
125 return -1;
126
127 pdev = ioc->pdev;
128 if ((pdev == NULL))
129 return -1;
130 pci_stop_and_remove_bus_device(pdev);
131 return 0;
132 }
133
134 /**
135 * _base_fault_reset_work - workq handling ioc fault conditions
136 * @work: input argument, used to derive ioc
137 * Context: sleep.
138 *
139 * Return nothing.
140 */
141 static void
_base_fault_reset_work(struct work_struct * work)142 _base_fault_reset_work(struct work_struct *work)
143 {
144 struct MPT3SAS_ADAPTER *ioc =
145 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
146 unsigned long flags;
147 u32 doorbell;
148 int rc;
149 struct task_struct *p;
150
151
152 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
153 if (ioc->shost_recovery)
154 goto rearm_timer;
155 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
156
157 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
158 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
159 pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
160 ioc->name);
161
162 /*
163 * Call _scsih_flush_pending_cmds callback so that we flush all
164 * pending commands back to OS. This call is required to aovid
165 * deadlock at block layer. Dead IOC will fail to do diag reset,
166 * and this call is safe since dead ioc will never return any
167 * command back from HW.
168 */
169 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
170 /*
171 * Set remove_host flag early since kernel thread will
172 * take some time to execute.
173 */
174 ioc->remove_host = 1;
175 /*Remove the Dead Host */
176 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
177 "mpt3sas_dead_ioc_%d", ioc->id);
178 if (IS_ERR(p))
179 pr_err(MPT3SAS_FMT
180 "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
181 ioc->name, __func__);
182 else
183 pr_err(MPT3SAS_FMT
184 "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
185 ioc->name, __func__);
186 return; /* don't rearm timer */
187 }
188
189 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
190 rc = mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
191 FORCE_BIG_HAMMER);
192 pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
193 __func__, (rc == 0) ? "success" : "failed");
194 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
195 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
196 mpt3sas_base_fault_info(ioc, doorbell &
197 MPI2_DOORBELL_DATA_MASK);
198 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
199 MPI2_IOC_STATE_OPERATIONAL)
200 return; /* don't rearm timer */
201 }
202
203 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
204 rearm_timer:
205 if (ioc->fault_reset_work_q)
206 queue_delayed_work(ioc->fault_reset_work_q,
207 &ioc->fault_reset_work,
208 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
209 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
210 }
211
212 /**
213 * mpt3sas_base_start_watchdog - start the fault_reset_work_q
214 * @ioc: per adapter object
215 * Context: sleep.
216 *
217 * Return nothing.
218 */
219 void
mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER * ioc)220 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
221 {
222 unsigned long flags;
223
224 if (ioc->fault_reset_work_q)
225 return;
226
227 /* initialize fault polling */
228
229 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
230 snprintf(ioc->fault_reset_work_q_name,
231 sizeof(ioc->fault_reset_work_q_name), "poll_%d_status", ioc->id);
232 ioc->fault_reset_work_q =
233 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
234 if (!ioc->fault_reset_work_q) {
235 pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
236 ioc->name, __func__, __LINE__);
237 return;
238 }
239 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
240 if (ioc->fault_reset_work_q)
241 queue_delayed_work(ioc->fault_reset_work_q,
242 &ioc->fault_reset_work,
243 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
244 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
245 }
246
247 /**
248 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
249 * @ioc: per adapter object
250 * Context: sleep.
251 *
252 * Return nothing.
253 */
254 void
mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER * ioc)255 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
256 {
257 unsigned long flags;
258 struct workqueue_struct *wq;
259
260 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
261 wq = ioc->fault_reset_work_q;
262 ioc->fault_reset_work_q = NULL;
263 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
264 if (wq) {
265 if (!cancel_delayed_work(&ioc->fault_reset_work))
266 flush_workqueue(wq);
267 destroy_workqueue(wq);
268 }
269 }
270
271 /**
272 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
273 * @ioc: per adapter object
274 * @fault_code: fault code
275 *
276 * Return nothing.
277 */
278 void
mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER * ioc,u16 fault_code)279 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
280 {
281 pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
282 ioc->name, fault_code);
283 }
284
285 /**
286 * mpt3sas_halt_firmware - halt's mpt controller firmware
287 * @ioc: per adapter object
288 *
289 * For debugging timeout related issues. Writing 0xCOFFEE00
290 * to the doorbell register will halt controller firmware. With
291 * the purpose to stop both driver and firmware, the enduser can
292 * obtain a ring buffer from controller UART.
293 */
294 void
mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER * ioc)295 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
296 {
297 u32 doorbell;
298
299 if (!ioc->fwfault_debug)
300 return;
301
302 dump_stack();
303
304 doorbell = readl(&ioc->chip->Doorbell);
305 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
306 mpt3sas_base_fault_info(ioc , doorbell);
307 else {
308 writel(0xC0FFEE00, &ioc->chip->Doorbell);
309 pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
310 ioc->name);
311 }
312
313 if (ioc->fwfault_debug == 2)
314 for (;;)
315 ;
316 else
317 panic("panic in %s\n", __func__);
318 }
319
320 #ifdef CONFIG_SCSI_MPT3SAS_LOGGING
321 /**
322 * _base_sas_ioc_info - verbose translation of the ioc status
323 * @ioc: per adapter object
324 * @mpi_reply: reply mf payload returned from firmware
325 * @request_hdr: request mf
326 *
327 * Return nothing.
328 */
329 static void
_base_sas_ioc_info(struct MPT3SAS_ADAPTER * ioc,MPI2DefaultReply_t * mpi_reply,MPI2RequestHeader_t * request_hdr)330 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
331 MPI2RequestHeader_t *request_hdr)
332 {
333 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
334 MPI2_IOCSTATUS_MASK;
335 char *desc = NULL;
336 u16 frame_sz;
337 char *func_str = NULL;
338
339 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
340 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
341 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
342 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
343 return;
344
345 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
346 return;
347
348 switch (ioc_status) {
349
350 /****************************************************************************
351 * Common IOCStatus values for all replies
352 ****************************************************************************/
353
354 case MPI2_IOCSTATUS_INVALID_FUNCTION:
355 desc = "invalid function";
356 break;
357 case MPI2_IOCSTATUS_BUSY:
358 desc = "busy";
359 break;
360 case MPI2_IOCSTATUS_INVALID_SGL:
361 desc = "invalid sgl";
362 break;
363 case MPI2_IOCSTATUS_INTERNAL_ERROR:
364 desc = "internal error";
365 break;
366 case MPI2_IOCSTATUS_INVALID_VPID:
367 desc = "invalid vpid";
368 break;
369 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
370 desc = "insufficient resources";
371 break;
372 case MPI2_IOCSTATUS_INVALID_FIELD:
373 desc = "invalid field";
374 break;
375 case MPI2_IOCSTATUS_INVALID_STATE:
376 desc = "invalid state";
377 break;
378 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
379 desc = "op state not supported";
380 break;
381
382 /****************************************************************************
383 * Config IOCStatus values
384 ****************************************************************************/
385
386 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
387 desc = "config invalid action";
388 break;
389 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
390 desc = "config invalid type";
391 break;
392 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
393 desc = "config invalid page";
394 break;
395 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
396 desc = "config invalid data";
397 break;
398 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
399 desc = "config no defaults";
400 break;
401 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
402 desc = "config cant commit";
403 break;
404
405 /****************************************************************************
406 * SCSI IO Reply
407 ****************************************************************************/
408
409 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
410 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
411 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
412 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
413 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
414 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
415 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
416 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
417 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
418 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
419 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
420 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
421 break;
422
423 /****************************************************************************
424 * For use by SCSI Initiator and SCSI Target end-to-end data protection
425 ****************************************************************************/
426
427 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
428 desc = "eedp guard error";
429 break;
430 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
431 desc = "eedp ref tag error";
432 break;
433 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
434 desc = "eedp app tag error";
435 break;
436
437 /****************************************************************************
438 * SCSI Target values
439 ****************************************************************************/
440
441 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
442 desc = "target invalid io index";
443 break;
444 case MPI2_IOCSTATUS_TARGET_ABORTED:
445 desc = "target aborted";
446 break;
447 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
448 desc = "target no conn retryable";
449 break;
450 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
451 desc = "target no connection";
452 break;
453 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
454 desc = "target xfer count mismatch";
455 break;
456 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
457 desc = "target data offset error";
458 break;
459 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
460 desc = "target too much write data";
461 break;
462 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
463 desc = "target iu too short";
464 break;
465 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
466 desc = "target ack nak timeout";
467 break;
468 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
469 desc = "target nak received";
470 break;
471
472 /****************************************************************************
473 * Serial Attached SCSI values
474 ****************************************************************************/
475
476 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
477 desc = "smp request failed";
478 break;
479 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
480 desc = "smp data overrun";
481 break;
482
483 /****************************************************************************
484 * Diagnostic Buffer Post / Diagnostic Release values
485 ****************************************************************************/
486
487 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
488 desc = "diagnostic released";
489 break;
490 default:
491 break;
492 }
493
494 if (!desc)
495 return;
496
497 switch (request_hdr->Function) {
498 case MPI2_FUNCTION_CONFIG:
499 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
500 func_str = "config_page";
501 break;
502 case MPI2_FUNCTION_SCSI_TASK_MGMT:
503 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
504 func_str = "task_mgmt";
505 break;
506 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
507 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
508 func_str = "sas_iounit_ctl";
509 break;
510 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
511 frame_sz = sizeof(Mpi2SepRequest_t);
512 func_str = "enclosure";
513 break;
514 case MPI2_FUNCTION_IOC_INIT:
515 frame_sz = sizeof(Mpi2IOCInitRequest_t);
516 func_str = "ioc_init";
517 break;
518 case MPI2_FUNCTION_PORT_ENABLE:
519 frame_sz = sizeof(Mpi2PortEnableRequest_t);
520 func_str = "port_enable";
521 break;
522 case MPI2_FUNCTION_SMP_PASSTHROUGH:
523 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
524 func_str = "smp_passthru";
525 break;
526 default:
527 frame_sz = 32;
528 func_str = "unknown";
529 break;
530 }
531
532 pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
533 ioc->name, desc, ioc_status, request_hdr, func_str);
534
535 _debug_dump_mf(request_hdr, frame_sz/4);
536 }
537
538 /**
539 * _base_display_event_data - verbose translation of firmware asyn events
540 * @ioc: per adapter object
541 * @mpi_reply: reply mf payload returned from firmware
542 *
543 * Return nothing.
544 */
545 static void
_base_display_event_data(struct MPT3SAS_ADAPTER * ioc,Mpi2EventNotificationReply_t * mpi_reply)546 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
547 Mpi2EventNotificationReply_t *mpi_reply)
548 {
549 char *desc = NULL;
550 u16 event;
551
552 if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
553 return;
554
555 event = le16_to_cpu(mpi_reply->Event);
556
557 switch (event) {
558 case MPI2_EVENT_LOG_DATA:
559 desc = "Log Data";
560 break;
561 case MPI2_EVENT_STATE_CHANGE:
562 desc = "Status Change";
563 break;
564 case MPI2_EVENT_HARD_RESET_RECEIVED:
565 desc = "Hard Reset Received";
566 break;
567 case MPI2_EVENT_EVENT_CHANGE:
568 desc = "Event Change";
569 break;
570 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
571 desc = "Device Status Change";
572 break;
573 case MPI2_EVENT_IR_OPERATION_STATUS:
574 desc = "IR Operation Status";
575 break;
576 case MPI2_EVENT_SAS_DISCOVERY:
577 {
578 Mpi2EventDataSasDiscovery_t *event_data =
579 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
580 pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
581 (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
582 "start" : "stop");
583 if (event_data->DiscoveryStatus)
584 pr_info("discovery_status(0x%08x)",
585 le32_to_cpu(event_data->DiscoveryStatus));
586 pr_info("\n");
587 return;
588 }
589 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
590 desc = "SAS Broadcast Primitive";
591 break;
592 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
593 desc = "SAS Init Device Status Change";
594 break;
595 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
596 desc = "SAS Init Table Overflow";
597 break;
598 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
599 desc = "SAS Topology Change List";
600 break;
601 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
602 desc = "SAS Enclosure Device Status Change";
603 break;
604 case MPI2_EVENT_IR_VOLUME:
605 desc = "IR Volume";
606 break;
607 case MPI2_EVENT_IR_PHYSICAL_DISK:
608 desc = "IR Physical Disk";
609 break;
610 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
611 desc = "IR Configuration Change List";
612 break;
613 case MPI2_EVENT_LOG_ENTRY_ADDED:
614 desc = "Log Entry Added";
615 break;
616 }
617
618 if (!desc)
619 return;
620
621 pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
622 }
623 #endif
624
625 /**
626 * _base_sas_log_info - verbose translation of firmware log info
627 * @ioc: per adapter object
628 * @log_info: log info
629 *
630 * Return nothing.
631 */
632 static void
_base_sas_log_info(struct MPT3SAS_ADAPTER * ioc,u32 log_info)633 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
634 {
635 union loginfo_type {
636 u32 loginfo;
637 struct {
638 u32 subcode:16;
639 u32 code:8;
640 u32 originator:4;
641 u32 bus_type:4;
642 } dw;
643 };
644 union loginfo_type sas_loginfo;
645 char *originator_str = NULL;
646
647 sas_loginfo.loginfo = log_info;
648 if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
649 return;
650
651 /* each nexus loss loginfo */
652 if (log_info == 0x31170000)
653 return;
654
655 /* eat the loginfos associated with task aborts */
656 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
657 0x31140000 || log_info == 0x31130000))
658 return;
659
660 switch (sas_loginfo.dw.originator) {
661 case 0:
662 originator_str = "IOP";
663 break;
664 case 1:
665 originator_str = "PL";
666 break;
667 case 2:
668 originator_str = "IR";
669 break;
670 }
671
672 pr_warn(MPT3SAS_FMT
673 "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
674 ioc->name, log_info,
675 originator_str, sas_loginfo.dw.code,
676 sas_loginfo.dw.subcode);
677 }
678
679 /**
680 * _base_display_reply_info -
681 * @ioc: per adapter object
682 * @smid: system request message index
683 * @msix_index: MSIX table index supplied by the OS
684 * @reply: reply message frame(lower 32bit addr)
685 *
686 * Return nothing.
687 */
688 static void
_base_display_reply_info(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)689 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
690 u32 reply)
691 {
692 MPI2DefaultReply_t *mpi_reply;
693 u16 ioc_status;
694 u32 loginfo = 0;
695
696 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
697 if (unlikely(!mpi_reply)) {
698 pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
699 ioc->name, __FILE__, __LINE__, __func__);
700 return;
701 }
702 ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
703 #ifdef CONFIG_SCSI_MPT3SAS_LOGGING
704 if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
705 (ioc->logging_level & MPT_DEBUG_REPLY)) {
706 _base_sas_ioc_info(ioc , mpi_reply,
707 mpt3sas_base_get_msg_frame(ioc, smid));
708 }
709 #endif
710 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
711 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
712 _base_sas_log_info(ioc, loginfo);
713 }
714
715 if (ioc_status || loginfo) {
716 ioc_status &= MPI2_IOCSTATUS_MASK;
717 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
718 }
719 }
720
721 /**
722 * mpt3sas_base_done - base internal command completion routine
723 * @ioc: per adapter object
724 * @smid: system request message index
725 * @msix_index: MSIX table index supplied by the OS
726 * @reply: reply message frame(lower 32bit addr)
727 *
728 * Return 1 meaning mf should be freed from _base_interrupt
729 * 0 means the mf is freed from this function.
730 */
731 u8
mpt3sas_base_done(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)732 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
733 u32 reply)
734 {
735 MPI2DefaultReply_t *mpi_reply;
736
737 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
738 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
739 return 1;
740
741 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
742 return 1;
743
744 ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
745 if (mpi_reply) {
746 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
747 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
748 }
749 ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
750
751 complete(&ioc->base_cmds.done);
752 return 1;
753 }
754
755 /**
756 * _base_async_event - main callback handler for firmware asyn events
757 * @ioc: per adapter object
758 * @msix_index: MSIX table index supplied by the OS
759 * @reply: reply message frame(lower 32bit addr)
760 *
761 * Return 1 meaning mf should be freed from _base_interrupt
762 * 0 means the mf is freed from this function.
763 */
764 static u8
_base_async_event(struct MPT3SAS_ADAPTER * ioc,u8 msix_index,u32 reply)765 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
766 {
767 Mpi2EventNotificationReply_t *mpi_reply;
768 Mpi2EventAckRequest_t *ack_request;
769 u16 smid;
770
771 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
772 if (!mpi_reply)
773 return 1;
774 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
775 return 1;
776 #ifdef CONFIG_SCSI_MPT3SAS_LOGGING
777 _base_display_event_data(ioc, mpi_reply);
778 #endif
779 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
780 goto out;
781 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
782 if (!smid) {
783 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
784 ioc->name, __func__);
785 goto out;
786 }
787
788 ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
789 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
790 ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
791 ack_request->Event = mpi_reply->Event;
792 ack_request->EventContext = mpi_reply->EventContext;
793 ack_request->VF_ID = 0; /* TODO */
794 ack_request->VP_ID = 0;
795 mpt3sas_base_put_smid_default(ioc, smid);
796
797 out:
798
799 /* scsih callback handler */
800 mpt3sas_scsih_event_callback(ioc, msix_index, reply);
801
802 /* ctl callback handler */
803 mpt3sas_ctl_event_callback(ioc, msix_index, reply);
804
805 return 1;
806 }
807
808 /**
809 * _base_get_cb_idx - obtain the callback index
810 * @ioc: per adapter object
811 * @smid: system request message index
812 *
813 * Return callback index.
814 */
815 static u8
_base_get_cb_idx(struct MPT3SAS_ADAPTER * ioc,u16 smid)816 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
817 {
818 int i;
819 u8 cb_idx;
820
821 if (smid < ioc->hi_priority_smid) {
822 i = smid - 1;
823 cb_idx = ioc->scsi_lookup[i].cb_idx;
824 } else if (smid < ioc->internal_smid) {
825 i = smid - ioc->hi_priority_smid;
826 cb_idx = ioc->hpr_lookup[i].cb_idx;
827 } else if (smid <= ioc->hba_queue_depth) {
828 i = smid - ioc->internal_smid;
829 cb_idx = ioc->internal_lookup[i].cb_idx;
830 } else
831 cb_idx = 0xFF;
832 return cb_idx;
833 }
834
835 /**
836 * _base_mask_interrupts - disable interrupts
837 * @ioc: per adapter object
838 *
839 * Disabling ResetIRQ, Reply and Doorbell Interrupts
840 *
841 * Return nothing.
842 */
843 static void
_base_mask_interrupts(struct MPT3SAS_ADAPTER * ioc)844 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
845 {
846 u32 him_register;
847
848 ioc->mask_interrupts = 1;
849 him_register = readl(&ioc->chip->HostInterruptMask);
850 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
851 writel(him_register, &ioc->chip->HostInterruptMask);
852 readl(&ioc->chip->HostInterruptMask);
853 }
854
855 /**
856 * _base_unmask_interrupts - enable interrupts
857 * @ioc: per adapter object
858 *
859 * Enabling only Reply Interrupts
860 *
861 * Return nothing.
862 */
863 static void
_base_unmask_interrupts(struct MPT3SAS_ADAPTER * ioc)864 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
865 {
866 u32 him_register;
867
868 him_register = readl(&ioc->chip->HostInterruptMask);
869 him_register &= ~MPI2_HIM_RIM;
870 writel(him_register, &ioc->chip->HostInterruptMask);
871 ioc->mask_interrupts = 0;
872 }
873
874 union reply_descriptor {
875 u64 word;
876 struct {
877 u32 low;
878 u32 high;
879 } u;
880 };
881
882 /**
883 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
884 * @irq: irq number (not used)
885 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
886 * @r: pt_regs pointer (not used)
887 *
888 * Return IRQ_HANDLE if processed, else IRQ_NONE.
889 */
890 static irqreturn_t
_base_interrupt(int irq,void * bus_id)891 _base_interrupt(int irq, void *bus_id)
892 {
893 struct adapter_reply_queue *reply_q = bus_id;
894 union reply_descriptor rd;
895 u32 completed_cmds;
896 u8 request_desript_type;
897 u16 smid;
898 u8 cb_idx;
899 u32 reply;
900 u8 msix_index = reply_q->msix_index;
901 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
902 Mpi2ReplyDescriptorsUnion_t *rpf;
903 u8 rc;
904
905 if (ioc->mask_interrupts)
906 return IRQ_NONE;
907
908 if (!atomic_add_unless(&reply_q->busy, 1, 1))
909 return IRQ_NONE;
910
911 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
912 request_desript_type = rpf->Default.ReplyFlags
913 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
914 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
915 atomic_dec(&reply_q->busy);
916 return IRQ_NONE;
917 }
918
919 completed_cmds = 0;
920 cb_idx = 0xFF;
921 do {
922 rd.word = le64_to_cpu(rpf->Words);
923 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
924 goto out;
925 reply = 0;
926 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
927 if (request_desript_type ==
928 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
929 request_desript_type ==
930 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS) {
931 cb_idx = _base_get_cb_idx(ioc, smid);
932 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
933 (likely(mpt_callbacks[cb_idx] != NULL))) {
934 rc = mpt_callbacks[cb_idx](ioc, smid,
935 msix_index, 0);
936 if (rc)
937 mpt3sas_base_free_smid(ioc, smid);
938 }
939 } else if (request_desript_type ==
940 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
941 reply = le32_to_cpu(
942 rpf->AddressReply.ReplyFrameAddress);
943 if (reply > ioc->reply_dma_max_address ||
944 reply < ioc->reply_dma_min_address)
945 reply = 0;
946 if (smid) {
947 cb_idx = _base_get_cb_idx(ioc, smid);
948 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
949 (likely(mpt_callbacks[cb_idx] != NULL))) {
950 rc = mpt_callbacks[cb_idx](ioc, smid,
951 msix_index, reply);
952 if (reply)
953 _base_display_reply_info(ioc,
954 smid, msix_index, reply);
955 if (rc)
956 mpt3sas_base_free_smid(ioc,
957 smid);
958 }
959 } else {
960 _base_async_event(ioc, msix_index, reply);
961 }
962
963 /* reply free queue handling */
964 if (reply) {
965 ioc->reply_free_host_index =
966 (ioc->reply_free_host_index ==
967 (ioc->reply_free_queue_depth - 1)) ?
968 0 : ioc->reply_free_host_index + 1;
969 ioc->reply_free[ioc->reply_free_host_index] =
970 cpu_to_le32(reply);
971 wmb();
972 writel(ioc->reply_free_host_index,
973 &ioc->chip->ReplyFreeHostIndex);
974 }
975 }
976
977 rpf->Words = cpu_to_le64(ULLONG_MAX);
978 reply_q->reply_post_host_index =
979 (reply_q->reply_post_host_index ==
980 (ioc->reply_post_queue_depth - 1)) ? 0 :
981 reply_q->reply_post_host_index + 1;
982 request_desript_type =
983 reply_q->reply_post_free[reply_q->reply_post_host_index].
984 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
985 completed_cmds++;
986 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
987 goto out;
988 if (!reply_q->reply_post_host_index)
989 rpf = reply_q->reply_post_free;
990 else
991 rpf++;
992 } while (1);
993
994 out:
995
996 if (!completed_cmds) {
997 atomic_dec(&reply_q->busy);
998 return IRQ_NONE;
999 }
1000
1001 wmb();
1002 writel(reply_q->reply_post_host_index | (msix_index <<
1003 MPI2_RPHI_MSIX_INDEX_SHIFT), &ioc->chip->ReplyPostHostIndex);
1004 atomic_dec(&reply_q->busy);
1005 return IRQ_HANDLED;
1006 }
1007
1008 /**
1009 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1010 * @ioc: per adapter object
1011 *
1012 */
1013 static inline int
_base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER * ioc)1014 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1015 {
1016 return (ioc->facts.IOCCapabilities &
1017 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1018 }
1019
1020 /**
1021 * mpt3sas_base_flush_reply_queues - flushing the MSIX reply queues
1022 * @ioc: per adapter object
1023 * Context: ISR conext
1024 *
1025 * Called when a Task Management request has completed. We want
1026 * to flush the other reply queues so all the outstanding IO has been
1027 * completed back to OS before we process the TM completetion.
1028 *
1029 * Return nothing.
1030 */
1031 void
mpt3sas_base_flush_reply_queues(struct MPT3SAS_ADAPTER * ioc)1032 mpt3sas_base_flush_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1033 {
1034 struct adapter_reply_queue *reply_q;
1035
1036 /* If MSIX capability is turned off
1037 * then multi-queues are not enabled
1038 */
1039 if (!_base_is_controller_msix_enabled(ioc))
1040 return;
1041
1042 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1043 if (ioc->shost_recovery)
1044 return;
1045 /* TMs are on msix_index == 0 */
1046 if (reply_q->msix_index == 0)
1047 continue;
1048 _base_interrupt(reply_q->vector, (void *)reply_q);
1049 }
1050 }
1051
1052 /**
1053 * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1054 * @cb_idx: callback index
1055 *
1056 * Return nothing.
1057 */
1058 void
mpt3sas_base_release_callback_handler(u8 cb_idx)1059 mpt3sas_base_release_callback_handler(u8 cb_idx)
1060 {
1061 mpt_callbacks[cb_idx] = NULL;
1062 }
1063
1064 /**
1065 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1066 * @cb_func: callback function
1067 *
1068 * Returns cb_func.
1069 */
1070 u8
mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)1071 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1072 {
1073 u8 cb_idx;
1074
1075 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1076 if (mpt_callbacks[cb_idx] == NULL)
1077 break;
1078
1079 mpt_callbacks[cb_idx] = cb_func;
1080 return cb_idx;
1081 }
1082
1083 /**
1084 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1085 *
1086 * Return nothing.
1087 */
1088 void
mpt3sas_base_initialize_callback_handler(void)1089 mpt3sas_base_initialize_callback_handler(void)
1090 {
1091 u8 cb_idx;
1092
1093 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1094 mpt3sas_base_release_callback_handler(cb_idx);
1095 }
1096
1097
1098 /**
1099 * _base_build_zero_len_sge - build zero length sg entry
1100 * @ioc: per adapter object
1101 * @paddr: virtual address for SGE
1102 *
1103 * Create a zero length scatter gather entry to insure the IOCs hardware has
1104 * something to use if the target device goes brain dead and tries
1105 * to send data even when none is asked for.
1106 *
1107 * Return nothing.
1108 */
1109 static void
_base_build_zero_len_sge(struct MPT3SAS_ADAPTER * ioc,void * paddr)1110 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1111 {
1112 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1113 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1114 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1115 MPI2_SGE_FLAGS_SHIFT);
1116 ioc->base_add_sg_single(paddr, flags_length, -1);
1117 }
1118
1119 /**
1120 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1121 * @paddr: virtual address for SGE
1122 * @flags_length: SGE flags and data transfer length
1123 * @dma_addr: Physical address
1124 *
1125 * Return nothing.
1126 */
1127 static void
_base_add_sg_single_32(void * paddr,u32 flags_length,dma_addr_t dma_addr)1128 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1129 {
1130 Mpi2SGESimple32_t *sgel = paddr;
1131
1132 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1133 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1134 sgel->FlagsLength = cpu_to_le32(flags_length);
1135 sgel->Address = cpu_to_le32(dma_addr);
1136 }
1137
1138
1139 /**
1140 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1141 * @paddr: virtual address for SGE
1142 * @flags_length: SGE flags and data transfer length
1143 * @dma_addr: Physical address
1144 *
1145 * Return nothing.
1146 */
1147 static void
_base_add_sg_single_64(void * paddr,u32 flags_length,dma_addr_t dma_addr)1148 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1149 {
1150 Mpi2SGESimple64_t *sgel = paddr;
1151
1152 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1153 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1154 sgel->FlagsLength = cpu_to_le32(flags_length);
1155 sgel->Address = cpu_to_le64(dma_addr);
1156 }
1157
1158 /**
1159 * _base_get_chain_buffer_tracker - obtain chain tracker
1160 * @ioc: per adapter object
1161 * @smid: smid associated to an IO request
1162 *
1163 * Returns chain tracker(from ioc->free_chain_list)
1164 */
1165 static struct chain_tracker *
_base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER * ioc,u16 smid)1166 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1167 {
1168 struct chain_tracker *chain_req;
1169 unsigned long flags;
1170
1171 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1172 if (list_empty(&ioc->free_chain_list)) {
1173 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1174 dfailprintk(ioc, pr_warn(MPT3SAS_FMT
1175 "chain buffers not available\n", ioc->name));
1176 return NULL;
1177 }
1178 chain_req = list_entry(ioc->free_chain_list.next,
1179 struct chain_tracker, tracker_list);
1180 list_del_init(&chain_req->tracker_list);
1181 list_add_tail(&chain_req->tracker_list,
1182 &ioc->scsi_lookup[smid - 1].chain_list);
1183 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1184 return chain_req;
1185 }
1186
1187
1188 /**
1189 * _base_build_sg - build generic sg
1190 * @ioc: per adapter object
1191 * @psge: virtual address for SGE
1192 * @data_out_dma: physical address for WRITES
1193 * @data_out_sz: data xfer size for WRITES
1194 * @data_in_dma: physical address for READS
1195 * @data_in_sz: data xfer size for READS
1196 *
1197 * Return nothing.
1198 */
1199 static void
_base_build_sg(struct MPT3SAS_ADAPTER * ioc,void * psge,dma_addr_t data_out_dma,size_t data_out_sz,dma_addr_t data_in_dma,size_t data_in_sz)1200 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1201 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1202 size_t data_in_sz)
1203 {
1204 u32 sgl_flags;
1205
1206 if (!data_out_sz && !data_in_sz) {
1207 _base_build_zero_len_sge(ioc, psge);
1208 return;
1209 }
1210
1211 if (data_out_sz && data_in_sz) {
1212 /* WRITE sgel first */
1213 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1214 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1215 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1216 ioc->base_add_sg_single(psge, sgl_flags |
1217 data_out_sz, data_out_dma);
1218
1219 /* incr sgel */
1220 psge += ioc->sge_size;
1221
1222 /* READ sgel last */
1223 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1224 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1225 MPI2_SGE_FLAGS_END_OF_LIST);
1226 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1227 ioc->base_add_sg_single(psge, sgl_flags |
1228 data_in_sz, data_in_dma);
1229 } else if (data_out_sz) /* WRITE */ {
1230 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1231 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1232 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1233 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1234 ioc->base_add_sg_single(psge, sgl_flags |
1235 data_out_sz, data_out_dma);
1236 } else if (data_in_sz) /* READ */ {
1237 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1238 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1239 MPI2_SGE_FLAGS_END_OF_LIST);
1240 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1241 ioc->base_add_sg_single(psge, sgl_flags |
1242 data_in_sz, data_in_dma);
1243 }
1244 }
1245
1246 /* IEEE format sgls */
1247
1248 /**
1249 * _base_add_sg_single_ieee - add sg element for IEEE format
1250 * @paddr: virtual address for SGE
1251 * @flags: SGE flags
1252 * @chain_offset: number of 128 byte elements from start of segment
1253 * @length: data transfer length
1254 * @dma_addr: Physical address
1255 *
1256 * Return nothing.
1257 */
1258 static void
_base_add_sg_single_ieee(void * paddr,u8 flags,u8 chain_offset,u32 length,dma_addr_t dma_addr)1259 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
1260 dma_addr_t dma_addr)
1261 {
1262 Mpi25IeeeSgeChain64_t *sgel = paddr;
1263
1264 sgel->Flags = flags;
1265 sgel->NextChainOffset = chain_offset;
1266 sgel->Length = cpu_to_le32(length);
1267 sgel->Address = cpu_to_le64(dma_addr);
1268 }
1269
1270 /**
1271 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
1272 * @ioc: per adapter object
1273 * @paddr: virtual address for SGE
1274 *
1275 * Create a zero length scatter gather entry to insure the IOCs hardware has
1276 * something to use if the target device goes brain dead and tries
1277 * to send data even when none is asked for.
1278 *
1279 * Return nothing.
1280 */
1281 static void
_base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER * ioc,void * paddr)1282 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1283 {
1284 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1285 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
1286 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
1287 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
1288 }
1289
1290 /**
1291 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
1292 * @ioc: per adapter object
1293 * @scmd: scsi command
1294 * @smid: system request message index
1295 * Context: none.
1296 *
1297 * The main routine that builds scatter gather table from a given
1298 * scsi request sent via the .queuecommand main handler.
1299 *
1300 * Returns 0 success, anything else error
1301 */
1302 static int
_base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd,u16 smid)1303 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
1304 struct scsi_cmnd *scmd, u16 smid)
1305 {
1306 Mpi2SCSIIORequest_t *mpi_request;
1307 dma_addr_t chain_dma;
1308 struct scatterlist *sg_scmd;
1309 void *sg_local, *chain;
1310 u32 chain_offset;
1311 u32 chain_length;
1312 int sges_left;
1313 u32 sges_in_segment;
1314 u8 simple_sgl_flags;
1315 u8 simple_sgl_flags_last;
1316 u8 chain_sgl_flags;
1317 struct chain_tracker *chain_req;
1318
1319 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1320
1321 /* init scatter gather flags */
1322 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1323 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1324 simple_sgl_flags_last = simple_sgl_flags |
1325 MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1326 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
1327 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1328
1329 sg_scmd = scsi_sglist(scmd);
1330 sges_left = scsi_dma_map(scmd);
1331 if (!sges_left) {
1332 sdev_printk(KERN_ERR, scmd->device,
1333 "pci_map_sg failed: request for %d bytes!\n",
1334 scsi_bufflen(scmd));
1335 return -ENOMEM;
1336 }
1337
1338 sg_local = &mpi_request->SGL;
1339 sges_in_segment = (ioc->request_sz -
1340 offsetof(Mpi2SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
1341 if (sges_left <= sges_in_segment)
1342 goto fill_in_last_segment;
1343
1344 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
1345 (offsetof(Mpi2SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
1346
1347 /* fill in main message segment when there is a chain following */
1348 while (sges_in_segment > 1) {
1349 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1350 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1351 sg_scmd = sg_next(sg_scmd);
1352 sg_local += ioc->sge_size_ieee;
1353 sges_left--;
1354 sges_in_segment--;
1355 }
1356
1357 /* initializing the pointers */
1358 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1359 if (!chain_req)
1360 return -1;
1361 chain = chain_req->chain_buffer;
1362 chain_dma = chain_req->chain_buffer_dma;
1363 do {
1364 sges_in_segment = (sges_left <=
1365 ioc->max_sges_in_chain_message) ? sges_left :
1366 ioc->max_sges_in_chain_message;
1367 chain_offset = (sges_left == sges_in_segment) ?
1368 0 : sges_in_segment;
1369 chain_length = sges_in_segment * ioc->sge_size_ieee;
1370 if (chain_offset)
1371 chain_length += ioc->sge_size_ieee;
1372 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
1373 chain_offset, chain_length, chain_dma);
1374
1375 sg_local = chain;
1376 if (!chain_offset)
1377 goto fill_in_last_segment;
1378
1379 /* fill in chain segments */
1380 while (sges_in_segment) {
1381 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1382 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1383 sg_scmd = sg_next(sg_scmd);
1384 sg_local += ioc->sge_size_ieee;
1385 sges_left--;
1386 sges_in_segment--;
1387 }
1388
1389 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1390 if (!chain_req)
1391 return -1;
1392 chain = chain_req->chain_buffer;
1393 chain_dma = chain_req->chain_buffer_dma;
1394 } while (1);
1395
1396
1397 fill_in_last_segment:
1398
1399 /* fill the last segment */
1400 while (sges_left) {
1401 if (sges_left == 1)
1402 _base_add_sg_single_ieee(sg_local,
1403 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
1404 sg_dma_address(sg_scmd));
1405 else
1406 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1407 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1408 sg_scmd = sg_next(sg_scmd);
1409 sg_local += ioc->sge_size_ieee;
1410 sges_left--;
1411 }
1412
1413 return 0;
1414 }
1415
1416 /**
1417 * _base_build_sg_ieee - build generic sg for IEEE format
1418 * @ioc: per adapter object
1419 * @psge: virtual address for SGE
1420 * @data_out_dma: physical address for WRITES
1421 * @data_out_sz: data xfer size for WRITES
1422 * @data_in_dma: physical address for READS
1423 * @data_in_sz: data xfer size for READS
1424 *
1425 * Return nothing.
1426 */
1427 static void
_base_build_sg_ieee(struct MPT3SAS_ADAPTER * ioc,void * psge,dma_addr_t data_out_dma,size_t data_out_sz,dma_addr_t data_in_dma,size_t data_in_sz)1428 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
1429 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1430 size_t data_in_sz)
1431 {
1432 u8 sgl_flags;
1433
1434 if (!data_out_sz && !data_in_sz) {
1435 _base_build_zero_len_sge_ieee(ioc, psge);
1436 return;
1437 }
1438
1439 if (data_out_sz && data_in_sz) {
1440 /* WRITE sgel first */
1441 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1442 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1443 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1444 data_out_dma);
1445
1446 /* incr sgel */
1447 psge += ioc->sge_size_ieee;
1448
1449 /* READ sgel last */
1450 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1451 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1452 data_in_dma);
1453 } else if (data_out_sz) /* WRITE */ {
1454 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1455 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1456 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1457 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1458 data_out_dma);
1459 } else if (data_in_sz) /* READ */ {
1460 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1461 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1462 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1463 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1464 data_in_dma);
1465 }
1466 }
1467
1468 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
1469
1470 /**
1471 * _base_config_dma_addressing - set dma addressing
1472 * @ioc: per adapter object
1473 * @pdev: PCI device struct
1474 *
1475 * Returns 0 for success, non-zero for failure.
1476 */
1477 static int
_base_config_dma_addressing(struct MPT3SAS_ADAPTER * ioc,struct pci_dev * pdev)1478 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
1479 {
1480 struct sysinfo s;
1481 char *desc = NULL;
1482
1483 if (sizeof(dma_addr_t) > 4) {
1484 const uint64_t required_mask =
1485 dma_get_required_mask(&pdev->dev);
1486 if ((required_mask > DMA_BIT_MASK(32)) &&
1487 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1488 !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1489 ioc->base_add_sg_single = &_base_add_sg_single_64;
1490 ioc->sge_size = sizeof(Mpi2SGESimple64_t);
1491 desc = "64";
1492 goto out;
1493 }
1494 }
1495
1496 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
1497 && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
1498 ioc->base_add_sg_single = &_base_add_sg_single_32;
1499 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
1500 desc = "32";
1501 } else
1502 return -ENODEV;
1503
1504 out:
1505 si_meminfo(&s);
1506 pr_info(MPT3SAS_FMT
1507 "%s BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
1508 ioc->name, desc, convert_to_kb(s.totalram));
1509
1510 return 0;
1511 }
1512
1513 /**
1514 * _base_check_enable_msix - checks MSIX capabable.
1515 * @ioc: per adapter object
1516 *
1517 * Check to see if card is capable of MSIX, and set number
1518 * of available msix vectors
1519 */
1520 static int
_base_check_enable_msix(struct MPT3SAS_ADAPTER * ioc)1521 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1522 {
1523 int base;
1524 u16 message_control;
1525
1526 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
1527 if (!base) {
1528 dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
1529 ioc->name));
1530 return -EINVAL;
1531 }
1532
1533 /* get msix vector count */
1534
1535 pci_read_config_word(ioc->pdev, base + 2, &message_control);
1536 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
1537 if (ioc->msix_vector_count > 8)
1538 ioc->msix_vector_count = 8;
1539 dinitprintk(ioc, pr_info(MPT3SAS_FMT
1540 "msix is supported, vector_count(%d)\n",
1541 ioc->name, ioc->msix_vector_count));
1542 return 0;
1543 }
1544
1545 /**
1546 * _base_free_irq - free irq
1547 * @ioc: per adapter object
1548 *
1549 * Freeing respective reply_queue from the list.
1550 */
1551 static void
_base_free_irq(struct MPT3SAS_ADAPTER * ioc)1552 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
1553 {
1554 struct adapter_reply_queue *reply_q, *next;
1555
1556 if (list_empty(&ioc->reply_queue_list))
1557 return;
1558
1559 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1560 list_del(&reply_q->list);
1561 synchronize_irq(reply_q->vector);
1562 free_irq(reply_q->vector, reply_q);
1563 kfree(reply_q);
1564 }
1565 }
1566
1567 /**
1568 * _base_request_irq - request irq
1569 * @ioc: per adapter object
1570 * @index: msix index into vector table
1571 * @vector: irq vector
1572 *
1573 * Inserting respective reply_queue into the list.
1574 */
1575 static int
_base_request_irq(struct MPT3SAS_ADAPTER * ioc,u8 index,u32 vector)1576 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index, u32 vector)
1577 {
1578 struct adapter_reply_queue *reply_q;
1579 int r;
1580
1581 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
1582 if (!reply_q) {
1583 pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
1584 ioc->name, (int)sizeof(struct adapter_reply_queue));
1585 return -ENOMEM;
1586 }
1587 reply_q->ioc = ioc;
1588 reply_q->msix_index = index;
1589 reply_q->vector = vector;
1590 atomic_set(&reply_q->busy, 0);
1591 if (ioc->msix_enable)
1592 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
1593 MPT3SAS_DRIVER_NAME, ioc->id, index);
1594 else
1595 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
1596 MPT3SAS_DRIVER_NAME, ioc->id);
1597 r = request_irq(vector, _base_interrupt, IRQF_SHARED, reply_q->name,
1598 reply_q);
1599 if (r) {
1600 pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
1601 reply_q->name, vector);
1602 kfree(reply_q);
1603 return -EBUSY;
1604 }
1605
1606 INIT_LIST_HEAD(&reply_q->list);
1607 list_add_tail(&reply_q->list, &ioc->reply_queue_list);
1608 return 0;
1609 }
1610
1611 /**
1612 * _base_assign_reply_queues - assigning msix index for each cpu
1613 * @ioc: per adapter object
1614 *
1615 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
1616 *
1617 * It would nice if we could call irq_set_affinity, however it is not
1618 * an exported symbol
1619 */
1620 static void
_base_assign_reply_queues(struct MPT3SAS_ADAPTER * ioc)1621 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1622 {
1623 struct adapter_reply_queue *reply_q;
1624 int cpu_id;
1625 int cpu_grouping, loop, grouping, grouping_mod;
1626 int reply_queue;
1627
1628 if (!_base_is_controller_msix_enabled(ioc))
1629 return;
1630
1631 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
1632
1633 /* NUMA Hardware bug workaround - drop to less reply queues */
1634 if (ioc->reply_queue_count > ioc->facts.MaxMSIxVectors) {
1635 ioc->reply_queue_count = ioc->facts.MaxMSIxVectors;
1636 reply_queue = 0;
1637 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1638 reply_q->msix_index = reply_queue;
1639 if (++reply_queue == ioc->reply_queue_count)
1640 reply_queue = 0;
1641 }
1642 }
1643
1644 /* when there are more cpus than available msix vectors,
1645 * then group cpus togeather on same irq
1646 */
1647 if (ioc->cpu_count > ioc->msix_vector_count) {
1648 grouping = ioc->cpu_count / ioc->msix_vector_count;
1649 grouping_mod = ioc->cpu_count % ioc->msix_vector_count;
1650 if (grouping < 2 || (grouping == 2 && !grouping_mod))
1651 cpu_grouping = 2;
1652 else if (grouping < 4 || (grouping == 4 && !grouping_mod))
1653 cpu_grouping = 4;
1654 else if (grouping < 8 || (grouping == 8 && !grouping_mod))
1655 cpu_grouping = 8;
1656 else
1657 cpu_grouping = 16;
1658 } else
1659 cpu_grouping = 0;
1660
1661 loop = 0;
1662 reply_q = list_entry(ioc->reply_queue_list.next,
1663 struct adapter_reply_queue, list);
1664 for_each_online_cpu(cpu_id) {
1665 if (!cpu_grouping) {
1666 ioc->cpu_msix_table[cpu_id] = reply_q->msix_index;
1667 reply_q = list_entry(reply_q->list.next,
1668 struct adapter_reply_queue, list);
1669 } else {
1670 if (loop < cpu_grouping) {
1671 ioc->cpu_msix_table[cpu_id] =
1672 reply_q->msix_index;
1673 loop++;
1674 } else {
1675 reply_q = list_entry(reply_q->list.next,
1676 struct adapter_reply_queue, list);
1677 ioc->cpu_msix_table[cpu_id] =
1678 reply_q->msix_index;
1679 loop = 1;
1680 }
1681 }
1682 }
1683 }
1684
1685 /**
1686 * _base_disable_msix - disables msix
1687 * @ioc: per adapter object
1688 *
1689 */
1690 static void
_base_disable_msix(struct MPT3SAS_ADAPTER * ioc)1691 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
1692 {
1693 if (!ioc->msix_enable)
1694 return;
1695 pci_disable_msix(ioc->pdev);
1696 ioc->msix_enable = 0;
1697 }
1698
1699 /**
1700 * _base_enable_msix - enables msix, failback to io_apic
1701 * @ioc: per adapter object
1702 *
1703 */
1704 static int
_base_enable_msix(struct MPT3SAS_ADAPTER * ioc)1705 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1706 {
1707 struct msix_entry *entries, *a;
1708 int r;
1709 int i;
1710 u8 try_msix = 0;
1711
1712 INIT_LIST_HEAD(&ioc->reply_queue_list);
1713
1714 if (msix_disable == -1 || msix_disable == 0)
1715 try_msix = 1;
1716
1717 if (!try_msix)
1718 goto try_ioapic;
1719
1720 if (_base_check_enable_msix(ioc) != 0)
1721 goto try_ioapic;
1722
1723 ioc->reply_queue_count = min_t(int, ioc->cpu_count,
1724 ioc->msix_vector_count);
1725
1726 entries = kcalloc(ioc->reply_queue_count, sizeof(struct msix_entry),
1727 GFP_KERNEL);
1728 if (!entries) {
1729 dfailprintk(ioc, pr_info(MPT3SAS_FMT
1730 "kcalloc failed @ at %s:%d/%s() !!!\n",
1731 ioc->name, __FILE__, __LINE__, __func__));
1732 goto try_ioapic;
1733 }
1734
1735 for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++)
1736 a->entry = i;
1737
1738 r = pci_enable_msix(ioc->pdev, entries, ioc->reply_queue_count);
1739 if (r) {
1740 dfailprintk(ioc, pr_info(MPT3SAS_FMT
1741 "pci_enable_msix failed (r=%d) !!!\n",
1742 ioc->name, r));
1743 kfree(entries);
1744 goto try_ioapic;
1745 }
1746
1747 ioc->msix_enable = 1;
1748 for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++) {
1749 r = _base_request_irq(ioc, i, a->vector);
1750 if (r) {
1751 _base_free_irq(ioc);
1752 _base_disable_msix(ioc);
1753 kfree(entries);
1754 goto try_ioapic;
1755 }
1756 }
1757
1758 kfree(entries);
1759 return 0;
1760
1761 /* failback to io_apic interrupt routing */
1762 try_ioapic:
1763
1764 r = _base_request_irq(ioc, 0, ioc->pdev->irq);
1765
1766 return r;
1767 }
1768
1769 /**
1770 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
1771 * @ioc: per adapter object
1772 *
1773 * Returns 0 for success, non-zero for failure.
1774 */
1775 int
mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER * ioc)1776 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
1777 {
1778 struct pci_dev *pdev = ioc->pdev;
1779 u32 memap_sz;
1780 u32 pio_sz;
1781 int i, r = 0;
1782 u64 pio_chip = 0;
1783 u64 chip_phys = 0;
1784 struct adapter_reply_queue *reply_q;
1785
1786 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
1787 ioc->name, __func__));
1788
1789 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
1790 if (pci_enable_device_mem(pdev)) {
1791 pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
1792 ioc->name);
1793 return -ENODEV;
1794 }
1795
1796
1797 if (pci_request_selected_regions(pdev, ioc->bars,
1798 MPT3SAS_DRIVER_NAME)) {
1799 pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
1800 ioc->name);
1801 r = -ENODEV;
1802 goto out_fail;
1803 }
1804
1805 /* AER (Advanced Error Reporting) hooks */
1806 pci_enable_pcie_error_reporting(pdev);
1807
1808 pci_set_master(pdev);
1809
1810
1811 if (_base_config_dma_addressing(ioc, pdev) != 0) {
1812 pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
1813 ioc->name, pci_name(pdev));
1814 r = -ENODEV;
1815 goto out_fail;
1816 }
1817
1818 for (i = 0, memap_sz = 0, pio_sz = 0 ; i < DEVICE_COUNT_RESOURCE; i++) {
1819 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1820 if (pio_sz)
1821 continue;
1822 pio_chip = (u64)pci_resource_start(pdev, i);
1823 pio_sz = pci_resource_len(pdev, i);
1824 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
1825 if (memap_sz)
1826 continue;
1827 ioc->chip_phys = pci_resource_start(pdev, i);
1828 chip_phys = (u64)ioc->chip_phys;
1829 memap_sz = pci_resource_len(pdev, i);
1830 ioc->chip = ioremap(ioc->chip_phys, memap_sz);
1831 if (ioc->chip == NULL) {
1832 pr_err(MPT3SAS_FMT "unable to map adapter memory!\n",
1833 ioc->name);
1834 r = -EINVAL;
1835 goto out_fail;
1836 }
1837 }
1838 }
1839
1840 _base_mask_interrupts(ioc);
1841 r = _base_enable_msix(ioc);
1842 if (r)
1843 goto out_fail;
1844
1845 list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
1846 pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
1847 reply_q->name, ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
1848 "IO-APIC enabled"), reply_q->vector);
1849
1850 pr_info(MPT3SAS_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
1851 ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz);
1852 pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
1853 ioc->name, (unsigned long long)pio_chip, pio_sz);
1854
1855 /* Save PCI configuration state for recovery from PCI AER/EEH errors */
1856 pci_save_state(pdev);
1857 return 0;
1858
1859 out_fail:
1860 if (ioc->chip_phys)
1861 iounmap(ioc->chip);
1862 ioc->chip_phys = 0;
1863 pci_release_selected_regions(ioc->pdev, ioc->bars);
1864 pci_disable_pcie_error_reporting(pdev);
1865 pci_disable_device(pdev);
1866 return r;
1867 }
1868
1869 /**
1870 * mpt3sas_base_get_msg_frame - obtain request mf pointer
1871 * @ioc: per adapter object
1872 * @smid: system request message index(smid zero is invalid)
1873 *
1874 * Returns virt pointer to message frame.
1875 */
1876 void *
mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER * ioc,u16 smid)1877 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1878 {
1879 return (void *)(ioc->request + (smid * ioc->request_sz));
1880 }
1881
1882 /**
1883 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
1884 * @ioc: per adapter object
1885 * @smid: system request message index
1886 *
1887 * Returns virt pointer to sense buffer.
1888 */
1889 void *
mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER * ioc,u16 smid)1890 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1891 {
1892 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
1893 }
1894
1895 /**
1896 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
1897 * @ioc: per adapter object
1898 * @smid: system request message index
1899 *
1900 * Returns phys pointer to the low 32bit address of the sense buffer.
1901 */
1902 __le32
mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER * ioc,u16 smid)1903 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1904 {
1905 return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
1906 SCSI_SENSE_BUFFERSIZE));
1907 }
1908
1909 /**
1910 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
1911 * @ioc: per adapter object
1912 * @phys_addr: lower 32 physical addr of the reply
1913 *
1914 * Converts 32bit lower physical addr into a virt address.
1915 */
1916 void *
mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER * ioc,u32 phys_addr)1917 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
1918 {
1919 if (!phys_addr)
1920 return NULL;
1921 return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
1922 }
1923
1924 /**
1925 * mpt3sas_base_get_smid - obtain a free smid from internal queue
1926 * @ioc: per adapter object
1927 * @cb_idx: callback index
1928 *
1929 * Returns smid (zero is invalid)
1930 */
1931 u16
mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER * ioc,u8 cb_idx)1932 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
1933 {
1934 unsigned long flags;
1935 struct request_tracker *request;
1936 u16 smid;
1937
1938 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1939 if (list_empty(&ioc->internal_free_list)) {
1940 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1941 pr_err(MPT3SAS_FMT "%s: smid not available\n",
1942 ioc->name, __func__);
1943 return 0;
1944 }
1945
1946 request = list_entry(ioc->internal_free_list.next,
1947 struct request_tracker, tracker_list);
1948 request->cb_idx = cb_idx;
1949 smid = request->smid;
1950 list_del(&request->tracker_list);
1951 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1952 return smid;
1953 }
1954
1955 /**
1956 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
1957 * @ioc: per adapter object
1958 * @cb_idx: callback index
1959 * @scmd: pointer to scsi command object
1960 *
1961 * Returns smid (zero is invalid)
1962 */
1963 u16
mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER * ioc,u8 cb_idx,struct scsi_cmnd * scmd)1964 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
1965 struct scsi_cmnd *scmd)
1966 {
1967 unsigned long flags;
1968 struct scsiio_tracker *request;
1969 u16 smid;
1970
1971 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1972 if (list_empty(&ioc->free_list)) {
1973 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1974 pr_err(MPT3SAS_FMT "%s: smid not available\n",
1975 ioc->name, __func__);
1976 return 0;
1977 }
1978
1979 request = list_entry(ioc->free_list.next,
1980 struct scsiio_tracker, tracker_list);
1981 request->scmd = scmd;
1982 request->cb_idx = cb_idx;
1983 smid = request->smid;
1984 list_del(&request->tracker_list);
1985 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1986 return smid;
1987 }
1988
1989 /**
1990 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
1991 * @ioc: per adapter object
1992 * @cb_idx: callback index
1993 *
1994 * Returns smid (zero is invalid)
1995 */
1996 u16
mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER * ioc,u8 cb_idx)1997 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
1998 {
1999 unsigned long flags;
2000 struct request_tracker *request;
2001 u16 smid;
2002
2003 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2004 if (list_empty(&ioc->hpr_free_list)) {
2005 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2006 return 0;
2007 }
2008
2009 request = list_entry(ioc->hpr_free_list.next,
2010 struct request_tracker, tracker_list);
2011 request->cb_idx = cb_idx;
2012 smid = request->smid;
2013 list_del(&request->tracker_list);
2014 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2015 return smid;
2016 }
2017
2018 /**
2019 * mpt3sas_base_free_smid - put smid back on free_list
2020 * @ioc: per adapter object
2021 * @smid: system request message index
2022 *
2023 * Return nothing.
2024 */
2025 void
mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER * ioc,u16 smid)2026 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2027 {
2028 unsigned long flags;
2029 int i;
2030 struct chain_tracker *chain_req, *next;
2031
2032 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2033 if (smid < ioc->hi_priority_smid) {
2034 /* scsiio queue */
2035 i = smid - 1;
2036 if (!list_empty(&ioc->scsi_lookup[i].chain_list)) {
2037 list_for_each_entry_safe(chain_req, next,
2038 &ioc->scsi_lookup[i].chain_list, tracker_list) {
2039 list_del_init(&chain_req->tracker_list);
2040 list_add(&chain_req->tracker_list,
2041 &ioc->free_chain_list);
2042 }
2043 }
2044 ioc->scsi_lookup[i].cb_idx = 0xFF;
2045 ioc->scsi_lookup[i].scmd = NULL;
2046 list_add(&ioc->scsi_lookup[i].tracker_list, &ioc->free_list);
2047 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2048
2049 /*
2050 * See _wait_for_commands_to_complete() call with regards
2051 * to this code.
2052 */
2053 if (ioc->shost_recovery && ioc->pending_io_count) {
2054 if (ioc->pending_io_count == 1)
2055 wake_up(&ioc->reset_wq);
2056 ioc->pending_io_count--;
2057 }
2058 return;
2059 } else if (smid < ioc->internal_smid) {
2060 /* hi-priority */
2061 i = smid - ioc->hi_priority_smid;
2062 ioc->hpr_lookup[i].cb_idx = 0xFF;
2063 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
2064 } else if (smid <= ioc->hba_queue_depth) {
2065 /* internal queue */
2066 i = smid - ioc->internal_smid;
2067 ioc->internal_lookup[i].cb_idx = 0xFF;
2068 list_add(&ioc->internal_lookup[i].tracker_list,
2069 &ioc->internal_free_list);
2070 }
2071 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2072 }
2073
2074 /**
2075 * _base_writeq - 64 bit write to MMIO
2076 * @ioc: per adapter object
2077 * @b: data payload
2078 * @addr: address in MMIO space
2079 * @writeq_lock: spin lock
2080 *
2081 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
2082 * care of 32 bit environment where its not quarenteed to send the entire word
2083 * in one transfer.
2084 */
2085 #if defined(writeq) && defined(CONFIG_64BIT)
2086 static inline void
_base_writeq(__u64 b,volatile void __iomem * addr,spinlock_t * writeq_lock)2087 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2088 {
2089 writeq(cpu_to_le64(b), addr);
2090 }
2091 #else
2092 static inline void
_base_writeq(__u64 b,volatile void __iomem * addr,spinlock_t * writeq_lock)2093 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2094 {
2095 unsigned long flags;
2096 __u64 data_out = cpu_to_le64(b);
2097
2098 spin_lock_irqsave(writeq_lock, flags);
2099 writel((u32)(data_out), addr);
2100 writel((u32)(data_out >> 32), (addr + 4));
2101 spin_unlock_irqrestore(writeq_lock, flags);
2102 }
2103 #endif
2104
2105 static inline u8
_base_get_msix_index(struct MPT3SAS_ADAPTER * ioc)2106 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
2107 {
2108 return ioc->cpu_msix_table[raw_smp_processor_id()];
2109 }
2110
2111 /**
2112 * mpt3sas_base_put_smid_scsi_io - send SCSI_IO request to firmware
2113 * @ioc: per adapter object
2114 * @smid: system request message index
2115 * @handle: device handle
2116 *
2117 * Return nothing.
2118 */
2119 void
mpt3sas_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)2120 mpt3sas_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
2121 {
2122 Mpi2RequestDescriptorUnion_t descriptor;
2123 u64 *request = (u64 *)&descriptor;
2124
2125
2126 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2127 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2128 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2129 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2130 descriptor.SCSIIO.LMID = 0;
2131 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2132 &ioc->scsi_lookup_lock);
2133 }
2134
2135 /**
2136 * mpt3sas_base_put_smid_fast_path - send fast path request to firmware
2137 * @ioc: per adapter object
2138 * @smid: system request message index
2139 * @handle: device handle
2140 *
2141 * Return nothing.
2142 */
2143 void
mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)2144 mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2145 u16 handle)
2146 {
2147 Mpi2RequestDescriptorUnion_t descriptor;
2148 u64 *request = (u64 *)&descriptor;
2149
2150 descriptor.SCSIIO.RequestFlags =
2151 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
2152 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2153 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2154 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2155 descriptor.SCSIIO.LMID = 0;
2156 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2157 &ioc->scsi_lookup_lock);
2158 }
2159
2160 /**
2161 * mpt3sas_base_put_smid_hi_priority - send Task Managment request to firmware
2162 * @ioc: per adapter object
2163 * @smid: system request message index
2164 *
2165 * Return nothing.
2166 */
2167 void
mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER * ioc,u16 smid)2168 mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2169 {
2170 Mpi2RequestDescriptorUnion_t descriptor;
2171 u64 *request = (u64 *)&descriptor;
2172
2173 descriptor.HighPriority.RequestFlags =
2174 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
2175 descriptor.HighPriority.MSIxIndex = 0;
2176 descriptor.HighPriority.SMID = cpu_to_le16(smid);
2177 descriptor.HighPriority.LMID = 0;
2178 descriptor.HighPriority.Reserved1 = 0;
2179 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2180 &ioc->scsi_lookup_lock);
2181 }
2182
2183 /**
2184 * mpt3sas_base_put_smid_default - Default, primarily used for config pages
2185 * @ioc: per adapter object
2186 * @smid: system request message index
2187 *
2188 * Return nothing.
2189 */
2190 void
mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER * ioc,u16 smid)2191 mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2192 {
2193 Mpi2RequestDescriptorUnion_t descriptor;
2194 u64 *request = (u64 *)&descriptor;
2195
2196 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2197 descriptor.Default.MSIxIndex = _base_get_msix_index(ioc);
2198 descriptor.Default.SMID = cpu_to_le16(smid);
2199 descriptor.Default.LMID = 0;
2200 descriptor.Default.DescriptorTypeDependent = 0;
2201 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2202 &ioc->scsi_lookup_lock);
2203 }
2204
2205
2206
2207 /**
2208 * _base_display_ioc_capabilities - Disply IOC's capabilities.
2209 * @ioc: per adapter object
2210 *
2211 * Return nothing.
2212 */
2213 static void
_base_display_ioc_capabilities(struct MPT3SAS_ADAPTER * ioc)2214 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
2215 {
2216 int i = 0;
2217 char desc[16];
2218 u32 iounit_pg1_flags;
2219 u32 bios_version;
2220
2221 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
2222 strncpy(desc, ioc->manu_pg0.ChipName, 16);
2223 pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
2224 "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
2225 ioc->name, desc,
2226 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
2227 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
2228 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
2229 ioc->facts.FWVersion.Word & 0x000000FF,
2230 ioc->pdev->revision,
2231 (bios_version & 0xFF000000) >> 24,
2232 (bios_version & 0x00FF0000) >> 16,
2233 (bios_version & 0x0000FF00) >> 8,
2234 bios_version & 0x000000FF);
2235
2236 pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
2237
2238 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
2239 pr_info("Initiator");
2240 i++;
2241 }
2242
2243 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
2244 pr_info("%sTarget", i ? "," : "");
2245 i++;
2246 }
2247
2248 i = 0;
2249 pr_info("), ");
2250 pr_info("Capabilities=(");
2251
2252 if (ioc->facts.IOCCapabilities &
2253 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
2254 pr_info("Raid");
2255 i++;
2256 }
2257
2258 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
2259 pr_info("%sTLR", i ? "," : "");
2260 i++;
2261 }
2262
2263 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
2264 pr_info("%sMulticast", i ? "," : "");
2265 i++;
2266 }
2267
2268 if (ioc->facts.IOCCapabilities &
2269 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
2270 pr_info("%sBIDI Target", i ? "," : "");
2271 i++;
2272 }
2273
2274 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
2275 pr_info("%sEEDP", i ? "," : "");
2276 i++;
2277 }
2278
2279 if (ioc->facts.IOCCapabilities &
2280 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
2281 pr_info("%sSnapshot Buffer", i ? "," : "");
2282 i++;
2283 }
2284
2285 if (ioc->facts.IOCCapabilities &
2286 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
2287 pr_info("%sDiag Trace Buffer", i ? "," : "");
2288 i++;
2289 }
2290
2291 if (ioc->facts.IOCCapabilities &
2292 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
2293 pr_info("%sDiag Extended Buffer", i ? "," : "");
2294 i++;
2295 }
2296
2297 if (ioc->facts.IOCCapabilities &
2298 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
2299 pr_info("%sTask Set Full", i ? "," : "");
2300 i++;
2301 }
2302
2303 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
2304 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
2305 pr_info("%sNCQ", i ? "," : "");
2306 i++;
2307 }
2308
2309 pr_info(")\n");
2310 }
2311
2312 /**
2313 * mpt3sas_base_update_missing_delay - change the missing delay timers
2314 * @ioc: per adapter object
2315 * @device_missing_delay: amount of time till device is reported missing
2316 * @io_missing_delay: interval IO is returned when there is a missing device
2317 *
2318 * Return nothing.
2319 *
2320 * Passed on the command line, this function will modify the device missing
2321 * delay, as well as the io missing delay. This should be called at driver
2322 * load time.
2323 */
2324 void
mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER * ioc,u16 device_missing_delay,u8 io_missing_delay)2325 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
2326 u16 device_missing_delay, u8 io_missing_delay)
2327 {
2328 u16 dmd, dmd_new, dmd_orignal;
2329 u8 io_missing_delay_original;
2330 u16 sz;
2331 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
2332 Mpi2ConfigReply_t mpi_reply;
2333 u8 num_phys = 0;
2334 u16 ioc_status;
2335
2336 mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
2337 if (!num_phys)
2338 return;
2339
2340 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
2341 sizeof(Mpi2SasIOUnit1PhyData_t));
2342 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
2343 if (!sas_iounit_pg1) {
2344 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2345 ioc->name, __FILE__, __LINE__, __func__);
2346 goto out;
2347 }
2348 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
2349 sas_iounit_pg1, sz))) {
2350 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2351 ioc->name, __FILE__, __LINE__, __func__);
2352 goto out;
2353 }
2354 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
2355 MPI2_IOCSTATUS_MASK;
2356 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
2357 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2358 ioc->name, __FILE__, __LINE__, __func__);
2359 goto out;
2360 }
2361
2362 /* device missing delay */
2363 dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
2364 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2365 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2366 else
2367 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2368 dmd_orignal = dmd;
2369 if (device_missing_delay > 0x7F) {
2370 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
2371 device_missing_delay;
2372 dmd = dmd / 16;
2373 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
2374 } else
2375 dmd = device_missing_delay;
2376 sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
2377
2378 /* io missing delay */
2379 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
2380 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
2381
2382 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
2383 sz)) {
2384 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2385 dmd_new = (dmd &
2386 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2387 else
2388 dmd_new =
2389 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2390 pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
2391 ioc->name, dmd_orignal, dmd_new);
2392 pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
2393 ioc->name, io_missing_delay_original,
2394 io_missing_delay);
2395 ioc->device_missing_delay = dmd_new;
2396 ioc->io_missing_delay = io_missing_delay;
2397 }
2398
2399 out:
2400 kfree(sas_iounit_pg1);
2401 }
2402 /**
2403 * _base_static_config_pages - static start of day config pages
2404 * @ioc: per adapter object
2405 *
2406 * Return nothing.
2407 */
2408 static void
_base_static_config_pages(struct MPT3SAS_ADAPTER * ioc)2409 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
2410 {
2411 Mpi2ConfigReply_t mpi_reply;
2412 u32 iounit_pg1_flags;
2413
2414 mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
2415 if (ioc->ir_firmware)
2416 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
2417 &ioc->manu_pg10);
2418
2419 /*
2420 * Ensure correct T10 PI operation if vendor left EEDPTagMode
2421 * flag unset in NVDATA.
2422 */
2423 mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
2424 if (ioc->manu_pg11.EEDPTagMode == 0) {
2425 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
2426 ioc->name);
2427 ioc->manu_pg11.EEDPTagMode &= ~0x3;
2428 ioc->manu_pg11.EEDPTagMode |= 0x1;
2429 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
2430 &ioc->manu_pg11);
2431 }
2432
2433 mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
2434 mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
2435 mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
2436 mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
2437 mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
2438 _base_display_ioc_capabilities(ioc);
2439
2440 /*
2441 * Enable task_set_full handling in iounit_pg1 when the
2442 * facts capabilities indicate that its supported.
2443 */
2444 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
2445 if ((ioc->facts.IOCCapabilities &
2446 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
2447 iounit_pg1_flags &=
2448 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
2449 else
2450 iounit_pg1_flags |=
2451 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
2452 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
2453 mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
2454 }
2455
2456 /**
2457 * _base_release_memory_pools - release memory
2458 * @ioc: per adapter object
2459 *
2460 * Free memory allocated from _base_allocate_memory_pools.
2461 *
2462 * Return nothing.
2463 */
2464 static void
_base_release_memory_pools(struct MPT3SAS_ADAPTER * ioc)2465 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
2466 {
2467 int i;
2468
2469 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2470 __func__));
2471
2472 if (ioc->request) {
2473 pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
2474 ioc->request, ioc->request_dma);
2475 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2476 "request_pool(0x%p): free\n",
2477 ioc->name, ioc->request));
2478 ioc->request = NULL;
2479 }
2480
2481 if (ioc->sense) {
2482 pci_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
2483 if (ioc->sense_dma_pool)
2484 pci_pool_destroy(ioc->sense_dma_pool);
2485 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2486 "sense_pool(0x%p): free\n",
2487 ioc->name, ioc->sense));
2488 ioc->sense = NULL;
2489 }
2490
2491 if (ioc->reply) {
2492 pci_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
2493 if (ioc->reply_dma_pool)
2494 pci_pool_destroy(ioc->reply_dma_pool);
2495 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2496 "reply_pool(0x%p): free\n",
2497 ioc->name, ioc->reply));
2498 ioc->reply = NULL;
2499 }
2500
2501 if (ioc->reply_free) {
2502 pci_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
2503 ioc->reply_free_dma);
2504 if (ioc->reply_free_dma_pool)
2505 pci_pool_destroy(ioc->reply_free_dma_pool);
2506 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2507 "reply_free_pool(0x%p): free\n",
2508 ioc->name, ioc->reply_free));
2509 ioc->reply_free = NULL;
2510 }
2511
2512 if (ioc->reply_post_free) {
2513 pci_pool_free(ioc->reply_post_free_dma_pool,
2514 ioc->reply_post_free, ioc->reply_post_free_dma);
2515 if (ioc->reply_post_free_dma_pool)
2516 pci_pool_destroy(ioc->reply_post_free_dma_pool);
2517 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2518 "reply_post_free_pool(0x%p): free\n", ioc->name,
2519 ioc->reply_post_free));
2520 ioc->reply_post_free = NULL;
2521 }
2522
2523 if (ioc->config_page) {
2524 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2525 "config_page(0x%p): free\n", ioc->name,
2526 ioc->config_page));
2527 pci_free_consistent(ioc->pdev, ioc->config_page_sz,
2528 ioc->config_page, ioc->config_page_dma);
2529 }
2530
2531 if (ioc->scsi_lookup) {
2532 free_pages((ulong)ioc->scsi_lookup, ioc->scsi_lookup_pages);
2533 ioc->scsi_lookup = NULL;
2534 }
2535 kfree(ioc->hpr_lookup);
2536 kfree(ioc->internal_lookup);
2537 if (ioc->chain_lookup) {
2538 for (i = 0; i < ioc->chain_depth; i++) {
2539 if (ioc->chain_lookup[i].chain_buffer)
2540 pci_pool_free(ioc->chain_dma_pool,
2541 ioc->chain_lookup[i].chain_buffer,
2542 ioc->chain_lookup[i].chain_buffer_dma);
2543 }
2544 if (ioc->chain_dma_pool)
2545 pci_pool_destroy(ioc->chain_dma_pool);
2546 free_pages((ulong)ioc->chain_lookup, ioc->chain_pages);
2547 ioc->chain_lookup = NULL;
2548 }
2549 }
2550
2551 /**
2552 * _base_allocate_memory_pools - allocate start of day memory pools
2553 * @ioc: per adapter object
2554 * @sleep_flag: CAN_SLEEP or NO_SLEEP
2555 *
2556 * Returns 0 success, anything else error
2557 */
2558 static int
_base_allocate_memory_pools(struct MPT3SAS_ADAPTER * ioc,int sleep_flag)2559 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
2560 {
2561 struct mpt3sas_facts *facts;
2562 u16 max_sge_elements;
2563 u16 chains_needed_per_io;
2564 u32 sz, total_sz, reply_post_free_sz;
2565 u32 retry_sz;
2566 u16 max_request_credit;
2567 unsigned short sg_tablesize;
2568 u16 sge_size;
2569 int i;
2570
2571 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2572 __func__));
2573
2574
2575 retry_sz = 0;
2576 facts = &ioc->facts;
2577
2578 /* command line tunables for max sgl entries */
2579 if (max_sgl_entries != -1)
2580 sg_tablesize = max_sgl_entries;
2581 else
2582 sg_tablesize = MPT3SAS_SG_DEPTH;
2583
2584 if (sg_tablesize < MPT3SAS_MIN_PHYS_SEGMENTS)
2585 sg_tablesize = MPT3SAS_MIN_PHYS_SEGMENTS;
2586 else if (sg_tablesize > MPT3SAS_MAX_PHYS_SEGMENTS)
2587 sg_tablesize = MPT3SAS_MAX_PHYS_SEGMENTS;
2588 ioc->shost->sg_tablesize = sg_tablesize;
2589
2590 ioc->hi_priority_depth = facts->HighPriorityCredit;
2591 ioc->internal_depth = ioc->hi_priority_depth + (5);
2592 /* command line tunables for max controller queue depth */
2593 if (max_queue_depth != -1 && max_queue_depth != 0) {
2594 max_request_credit = min_t(u16, max_queue_depth +
2595 ioc->hi_priority_depth + ioc->internal_depth,
2596 facts->RequestCredit);
2597 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
2598 max_request_credit = MAX_HBA_QUEUE_DEPTH;
2599 } else
2600 max_request_credit = min_t(u16, facts->RequestCredit,
2601 MAX_HBA_QUEUE_DEPTH);
2602
2603 ioc->hba_queue_depth = max_request_credit;
2604
2605 /* request frame size */
2606 ioc->request_sz = facts->IOCRequestFrameSize * 4;
2607
2608 /* reply frame size */
2609 ioc->reply_sz = facts->ReplyFrameSize * 4;
2610
2611 /* calculate the max scatter element size */
2612 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
2613
2614 retry_allocation:
2615 total_sz = 0;
2616 /* calculate number of sg elements left over in the 1st frame */
2617 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
2618 sizeof(Mpi2SGEIOUnion_t)) + sge_size);
2619 ioc->max_sges_in_main_message = max_sge_elements/sge_size;
2620
2621 /* now do the same for a chain buffer */
2622 max_sge_elements = ioc->request_sz - sge_size;
2623 ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
2624
2625 /*
2626 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
2627 */
2628 chains_needed_per_io = ((ioc->shost->sg_tablesize -
2629 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
2630 + 1;
2631 if (chains_needed_per_io > facts->MaxChainDepth) {
2632 chains_needed_per_io = facts->MaxChainDepth;
2633 ioc->shost->sg_tablesize = min_t(u16,
2634 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
2635 * chains_needed_per_io), ioc->shost->sg_tablesize);
2636 }
2637 ioc->chains_needed_per_io = chains_needed_per_io;
2638
2639 /* reply free queue sizing - taking into account for 64 FW events */
2640 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
2641
2642 /* calculate reply descriptor post queue depth */
2643 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
2644 ioc->reply_free_queue_depth + 1 ;
2645 /* align the reply post queue on the next 16 count boundary */
2646 if (ioc->reply_post_queue_depth % 16)
2647 ioc->reply_post_queue_depth += 16 -
2648 (ioc->reply_post_queue_depth % 16);
2649
2650
2651 if (ioc->reply_post_queue_depth >
2652 facts->MaxReplyDescriptorPostQueueDepth) {
2653 ioc->reply_post_queue_depth =
2654 facts->MaxReplyDescriptorPostQueueDepth -
2655 (facts->MaxReplyDescriptorPostQueueDepth % 16);
2656 ioc->hba_queue_depth =
2657 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
2658 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
2659 }
2660
2661 dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
2662 "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
2663 "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
2664 ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
2665 ioc->chains_needed_per_io));
2666
2667 ioc->scsiio_depth = ioc->hba_queue_depth -
2668 ioc->hi_priority_depth - ioc->internal_depth;
2669
2670 /* set the scsi host can_queue depth
2671 * with some internal commands that could be outstanding
2672 */
2673 ioc->shost->can_queue = ioc->scsiio_depth;
2674 dinitprintk(ioc, pr_info(MPT3SAS_FMT
2675 "scsi host: can_queue depth (%d)\n",
2676 ioc->name, ioc->shost->can_queue));
2677
2678
2679 /* contiguous pool for request and chains, 16 byte align, one extra "
2680 * "frame for smid=0
2681 */
2682 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
2683 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
2684
2685 /* hi-priority queue */
2686 sz += (ioc->hi_priority_depth * ioc->request_sz);
2687
2688 /* internal queue */
2689 sz += (ioc->internal_depth * ioc->request_sz);
2690
2691 ioc->request_dma_sz = sz;
2692 ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
2693 if (!ioc->request) {
2694 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
2695 "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
2696 "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
2697 ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
2698 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
2699 goto out;
2700 retry_sz += 64;
2701 ioc->hba_queue_depth = max_request_credit - retry_sz;
2702 goto retry_allocation;
2703 }
2704
2705 if (retry_sz)
2706 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
2707 "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
2708 "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
2709 ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
2710
2711 /* hi-priority queue */
2712 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
2713 ioc->request_sz);
2714 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
2715 ioc->request_sz);
2716
2717 /* internal queue */
2718 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
2719 ioc->request_sz);
2720 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
2721 ioc->request_sz);
2722
2723 dinitprintk(ioc, pr_info(MPT3SAS_FMT
2724 "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
2725 ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
2726 (ioc->hba_queue_depth * ioc->request_sz)/1024));
2727
2728 dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
2729 ioc->name, (unsigned long long) ioc->request_dma));
2730 total_sz += sz;
2731
2732 sz = ioc->scsiio_depth * sizeof(struct scsiio_tracker);
2733 ioc->scsi_lookup_pages = get_order(sz);
2734 ioc->scsi_lookup = (struct scsiio_tracker *)__get_free_pages(
2735 GFP_KERNEL, ioc->scsi_lookup_pages);
2736 if (!ioc->scsi_lookup) {
2737 pr_err(MPT3SAS_FMT "scsi_lookup: get_free_pages failed, sz(%d)\n",
2738 ioc->name, (int)sz);
2739 goto out;
2740 }
2741
2742 dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
2743 ioc->name, ioc->request, ioc->scsiio_depth));
2744
2745 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
2746 sz = ioc->chain_depth * sizeof(struct chain_tracker);
2747 ioc->chain_pages = get_order(sz);
2748 ioc->chain_lookup = (struct chain_tracker *)__get_free_pages(
2749 GFP_KERNEL, ioc->chain_pages);
2750 if (!ioc->chain_lookup) {
2751 pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages failed\n",
2752 ioc->name);
2753 goto out;
2754 }
2755 ioc->chain_dma_pool = pci_pool_create("chain pool", ioc->pdev,
2756 ioc->request_sz, 16, 0);
2757 if (!ioc->chain_dma_pool) {
2758 pr_err(MPT3SAS_FMT "chain_dma_pool: pci_pool_create failed\n",
2759 ioc->name);
2760 goto out;
2761 }
2762 for (i = 0; i < ioc->chain_depth; i++) {
2763 ioc->chain_lookup[i].chain_buffer = pci_pool_alloc(
2764 ioc->chain_dma_pool , GFP_KERNEL,
2765 &ioc->chain_lookup[i].chain_buffer_dma);
2766 if (!ioc->chain_lookup[i].chain_buffer) {
2767 ioc->chain_depth = i;
2768 goto chain_done;
2769 }
2770 total_sz += ioc->request_sz;
2771 }
2772 chain_done:
2773 dinitprintk(ioc, pr_info(MPT3SAS_FMT
2774 "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
2775 ioc->name, ioc->chain_depth, ioc->request_sz,
2776 ((ioc->chain_depth * ioc->request_sz))/1024));
2777
2778 /* initialize hi-priority queue smid's */
2779 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
2780 sizeof(struct request_tracker), GFP_KERNEL);
2781 if (!ioc->hpr_lookup) {
2782 pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
2783 ioc->name);
2784 goto out;
2785 }
2786 ioc->hi_priority_smid = ioc->scsiio_depth + 1;
2787 dinitprintk(ioc, pr_info(MPT3SAS_FMT
2788 "hi_priority(0x%p): depth(%d), start smid(%d)\n",
2789 ioc->name, ioc->hi_priority,
2790 ioc->hi_priority_depth, ioc->hi_priority_smid));
2791
2792 /* initialize internal queue smid's */
2793 ioc->internal_lookup = kcalloc(ioc->internal_depth,
2794 sizeof(struct request_tracker), GFP_KERNEL);
2795 if (!ioc->internal_lookup) {
2796 pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
2797 ioc->name);
2798 goto out;
2799 }
2800 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
2801 dinitprintk(ioc, pr_info(MPT3SAS_FMT
2802 "internal(0x%p): depth(%d), start smid(%d)\n",
2803 ioc->name, ioc->internal,
2804 ioc->internal_depth, ioc->internal_smid));
2805
2806 /* sense buffers, 4 byte align */
2807 sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
2808 ioc->sense_dma_pool = pci_pool_create("sense pool", ioc->pdev, sz, 4,
2809 0);
2810 if (!ioc->sense_dma_pool) {
2811 pr_err(MPT3SAS_FMT "sense pool: pci_pool_create failed\n",
2812 ioc->name);
2813 goto out;
2814 }
2815 ioc->sense = pci_pool_alloc(ioc->sense_dma_pool , GFP_KERNEL,
2816 &ioc->sense_dma);
2817 if (!ioc->sense) {
2818 pr_err(MPT3SAS_FMT "sense pool: pci_pool_alloc failed\n",
2819 ioc->name);
2820 goto out;
2821 }
2822 dinitprintk(ioc, pr_info(MPT3SAS_FMT
2823 "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
2824 "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
2825 SCSI_SENSE_BUFFERSIZE, sz/1024));
2826 dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
2827 ioc->name, (unsigned long long)ioc->sense_dma));
2828 total_sz += sz;
2829
2830 /* reply pool, 4 byte align */
2831 sz = ioc->reply_free_queue_depth * ioc->reply_sz;
2832 ioc->reply_dma_pool = pci_pool_create("reply pool", ioc->pdev, sz, 4,
2833 0);
2834 if (!ioc->reply_dma_pool) {
2835 pr_err(MPT3SAS_FMT "reply pool: pci_pool_create failed\n",
2836 ioc->name);
2837 goto out;
2838 }
2839 ioc->reply = pci_pool_alloc(ioc->reply_dma_pool , GFP_KERNEL,
2840 &ioc->reply_dma);
2841 if (!ioc->reply) {
2842 pr_err(MPT3SAS_FMT "reply pool: pci_pool_alloc failed\n",
2843 ioc->name);
2844 goto out;
2845 }
2846 ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
2847 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
2848 dinitprintk(ioc, pr_info(MPT3SAS_FMT
2849 "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
2850 ioc->name, ioc->reply,
2851 ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
2852 dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
2853 ioc->name, (unsigned long long)ioc->reply_dma));
2854 total_sz += sz;
2855
2856 /* reply free queue, 16 byte align */
2857 sz = ioc->reply_free_queue_depth * 4;
2858 ioc->reply_free_dma_pool = pci_pool_create("reply_free pool",
2859 ioc->pdev, sz, 16, 0);
2860 if (!ioc->reply_free_dma_pool) {
2861 pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_create failed\n",
2862 ioc->name);
2863 goto out;
2864 }
2865 ioc->reply_free = pci_pool_alloc(ioc->reply_free_dma_pool , GFP_KERNEL,
2866 &ioc->reply_free_dma);
2867 if (!ioc->reply_free) {
2868 pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_alloc failed\n",
2869 ioc->name);
2870 goto out;
2871 }
2872 memset(ioc->reply_free, 0, sz);
2873 dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
2874 "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
2875 ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
2876 dinitprintk(ioc, pr_info(MPT3SAS_FMT
2877 "reply_free_dma (0x%llx)\n",
2878 ioc->name, (unsigned long long)ioc->reply_free_dma));
2879 total_sz += sz;
2880
2881 /* reply post queue, 16 byte align */
2882 reply_post_free_sz = ioc->reply_post_queue_depth *
2883 sizeof(Mpi2DefaultReplyDescriptor_t);
2884 if (_base_is_controller_msix_enabled(ioc))
2885 sz = reply_post_free_sz * ioc->reply_queue_count;
2886 else
2887 sz = reply_post_free_sz;
2888 ioc->reply_post_free_dma_pool = pci_pool_create("reply_post_free pool",
2889 ioc->pdev, sz, 16, 0);
2890 if (!ioc->reply_post_free_dma_pool) {
2891 pr_err(MPT3SAS_FMT
2892 "reply_post_free pool: pci_pool_create failed\n",
2893 ioc->name);
2894 goto out;
2895 }
2896 ioc->reply_post_free = pci_pool_alloc(ioc->reply_post_free_dma_pool ,
2897 GFP_KERNEL, &ioc->reply_post_free_dma);
2898 if (!ioc->reply_post_free) {
2899 pr_err(MPT3SAS_FMT
2900 "reply_post_free pool: pci_pool_alloc failed\n",
2901 ioc->name);
2902 goto out;
2903 }
2904 memset(ioc->reply_post_free, 0, sz);
2905 dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply post free pool" \
2906 "(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
2907 ioc->name, ioc->reply_post_free, ioc->reply_post_queue_depth, 8,
2908 sz/1024));
2909 dinitprintk(ioc, pr_info(MPT3SAS_FMT
2910 "reply_post_free_dma = (0x%llx)\n",
2911 ioc->name, (unsigned long long)
2912 ioc->reply_post_free_dma));
2913 total_sz += sz;
2914
2915 ioc->config_page_sz = 512;
2916 ioc->config_page = pci_alloc_consistent(ioc->pdev,
2917 ioc->config_page_sz, &ioc->config_page_dma);
2918 if (!ioc->config_page) {
2919 pr_err(MPT3SAS_FMT
2920 "config page: pci_pool_alloc failed\n",
2921 ioc->name);
2922 goto out;
2923 }
2924 dinitprintk(ioc, pr_info(MPT3SAS_FMT
2925 "config page(0x%p): size(%d)\n",
2926 ioc->name, ioc->config_page, ioc->config_page_sz));
2927 dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
2928 ioc->name, (unsigned long long)ioc->config_page_dma));
2929 total_sz += ioc->config_page_sz;
2930
2931 pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
2932 ioc->name, total_sz/1024);
2933 pr_info(MPT3SAS_FMT
2934 "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
2935 ioc->name, ioc->shost->can_queue, facts->RequestCredit);
2936 pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
2937 ioc->name, ioc->shost->sg_tablesize);
2938 return 0;
2939
2940 out:
2941 return -ENOMEM;
2942 }
2943
2944 /**
2945 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
2946 * @ioc: Pointer to MPT_ADAPTER structure
2947 * @cooked: Request raw or cooked IOC state
2948 *
2949 * Returns all IOC Doorbell register bits if cooked==0, else just the
2950 * Doorbell bits in MPI_IOC_STATE_MASK.
2951 */
2952 u32
mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER * ioc,int cooked)2953 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
2954 {
2955 u32 s, sc;
2956
2957 s = readl(&ioc->chip->Doorbell);
2958 sc = s & MPI2_IOC_STATE_MASK;
2959 return cooked ? sc : s;
2960 }
2961
2962 /**
2963 * _base_wait_on_iocstate - waiting on a particular ioc state
2964 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
2965 * @timeout: timeout in second
2966 * @sleep_flag: CAN_SLEEP or NO_SLEEP
2967 *
2968 * Returns 0 for success, non-zero for failure.
2969 */
2970 static int
_base_wait_on_iocstate(struct MPT3SAS_ADAPTER * ioc,u32 ioc_state,int timeout,int sleep_flag)2971 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout,
2972 int sleep_flag)
2973 {
2974 u32 count, cntdn;
2975 u32 current_state;
2976
2977 count = 0;
2978 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
2979 do {
2980 current_state = mpt3sas_base_get_iocstate(ioc, 1);
2981 if (current_state == ioc_state)
2982 return 0;
2983 if (count && current_state == MPI2_IOC_STATE_FAULT)
2984 break;
2985 if (sleep_flag == CAN_SLEEP)
2986 usleep_range(1000, 1500);
2987 else
2988 udelay(500);
2989 count++;
2990 } while (--cntdn);
2991
2992 return current_state;
2993 }
2994
2995 /**
2996 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
2997 * a write to the doorbell)
2998 * @ioc: per adapter object
2999 * @timeout: timeout in second
3000 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3001 *
3002 * Returns 0 for success, non-zero for failure.
3003 *
3004 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
3005 */
3006 static int
_base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER * ioc,int timeout,int sleep_flag)3007 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout,
3008 int sleep_flag)
3009 {
3010 u32 cntdn, count;
3011 u32 int_status;
3012
3013 count = 0;
3014 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3015 do {
3016 int_status = readl(&ioc->chip->HostInterruptStatus);
3017 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3018 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3019 "%s: successful count(%d), timeout(%d)\n",
3020 ioc->name, __func__, count, timeout));
3021 return 0;
3022 }
3023 if (sleep_flag == CAN_SLEEP)
3024 usleep_range(1000, 1500);
3025 else
3026 udelay(500);
3027 count++;
3028 } while (--cntdn);
3029
3030 pr_err(MPT3SAS_FMT
3031 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3032 ioc->name, __func__, count, int_status);
3033 return -EFAULT;
3034 }
3035
3036 /**
3037 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
3038 * @ioc: per adapter object
3039 * @timeout: timeout in second
3040 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3041 *
3042 * Returns 0 for success, non-zero for failure.
3043 *
3044 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
3045 * doorbell.
3046 */
3047 static int
_base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER * ioc,int timeout,int sleep_flag)3048 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout,
3049 int sleep_flag)
3050 {
3051 u32 cntdn, count;
3052 u32 int_status;
3053 u32 doorbell;
3054
3055 count = 0;
3056 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3057 do {
3058 int_status = readl(&ioc->chip->HostInterruptStatus);
3059 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
3060 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3061 "%s: successful count(%d), timeout(%d)\n",
3062 ioc->name, __func__, count, timeout));
3063 return 0;
3064 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3065 doorbell = readl(&ioc->chip->Doorbell);
3066 if ((doorbell & MPI2_IOC_STATE_MASK) ==
3067 MPI2_IOC_STATE_FAULT) {
3068 mpt3sas_base_fault_info(ioc , doorbell);
3069 return -EFAULT;
3070 }
3071 } else if (int_status == 0xFFFFFFFF)
3072 goto out;
3073
3074 if (sleep_flag == CAN_SLEEP)
3075 usleep_range(1000, 1500);
3076 else
3077 udelay(500);
3078 count++;
3079 } while (--cntdn);
3080
3081 out:
3082 pr_err(MPT3SAS_FMT
3083 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3084 ioc->name, __func__, count, int_status);
3085 return -EFAULT;
3086 }
3087
3088 /**
3089 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
3090 * @ioc: per adapter object
3091 * @timeout: timeout in second
3092 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3093 *
3094 * Returns 0 for success, non-zero for failure.
3095 *
3096 */
3097 static int
_base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER * ioc,int timeout,int sleep_flag)3098 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout,
3099 int sleep_flag)
3100 {
3101 u32 cntdn, count;
3102 u32 doorbell_reg;
3103
3104 count = 0;
3105 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3106 do {
3107 doorbell_reg = readl(&ioc->chip->Doorbell);
3108 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
3109 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3110 "%s: successful count(%d), timeout(%d)\n",
3111 ioc->name, __func__, count, timeout));
3112 return 0;
3113 }
3114 if (sleep_flag == CAN_SLEEP)
3115 usleep_range(1000, 1500);
3116 else
3117 udelay(500);
3118 count++;
3119 } while (--cntdn);
3120
3121 pr_err(MPT3SAS_FMT
3122 "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
3123 ioc->name, __func__, count, doorbell_reg);
3124 return -EFAULT;
3125 }
3126
3127 /**
3128 * _base_send_ioc_reset - send doorbell reset
3129 * @ioc: per adapter object
3130 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
3131 * @timeout: timeout in second
3132 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3133 *
3134 * Returns 0 for success, non-zero for failure.
3135 */
3136 static int
_base_send_ioc_reset(struct MPT3SAS_ADAPTER * ioc,u8 reset_type,int timeout,int sleep_flag)3137 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout,
3138 int sleep_flag)
3139 {
3140 u32 ioc_state;
3141 int r = 0;
3142
3143 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
3144 pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
3145 ioc->name, __func__);
3146 return -EFAULT;
3147 }
3148
3149 if (!(ioc->facts.IOCCapabilities &
3150 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
3151 return -EFAULT;
3152
3153 pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
3154
3155 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
3156 &ioc->chip->Doorbell);
3157 if ((_base_wait_for_doorbell_ack(ioc, 15, sleep_flag))) {
3158 r = -EFAULT;
3159 goto out;
3160 }
3161 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
3162 timeout, sleep_flag);
3163 if (ioc_state) {
3164 pr_err(MPT3SAS_FMT
3165 "%s: failed going to ready state (ioc_state=0x%x)\n",
3166 ioc->name, __func__, ioc_state);
3167 r = -EFAULT;
3168 goto out;
3169 }
3170 out:
3171 pr_info(MPT3SAS_FMT "message unit reset: %s\n",
3172 ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
3173 return r;
3174 }
3175
3176 /**
3177 * _base_handshake_req_reply_wait - send request thru doorbell interface
3178 * @ioc: per adapter object
3179 * @request_bytes: request length
3180 * @request: pointer having request payload
3181 * @reply_bytes: reply length
3182 * @reply: pointer to reply payload
3183 * @timeout: timeout in second
3184 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3185 *
3186 * Returns 0 for success, non-zero for failure.
3187 */
3188 static int
_base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER * ioc,int request_bytes,u32 * request,int reply_bytes,u16 * reply,int timeout,int sleep_flag)3189 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
3190 u32 *request, int reply_bytes, u16 *reply, int timeout, int sleep_flag)
3191 {
3192 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
3193 int i;
3194 u8 failed;
3195 u16 dummy;
3196 __le32 *mfp;
3197
3198 /* make sure doorbell is not in use */
3199 if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
3200 pr_err(MPT3SAS_FMT
3201 "doorbell is in use (line=%d)\n",
3202 ioc->name, __LINE__);
3203 return -EFAULT;
3204 }
3205
3206 /* clear pending doorbell interrupts from previous state changes */
3207 if (readl(&ioc->chip->HostInterruptStatus) &
3208 MPI2_HIS_IOC2SYS_DB_STATUS)
3209 writel(0, &ioc->chip->HostInterruptStatus);
3210
3211 /* send message to ioc */
3212 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
3213 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
3214 &ioc->chip->Doorbell);
3215
3216 if ((_base_wait_for_doorbell_int(ioc, 5, NO_SLEEP))) {
3217 pr_err(MPT3SAS_FMT
3218 "doorbell handshake int failed (line=%d)\n",
3219 ioc->name, __LINE__);
3220 return -EFAULT;
3221 }
3222 writel(0, &ioc->chip->HostInterruptStatus);
3223
3224 if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag))) {
3225 pr_err(MPT3SAS_FMT
3226 "doorbell handshake ack failed (line=%d)\n",
3227 ioc->name, __LINE__);
3228 return -EFAULT;
3229 }
3230
3231 /* send message 32-bits at a time */
3232 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
3233 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
3234 if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag)))
3235 failed = 1;
3236 }
3237
3238 if (failed) {
3239 pr_err(MPT3SAS_FMT
3240 "doorbell handshake sending request failed (line=%d)\n",
3241 ioc->name, __LINE__);
3242 return -EFAULT;
3243 }
3244
3245 /* now wait for the reply */
3246 if ((_base_wait_for_doorbell_int(ioc, timeout, sleep_flag))) {
3247 pr_err(MPT3SAS_FMT
3248 "doorbell handshake int failed (line=%d)\n",
3249 ioc->name, __LINE__);
3250 return -EFAULT;
3251 }
3252
3253 /* read the first two 16-bits, it gives the total length of the reply */
3254 reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3255 & MPI2_DOORBELL_DATA_MASK);
3256 writel(0, &ioc->chip->HostInterruptStatus);
3257 if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3258 pr_err(MPT3SAS_FMT
3259 "doorbell handshake int failed (line=%d)\n",
3260 ioc->name, __LINE__);
3261 return -EFAULT;
3262 }
3263 reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3264 & MPI2_DOORBELL_DATA_MASK);
3265 writel(0, &ioc->chip->HostInterruptStatus);
3266
3267 for (i = 2; i < default_reply->MsgLength * 2; i++) {
3268 if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3269 pr_err(MPT3SAS_FMT
3270 "doorbell handshake int failed (line=%d)\n",
3271 ioc->name, __LINE__);
3272 return -EFAULT;
3273 }
3274 if (i >= reply_bytes/2) /* overflow case */
3275 dummy = readl(&ioc->chip->Doorbell);
3276 else
3277 reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3278 & MPI2_DOORBELL_DATA_MASK);
3279 writel(0, &ioc->chip->HostInterruptStatus);
3280 }
3281
3282 _base_wait_for_doorbell_int(ioc, 5, sleep_flag);
3283 if (_base_wait_for_doorbell_not_used(ioc, 5, sleep_flag) != 0) {
3284 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3285 "doorbell is in use (line=%d)\n", ioc->name, __LINE__));
3286 }
3287 writel(0, &ioc->chip->HostInterruptStatus);
3288
3289 if (ioc->logging_level & MPT_DEBUG_INIT) {
3290 mfp = (__le32 *)reply;
3291 pr_info("\toffset:data\n");
3292 for (i = 0; i < reply_bytes/4; i++)
3293 pr_info("\t[0x%02x]:%08x\n", i*4,
3294 le32_to_cpu(mfp[i]));
3295 }
3296 return 0;
3297 }
3298
3299 /**
3300 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
3301 * @ioc: per adapter object
3302 * @mpi_reply: the reply payload from FW
3303 * @mpi_request: the request payload sent to FW
3304 *
3305 * The SAS IO Unit Control Request message allows the host to perform low-level
3306 * operations, such as resets on the PHYs of the IO Unit, also allows the host
3307 * to obtain the IOC assigned device handles for a device if it has other
3308 * identifying information about the device, in addition allows the host to
3309 * remove IOC resources associated with the device.
3310 *
3311 * Returns 0 for success, non-zero for failure.
3312 */
3313 int
mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER * ioc,Mpi2SasIoUnitControlReply_t * mpi_reply,Mpi2SasIoUnitControlRequest_t * mpi_request)3314 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
3315 Mpi2SasIoUnitControlReply_t *mpi_reply,
3316 Mpi2SasIoUnitControlRequest_t *mpi_request)
3317 {
3318 u16 smid;
3319 u32 ioc_state;
3320 unsigned long timeleft;
3321 u8 issue_reset;
3322 int rc;
3323 void *request;
3324 u16 wait_state_count;
3325
3326 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3327 __func__));
3328
3329 mutex_lock(&ioc->base_cmds.mutex);
3330
3331 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
3332 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
3333 ioc->name, __func__);
3334 rc = -EAGAIN;
3335 goto out;
3336 }
3337
3338 wait_state_count = 0;
3339 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3340 while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
3341 if (wait_state_count++ == 10) {
3342 pr_err(MPT3SAS_FMT
3343 "%s: failed due to ioc not operational\n",
3344 ioc->name, __func__);
3345 rc = -EFAULT;
3346 goto out;
3347 }
3348 ssleep(1);
3349 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3350 pr_info(MPT3SAS_FMT
3351 "%s: waiting for operational state(count=%d)\n",
3352 ioc->name, __func__, wait_state_count);
3353 }
3354
3355 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
3356 if (!smid) {
3357 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3358 ioc->name, __func__);
3359 rc = -EAGAIN;
3360 goto out;
3361 }
3362
3363 rc = 0;
3364 ioc->base_cmds.status = MPT3_CMD_PENDING;
3365 request = mpt3sas_base_get_msg_frame(ioc, smid);
3366 ioc->base_cmds.smid = smid;
3367 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
3368 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
3369 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
3370 ioc->ioc_link_reset_in_progress = 1;
3371 init_completion(&ioc->base_cmds.done);
3372 mpt3sas_base_put_smid_default(ioc, smid);
3373 timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
3374 msecs_to_jiffies(10000));
3375 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
3376 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
3377 ioc->ioc_link_reset_in_progress)
3378 ioc->ioc_link_reset_in_progress = 0;
3379 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
3380 pr_err(MPT3SAS_FMT "%s: timeout\n",
3381 ioc->name, __func__);
3382 _debug_dump_mf(mpi_request,
3383 sizeof(Mpi2SasIoUnitControlRequest_t)/4);
3384 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
3385 issue_reset = 1;
3386 goto issue_host_reset;
3387 }
3388 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
3389 memcpy(mpi_reply, ioc->base_cmds.reply,
3390 sizeof(Mpi2SasIoUnitControlReply_t));
3391 else
3392 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
3393 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3394 goto out;
3395
3396 issue_host_reset:
3397 if (issue_reset)
3398 mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
3399 FORCE_BIG_HAMMER);
3400 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3401 rc = -EFAULT;
3402 out:
3403 mutex_unlock(&ioc->base_cmds.mutex);
3404 return rc;
3405 }
3406
3407 /**
3408 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
3409 * @ioc: per adapter object
3410 * @mpi_reply: the reply payload from FW
3411 * @mpi_request: the request payload sent to FW
3412 *
3413 * The SCSI Enclosure Processor request message causes the IOC to
3414 * communicate with SES devices to control LED status signals.
3415 *
3416 * Returns 0 for success, non-zero for failure.
3417 */
3418 int
mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER * ioc,Mpi2SepReply_t * mpi_reply,Mpi2SepRequest_t * mpi_request)3419 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
3420 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
3421 {
3422 u16 smid;
3423 u32 ioc_state;
3424 unsigned long timeleft;
3425 u8 issue_reset;
3426 int rc;
3427 void *request;
3428 u16 wait_state_count;
3429
3430 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3431 __func__));
3432
3433 mutex_lock(&ioc->base_cmds.mutex);
3434
3435 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
3436 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
3437 ioc->name, __func__);
3438 rc = -EAGAIN;
3439 goto out;
3440 }
3441
3442 wait_state_count = 0;
3443 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3444 while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
3445 if (wait_state_count++ == 10) {
3446 pr_err(MPT3SAS_FMT
3447 "%s: failed due to ioc not operational\n",
3448 ioc->name, __func__);
3449 rc = -EFAULT;
3450 goto out;
3451 }
3452 ssleep(1);
3453 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3454 pr_info(MPT3SAS_FMT
3455 "%s: waiting for operational state(count=%d)\n",
3456 ioc->name,
3457 __func__, wait_state_count);
3458 }
3459
3460 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
3461 if (!smid) {
3462 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3463 ioc->name, __func__);
3464 rc = -EAGAIN;
3465 goto out;
3466 }
3467
3468 rc = 0;
3469 ioc->base_cmds.status = MPT3_CMD_PENDING;
3470 request = mpt3sas_base_get_msg_frame(ioc, smid);
3471 ioc->base_cmds.smid = smid;
3472 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
3473 init_completion(&ioc->base_cmds.done);
3474 mpt3sas_base_put_smid_default(ioc, smid);
3475 timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
3476 msecs_to_jiffies(10000));
3477 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
3478 pr_err(MPT3SAS_FMT "%s: timeout\n",
3479 ioc->name, __func__);
3480 _debug_dump_mf(mpi_request,
3481 sizeof(Mpi2SepRequest_t)/4);
3482 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
3483 issue_reset = 1;
3484 goto issue_host_reset;
3485 }
3486 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
3487 memcpy(mpi_reply, ioc->base_cmds.reply,
3488 sizeof(Mpi2SepReply_t));
3489 else
3490 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
3491 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3492 goto out;
3493
3494 issue_host_reset:
3495 if (issue_reset)
3496 mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
3497 FORCE_BIG_HAMMER);
3498 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3499 rc = -EFAULT;
3500 out:
3501 mutex_unlock(&ioc->base_cmds.mutex);
3502 return rc;
3503 }
3504
3505 /**
3506 * _base_get_port_facts - obtain port facts reply and save in ioc
3507 * @ioc: per adapter object
3508 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3509 *
3510 * Returns 0 for success, non-zero for failure.
3511 */
3512 static int
_base_get_port_facts(struct MPT3SAS_ADAPTER * ioc,int port,int sleep_flag)3513 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port, int sleep_flag)
3514 {
3515 Mpi2PortFactsRequest_t mpi_request;
3516 Mpi2PortFactsReply_t mpi_reply;
3517 struct mpt3sas_port_facts *pfacts;
3518 int mpi_reply_sz, mpi_request_sz, r;
3519
3520 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3521 __func__));
3522
3523 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
3524 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
3525 memset(&mpi_request, 0, mpi_request_sz);
3526 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
3527 mpi_request.PortNumber = port;
3528 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
3529 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
3530
3531 if (r != 0) {
3532 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
3533 ioc->name, __func__, r);
3534 return r;
3535 }
3536
3537 pfacts = &ioc->pfacts[port];
3538 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
3539 pfacts->PortNumber = mpi_reply.PortNumber;
3540 pfacts->VP_ID = mpi_reply.VP_ID;
3541 pfacts->VF_ID = mpi_reply.VF_ID;
3542 pfacts->MaxPostedCmdBuffers =
3543 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
3544
3545 return 0;
3546 }
3547
3548 /**
3549 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
3550 * @ioc: per adapter object
3551 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3552 *
3553 * Returns 0 for success, non-zero for failure.
3554 */
3555 static int
_base_get_ioc_facts(struct MPT3SAS_ADAPTER * ioc,int sleep_flag)3556 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
3557 {
3558 Mpi2IOCFactsRequest_t mpi_request;
3559 Mpi2IOCFactsReply_t mpi_reply;
3560 struct mpt3sas_facts *facts;
3561 int mpi_reply_sz, mpi_request_sz, r;
3562
3563 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3564 __func__));
3565
3566 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
3567 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
3568 memset(&mpi_request, 0, mpi_request_sz);
3569 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
3570 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
3571 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
3572
3573 if (r != 0) {
3574 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
3575 ioc->name, __func__, r);
3576 return r;
3577 }
3578
3579 facts = &ioc->facts;
3580 memset(facts, 0, sizeof(struct mpt3sas_facts));
3581 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
3582 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
3583 facts->VP_ID = mpi_reply.VP_ID;
3584 facts->VF_ID = mpi_reply.VF_ID;
3585 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
3586 facts->MaxChainDepth = mpi_reply.MaxChainDepth;
3587 facts->WhoInit = mpi_reply.WhoInit;
3588 facts->NumberOfPorts = mpi_reply.NumberOfPorts;
3589 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
3590 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
3591 facts->MaxReplyDescriptorPostQueueDepth =
3592 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
3593 facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
3594 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
3595 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
3596 ioc->ir_firmware = 1;
3597 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
3598 facts->IOCRequestFrameSize =
3599 le16_to_cpu(mpi_reply.IOCRequestFrameSize);
3600 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
3601 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
3602 ioc->shost->max_id = -1;
3603 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
3604 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
3605 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
3606 facts->HighPriorityCredit =
3607 le16_to_cpu(mpi_reply.HighPriorityCredit);
3608 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
3609 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
3610
3611 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3612 "hba queue depth(%d), max chains per io(%d)\n",
3613 ioc->name, facts->RequestCredit,
3614 facts->MaxChainDepth));
3615 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3616 "request frame size(%d), reply frame size(%d)\n", ioc->name,
3617 facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
3618 return 0;
3619 }
3620
3621 /**
3622 * _base_send_ioc_init - send ioc_init to firmware
3623 * @ioc: per adapter object
3624 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3625 *
3626 * Returns 0 for success, non-zero for failure.
3627 */
3628 static int
_base_send_ioc_init(struct MPT3SAS_ADAPTER * ioc,int sleep_flag)3629 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
3630 {
3631 Mpi2IOCInitRequest_t mpi_request;
3632 Mpi2IOCInitReply_t mpi_reply;
3633 int r;
3634 struct timeval current_time;
3635 u16 ioc_status;
3636
3637 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3638 __func__));
3639
3640 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
3641 mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
3642 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
3643 mpi_request.VF_ID = 0; /* TODO */
3644 mpi_request.VP_ID = 0;
3645 mpi_request.MsgVersion = cpu_to_le16(MPI2_VERSION);
3646 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
3647
3648 if (_base_is_controller_msix_enabled(ioc))
3649 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
3650 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
3651 mpi_request.ReplyDescriptorPostQueueDepth =
3652 cpu_to_le16(ioc->reply_post_queue_depth);
3653 mpi_request.ReplyFreeQueueDepth =
3654 cpu_to_le16(ioc->reply_free_queue_depth);
3655
3656 mpi_request.SenseBufferAddressHigh =
3657 cpu_to_le32((u64)ioc->sense_dma >> 32);
3658 mpi_request.SystemReplyAddressHigh =
3659 cpu_to_le32((u64)ioc->reply_dma >> 32);
3660 mpi_request.SystemRequestFrameBaseAddress =
3661 cpu_to_le64((u64)ioc->request_dma);
3662 mpi_request.ReplyFreeQueueAddress =
3663 cpu_to_le64((u64)ioc->reply_free_dma);
3664 mpi_request.ReplyDescriptorPostQueueAddress =
3665 cpu_to_le64((u64)ioc->reply_post_free_dma);
3666
3667
3668 /* This time stamp specifies number of milliseconds
3669 * since epoch ~ midnight January 1, 1970.
3670 */
3671 do_gettimeofday(¤t_time);
3672 mpi_request.TimeStamp = cpu_to_le64((u64)current_time.tv_sec * 1000 +
3673 (current_time.tv_usec / 1000));
3674
3675 if (ioc->logging_level & MPT_DEBUG_INIT) {
3676 __le32 *mfp;
3677 int i;
3678
3679 mfp = (__le32 *)&mpi_request;
3680 pr_info("\toffset:data\n");
3681 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
3682 pr_info("\t[0x%02x]:%08x\n", i*4,
3683 le32_to_cpu(mfp[i]));
3684 }
3685
3686 r = _base_handshake_req_reply_wait(ioc,
3687 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
3688 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10,
3689 sleep_flag);
3690
3691 if (r != 0) {
3692 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
3693 ioc->name, __func__, r);
3694 return r;
3695 }
3696
3697 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
3698 if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
3699 mpi_reply.IOCLogInfo) {
3700 pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
3701 r = -EIO;
3702 }
3703
3704 return 0;
3705 }
3706
3707 /**
3708 * mpt3sas_port_enable_done - command completion routine for port enable
3709 * @ioc: per adapter object
3710 * @smid: system request message index
3711 * @msix_index: MSIX table index supplied by the OS
3712 * @reply: reply message frame(lower 32bit addr)
3713 *
3714 * Return 1 meaning mf should be freed from _base_interrupt
3715 * 0 means the mf is freed from this function.
3716 */
3717 u8
mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)3718 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
3719 u32 reply)
3720 {
3721 MPI2DefaultReply_t *mpi_reply;
3722 u16 ioc_status;
3723
3724 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
3725 return 1;
3726
3727 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
3728 if (!mpi_reply)
3729 return 1;
3730
3731 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
3732 return 1;
3733
3734 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
3735 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
3736 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
3737 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
3738 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
3739 if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
3740 ioc->port_enable_failed = 1;
3741
3742 if (ioc->is_driver_loading) {
3743 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
3744 mpt3sas_port_enable_complete(ioc);
3745 return 1;
3746 } else {
3747 ioc->start_scan_failed = ioc_status;
3748 ioc->start_scan = 0;
3749 return 1;
3750 }
3751 }
3752 complete(&ioc->port_enable_cmds.done);
3753 return 1;
3754 }
3755
3756 /**
3757 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
3758 * @ioc: per adapter object
3759 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3760 *
3761 * Returns 0 for success, non-zero for failure.
3762 */
3763 static int
_base_send_port_enable(struct MPT3SAS_ADAPTER * ioc,int sleep_flag)3764 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
3765 {
3766 Mpi2PortEnableRequest_t *mpi_request;
3767 Mpi2PortEnableReply_t *mpi_reply;
3768 unsigned long timeleft;
3769 int r = 0;
3770 u16 smid;
3771 u16 ioc_status;
3772
3773 pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
3774
3775 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
3776 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
3777 ioc->name, __func__);
3778 return -EAGAIN;
3779 }
3780
3781 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
3782 if (!smid) {
3783 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3784 ioc->name, __func__);
3785 return -EAGAIN;
3786 }
3787
3788 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
3789 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
3790 ioc->port_enable_cmds.smid = smid;
3791 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
3792 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
3793
3794 init_completion(&ioc->port_enable_cmds.done);
3795 mpt3sas_base_put_smid_default(ioc, smid);
3796 timeleft = wait_for_completion_timeout(&ioc->port_enable_cmds.done,
3797 300*HZ);
3798 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
3799 pr_err(MPT3SAS_FMT "%s: timeout\n",
3800 ioc->name, __func__);
3801 _debug_dump_mf(mpi_request,
3802 sizeof(Mpi2PortEnableRequest_t)/4);
3803 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
3804 r = -EFAULT;
3805 else
3806 r = -ETIME;
3807 goto out;
3808 }
3809
3810 mpi_reply = ioc->port_enable_cmds.reply;
3811 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
3812 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
3813 pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
3814 ioc->name, __func__, ioc_status);
3815 r = -EFAULT;
3816 goto out;
3817 }
3818
3819 out:
3820 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
3821 pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
3822 "SUCCESS" : "FAILED"));
3823 return r;
3824 }
3825
3826 /**
3827 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
3828 * @ioc: per adapter object
3829 *
3830 * Returns 0 for success, non-zero for failure.
3831 */
3832 int
mpt3sas_port_enable(struct MPT3SAS_ADAPTER * ioc)3833 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
3834 {
3835 Mpi2PortEnableRequest_t *mpi_request;
3836 u16 smid;
3837
3838 pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
3839
3840 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
3841 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
3842 ioc->name, __func__);
3843 return -EAGAIN;
3844 }
3845
3846 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
3847 if (!smid) {
3848 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3849 ioc->name, __func__);
3850 return -EAGAIN;
3851 }
3852
3853 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
3854 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
3855 ioc->port_enable_cmds.smid = smid;
3856 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
3857 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
3858
3859 mpt3sas_base_put_smid_default(ioc, smid);
3860 return 0;
3861 }
3862
3863 /**
3864 * _base_determine_wait_on_discovery - desposition
3865 * @ioc: per adapter object
3866 *
3867 * Decide whether to wait on discovery to complete. Used to either
3868 * locate boot device, or report volumes ahead of physical devices.
3869 *
3870 * Returns 1 for wait, 0 for don't wait
3871 */
3872 static int
_base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER * ioc)3873 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
3874 {
3875 /* We wait for discovery to complete if IR firmware is loaded.
3876 * The sas topology events arrive before PD events, so we need time to
3877 * turn on the bit in ioc->pd_handles to indicate PD
3878 * Also, it maybe required to report Volumes ahead of physical
3879 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
3880 */
3881 if (ioc->ir_firmware)
3882 return 1;
3883
3884 /* if no Bios, then we don't need to wait */
3885 if (!ioc->bios_pg3.BiosVersion)
3886 return 0;
3887
3888 /* Bios is present, then we drop down here.
3889 *
3890 * If there any entries in the Bios Page 2, then we wait
3891 * for discovery to complete.
3892 */
3893
3894 /* Current Boot Device */
3895 if ((ioc->bios_pg2.CurrentBootDeviceForm &
3896 MPI2_BIOSPAGE2_FORM_MASK) ==
3897 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
3898 /* Request Boot Device */
3899 (ioc->bios_pg2.ReqBootDeviceForm &
3900 MPI2_BIOSPAGE2_FORM_MASK) ==
3901 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
3902 /* Alternate Request Boot Device */
3903 (ioc->bios_pg2.ReqAltBootDeviceForm &
3904 MPI2_BIOSPAGE2_FORM_MASK) ==
3905 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
3906 return 0;
3907
3908 return 1;
3909 }
3910
3911 /**
3912 * _base_unmask_events - turn on notification for this event
3913 * @ioc: per adapter object
3914 * @event: firmware event
3915 *
3916 * The mask is stored in ioc->event_masks.
3917 */
3918 static void
_base_unmask_events(struct MPT3SAS_ADAPTER * ioc,u16 event)3919 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
3920 {
3921 u32 desired_event;
3922
3923 if (event >= 128)
3924 return;
3925
3926 desired_event = (1 << (event % 32));
3927
3928 if (event < 32)
3929 ioc->event_masks[0] &= ~desired_event;
3930 else if (event < 64)
3931 ioc->event_masks[1] &= ~desired_event;
3932 else if (event < 96)
3933 ioc->event_masks[2] &= ~desired_event;
3934 else if (event < 128)
3935 ioc->event_masks[3] &= ~desired_event;
3936 }
3937
3938 /**
3939 * _base_event_notification - send event notification
3940 * @ioc: per adapter object
3941 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3942 *
3943 * Returns 0 for success, non-zero for failure.
3944 */
3945 static int
_base_event_notification(struct MPT3SAS_ADAPTER * ioc,int sleep_flag)3946 _base_event_notification(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
3947 {
3948 Mpi2EventNotificationRequest_t *mpi_request;
3949 unsigned long timeleft;
3950 u16 smid;
3951 int r = 0;
3952 int i;
3953
3954 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3955 __func__));
3956
3957 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
3958 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
3959 ioc->name, __func__);
3960 return -EAGAIN;
3961 }
3962
3963 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
3964 if (!smid) {
3965 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3966 ioc->name, __func__);
3967 return -EAGAIN;
3968 }
3969 ioc->base_cmds.status = MPT3_CMD_PENDING;
3970 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
3971 ioc->base_cmds.smid = smid;
3972 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
3973 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
3974 mpi_request->VF_ID = 0; /* TODO */
3975 mpi_request->VP_ID = 0;
3976 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
3977 mpi_request->EventMasks[i] =
3978 cpu_to_le32(ioc->event_masks[i]);
3979 init_completion(&ioc->base_cmds.done);
3980 mpt3sas_base_put_smid_default(ioc, smid);
3981 timeleft = wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
3982 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
3983 pr_err(MPT3SAS_FMT "%s: timeout\n",
3984 ioc->name, __func__);
3985 _debug_dump_mf(mpi_request,
3986 sizeof(Mpi2EventNotificationRequest_t)/4);
3987 if (ioc->base_cmds.status & MPT3_CMD_RESET)
3988 r = -EFAULT;
3989 else
3990 r = -ETIME;
3991 } else
3992 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
3993 ioc->name, __func__));
3994 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3995 return r;
3996 }
3997
3998 /**
3999 * mpt3sas_base_validate_event_type - validating event types
4000 * @ioc: per adapter object
4001 * @event: firmware event
4002 *
4003 * This will turn on firmware event notification when application
4004 * ask for that event. We don't mask events that are already enabled.
4005 */
4006 void
mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER * ioc,u32 * event_type)4007 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
4008 {
4009 int i, j;
4010 u32 event_mask, desired_event;
4011 u8 send_update_to_fw;
4012
4013 for (i = 0, send_update_to_fw = 0; i <
4014 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
4015 event_mask = ~event_type[i];
4016 desired_event = 1;
4017 for (j = 0; j < 32; j++) {
4018 if (!(event_mask & desired_event) &&
4019 (ioc->event_masks[i] & desired_event)) {
4020 ioc->event_masks[i] &= ~desired_event;
4021 send_update_to_fw = 1;
4022 }
4023 desired_event = (desired_event << 1);
4024 }
4025 }
4026
4027 if (!send_update_to_fw)
4028 return;
4029
4030 mutex_lock(&ioc->base_cmds.mutex);
4031 _base_event_notification(ioc, CAN_SLEEP);
4032 mutex_unlock(&ioc->base_cmds.mutex);
4033 }
4034
4035 /**
4036 * _base_diag_reset - the "big hammer" start of day reset
4037 * @ioc: per adapter object
4038 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4039 *
4040 * Returns 0 for success, non-zero for failure.
4041 */
4042 static int
_base_diag_reset(struct MPT3SAS_ADAPTER * ioc,int sleep_flag)4043 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4044 {
4045 u32 host_diagnostic;
4046 u32 ioc_state;
4047 u32 count;
4048 u32 hcb_size;
4049
4050 pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
4051
4052 drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
4053 ioc->name));
4054
4055 count = 0;
4056 do {
4057 /* Write magic sequence to WriteSequence register
4058 * Loop until in diagnostic mode
4059 */
4060 drsprintk(ioc, pr_info(MPT3SAS_FMT
4061 "write magic sequence\n", ioc->name));
4062 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4063 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
4064 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
4065 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
4066 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
4067 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
4068 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
4069
4070 /* wait 100 msec */
4071 if (sleep_flag == CAN_SLEEP)
4072 msleep(100);
4073 else
4074 mdelay(100);
4075
4076 if (count++ > 20)
4077 goto out;
4078
4079 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4080 drsprintk(ioc, pr_info(MPT3SAS_FMT
4081 "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
4082 ioc->name, count, host_diagnostic));
4083
4084 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
4085
4086 hcb_size = readl(&ioc->chip->HCBSize);
4087
4088 drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
4089 ioc->name));
4090 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
4091 &ioc->chip->HostDiagnostic);
4092
4093 /* don't access any registers for 50 milliseconds */
4094 msleep(50);
4095
4096 /* 300 second max wait */
4097 for (count = 0; count < 3000000 ; count++) {
4098
4099 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4100
4101 if (host_diagnostic == 0xFFFFFFFF)
4102 goto out;
4103 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
4104 break;
4105
4106 /* wait 1 msec */
4107 if (sleep_flag == CAN_SLEEP)
4108 usleep_range(1000, 1500);
4109 else
4110 mdelay(1);
4111 }
4112
4113 if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
4114
4115 drsprintk(ioc, pr_info(MPT3SAS_FMT
4116 "restart the adapter assuming the HCB Address points to good F/W\n",
4117 ioc->name));
4118 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
4119 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
4120 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
4121
4122 drsprintk(ioc, pr_info(MPT3SAS_FMT
4123 "re-enable the HCDW\n", ioc->name));
4124 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
4125 &ioc->chip->HCBSize);
4126 }
4127
4128 drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
4129 ioc->name));
4130 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
4131 &ioc->chip->HostDiagnostic);
4132
4133 drsprintk(ioc, pr_info(MPT3SAS_FMT
4134 "disable writes to the diagnostic register\n", ioc->name));
4135 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4136
4137 drsprintk(ioc, pr_info(MPT3SAS_FMT
4138 "Wait for FW to go to the READY state\n", ioc->name));
4139 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20,
4140 sleep_flag);
4141 if (ioc_state) {
4142 pr_err(MPT3SAS_FMT
4143 "%s: failed going to ready state (ioc_state=0x%x)\n",
4144 ioc->name, __func__, ioc_state);
4145 goto out;
4146 }
4147
4148 pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
4149 return 0;
4150
4151 out:
4152 pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
4153 return -EFAULT;
4154 }
4155
4156 /**
4157 * _base_make_ioc_ready - put controller in READY state
4158 * @ioc: per adapter object
4159 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4160 * @type: FORCE_BIG_HAMMER or SOFT_RESET
4161 *
4162 * Returns 0 for success, non-zero for failure.
4163 */
4164 static int
_base_make_ioc_ready(struct MPT3SAS_ADAPTER * ioc,int sleep_flag,enum reset_type type)4165 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
4166 enum reset_type type)
4167 {
4168 u32 ioc_state;
4169 int rc;
4170 int count;
4171
4172 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4173 __func__));
4174
4175 if (ioc->pci_error_recovery)
4176 return 0;
4177
4178 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4179 dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4180 ioc->name, __func__, ioc_state));
4181
4182 /* if in RESET state, it should move to READY state shortly */
4183 count = 0;
4184 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
4185 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
4186 MPI2_IOC_STATE_READY) {
4187 if (count++ == 10) {
4188 pr_err(MPT3SAS_FMT
4189 "%s: failed going to ready state (ioc_state=0x%x)\n",
4190 ioc->name, __func__, ioc_state);
4191 return -EFAULT;
4192 }
4193 if (sleep_flag == CAN_SLEEP)
4194 ssleep(1);
4195 else
4196 mdelay(1000);
4197 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4198 }
4199 }
4200
4201 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
4202 return 0;
4203
4204 if (ioc_state & MPI2_DOORBELL_USED) {
4205 dhsprintk(ioc, pr_info(MPT3SAS_FMT
4206 "unexpected doorbell active!\n",
4207 ioc->name));
4208 goto issue_diag_reset;
4209 }
4210
4211 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4212 mpt3sas_base_fault_info(ioc, ioc_state &
4213 MPI2_DOORBELL_DATA_MASK);
4214 goto issue_diag_reset;
4215 }
4216
4217 if (type == FORCE_BIG_HAMMER)
4218 goto issue_diag_reset;
4219
4220 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4221 if (!(_base_send_ioc_reset(ioc,
4222 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15, CAN_SLEEP))) {
4223 return 0;
4224 }
4225
4226 issue_diag_reset:
4227 rc = _base_diag_reset(ioc, CAN_SLEEP);
4228 return rc;
4229 }
4230
4231 /**
4232 * _base_make_ioc_operational - put controller in OPERATIONAL state
4233 * @ioc: per adapter object
4234 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4235 *
4236 * Returns 0 for success, non-zero for failure.
4237 */
4238 static int
_base_make_ioc_operational(struct MPT3SAS_ADAPTER * ioc,int sleep_flag)4239 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4240 {
4241 int r, i;
4242 unsigned long flags;
4243 u32 reply_address;
4244 u16 smid;
4245 struct _tr_list *delayed_tr, *delayed_tr_next;
4246 struct adapter_reply_queue *reply_q;
4247 long reply_post_free;
4248 u32 reply_post_free_sz;
4249
4250 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4251 __func__));
4252
4253 /* clean the delayed target reset list */
4254 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
4255 &ioc->delayed_tr_list, list) {
4256 list_del(&delayed_tr->list);
4257 kfree(delayed_tr);
4258 }
4259
4260
4261 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
4262 &ioc->delayed_tr_volume_list, list) {
4263 list_del(&delayed_tr->list);
4264 kfree(delayed_tr);
4265 }
4266
4267 /* initialize the scsi lookup free list */
4268 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4269 INIT_LIST_HEAD(&ioc->free_list);
4270 smid = 1;
4271 for (i = 0; i < ioc->scsiio_depth; i++, smid++) {
4272 INIT_LIST_HEAD(&ioc->scsi_lookup[i].chain_list);
4273 ioc->scsi_lookup[i].cb_idx = 0xFF;
4274 ioc->scsi_lookup[i].smid = smid;
4275 ioc->scsi_lookup[i].scmd = NULL;
4276 list_add_tail(&ioc->scsi_lookup[i].tracker_list,
4277 &ioc->free_list);
4278 }
4279
4280 /* hi-priority queue */
4281 INIT_LIST_HEAD(&ioc->hpr_free_list);
4282 smid = ioc->hi_priority_smid;
4283 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
4284 ioc->hpr_lookup[i].cb_idx = 0xFF;
4285 ioc->hpr_lookup[i].smid = smid;
4286 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
4287 &ioc->hpr_free_list);
4288 }
4289
4290 /* internal queue */
4291 INIT_LIST_HEAD(&ioc->internal_free_list);
4292 smid = ioc->internal_smid;
4293 for (i = 0; i < ioc->internal_depth; i++, smid++) {
4294 ioc->internal_lookup[i].cb_idx = 0xFF;
4295 ioc->internal_lookup[i].smid = smid;
4296 list_add_tail(&ioc->internal_lookup[i].tracker_list,
4297 &ioc->internal_free_list);
4298 }
4299
4300 /* chain pool */
4301 INIT_LIST_HEAD(&ioc->free_chain_list);
4302 for (i = 0; i < ioc->chain_depth; i++)
4303 list_add_tail(&ioc->chain_lookup[i].tracker_list,
4304 &ioc->free_chain_list);
4305
4306 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4307
4308 /* initialize Reply Free Queue */
4309 for (i = 0, reply_address = (u32)ioc->reply_dma ;
4310 i < ioc->reply_free_queue_depth ; i++, reply_address +=
4311 ioc->reply_sz)
4312 ioc->reply_free[i] = cpu_to_le32(reply_address);
4313
4314 /* initialize reply queues */
4315 if (ioc->is_driver_loading)
4316 _base_assign_reply_queues(ioc);
4317
4318 /* initialize Reply Post Free Queue */
4319 reply_post_free = (long)ioc->reply_post_free;
4320 reply_post_free_sz = ioc->reply_post_queue_depth *
4321 sizeof(Mpi2DefaultReplyDescriptor_t);
4322 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
4323 reply_q->reply_post_host_index = 0;
4324 reply_q->reply_post_free = (Mpi2ReplyDescriptorsUnion_t *)
4325 reply_post_free;
4326 for (i = 0; i < ioc->reply_post_queue_depth; i++)
4327 reply_q->reply_post_free[i].Words =
4328 cpu_to_le64(ULLONG_MAX);
4329 if (!_base_is_controller_msix_enabled(ioc))
4330 goto skip_init_reply_post_free_queue;
4331 reply_post_free += reply_post_free_sz;
4332 }
4333 skip_init_reply_post_free_queue:
4334
4335 r = _base_send_ioc_init(ioc, sleep_flag);
4336 if (r)
4337 return r;
4338
4339 /* initialize reply free host index */
4340 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
4341 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
4342
4343 /* initialize reply post host index */
4344 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
4345 writel(reply_q->msix_index << MPI2_RPHI_MSIX_INDEX_SHIFT,
4346 &ioc->chip->ReplyPostHostIndex);
4347 if (!_base_is_controller_msix_enabled(ioc))
4348 goto skip_init_reply_post_host_index;
4349 }
4350
4351 skip_init_reply_post_host_index:
4352
4353 _base_unmask_interrupts(ioc);
4354 r = _base_event_notification(ioc, sleep_flag);
4355 if (r)
4356 return r;
4357
4358 if (sleep_flag == CAN_SLEEP)
4359 _base_static_config_pages(ioc);
4360
4361
4362 if (ioc->is_driver_loading) {
4363 ioc->wait_for_discovery_to_complete =
4364 _base_determine_wait_on_discovery(ioc);
4365
4366 return r; /* scan_start and scan_finished support */
4367 }
4368
4369 r = _base_send_port_enable(ioc, sleep_flag);
4370 if (r)
4371 return r;
4372
4373 return r;
4374 }
4375
4376 /**
4377 * mpt3sas_base_free_resources - free resources controller resources
4378 * @ioc: per adapter object
4379 *
4380 * Return nothing.
4381 */
4382 void
mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER * ioc)4383 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
4384 {
4385 struct pci_dev *pdev = ioc->pdev;
4386
4387 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4388 __func__));
4389
4390 _base_mask_interrupts(ioc);
4391 ioc->shost_recovery = 1;
4392 _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
4393 ioc->shost_recovery = 0;
4394 _base_free_irq(ioc);
4395 _base_disable_msix(ioc);
4396 if (ioc->chip_phys)
4397 iounmap(ioc->chip);
4398 ioc->chip_phys = 0;
4399 pci_release_selected_regions(ioc->pdev, ioc->bars);
4400 pci_disable_pcie_error_reporting(pdev);
4401 pci_disable_device(pdev);
4402 return;
4403 }
4404
4405 /**
4406 * mpt3sas_base_attach - attach controller instance
4407 * @ioc: per adapter object
4408 *
4409 * Returns 0 for success, non-zero for failure.
4410 */
4411 int
mpt3sas_base_attach(struct MPT3SAS_ADAPTER * ioc)4412 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
4413 {
4414 int r, i;
4415 int cpu_id, last_cpu_id = 0;
4416
4417 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4418 __func__));
4419
4420 /* setup cpu_msix_table */
4421 ioc->cpu_count = num_online_cpus();
4422 for_each_online_cpu(cpu_id)
4423 last_cpu_id = cpu_id;
4424 ioc->cpu_msix_table_sz = last_cpu_id + 1;
4425 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
4426 ioc->reply_queue_count = 1;
4427 if (!ioc->cpu_msix_table) {
4428 dfailprintk(ioc, pr_info(MPT3SAS_FMT
4429 "allocation for cpu_msix_table failed!!!\n",
4430 ioc->name));
4431 r = -ENOMEM;
4432 goto out_free_resources;
4433 }
4434
4435 r = mpt3sas_base_map_resources(ioc);
4436 if (r)
4437 goto out_free_resources;
4438
4439
4440 pci_set_drvdata(ioc->pdev, ioc->shost);
4441 r = _base_get_ioc_facts(ioc, CAN_SLEEP);
4442 if (r)
4443 goto out_free_resources;
4444
4445 /*
4446 * In SAS3.0,
4447 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
4448 * Target Status - all require the IEEE formated scatter gather
4449 * elements.
4450 */
4451
4452 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
4453 ioc->build_sg = &_base_build_sg_ieee;
4454 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
4455 ioc->mpi25 = 1;
4456 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
4457
4458 /*
4459 * These function pointers for other requests that don't
4460 * the require IEEE scatter gather elements.
4461 *
4462 * For example Configuration Pages and SAS IOUNIT Control don't.
4463 */
4464 ioc->build_sg_mpi = &_base_build_sg;
4465 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
4466
4467 r = _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
4468 if (r)
4469 goto out_free_resources;
4470
4471 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
4472 sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
4473 if (!ioc->pfacts) {
4474 r = -ENOMEM;
4475 goto out_free_resources;
4476 }
4477
4478 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
4479 r = _base_get_port_facts(ioc, i, CAN_SLEEP);
4480 if (r)
4481 goto out_free_resources;
4482 }
4483
4484 r = _base_allocate_memory_pools(ioc, CAN_SLEEP);
4485 if (r)
4486 goto out_free_resources;
4487
4488 init_waitqueue_head(&ioc->reset_wq);
4489
4490 /* allocate memory pd handle bitmask list */
4491 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
4492 if (ioc->facts.MaxDevHandle % 8)
4493 ioc->pd_handles_sz++;
4494 ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
4495 GFP_KERNEL);
4496 if (!ioc->pd_handles) {
4497 r = -ENOMEM;
4498 goto out_free_resources;
4499 }
4500 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
4501 GFP_KERNEL);
4502 if (!ioc->blocking_handles) {
4503 r = -ENOMEM;
4504 goto out_free_resources;
4505 }
4506
4507 ioc->fwfault_debug = mpt3sas_fwfault_debug;
4508
4509 /* base internal command bits */
4510 mutex_init(&ioc->base_cmds.mutex);
4511 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4512 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4513
4514 /* port_enable command bits */
4515 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4516 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
4517
4518 /* transport internal command bits */
4519 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4520 ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
4521 mutex_init(&ioc->transport_cmds.mutex);
4522
4523 /* scsih internal command bits */
4524 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4525 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
4526 mutex_init(&ioc->scsih_cmds.mutex);
4527
4528 /* task management internal command bits */
4529 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4530 ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
4531 mutex_init(&ioc->tm_cmds.mutex);
4532
4533 /* config page internal command bits */
4534 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4535 ioc->config_cmds.status = MPT3_CMD_NOT_USED;
4536 mutex_init(&ioc->config_cmds.mutex);
4537
4538 /* ctl module internal command bits */
4539 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4540 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
4541 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
4542 mutex_init(&ioc->ctl_cmds.mutex);
4543
4544 if (!ioc->base_cmds.reply || !ioc->transport_cmds.reply ||
4545 !ioc->scsih_cmds.reply || !ioc->tm_cmds.reply ||
4546 !ioc->config_cmds.reply || !ioc->ctl_cmds.reply ||
4547 !ioc->ctl_cmds.sense) {
4548 r = -ENOMEM;
4549 goto out_free_resources;
4550 }
4551
4552 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
4553 ioc->event_masks[i] = -1;
4554
4555 /* here we enable the events we care about */
4556 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
4557 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
4558 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
4559 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
4560 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
4561 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
4562 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
4563 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
4564 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
4565 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
4566
4567 r = _base_make_ioc_operational(ioc, CAN_SLEEP);
4568 if (r)
4569 goto out_free_resources;
4570
4571 return 0;
4572
4573 out_free_resources:
4574
4575 ioc->remove_host = 1;
4576
4577 mpt3sas_base_free_resources(ioc);
4578 _base_release_memory_pools(ioc);
4579 pci_set_drvdata(ioc->pdev, NULL);
4580 kfree(ioc->cpu_msix_table);
4581 kfree(ioc->pd_handles);
4582 kfree(ioc->blocking_handles);
4583 kfree(ioc->tm_cmds.reply);
4584 kfree(ioc->transport_cmds.reply);
4585 kfree(ioc->scsih_cmds.reply);
4586 kfree(ioc->config_cmds.reply);
4587 kfree(ioc->base_cmds.reply);
4588 kfree(ioc->port_enable_cmds.reply);
4589 kfree(ioc->ctl_cmds.reply);
4590 kfree(ioc->ctl_cmds.sense);
4591 kfree(ioc->pfacts);
4592 ioc->ctl_cmds.reply = NULL;
4593 ioc->base_cmds.reply = NULL;
4594 ioc->tm_cmds.reply = NULL;
4595 ioc->scsih_cmds.reply = NULL;
4596 ioc->transport_cmds.reply = NULL;
4597 ioc->config_cmds.reply = NULL;
4598 ioc->pfacts = NULL;
4599 return r;
4600 }
4601
4602
4603 /**
4604 * mpt3sas_base_detach - remove controller instance
4605 * @ioc: per adapter object
4606 *
4607 * Return nothing.
4608 */
4609 void
mpt3sas_base_detach(struct MPT3SAS_ADAPTER * ioc)4610 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
4611 {
4612 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4613 __func__));
4614
4615 mpt3sas_base_stop_watchdog(ioc);
4616 mpt3sas_base_free_resources(ioc);
4617 _base_release_memory_pools(ioc);
4618 pci_set_drvdata(ioc->pdev, NULL);
4619 kfree(ioc->cpu_msix_table);
4620 kfree(ioc->pd_handles);
4621 kfree(ioc->blocking_handles);
4622 kfree(ioc->pfacts);
4623 kfree(ioc->ctl_cmds.reply);
4624 kfree(ioc->ctl_cmds.sense);
4625 kfree(ioc->base_cmds.reply);
4626 kfree(ioc->port_enable_cmds.reply);
4627 kfree(ioc->tm_cmds.reply);
4628 kfree(ioc->transport_cmds.reply);
4629 kfree(ioc->scsih_cmds.reply);
4630 kfree(ioc->config_cmds.reply);
4631 }
4632
4633 /**
4634 * _base_reset_handler - reset callback handler (for base)
4635 * @ioc: per adapter object
4636 * @reset_phase: phase
4637 *
4638 * The handler for doing any required cleanup or initialization.
4639 *
4640 * The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
4641 * MPT3_IOC_DONE_RESET
4642 *
4643 * Return nothing.
4644 */
4645 static void
_base_reset_handler(struct MPT3SAS_ADAPTER * ioc,int reset_phase)4646 _base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
4647 {
4648 mpt3sas_scsih_reset_handler(ioc, reset_phase);
4649 mpt3sas_ctl_reset_handler(ioc, reset_phase);
4650 switch (reset_phase) {
4651 case MPT3_IOC_PRE_RESET:
4652 dtmprintk(ioc, pr_info(MPT3SAS_FMT
4653 "%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
4654 break;
4655 case MPT3_IOC_AFTER_RESET:
4656 dtmprintk(ioc, pr_info(MPT3SAS_FMT
4657 "%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
4658 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
4659 ioc->transport_cmds.status |= MPT3_CMD_RESET;
4660 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
4661 complete(&ioc->transport_cmds.done);
4662 }
4663 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4664 ioc->base_cmds.status |= MPT3_CMD_RESET;
4665 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
4666 complete(&ioc->base_cmds.done);
4667 }
4668 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4669 ioc->port_enable_failed = 1;
4670 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
4671 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
4672 if (ioc->is_driver_loading) {
4673 ioc->start_scan_failed =
4674 MPI2_IOCSTATUS_INTERNAL_ERROR;
4675 ioc->start_scan = 0;
4676 ioc->port_enable_cmds.status =
4677 MPT3_CMD_NOT_USED;
4678 } else
4679 complete(&ioc->port_enable_cmds.done);
4680 }
4681 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
4682 ioc->config_cmds.status |= MPT3_CMD_RESET;
4683 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
4684 ioc->config_cmds.smid = USHRT_MAX;
4685 complete(&ioc->config_cmds.done);
4686 }
4687 break;
4688 case MPT3_IOC_DONE_RESET:
4689 dtmprintk(ioc, pr_info(MPT3SAS_FMT
4690 "%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
4691 break;
4692 }
4693 }
4694
4695 /**
4696 * _wait_for_commands_to_complete - reset controller
4697 * @ioc: Pointer to MPT_ADAPTER structure
4698 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4699 *
4700 * This function waiting(3s) for all pending commands to complete
4701 * prior to putting controller in reset.
4702 */
4703 static void
_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER * ioc,int sleep_flag)4704 _wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4705 {
4706 u32 ioc_state;
4707 unsigned long flags;
4708 u16 i;
4709
4710 ioc->pending_io_count = 0;
4711 if (sleep_flag != CAN_SLEEP)
4712 return;
4713
4714 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4715 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
4716 return;
4717
4718 /* pending command count */
4719 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4720 for (i = 0; i < ioc->scsiio_depth; i++)
4721 if (ioc->scsi_lookup[i].cb_idx != 0xFF)
4722 ioc->pending_io_count++;
4723 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4724
4725 if (!ioc->pending_io_count)
4726 return;
4727
4728 /* wait for pending commands to complete */
4729 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
4730 }
4731
4732 /**
4733 * mpt3sas_base_hard_reset_handler - reset controller
4734 * @ioc: Pointer to MPT_ADAPTER structure
4735 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4736 * @type: FORCE_BIG_HAMMER or SOFT_RESET
4737 *
4738 * Returns 0 for success, non-zero for failure.
4739 */
4740 int
mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER * ioc,int sleep_flag,enum reset_type type)4741 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
4742 enum reset_type type)
4743 {
4744 int r;
4745 unsigned long flags;
4746 u32 ioc_state;
4747 u8 is_fault = 0, is_trigger = 0;
4748
4749 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
4750 __func__));
4751
4752 if (ioc->pci_error_recovery) {
4753 pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
4754 ioc->name, __func__);
4755 r = 0;
4756 goto out_unlocked;
4757 }
4758
4759 if (mpt3sas_fwfault_debug)
4760 mpt3sas_halt_firmware(ioc);
4761
4762 /* TODO - What we really should be doing is pulling
4763 * out all the code associated with NO_SLEEP; its never used.
4764 * That is legacy code from mpt fusion driver, ported over.
4765 * I will leave this BUG_ON here for now till its been resolved.
4766 */
4767 BUG_ON(sleep_flag == NO_SLEEP);
4768
4769 /* wait for an active reset in progress to complete */
4770 if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
4771 do {
4772 ssleep(1);
4773 } while (ioc->shost_recovery == 1);
4774 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
4775 __func__));
4776 return ioc->ioc_reset_in_progress_status;
4777 }
4778
4779 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
4780 ioc->shost_recovery = 1;
4781 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
4782
4783 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
4784 MPT3_DIAG_BUFFER_IS_REGISTERED) &&
4785 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
4786 MPT3_DIAG_BUFFER_IS_RELEASED))) {
4787 is_trigger = 1;
4788 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4789 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
4790 is_fault = 1;
4791 }
4792 _base_reset_handler(ioc, MPT3_IOC_PRE_RESET);
4793 _wait_for_commands_to_complete(ioc, sleep_flag);
4794 _base_mask_interrupts(ioc);
4795 r = _base_make_ioc_ready(ioc, sleep_flag, type);
4796 if (r)
4797 goto out;
4798 _base_reset_handler(ioc, MPT3_IOC_AFTER_RESET);
4799
4800 /* If this hard reset is called while port enable is active, then
4801 * there is no reason to call make_ioc_operational
4802 */
4803 if (ioc->is_driver_loading && ioc->port_enable_failed) {
4804 ioc->remove_host = 1;
4805 r = -EFAULT;
4806 goto out;
4807 }
4808 r = _base_get_ioc_facts(ioc, CAN_SLEEP);
4809 if (r)
4810 goto out;
4811 r = _base_make_ioc_operational(ioc, sleep_flag);
4812 if (!r)
4813 _base_reset_handler(ioc, MPT3_IOC_DONE_RESET);
4814
4815 out:
4816 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
4817 ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
4818
4819 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
4820 ioc->ioc_reset_in_progress_status = r;
4821 ioc->shost_recovery = 0;
4822 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
4823 ioc->ioc_reset_count++;
4824 mutex_unlock(&ioc->reset_in_progress_mutex);
4825
4826 out_unlocked:
4827 if ((r == 0) && is_trigger) {
4828 if (is_fault)
4829 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
4830 else
4831 mpt3sas_trigger_master(ioc,
4832 MASTER_TRIGGER_ADAPTER_RESET);
4833 }
4834 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
4835 __func__));
4836 return r;
4837 }
4838